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ABSTRACT. We study the simultaneous occurrence of long memory and nonlinear effects, such

as parameter changes and threshold effects, in ARMA time series models and apply our modeling

framework to daily realized volatility. Asymptotic theoryfor parameter estimation is developed

and two model building procedures are proposed. The methodology is applied to stocks of the

Dow Jones Industrial Average during the period 2000 to 2009.We find strong evidence of non-

linear effects.

KEYWORDS: Smooth transitions, long memory, forecasting, realized volatility.

JEL CODES: C22.

ACKNOWLEDGMENTS: We thank Richard Baillie, Efrem Castelnuovo, Christian Dahl, Marcelo

Fernandes, Jean-Pierre Fouque, Ana Galvão, Liudas Giraitis, Peter Reinhard Hansen, Jim Hilliard,

Hagen Kim, Asger Lunde, Tae-Hwy Lee, Michael McAleer, Morten Nielsen, Joon Park, Timo
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1. INTRODUCTION

Long memory and nonlinear effects such as parameter changesin time or in dependence on a

state variable have long been recognized as confounding (Lobato and Savin 1998, Diebold and

Inoue 2001, Granger and Hyung 2004, Mikosch and Starica 2004, Hillebrand 2005). We propose

a modeling framework for time series that allows for the joint estimation and thus possible

disentanglement of these effects. The method is applied to aset of realized stock volatility

time series, but the methodology is general and can be applied to any time series that displays

these effects such as, for example, unemployment rates (vanDijk et al. 2002), exchange rates

(Baillie and Kapetanios 2008), river flows (Franses and Ooms2001, Elck and Makus 2004), sea

surface temperatures (Lewis and Ray 1997), and lung mechanics (Zhang et al. 1999), among

many others.

Our proposal can be seen as a varying-coefficient model wherethe parameters of the con-

ditional mean change according to a nonlinear function. We study the asymptotic behavior of

the nonlinear least-squares estimator. In addition, we show under which conditions information

criteria (IC) can be used to specify the model structure and also propose a sequence of tests

that is robust to heteroskedasticity and non-normality of the error. The class of nonlinear func-

tions considered in this paper is quite general: only local stationarity and finite fourth moments

of the nonlinear function and its first and second derivatives are required. We also allow for

a framework where time is the driving force for parameter changes. In this case, asymptotic

theory cannot be achieved in the standard way, because as thesample size tends to infinity, the

proportion of finite regimes converges to zero. Our solutionis to scale the transition variable so

that the location of the transition is a constant fraction ofthe sample rather than a fixed point

(Andrews and McDermott 1995, Saikkonen and Choi 2004).

Simulations show that our strategy is successful in correctly determining the structure of mod-

els in a variety of situations. Furthermore, the long-memory parameter is precisely estimated (as
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zero) even in nonlinear short-memory models, where the riskof detecting spurious long-memory

is high. Applying our model and testing framework to the 30 stocks of the Dow Jones Indus-

trial Average from 2000 to 2009, we find evidence of structural breaks in the individual realized

volatility time series. Dependence of volatility on the level of lagged returns is a robust find-

ing across all stocks and in different model specifications,indicating pronounced asymmetry

effects (Black 1976). We conclude that both long memory and non-linear effects coexist in the

data. Accounting for non-linear terms in the volatility specification yields forecast gains in a

multi-step out-of-sample comparison with the HAR-RV modelof Corsi (2009) as well as the

non-linear HAR-RV specification of (Corsi and Renò 2012).

The paper is organized as follows. Section 2 presents the model and the asymptotic theory.

Model building is introduced in Section 3. Simulations are presented in Section 4. Empirical

results are shown in Section 5. Section 6 concludes. All proofs are presented in the appendix.

Additional results are provided in a supplement.

2. THE MODEL

2.1. Model Specification. Let yt be a zero-mean time series that possibly displays long mem-

ory and nonlinear behavior, such as structural breaks and/or threshold effects. For example, let

yt := log(RVt) − µ, whereRVt is any consistent estimator of daily integrated variance and

µ = E[log(RVt)] < ∞.1 Consider the following model with time-varying coefficients:

vt ≡ (1− L)dyt = φ1(st; ξ1)vt−1 + . . .+ φp(st; ξp)vt−p +Θ(L)ut, (1)

or Φ(st; ξ)vt = Θ(L)ut, whereΦ(st; ξ) = 1 − φ1(st; ξ1) − . . . − φp(st; ξp). The autoregres-

sive (AR) coefficientsφi(st; ξi), i = 1, . . . , p are nonlinear functions to be specified. They are

indexed by the vector of parametersξi ∈ R
kξi and a vector of state variablesst ∈ R

ks . The

1Here the model is specified for realized variance (observed)and not for integrated variance (unobserved).
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fractional differencing operator with parameterd ∈ (−1/2, 1/2) is defined as usual(1 − L)d =
∑

∞

k=0
Γ(k−d)Lk

Γ(−d)Γ(k+1)
, withΓ(·) denoting the Gamma function.Θ(L) = (1 + θ1L+ θ2L

2 + · · ·+ θqL
q)

is a moving average (MA) lag polynomial and the error processut has zero mean.

2.2. Interpretation. The choice of the functionφi(·), i = 1, . . . , p, is flexible and allows for

different specifications, such as polynomials, logistic functions, exponential functions, splines,

or others. The following examples list some possibilities.

EXAMPLE 1 (Linear ARFIMA). Setφi(st; ξi) = φi, i = 1, . . . , p. In this case,Φ(L)(1 −
L)dyt = Θ(L)ut, whereΦ(L) = (1− φ1L− φ2L

2 − · · · − φpL
p), such thatyt follows an

ARFIMA(p,d,q) model. Ifd = 0, yt is short memory.

EXAMPLE 2 (ARFIMA with smoothly changing parameters).Setst = t. Let φi(·), i =

1, . . . , p: φi(st; ξi) = φi0 + φi1f [γ(t − c)], wheref(y) = (1 + e−y)
−1 is the logistic function.

Equation (1) becomes

vt =

p∑

i=1

φi0vt−i +

p∑

i=1

φi1f [γ(t− c)]vt−i +Θ(L)ut.

The parameterγ controls the smoothness of the transition. In the limitγ −→ ∞, the model

becomes an ARFIMA model with a structural break att = c.

EXAMPLE 3 (General Nonlinear ARFIMA).A general alternative is to leave the type of non-

linearity very general. Write

φi(st; ξi) = φi0 +
M∑

m=1

φimf [γm (ω′

mst − ηm)] , (2)

wheref(·) is the logistic function,γm > 0, and‖ωm‖ = 1, withωm1 =
√

1−∑q
j=2 ω

2
mj.
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Martens et al. (2009) describe jointly long-range dependence, nonlinearity, structural breaks,

and the effects of days of the week. The model considered in their paper is nested in (1). The

models put forward in Baillie and Kapetanios (2007, 2008) are also nested in our specification.

2.3. Parameter Estimation. In this section, we denote the parameter vector of the entiremodel

asζ = (d, ξ′, θ′, σ2
u)

′ ∈ R
kζ . Here,ξ =

(
ξ′0, ξ

′

1, . . . , ξ
′

p

)
′ ∈ R

kξ denotes the vector of the

parameters of the coefficient functions. The parameter vector θ = (θ1, . . . , θq)
′ ∈ R

q indexes

the MA polynomial. Sometimes it is convenient to consider the parameter vector of the model

excluding the error varianceσ2
u, which we denoteψ = (d, ξ′, θ′)

′.

2.3.1. Time Transformation.Let T0 be the size of a given data sample. For any sequence

{xt}, t = 1, . . . , T , definextT := (T0/T )xt. Then, (1) is embedded in a sequence of mod-

els:ΦtT (L)vtT (d) = Θ(L)ut, whereΦtT (L) = 1−φ1(stT ; ξ1)L− . . .−φp(stT ; ξp)L
p. Without

this transformation, parameter regimes of finite length become unidentified asT → ∞. The

transformation allows for a proper scaling of the logistic function such that all regimes remain

identified. Consider the logistic function under the transformation:

f

[
γ

(
T0

T
t− c

)]
= f

[
T−1γ (T0t− Tc)

]
.

Here, the slope of the logistic function is decreasing withT while the locus of the transition

is increasing withT , whereas the scaling of the time counter,T0, remains constant. Thus, the

proportions of observations in the first regime, during the transition, and in the last regime remain

the same. The parameters in these groups of observations remain identified. In this sense, the

time transformation is the smooth equivalent of the assumption of constant break fractions in the

change-point literature (Andrews and McDermott 1995).

2.3.2. Assumptions.We denote the true parameter asζ
∗
=
(
d∗, ξ

′

∗
, θ′

∗
, σ2

u,∗

)
′

=
(
ψ′

∗
, σ2

u,∗

)
′

,

whereψ
∗
= (d∗, ξ

′

∗
, θ′

∗
)
′, ξ

∗
= (ξ′1,∗, . . . , ξ

′

p,∗)
′, θ∗ = (θ1,∗, . . . , θq,∗)

′, andσ2
u,∗ is the error
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variance. Defineut(ψ) = Θ−1(L) [ΦtT (L)vtT ]. We use the shorthand notationut,∗ := ut(ψ∗
)

andvtT,∗ := vtT (d∗) andut andvtT for ut(ψ) andvtT (d), respectively.

ASSUMPTION 1 (Parameter Space).The parameter vectorζ
∗
∈ R

kζ is an interior point of

Z ⊂ R
kζ , a compact parameter space.

ASSUMPTION2 (Errors).

(1) The sequence{ut,∗}Tt=1 is drawn from an absolutely continuous distribution (with respect

to the Lebesgue measure) that has positive density on the entire real line. E(ut,∗) =

E(ut,∗|Ft−1) = 0, E(u2
t,∗) = σ2

u,∗ < ∞, andE(u2
t,∗|Ft−1) = σ2

t,∗ such that0 < σt,∗ < ∞
for all t. Furthermore, lim

T→∞

1
T

∑T
t=1 σ

2
t,∗ = E(u2

t,∗). Ft is theσ-algebra formed by the

information available at timet.

(2) E|ut,∗|n < ∞ for n = 1, . . . , 4.

ASSUMPTION3 (Stationarity and Moments).

(1) E|ztT |n < ∞, n = 1, . . . , 4, whereztT = (vtT , s
′

tT )
′.

(2) d∗ ∈ (−1/2, 1/2).

(3) Θ∗(L) is invertible.

ASSUMPTION4 (Autoregressive Nonlinear Function).

(1) The transition functions are parameterized such that they are well defined.

(2) For all st, ξ, the roots ofΦtT,∗(st; ξ) are outside the unit circle.

(3) E

∣∣∣ ∂∂ξΦtT (L)vtT
∣∣∣
n

< ∞, n = 1, . . . , 4.

(4) E

∣∣∣ ∂2

∂ξ∂ξ′
ΦtT (L)vtT

∣∣∣
n

< ∞, n = 1, . . . , 4.

EXAMPLE 4 (for Assumption 4 (1): Logistic Transition).If there areM + 1 different regimes

of volatility depending on a state variablest, with transitions governed by logistic functions,

then the transition parameterscm andγm, m = 1, . . . ,M , are such that: (1)−∞ < c1 < . . . <

cM < ∞; (2) γm > 0 for all m; and (3)f [γ1(st−c1)] ≥ f [γ2(st−c2)] ≥ . . . ≥ f [γM(st−cM)].
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Assumption 1 and 3 are standard for nonlinear models. In comparison with the extant liter-

ature, Assumption 2 is relatively weak. Baillie and Kapetanios (2008), for example, consider

maximum likelihood estimation of long memory and nonlinearautoregressive models and de-

rive their results under the assumption of i.i.d. errors andwithout considering time as possible

non-linear state variable. Assumption 4 allows for a large number of functions.

2.3.3. Least-Squares Estimation.We estimate the parameters by nonlinear least squares (NLS),

which in this case is equivalent to quasi-maximum likelihood estimation (QMLE):

ψ̂ = arg min
ψ∈Ψ

QT (ψ) =
1

T

T∑

t=1

qt(ψ) =
1

2T

T∑

t=1

u2
t (ψ).

Let σ̂2
u =

1
T

∑T
t=1 u

2
t (ψ̂).

THEOREM 1 (Consistency).Under Assumptions 1 – 4,̂ψ
p→ ψ

∗
.

THEOREM 2 (Asymptotic Normality).Under Assumptions 1 – 4,̂ψ is asymptotically normally

distributed:
√
T
(
ψ̂ −ψ

∗

)
d→ N [0, A(ψ

∗
)−1B(ψ

∗
)A(ψ

∗
)−1], where

A(ψ
∗
) = −E


 ∂2qt
∂ψ∂ψ′

∣∣∣∣∣
ψ∗


 andB(ψ

∗
) = E


∂qt
∂ψ

∣∣∣∣∣
ψ∗

∂qt
∂ψ′

∣∣∣∣∣
ψ∗


 .

PROPOSITION1 (Covariance Matrix Estimation).Under Assumptions 1 – 4,

AT

(
ψ̂
)

p→ A(ψ
∗
) andBT

(
ψ̂
)

p→ B(ψ
∗
), where

AT (ψ) = − 1

T

T∑

t=1

∂2qt
∂ψ∂ψ′

andBT (ψ) =
1

T

T∑

t=1

∂qt
∂ψ

∂qt
∂ψ′

.
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3. MODEL SPECIFICATION

We propose a model-building procedure that selects the AR order and the number of nonlinear

terms (M). M can be determined in two ways, either through an informationcriterion (IC) or

by a sequence of tests for remaining nonlinearity.

3.1. Number of Nonlinear Terms.

3.1.1. Information Criteria. In this section we apply the results in Mendes (2012a,b) to show

the consistency of an IC to determine the number of nonlinearterms in our model (M). Collect

the data points in a vectory ∈ R
T . DefineM ∈ {0, 2, . . . ,M} and consider a class of models

M(y;ψM) indexed byM . The parameter vectorψM ∈ R
kψ,M is defined as in Section 2.3 and is

also indexed byM . DenoteM∗ as the true value ofM . Our goal is to estimateM by minimizing

the following IC:

IC(M) = Q(ψ,M) + λT (M), (3)

whereQ(ψ,M) =
∑T

t=1 u
2
t (ψM) andλT (M) is a penalty term to be defined later.

Define the sets

Ψ
∗

M = {ψ ∈ Ψ : ψ = argminE[Q(ψ,M)]} andΨT,M = {ψ ∈ Ψ : ψ = argminQ(ψ,M)} .

ASSUMPTION5 (Class of Models and Penalty Function).Assume that:

(1) M(y;ψ1) ⊆ M(y;ψ2) ⊆ · · · ⊆ M(y;ψM);

(2) λT (M) is a positive and increasing function ofM ;

(3) 1
T
λT (M) → 0 andλT (M) → ∞, asT → ∞ for everyM ∈ {0, 2, . . . ,M};

(4) M is such that

M∑

M=M∗+1

[
kψ,M

λT (M)− λT (M∗)

]
→ 0, as T → ∞;
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(5) for everyM = 0, 1, 2, . . . ,M and some positive constantc

max
ψ̂∈ΨT,M

min
ψ∈Ψ

∗
M

E

∣∣∣Q(ψ̂,M)−Q(ψ,M)
∣∣∣ ≤ ck2

ψ,M with probability1 as T → ∞.

Assumptions 5(1)-(4) define how the penalty term can be specified as well as the order of

increase in the number of candidate models. Assumption 5(5)requires that the elements in

ΨT,M andΨ∗

M are arbitrarily close.

THEOREM 3. Under Assumptions 1–3 and 5,P (M̂ 6= M∗) → 0, asT → ∞.

In contradistinction to Baillie and Kapetanios (2007), note that we consider the number of

non-linear terms and not just the number of AR lags. Furthermore, Theorem (3) is general

enough and can be used to jointly determine the order of the ARterms and the number of

nonlinear terms.

3.1.2. Sequence of Tests for Nonlinearity.The testing procedure is inspired by van Dijk et al.

(2002), Medeiros and Veiga (2005), and Strikholm and Teräsvirta (2006). To simplify the ex-

position we consider the case where there is no moving average term (q = 0) and the transition

variable is scalar,st ∈ R. However, it is not difficult to extend our results. LetV t−1 ≡
V t−1(d) = [vt−1(d), . . . , vt−p(d)]

′ and consider the following model:

vt = φ
′

0V t−1 +

M∗∑

m=1

φ′

mV t−1f [γm (st − cm)] +

M∑

m=M∗+1

φ′

mV t−1f [γm (st − cm)] + ut. (4)

We wish to testM = M̃ againstM > M̃ . The appropriate null hypothesis is

H0 : γM̃+1 = γM̃+2 = · · · = γM = 0. (5)

Model (4) is identified only under the alternative, which means that standard asymptotic in-

ference is not available. This problem is circumvented, as in Teräsvirta (1994), by expanding

f [γm (st − cm)], m = M̃ +1, . . . ,M , into a Taylor series around the null hypothesis. The order
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of the expansion is a compromise between a small approximation error (high order) and avail-

ability of data (as short time series necessarily imply a relatively low order). Using a third-order

Taylor expansion and rearranging terms results in the following model:

vt = φ̃
′

0V t−1 +

M̃∑

m=1

φ̃
′

mV t−1f [γm (st − cm)] + ρ
′

1V t−1st + ρ
′

2V t−1s
2
t + ρ

′

3V t−1s
3
t + u∗

t , (6)

whereu∗

t = ut +R3 andR3 is the remainder in the Taylor expansion. The null hypothesis (5) is

then approximated byH0 : ρ1 = ρ2 = ρ3 = 0. UnderH0, R3(zt; ξ) = 0. We can use (6) to test

for absence of remaining nonlinearity. Writêht =
(
ĥ

′

0,t, ĥ
′

a,t

)
′

, whereĥ0,t = −∂ut(ψ)
∂ψ

∣∣
H0

and

ĥa,t =
(
V̂

′

t−1st, V̂
′

t−1s
2
t , V̂

′

t−1s
3
t

)
′

. Defineι = (1, 1, . . . , 1)′ ∈ R
T andĤ =

(
ĥ
′

1, . . . , ĥ
′

T

)
′

.

Following Wooldridge (1990, 1991) and under the additionalassumptionE|V t−1V
′

t−1st|δ <
∞, for someδ > 6, the test can be carried out in steps as follows:

(1) Estimate the parameters underH0 and compute the residualŝut. If the sample size is

small, estimation is difficult, such that̂h0,t = 0 is not met. This has an adverse effect

on the empirical size of the test. To solve this problem, we regress thêut on ĥ0,t. We

compute a new sequence of residuals from this regression anduse them to computẽH.

(2) Regressι onH̃ and compute the sum of squared residuals (SSR) from this regression.

(3) Compute theχ2 statisticLMχ = T − SSR.

The test proposed above is robust against departures from normality as well as conditionally

heteroskedastic errors. This is important in financial applications, where the errors are rarely

normal and homoskedastic.

We now combine the procedure above into a sequence of tests. Start testing a linear model

against a model with one or more nonlinear terms at aα1-level of significance. In caseH0 is

rejected, one nonlinear term is added, the new model is re-estimated, and then tested against an

alternative with one more nonlinear term. The procedure continues testingJ nonlinear terms

against alternative models with̃J ≥ J + 1 terms at significance levelαJ = α1C
J−1 for some
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constant0 < C < 1. The testing sequence is terminated at the first non-rejection outcome. The

number of nonlinear terms,M , is estimated bŷM = J̄ − 1, whereJ̄ is the number of rejections

prior to the first non-rejection. By reducing the significance level at each step, it is possible to

control the overall level of significance. This procedure ensures that such a sequence of tests is

consistent, and thatα∗ =
∑J̄

J=1 αJ acts as an upper bound on the overall level of significance.

As for the determination ofC, it is good practice to perform the sequence of tests with different

values ofC to avoid selecting models that are too parsimonious. On the other hand, one can fix

the initial significance level and choose the value ofC which gives a pre-specified upper bound.

3.2. Autoregressive Order. To determine of the AR order of the model, we follow Rech et al.

(2001) and use a polynomial approximation of equation (4). By the Stone-Weierstrass theorem,

the approximation can be made arbitrarily accurate under mild conditions. We select the number

of lags inV t−1 in the approximate model in order to minimize a given IC.

4. MONTE-CARLO EVIDENCE

We generate 1000 replications of the models below with500 and 1000 observations. We

consider three distinct processes forut. In the simplest case,ut ∼ NID(0, 0.25). The second

case is a GARCH specification whereσ2
t = 0.0001 + 0.95σ2

t−1 + 0.049u2
t−1, ut = σtεt, and

εt ∼ NID(0, 1). This implies thatut has infinite fourth moment. The third error process is

formed by a sequence of independent andt-distributed random variables with five degrees of

freedom. Let the processrt = exp(yt)et, whereyt is defined as below andet ∼ NID(0, 1).
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The shot-memory (SM) DGPs are given as:

yt = 0.04 + 0.55yt−1 + 0.34yt−2 + σtεt. (7)

yt = 0.55yt−1 + 0.34yt−2 − (0.4yt−1 + 0.2yt−2) f [12 (rt−1 + 0.5)] (8)

+ (0.4yt−1 + 0.2yt−2) f [4 (rt−1 − 1)] + σtεt.

yt = 0.55yt−1 + 0.34yt−2 − (0.4yt−1 + 0.2yt−2) f [200 (t/T + 0.25)] (9)

+ (0.4yt−1 + 0.2yt−2) f [100 (t/T − 0.75)] + σtεt.

Definevt ≡ (1− L)0.4yt and write the long-memory models as below.

vt = 0.55vt−1 + 0.34vt−2 + σtεt. (10)

vt = 0.55vt−1 + 0.34vt−2 − (0.4vt−1 + 0.2vt−2) f [12 (rt−1 + 0.5)] (11)

+ (0.4vt−1 + 0.2vt−2) f [4 (rt−1 − 1)] + σtεt.

vt = 0.55vt−1 + 0.34vt−2 − (0.4vt−1 + 0.2vt−2) f [200 (t/T + 0.25)] (12)

+ (0.4vt−1 + 0.2vt−2) f [100 (t/T − 0.75)] + σtεt.

The first class of models is a simple short-memory AR specification. The next two classes

of DGPs are nonlinear short-memory processes, while the remaining specifications are all long-

memory models. The specification and estimation results arereported in Tables 1 and 2.

Tables 1 shows, forT = 1000, the average bias and the mean-squared error (MSE) of the pa-

rameter estimates under the assumption of correct specification, i.e., correct number of regimes

(M) and AR order (p). Results forT = 500 can be found in the supplemental material. The

results show that the estimation is reliable. Note that the estimation ofγ is known to be noisy.
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In order to evaluate the performance of the modeling strategy, we also check the frequency

of correct specification when the regime structure is unknown. The number of regimes is de-

termined by the sequence of robust LM tests, while the AR order is determined by the BIC.

Alternatively, we consider selection of bothM andp by the BIC. The results are reported in

Table 2. In order to evaluate the effects of different valuesof the significance-level adjusting pa-

rameterC ∈ (0, 1) on the frequency of correct specification, we also run the sequence of robust

LM tests consideringC ∈ {1/3, 1/2, 2/3}. The results are reported in the supplemental mate-

rial. There are no differences in the results betweenC = 1/2 andC = 1/3 and the sequence

of tests tends to underestimate the number of regimes. On theother hand, whenC = 2/3, the

frequency of correct specification is a bit higher than expected.

The following conclusions emerge from Table 2. Firstly, in the linear case both methodologies

work very well. Secondly, the selection ofp is very precise in almost all the cases. The number

of regimes is underestimated by both methods, but the performance improves as the sample size

increases. As expected, the sequence of robust LM tests seems to work better when the errors are

not normal. For the nonlinear short-memory models, the sequence of LM tests works better than

the BIC. On the other hand, for nonlinear long-memory models, the LM tests are superior than

the BIC only when the second nonlinear model is considered (breaks). For the first nonlinear

long-memory model, the BIC delivers better results.
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TABLE 1. PARAMETER ESTIMATES UNDER CORRECT SPECIFICATION.

The table reports average bias and mean-squared error (MSE)of parameter estimates from 1000 simulations of the models listed in Section 4 withT = 1000.
The regime and lag structureM andp are assumed to be known in the estimation.

Short-Memory Models
Linear Nonlinear I Nonlinear II

Gaussian Fat-Tailed GARCH Gaussian Fat-Tailed GARCH Gaussian Fat-Tailed GARCH
Parameter Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
φ10 0.00 0.00 0.01 0.01 0.05 0.02 0.00 0.01 0.06 0.01 0.03 0.02 0.01 0.01 0.01 0.03 0.02 0.02
φ11 – – – – – – 0.00 0.01 -0.03 0.01 -0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
φ12 – – – – – – 0.02 0.01 0.04 0.06 0.04 0.02 0.01 0.01 0.04 0.02 0.12 0.03
φ20 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02 -0.03 0.01 0.04 0.02 0.01 0.01 0.02 0.02 0.05 0.03
φ21 – – – – – – 0.04 0.02 0.05 0.01 0.06 0.04 0.01 0.01 0.08 0.02 0.05 0.05
φ22 – – – – – – 0.06 0.08 -0.01 0.01 0.04 0.02 0.02 0.01 0.04 0.08 0.020.02
γ1 – – – – – – 1.14 304.12 -3.10 15.46 -3.14 45.74 -33.42 16.74 -50.11 14.93 -47.24 54.64
γ2 – – – – – – -13.10 403.13 2.15 19.31 -9.12 14.44 -45.13 23.16 -45.42 24.92 -116.73 46.56
c1 – – – – – – 0.01 0.02 0.03 0.01 -0.02 0.01 0.01 0.01 0.02 0.01 0.050.01
c2 – – – – – – 0.01 0.01 0.05 0.02 0.09 0.02 0.01 0.01 0.09 0.06 0.02 0.08
d 0.00 0.00 0.00 0.01 0.00 0.01 0.02 0.01 0.02 0.01 0.05 0.08 0.00 0.00 0.05 0.08 0.01 0.02
σu 0.00 0.00 0.00 0.01 0.10 0.12 0.00 0.01 0.02 0.14 0.04 0.04 0.00 0.00 0.01 0.00 0.09 0.14

Long-Memory Models
Linear Nonlinear I Nonlinear II

Gaussian Fat-Tailed GARCH Gaussian Fat-Tailed GARCH Gaussian Fat-Tailed GARCH
Parameter Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
φ10 0.01 0.01 0.01 0.01 0.03 0.01 0.00 0.01 0.05 0.02 0.04 0.01 0.00 0.01 0.04 0.03 0.02 0.02
φ11 – – – – – – 0.00 0.01 0.06 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.04
φ12 – – – – – – 0.02 0.01 0.10 0.07 0.02 0.01 0.00 0.01 0.02 0.01 0.03 0.03
φ20 0.03 0.01 0.01 0.01 0.01 0.01 0.03 0.00 0.03 0.02 0.02 0.01 0.00 0.02 0.01 0.01 0.03 0.02
φ21 – – – – – – 0.01 0.01 0.08 0.02 0.05 0.02 0.03 0.01 0.04 0.01 0.01 0.03
φ22 – – – – – – 0.03 0.05 0.01 0.01 0.08 0.04 0.01 0.01 0.06 0.03 0.03 0.01
γ1 – – – – – – -3.21 99.24 4.38 94.63 18.93 19.84 18.12 38.14 25.27 15.54 14.84 47.18
γ2 – – – – – – -16.14 83.84 2.85 84.37 9.47 39.36 15.28 47.34 36.46 42.45 37.18 94.18
c1 – – – – – – 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.09 0.07
c2 – – – – – – 0.01 0.01 0.04 0.02 0.13 0.08 0.01 0.01 0.04 0.04 0.09 0.13
d 0.01 0.01 0.00 0.01 0.01 0.01 0.08 0.02 0.02 0.00 0.09 0.09 0.08 0.03 0.06 0.07 0.01 0.02
σu 0.00 0.00 0.00 0.00 0.08 0.07 0.00 0.00 0.05 0.08 0.12 0.05 0.00 0.00 0.01 0.01 0.19 0.23
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TABLE 2. FREQUENCY OFCORRECT SPECIFICATION: LM T ESTS AND BIC.

The table reports the proportion of correctly determined numbers of regimes and lag structures in 1000 simulations of the models listed in Section 4. The
selection method is either the sequence of LM tests or the BIC(values in parentheses). The orderp is always selected by BIC using a third-order approximation
to the nonlinear function. We simulate the casesT = 500 andT = 1000.

Short-Memory Models: 500 observations
Linear Nonlinear I Nonlinear II

Gaussian Fat-Tailed GARCH Gaussian Fat-Tailed GARCH Gaussian Fat-Tailed GARCH
p 0.98 (0.98) 0.98 (0.98) 0.94 (0.94) 0.86 (0.86) 0.98 (0.98) 0.92 (0.92) 0.66 (0.66) 0.64 (0.64) 0.48 (0.48)
M 1.00 (1.00) 1.00 (1.00) 1.00 (0.98) 0.16 (0.08) 0.20 (0.06) 0.06 (0.10) 0.42 (0.18) 0.50 (0.12) 0.52 (0.12)

M andp 0.98 (0.98) 0.98 (0.98) 0.94 (0.92) 0.14 (0.06) 0.20 (0.06) 0.06 (0.10) 0.28 (0.14) 0.38 (0.08) 0.30 (0.08)

Short-Memory Models: 1000 observations
Linear Nonlinear I Nonlinear II

Gaussian Fat-Tailed GARCH Gaussian Fat-Tailed GARCH Gaussian Fat-Tailed GARCH
p 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.98 (0.98) 0.95 (0.95) 0.90 (0.90)
M 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.37 (0.26) 0.42 (0.18) 0.21 (0.30) 0.60 (0.40) 0.73 (0.32) 0.69 (0.32)

M andp 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.37 (0.26) 0.42 (0.18) 0.21 (0.30) 0.60 (0.40) 0.73 (0.32) 0.69 (0.32)

Long-Memory Models: 500 observations
Linear Nonlinear I Nonlinear II

Gaussian Fat-Tailed GARCH Gaussian Fat-Tailed GARCH Gaussian Fat-Tailed GARCH
p 0.96 (0.96) 0.98 (0.98) 0.98 (0.98) 0.94 (0.94) 0.90 (0.90) 0.86 (0.86) 0.96 (0.96) 0.72 (0.72) 0.70 (0.70)
M 1.00 (1.00) 0.96 (1.00) 0.98 (1.00) 0.08 (0.06) 0.10 (0.06) 0.10 (0.06) 0.56 (0.04) 0.50 (0.14) 0.44 (0.12)

M andp 0.96 (0.96) 0.94 (0.98) 0.96 (0.98) 0.08 (0.06) 0.10 (0.06) 0.10 (0.06) 0.54 (0.04) 0.38 (0.10) 0.38 (0.10)

Long-Memory Models: 1000 observations
Linear Nonlinear I Nonlinear II

Gaussian Fat-Tailed GARCH Gaussian Fat-Tailed GARCH Gaussian Fat-Tailed GARCH
p 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.96 (0.96) 0.95 (0.95)
M 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.19 (0.27) 0.32 (0.26) 0.30 (0.17) 0.97 (0.15) 0.90 (0.44) 0.88 (0.32)

M andp 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.19 (0.27) 0.32 (0.26) 0.30 (0.17) 0.97 (0.15) 0.90 (0.44) 0.88 (0.32)
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5. EMPIRICAL APPLICATION

5.1. Long Memory and Nonlinearity in Volatility. Andersen et al. (2001,2003) and Barndorff-

Nielsen and Shephard (2002) have pioneered the use of intraday data to construct measures of

realized volatility (RV). Several studies have proposed extensions of the basic RV estimator that

are robust to microstructure noise (Zhang et al. 2005, Barndorff-Nielsen et al. 2008) and the

presence of jumps (Andersen et al. 2009). The daily dynamicsof RV exhibit high persistence.

Andersen et al. (2003) use an ARFIMA specification to model this long-range dependence. An

alternative to ARFIMA are models that approximate long memory by aggregation. In this case,

volatility is modeled as a sum of different processes, each with low persistence. This is used in

the HAR-RV model proposed by Corsi (2009). On the other hand,there is evidence of nonlin-

earity in volatility, such as multiple regimes (Black 1976). Regime changes can take the form

of switches in the parameters, for instance governed by a Markov chain (Hamilton and Susmel

1994), hard thresholds (Liu et al. 1997), or smooth transitions as in Medeiros and Veiga (2009).

McAleer and Medeiros (2008) consider a nonlinear heterogeneous autoregressive (HAR)

model to describe both long range dependence and nonlinear dynamics. In their approach, long

memory is approximated by aggregation and is not explicitlymodeled by fractional differencing

as it is here; see also Scharth and Medeiros (2009) and Chen etal. (2010).

5.2. Data. We use tick-by-tick trade data from the 30 stocks that comprise the Dow Jones In-

dustrial Average in September of 2010: Alcoa Inc. (AA), Altria Group (MO), American Ex-

press Inc. (AXP), AT&T (T), Bank of America (BAC), Boeing Co. (BA), Caterpillar Inc.

(CAT), Chevron Corp. (CVX), Cisco Systems (CSCO), Coca Cola(KO), Du Pont De Nemours

(DD), Exxon Mobil (XOM), General Electric (GE), Hewlett Packard (HPQ), The Home De-

pot Inc. (HD), Intel Co. (INTC), International Business Machines Corp. (IBM), Johnson and

Johnson (JNJ), JPMorgan Chase (JPM), Kraft Foods (KFT), McDonald’s (MCD), Merck Co.



NONLINEARITY, BREAKS AND LONG-RANGE DEPENDENCE 17

(MRK), Microsoft Corp. (MSFT), Pfizer Inc. (PFE), Procter and Gamble (PG), United Tech-

nologies Corp. (UTX), Verizon Communications (VZ), Wal-Mart Stores (WMT), Walt Disney

Co. (DIS), and 3M Company (MMM). The data are obtained from the NYSE TAQ (Trade and

Quote) database. The sample period starts in January 3, 2000, and ends in December 31,2009.

5.2.1. Realized Volatility Estimation.In calculating daily RV, we employ the realized kernel es-

timator with modified generalized Tukey-Hanning weights oforder two according to Barndorff-

Nielsen et al. (2008), hereafter BHLS. We also used the MedRVproposed in Andersen et al.

(2009) and the results are very similar. The BHLS estimator is robust to jumps in estimating

quadratic variation and the MedRV is robust to jumps in estimating integrated variance. We

discard transactions outside trading hours, considering transactions between 9.30am through

4.00pm. Following Barndorff-Nielsen et al. (2008) we use 60-second activity-fixed tick time

sampling schemes, such that we obtain the same number of observations each day. Changes

between consecutive trades of more than five standard deviations of intra-day returns for any

given day are discarded. For our data set of widely traded stocks and in this sample period, this

removes most of the obvious recording errors but no meaningful price changes.

5.3. Model Specification and Estimation. We report specification results for the 30 series

described above for the full sample period. Table 3 shows thenumber of regimes determined by

the sequence of robust LM tests as well as BIC. The numbers in parentheses are thep-values for

the remaining nonlinearity test when the sequence of LM tests is used. We consider past returns

as well as time as transition variables. Several interesting results emerge. Firstly, for most of the

stocks, thep-values are quite high, indicating that the choice of the initial significance level as

well as the constantC does not influence the final number of regimes. Secondly, bothcriteria

select a small number of regimes, which indicates that thereis no overfitting. Thirdly, the LM

tests tend to select a smaller number of regimes than the BIC.However, there are a few cases

where both criteria agree on the number of regimes.
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We discuss estimation and in-sample fit for one stock (KFT) that is fairly representative for

the set of 30 stocks. The sample period for KFT is Jun 13, 2001,through Dec 31, 2009. Figure

1, Panel (a), shows the MedRV estimator for the logarithm of realized variance (solid) and the

BHLS estimator (dots) on the left ordinate, and the estimated transition function with respect to

time on the right ordinate. Panel (b) displays a Gaussian kernel estimate for the log returns of

KFT in percent on the left ordinate and the estimated transition function with respect to lagged

returns on the right ordinate.

For example, the estimated specification for the MedRV estimator and time transitions is as

follows (standard errors in parentheses).

yt = log(RVt)− 0.2218, vt = (1− L)
0.4416
(0.0036)yt,

vt =

[
−0.1230

(0.0055)
+ 0.2295

(0.0166)
f(γ, c)

]
vt−1 −

[
0.0851
(0.0032)

− 0.1375
(0.0151)

f(γ, c)

]
vt−2 + ut,

f(γ, c) = {1 + exp [γ (t/T − c)]}−1 =

{
1 + exp

[
69.30
(42973)

(
t/T − 0.7661

(1.26e−4)

)]}
−1

.

(13)

The time transition captures the change in volatility dynamics during the subprime crisis, as

can be seen in Panel (a) of Figure 1. Long-range dependence iscaptured by the fractional

differencing parameterd = 0.4416, and the autoregressive parameters reflect changes in the

short-run dynamics from anti-persistence at a scale of1/(1 + 0.2082) ≈ 0.8 days to persistence

at a scale of1/(1+0.2082−0.367) = 1/(1−0.1588) ≈ 1.2 days. This corresponds to the short

decorrelation scale in stock volatility reported, for example, in Hillebrand (2006).
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The estimated specification for the BHLS estimator and asymmetry effects is as follows:

yt = log(RVt)− 0.1356, vt = (1− L)
0.4900
(0.0033)yt,

vt =

[
−0.0678
(0.0215)

− 0.0873
(0.0193)

f(γ, c)

]
vt−1 +

[
0.2804
(0.0468)

− 0.3834
(0.0473)

f(γ, c)

]
vt−2

−
[
0.1543
(0.0330)

− 0.0837
(0.0345)

f(γ, c)

]
vt−3 + ut,

f(γ, c) =

(
1 + exp

{
γ

[
100

(
log

St−1

St−2

)
− c

]})
−1

=

(
1 + exp

{
7.5875
(436.69)

[
100

(
log

St−1

St−2

)
+ 2.2422

(9.9e−5)

]})
−1

.

(14)

The estimation identifies an asymmetry effect at a thresholdof -2.2422 percent return, as

can be seen in Panel (b) of Figure 1. Above this threshold, there are essentially no short-term

dynamics. The sum of the AR parameters in the regime above -2.2422 percent return is 0.0583.

In the regime below this threshold, the sum of the AR parameters is -0.3286, indicating anti-

persistence on the scale of three quarters of a day. The long-term dynamics are captured by an

estimatedd of 0.49, close to the non-stationary region, and the anti-persistent short scale will

partly offset the long-range dependence. This correspondsto earlier findings that large negative

returns influence volatility on shorter scales (Medeiros and Veiga 2009).

5.4. Forecasting Exercise.For each stock, we consider a rolling window of 1,500 observations

for model specification and parameter estimation. Then, we use the model for one-, five-, and

ten-days-ahead forecasting of log RV. For each forecast horizon we compare the models against

a benchmark specification using the unconditional Giacomini and White (GW) test for equal

predictive accuracy (Giacomini and White 2006).

We consider the following alternative specifications: (1) linear ARFIMA (“ARFIMA”); (2)

nonlinear ARFIMA with time as transition variable (“STARFIMA I”); and (3) nonlinear ARFIMA

with past daily return as transition variable (“STARFIMA II”). The benchmark models are: (1)
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FIGURE 1. (a) KFT logarithm of realized variance (solid: MedRV, dots: kernel
estimator) and transition function with respect to time, (b) KFT Gaussian kernel
for log returns and transition function with respect to lagged returns (estimated
from kernel estimator).

the linear HAR-RV model of Corsi (2009) (“Ratio I”) and (2) the nonlinear HAR-RV of Corsi

and Renò (2012) (“Ratio II”). Table 4 reports the results for one-step-ahead while Table 5 shows

the results for five- and ten-steps ahead.

The reporting format are ratios of root mean-square errors (RMSE) of the proposed model

to the RMSE of the benchmark model. Thep-values of the Giacomini and White (2006) test

are displayed in the column “GW I” for comparison with the linear HAR-RV model and in the

column “GW II” for comparison with the nonlinear HAR-RV model. The null hypothesis of this

test is that both models have equal predictive ability;p-values smaller than common significance

levels indicate that one model outperformed the other. The more powerful model is indicated

by the RMSE ratio; we are looking for ratios smaller than one.The models are re-specified for

each time window. The sequence of LM tests is used to determine the number of regimes.

The main conclusion from the out-of-sample results is that the linear and nonlinear ARFIMA

models outperform the benchmark for five- and ten-steps ahead. For one-step-ahead the bench-

marks are superior. More specifically, for five-days-ahead,the ARFIMA is statistically superior
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TABLE 3. FULL SAMPLE RESULTS: NUMBER OF REGIMES.

The table displays the estimated number of regimes for nonlinear ARFIMA mod-
els with lagged returns or time as transition variables, respectively. Three differ-
ent criteria for the selection of regimes are considered. LMis the sequence of
robust LM tests. BIC is the Bayes information criterion. Thenumbers in paren-
theses arep-values of the test for remaining nonlinearity.

Transition Variable: Past Return Transition Variable: Time
LM BIC LM BIC

AA 2 (0.102) 1 2 (0.903) 1
AXP 1 (0.212) 2 1 (0.053) 1
BA 2 (0.193) 1 1 (0.405) 1

BAC 1 (0.140) 1 2 (0.883) 2
CAT 1 (0.229) 1 1 (0.051) 1

CSCO 2 (0.226) 2 1 (0.256) 1
CVX 1 (0.282) 2 2 (0.444) 1
DD 1 (0.345) 1 2 (0.329) 1
DIS 1 (0.379) 1 2 (0.047) 2
GE 1 (0.139) 2 2 (0.196) 2
HD 2 (0.156) 1 1 (0.244) 1
HPQ 1 (0.087) 1 2 (0.321) 1
IBM 2 (0.241) 1 2 (0.090) 1
INTC 1 (0.119) 1 1 (0.074) 1
JNJ 2 (0.722) 2 2 (0.815) 1
JPM 1 (0.096) 2 2 (0.579) 2
KFT 2 (0.158) 1 2 (0.088) 1
KO 1 (0.200) 1 1 (0.476) 1

MCD 1 (0.670) 1 1 (0.077) 1
MMM 2 (0.269) 2 2 (0.836) 1
MO 1 (0.224) 1 2 (0.087) 1

MRK 1 (0.228) 1 1 (0.200) 1
MSFT 1 (0.339) 1 2 (0.113) 1
PFE 1 (0.474) 1 1 (0.493) 1
PG 1 (0.199) 1 1 (0.221) 1
T 1 (0.357) 1 1 (0.147) 1

UTX 1 (0.055) 1 2 (0.650) 1
VZ 2 (0.082) 1 1 (0.204) 1

WMT 2 (0.436) 1 1 (0.218) 1
XOM 1 (0.087) 2 2 (0.214) 2

than the benchmarks in 27 cases. For ten-days-ahead, the ARFIMA model outperforms the

HAR-RV and nonlinear HAR-RV in 21 and 23 cases, respectively. For five days-ahead, the non-

linear ARFIMA with breaks outperforms the HAR-RV and the nonlinear HAR-RV in 24 and 27
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cases, respectively. When ten-days-ahead forecasts are considered, the nonlinear ARFIMA out-

performs the benchmarks in 20 (HAR-RV) and 21 (nonlinear HAR-RV) cases. The performance

of the asymmetric ARFIMA is similar. For five-days-ahead, itis superior than the benchmarks

in 21 (HAR-RV) and 19 (nonlinear HAR-RV) cases, while for ten-days-ahead it outperforms

the benchmarks in 19 cases. Finally, the benchmarks do not deliver any superior forecast for

horizons larger than one. On the other hand, for one-step ahead, the nonlinear HAR-RV model

statistically outperforms the competing models in about 50% of the cases.

In summary, with regard to financial volatility, we recommend the model proposed in this

paper for forecast horizons longer than a single day. The model also has the advantage of

identifying economically interpretable nonlinear effects in-sample, and it separates the long and

short decorrelation scales found in financial volatility.

6. CONCLUSION

Usually, nonlinearities such as structural breaks are difficult to tell apart from long memory.

In this paper, we propose an estimation framework for nonlinear effects such as structural breaks

and asymmetry in the presence of long memory.

We show consistency and asymptotic normality of the nonlinear least-squares estimator. As-

ymptotic theory requires a time transformation that ensures that regimes of finite length remain

identified as the sample size grows to infinity. We also propose two different model building

procedures to determine the structure of the model.

Using stocks in the Dow Jones Industrial Average between 2000 and 2009, we find strong

evidence for nonlinear effects driven by time and lagged returns in financial volatility time series.

A forecast competition indicates that a specification with long memory and asymmetry can

outperform the standard HAR-RV model and linear ARFIMA specifications, in particular at

long forecast horizons.
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APPENDIX A. PROOF OFCONSISTENCY

Proof of Theorem 1.By Theorem 4.1.1 of Amemiya (1985),̂ψT

p→ ψ
∗

if the conditions below

hold: (1)Ψ is a compact parameter set; (2)QT (ψ) is continuous inψ and measurable inut; (3)

As T → ∞, QT (ψ) converges in probability to a deterministic functionQ(ψ) = E [QT (ψ)] <

∞ uniformly onΨ; and (4)Q(ψ) attains a unique global maximum atψ0.

Item (1) is given by assumption. Item (2) holds by definition of QT (ψ) andut. To prove item

(3) we first notice that Assumptions 3 and 4 imply thatE [qt(ψ)] < ∞, ∀ t. Hence,E [QT (ψ)] <

∞. Now setgt(ψ) = qt(ψ)− E [qt(ψ)]. Also,E [sup |qt(ψ)|] < ∞ by Assumptions 3 and 4(2)

and (3). Application of Theorem 3.1 in Ling and McAleer (2003) proves item (3).

Consider Item (4). Rewrite the maximization problem asmax
ψ∈Ψ

E [qt(ψ)− qt(ψ∗
)]. Now,

E [qt(ψ)− qt(ψ∗
)] = 1

2
E
(
u2
t − u2

t,∗

)
. Next, we show thatE [u2

t (ψ)] ≥ E
(
u2
t,∗

)
= σ2

u,∗ and

that the expressions attain their respective lower bounds at ψ = ψ
∗

uniquely. Consider

E
[
u2
t (ψ)

]
= E

[
Θ−1(L)ΦtT (L)vtT

]2
,

= E
[
Θ−1(L)ΦtT (L)(1− L)d−d∗Φ−1

tT,∗(L)Θ∗(L)ut,∗
]2 ≥ E

(
u2
t,∗

)
= σ2

u,∗,

and therefore,E [u2
t (ψ)] attains its minimum ofσ2

u,∗ uniquely atψ = ψ
∗

under Assumption 2.

�

APPENDIX B. PROOF OFASYMPTOTIC NORMALITY

In this section, terms will sometimes involve expectationsof cross-products of the typeE(XY ),

whereX andY are correlated random variables. By the Cauchy-Schwarz inequality,E (XY ) ≤
[E (X2)]

1
2 [E (Y 2)]

1
2 , and thus in order to show that the cross-product has finite expectation, it

suffices to show that both random variables have finite secondmoments. By the same token, if



24 E. HILLEBRAND AND M. C. MEDEIROS

bothX andY have finite second moments,

E
[
(X + Y )2

]
≤ E

(
X2
)
+ E

(
Y 2
)
+ 2

[
E
(
X2
)] 1

2
[
E
(
Y 2
)] 1

2 ,

≤ K
[
E
(
X2
)
+ E

(
Y 2
)]

for someK < ∞.

LEMMA 1. Under Assumptions 2-4, the sequence

{
∂qt
∂ψ

∣∣∣
ψ∗

,Ft

}

t=1,...,T

is a stationary martin-

gale difference sequence.

Proof. In this proof, all derivatives are evaluated atψ = ψ
∗
. The asterisk-subscript is suppressed

to reduce notational clutter.

E

(
∂qt
∂d

∣∣∣∣∣Ft−1

)
= E

[
utΘ

−1(L)ΦtT (L)
∂

∂d
(1− L)dytT

∣∣∣∣∣Ft−1

]
= 0,

sinceut has mean zero, and∂
∂d
(1− L)dytT does not containut.

E

(
∂qt
∂ξ

∣∣∣∣∣Ft−1

)
= E

[
utΘ

−1(L)
∂

∂ξ
ΦtT (L)vtT

∣∣∣∣∣Ft−1

]
= 0,

sinceΦtT (L)vtT are uncorrelated withut.

E

(
∂qt
∂θ

∣∣∣∣∣Ft−1

)
= E

[
ut

∂

∂θ
Θ−1(L)ΦtT (L)vtT

∣∣∣∣∣Ft−1

]
= 0,

since ∂
∂θ
Θ−1(L) [ΦtT (L)vtT ] does not containut. �

LEMMA 2. Under Assumptions 2-4,supψ∈Ψ
E

∣∣∣∂qt∂ψ

∣∣∣ < ∞ andsupψ∈Ψ
E

∣∣∣∂qt∂ψ

∂qt
∂ψ′

∣∣∣ < ∞.

Proof. In this proof, the expressions are evaluated at anyψ ∈ Ψ if not otherwise stated. The

data-generating parameters will be explicitly subscribedby an asterisk.

We will consider the gradient vector element by element:

sup
ψ∈Ψ

E

∣∣∣∣
∂qt
∂d

∣∣∣∣ = sup
ψ∈Ψ

E

∣∣∣∣utΘ−1(L)ΦtT (L)
∂

∂d
(1− L)dytT

∣∣∣∣ .
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Using the Cauchy-Schwarz inequality, we need to find upper bounds for the following objects:

supψ∈Ψ
E
∣∣ ∂
∂d
(1− L)dytT

∣∣n andsupψ∈Ψ
E |ut(ψ)|n, n = 1, 2. First, note that

E
∣∣(1− L)dytT

∣∣n = E
∣∣(1− L)d

[
(1− L)−d∗Φ−1

tT,∗(L)Θ∗(L)ut,∗
]∣∣n

= E
∣∣(1− L)d−d∗Φ−1

tT,∗(L)Θ∗(L)ut,∗
∣∣n < ∞,

by Assumptions 4(2), 2(2), and 3(2). Then,

E

∣∣∣∣
∂

∂d
(1− L)dytT

∣∣∣∣
n

= E

∣∣∣∣∣
∞∑

j=0

(−1)j

j!

(
j−1∑

i=0

1

d− i

)
j−1∏

i=0

(d− i)LjytT

∣∣∣∣∣

n

= E

∣∣∣∣∣
∞∑

j=0

(−1)j

j!

(
j−1∑

i=0

1

d− i

)
j−1∏

i=0

(d− i)Lj(1− L)−d∗Φ−1
tT,∗(L)Θ∗(L)ut,∗

∣∣∣∣∣

n

< ∞,

from the same set of assumptions and recognizing that∂
∂d
(1 − L)dytT is stationary ifd ∈

(−1/2, 1/2). Now, note that

E |ut(ψ)|n = E
∣∣Θ−1(L)ΦtT (L)(1− L)dytT

∣∣n

= E
∣∣Θ−1(L)

[
ΦtT (L)(1− L)d−d∗Φ−1

tT,∗(L)Θ∗(L)ut,∗
]∣∣n < ∞

by Assumptions 4(2), 2(2), and 3(2). By Assumption 4, all other elements are bounded:

E

∣∣∣∣
∂qt
∂ξ

∣∣∣∣ = E

∣∣∣∣utΘ−1(L)
∂

∂ξ
ΦtT (L)vtT

∣∣∣∣ ≤ (E |ut|n)
1
n

{
E

∣∣∣∣Θ−1(L)
∂

∂ξ
ΦtT (L)vtT

∣∣∣∣
n} 1

n

< ∞.

By Assumptions 1, 2(2), 3(2), and 4,

E

∣∣∣∣
∂qt
∂θi

∣∣∣∣ = E

∣∣∣∣ut
∂Θ−1(L)

∂θi
ΦtT (L)vtT

∣∣∣∣ = E

∣∣∣∣ut
[
− Li

Θ2(L)

]
ΦtT (L)vtT

∣∣∣∣ ,

≤ (E |ut|n)
1
n

{
E

∣∣∣∣
[
− Li

Θ2(L)

]
ΦtT (L)vtT

∣∣∣∣
n} 1

n

< ∞.
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This shows the first statement of Lemma 2. The second statement of Lemma 2 follows the

same arguments, except that for part (1), the exponents in the Hölder inequalities are at most

equal to two, whereas for statement (2), we needn = 4. We omit the details of the second

statement for the sake of brevity. �

LEMMA 3. The functionht(ψ) := − ∂2qt
∂ψ∂ψ′ −A(ψ), whereA(ψ) = −E

(
∂2qt
∂ψ∂ψ′

)
, is absolutely

uniformly integrable:E
[
supψ∈Ψ

|ht(ψ)|
]
< ∞; it is continuous inψ andE [ht(ψ)] = 0.

Proof. By the triangular inequality, showing absolute uniform integrability is equivalent to show

thatE
(
supψ∈Ψ

∣∣∣ ∂2qt
∂ψ∂ψ′

∣∣∣
)
< ∞. We will consider the second derivative ofqt with respect tod.

There are 21 distinct second derivatives inA(·); proving finiteness of the expected value of the

supremum consists of applications of the Lebesgue Dominated Convergence Theorem.

First, note that

∂2

∂d2
(1− L)d =

∞∑

j=0

(−1)j

j!



(
j−1∑

i=0

1

d− i

)2

−
j−1∑

i=0

(
1

d− i

)2


j−1∏

i=0

(d− i)Lj , (15)

=

∞∑

j=0

(−1)j

j!



j−1∑

i,k=0
i6=k

1

(d− i)(d− k)



j−1∏

i=0

(d− i)Lj .

Then, we have

∂2qt
∂d2

=

[
Θ−1(L)ΦtT (L)

∂

∂d
(1− L)dytT

]2
+ utΘ

−1(L)ΦtT (L)
∂2

∂d2
(1− L)dytT =: R1 +R2.

We first show thatE sup |Ri| < ∞ for i = 1, 2.

|R1| =
∣∣∣∣∣

[
Θ−1(L)ΦtT (L)

∂

∂d
(1− L)dytT

]2∣∣∣∣∣ and |R2| =
∣∣∣∣utΘ−1(L)

[
ΦtT (L)

∂2

∂d2
(1− L)dytT

]∣∣∣∣ .

The expected values of the terms on the right-hand sides are finite by arguments similar to those

in the proof of Lemma 2. Therefore, the suprema of the left-hand sides are dominated by the
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right-hand sides andE [sup |Ri|] < ∞, i = 1, 2, by the Lebesgue Dominated Convergence

Theorem. Thus,E
[
supψ∈Ψ

|ht(ψ)|
]
< ∞. �

Proof of Theorem 2.The proof follows Theorem 4.1.3 of Amemiya (1985). First, wehave to

establish that̂ψ is consistent (Theorem 1). Then,

B(ψ
∗
)−

1
2

1√
T

[rT ]∑

t=1

∂qt
∂ψ

∣∣∣∣∣
ψ∗

⇒W (r), r ∈ [0, 1],

whereW (r) is (kψ)-dimensional standard Brownian motion on the unit interval. This con-

vergence follows from Theorem 18.3 in Billingsley (1999) if(a)

{
∂qt
∂ψ

∣∣∣
ψ∗

,Ft

}
is a stationary

martingale difference sequence (Lemma 1), and (b)B(ψ
∗
) exists (Lemma 2). Further, we have

to show thatAT (ψ̂T )
p→ A(ψ

∗
) for any sequencêψT

p→ ψ
∗
,

AT (ψ̂T ) = − 1

T

T∑

t=1

∂2qt
∂ψ∂ψ′

∣∣∣∣∣
ψ̂T

andA(ψ
∗
) = −E

(
∂2qt

∂ψ∂ψ′

∣∣∣∣
ψ∗

)

is non-singular. Conditions for this convergence can be found in Theorem 21.6 of Davidson

(1994). We need to have (a) consistency ofψ̂T for ψ
∗

and (b) uniform convergence ofAT to

A in probability, i.e.supψ∈Ψ
|AT (ψ)−A(ψ)| p→ 0. Ling and McAleer (2003, Theorem 3.1)

employ the Ergodic Theorem to obtain uniform convergence directly by modifying Theorem

4.2.1 of Amemiya (1985). To employ Theorem 3.1 of Ling and McAleer (2003), we have

to show thatht(ψ) = − ∂2qt
∂ψ∂ψ′ − A(ψ) is continuous inψ, Eht(ψ) = 0, and is absolutely

uniformly integrableE
[
supψ∈Ψ

|ht(ψ)|
]
< ∞. This was shown in Lemma 3. Thus, we have

established all conditions of Theorem 4.1.3 of Amemiya (1985). �

Proof of Proposition 1.We established uniform convergence in probability ofAT toA in Lemma

3 and Theorem 2. It remains to show uniform convergence ofBT toB. We follow Theorem 3.1

of Ling and McAleer (2003) again. Definemt(ψ) :=
∂qt
∂ψ

∂qt
∂ψ′ −B(ψ).
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As we did forA in Lemma 3, we have to show thatmt is absolutely uniformly integrable,

continuous inψ, andE [mt(ψ)] = 0. By the triangular inequality, showing absolute uniform in-

tegrability reduces to showing thatE
[
supψ∈Ψ

∂qt
∂ψ

∂qt
∂ψ′

]
< ∞. This can be shown using Lebesgue

Dominated Convergence arguments very similar to those employed in the proof of Lemma 3.

We omit the details for brevity.mt is continuous inψ by the Continuous Mapping Theorem and

has zero-mean by construction. �

APPENDIX C. PROOF OFMODEL SELECTION CONSISTENCY

Proof of Theorem 3.Write the event

{M̂ 6= M∗} ⇔ {M̂ 6= M∗ ∩M > M∗} ∪ {M̂ 6= M∗ ∩M < M∗}

⇒ {M̂ > M∗ ∩M > M∗} ∪ {M̂ < M∗ ∩M < M∗}

⇔ {IC(M̂) < IC(M∗) ∩M > M∗} ∪ {IC(M̂) < IC(M∗) ∩M < M∗}

⇒




M⋃

M=M∗+1

{IC(M) < IC(M∗)}


 ∪

[
M∗

−1⋃

M=1

{IC(M) < IC(M∗)}
]
=: A ∪B.

We show thatP(A ∪ B) → 0 asT → ∞. It is clear that

{IC(M) < IC(M∗)} ⇔ {Q(ψ̂,M∗)−Q(ψ̂,M) > λT (M)− λT (M
∗)}.

Applying the Markov inequality to the right hand side of the above equation, we have, for

M > M∗,

P
(
Q(ψ̂,M∗)−Q(ψ̂,M) > λT (M)− λT (M

∗)
)
≤

E

∣∣∣Q(ψ̂,M∗)−Q(ψ̂,M)
∣∣∣

λT (M)− λT (M∗)
.
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Using the triangular inequality, we obtain

E

∣∣∣Q(ψ̂,M∗)−Q(ψ̂,M)
∣∣∣ ≤ max

ψ̂∈ΨT,M∗

min
ψ∈Ψ

∗
M

E

∣∣∣Q(ψ̂,M∗)−Q(ψ,M∗)
∣∣∣

+ max
ψ̂∈ΨT,M

min
ψ∈Ψ

∗
M

E

∣∣∣Q(ψ̂,M)−Q(ψ,M)
∣∣∣

+ min
ψ∈Ψ

∗
M

E |Q(ψ,M)−Q(ψ,M∗)| = A1 + A2 + A3.

SinceM > M∗, Assumptions 5(1) and 5(5) guarantee thatA1+A2 ≤ 2ck2
ψ,M . A3 = 0 as, by

definition,E [Q(·,M∗)] is minimum over all values ofM .

Using the union bound onA we have

P (A) ≤ 2c
M∑

M=M∗+1

k2
ψ,M

λT (M)− λT (M∗)
→ 0

asT → ∞.

Now assume thatM < M∗ and write forψ ∈ Ψ
∗

M

1

T

[
Q(ψ̂,M∗)−Q(ψ̂,M)

]
=

1

T

{
Q(ψ̂,M∗)− E

[
Q(ψ̂,M∗)

]}
− 1

T

{
Q(ψ̂,M)− E

[
Q(ψ̂,M)

]}

+
1

T
E

[
Q(ψ̂,M∗)−Q(ψ,M∗)

]
− 1

T
E

[
Q(ψ̂,M)−Q(ψ,M)

]

− 1

T
E [Q(ψ,M)−Q(ψ,M∗)]

= op(1)−KM ,

whereKM = 1
T
E [Q(ψ,M)−Q(ψ,M∗)].

The first line of the above expression isop(1) by Assumption 3 and the law of large numbers,

the second line iso(1) by Assumption 5(5), andKM > 0 by the definition ofM∗. From

Assumption 5(3)1
T
[λT (M

∗)− λT (M)] → 0 asT → ∞. Therefore, the set

{Q(ψ̂,M∗)−Q(ψ̂,M) > λT (M)− λT (M
∗)} → ∅.
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SinceM∗ < ∞ by definition, it follows from the union bound thatP (B) → 0 and the theorem

is proved. �
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TABLE 4. FORECASTING RESULTS BHLS (60 SEC): ONE-STEP-AHEAD.

The table displays the ratio of the root mean squared errors (RMSE) for different models. “ARFIMA” is a standard linear long memory model.
“STARFIMA I” is a nonlinear long memory model with lagged returns as transition variable. “STARFIMA II” uses time as transition variable.
“Ratio I” is the RMSE of the linear and nonlinear ARFIMA models divided by the RMSE of the linear HAR-RV model. “Ratio II” isthe RMSE
of the linear and nonlinear ARFIMA models divided by the RMSEof the nonlinear HAR-RV model. “GW I” is thep-value of the Giacomini
and White test of equal predictive ability when the benchmark is the linear HAR-RV model. “GW II” is thep-value of the Giacomini and White
test when the benchmark is the nonlinear HAR-RV model.

ARFIMA STARFIMA I STARFIMA II
Ratio I Ratio II GW I GW II Ratio I Ratio II GW I GW II Ratio I RatioII GW I GW II

AA 0.995 1.019 0.191 0.084 0.988 1.012 0.039 0.186 1.013 1.038 0.053 0.005
AXP 1.011 1.015 0.073 0.223 1.005 1.009 0.234 0.316 1.015 1.019 0.033 0.157
BA 0.998 1.011 0.306 0.138 0.997 1.010 0.272 0.156 1.009 1.022 0.101 0.020

BAC 1.015 1.009 0.021 0.345 1.014 1.009 0.025 0.354 1.029 1.024 0.002 0.169
CAT 1.001 1.018 0.344 0.055 1.003 1.020 0.211 0.041 1.001 1.018 0.344 0.055

CSCO 1.000 1.021 0.477 0.009 1.005 1.026 0.166 0.004 1.001 1.022 0.439 0.010
CVX 0.998 1.027 0.316 0.085 0.996 1.025 0.206 0.104 1.002 1.031 0.422 0.047
DD 0.999 1.016 0.429 0.088 1.000 1.016 0.464 0.080 1.034 1.051 0.000 0.000
DIS 0.999 1.021 0.440 0.068 0.999 1.021 0.440 0.068 1.068 1.091 0.000 0.000
GE 0.997 1.037 0.345 0.028 0.997 1.037 0.345 0.028 1.095 1.139 0.000 0.000
HD 0.995 1.019 0.150 0.076 0.999 1.023 0.414 0.043 0.998 1.022 0.354 0.038
HPQ 1.002 1.026 0.342 0.001 1.001 1.025 0.388 0.001 1.000 1.024 0.480 0.002
IBM 0.999 1.027 0.421 0.006 0.996 1.024 0.241 0.013 1.028 1.057 0.001 0.000
INTC 1.001 1.013 0.379 0.064 1.001 1.013 0.379 0.064 1.011 1.023 0.030 0.008
JNJ 1.003 1.031 0.287 0.068 1.002 1.030 0.351 0.075 1.016 1.044 0.007 0.018
JPM 1.012 1.045 0.032 0.007 1.010 1.043 0.063 0.009 1.051 1.086 0.000 0.000
KFT 0.996 1.001 0.169 0.446 0.998 1.003 0.357 0.313 1.020 1.025 0.004 0.003
KO 1.000 1.015 0.482 0.089 0.999 1.013 0.392 0.111 1.004 1.019 0.284 0.057

MCD 0.994 1.004 0.109 0.270 0.994 1.004 0.109 0.270 0.994 1.004 0.109 0.270
MMM 0.991 0.997 0.010 0.367 0.990 0.996 0.006 0.336 1.004 1.009 0.310 0.180
MO 0.996 0.998 0.163 0.395 0.995 0.998 0.126 0.355 1.003 1.005 0.298 0.224

MRK 0.993 1.002 0.004 0.364 0.993 1.002 0.004 0.364 0.993 1.002 0.004 0.364
MSFT 1.000 1.015 0.500 0.068 1.001 1.016 0.442 0.057 1.122 1.139 0.000 0.000
PFE 0.991 1.000 0.009 0.472 0.990 0.999 0.005 0.448 0.992 1.001 0.071 0.469
PG 0.993 1.014 0.041 0.152 0.993 1.014 0.041 0.152 1.107 1.130 0.000 0.000
T 0.991 1.004 0.022 0.309 0.991 1.004 0.022 0.309 0.991 1.0040.022 0.309

UTX 0.999 1.037 0.392 0.007 1.004 1.042 0.249 0.002 1.015 1.053 0.036 0.000
VZ 0.994 1.018 0.101 0.066 0.994 1.018 0.101 0.066 0.995 1.019 0.181 0.054

WMT 0.995 1.018 0.139 0.053 0.994 1.017 0.113 0.052 1.002 1.026 0.362 0.010
XOM 1.000 1.022 0.489 0.138 0.991 1.013 0.099 0.258 1.016 1.038 0.024 0.028
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TABLE 5. FORECASTING RESULTS BHLS (60 SEC): FIVE- AND TEN-STEPS-AHEAD.

The table displays the ratio of the root mean squared errors (RMSE) for different models. “ARFIMA” is a standard linear long memory model.
“STARFIMA I” is a nonlinear long memory model with lagged returns as transition variable. “STARFIMA II” uses time as transition variable.
“Ratio I” is the RMSE of the linear and nonlinear ARFIMA models divided by the RMSE of the linear HAR-RV model. “Ratio II” isthe RMSE
of the linear and nonlinear ARFIMA models divided by the RMSEof the nonlinear HAR-RV model. “GW I” is thep-value of the Giacomini
and White test of equal predictive ability when the benchmark is the linear HAR-RV model. “GW II” is thep-value of the Giacomini and White
test when the benchmark is the nonlinear HAR-RV model.

Five-Steps-Ahead
ARFIMA STARFIMA I STARFIMA II

Ratio I Ratio II GW I GW II Ratio I Ratio II GW I GW II Ratio I RatioII GW I GW II
AA 0.973 0.977 0.001 0.014 0.978 0.983 0.004 0.069 0.986 0.990 0.050 0.239
AXP 0.999 0.998 0.467 0.452 1.001 1.001 0.466 0.483 1.006 1.005 0.366 0.384
BA 0.974 0.966 0.000 0.000 0.976 0.967 0.001 0.000 0.978 0.970 0.002 0.001

BAC 0.992 0.994 0.321 0.388 0.999 1.001 0.478 0.487 1.009 1.011 0.289 0.314
CAT 0.971 0.978 0.001 0.029 0.971 0.978 0.001 0.029 0.971 0.978 0.001 0.029

CSCO 0.962 0.949 0.000 0.000 0.962 0.949 0.000 0.000 0.963 0.950 0.000 0.000
CVX 0.949 0.947 0.001 0.002 0.953 0.951 0.000 0.002 0.958 0.956 0.001 0.002
DD 0.969 0.962 0.000 0.001 0.976 0.969 0.000 0.006 0.987 0.980 0.033 0.059
DIS 0.967 0.957 0.000 0.000 0.976 0.966 0.006 0.002 0.999 0.988 0.446 0.191
GE 0.976 0.988 0.040 0.198 0.984 0.997 0.119 0.415 0.998 1.011 0.430 0.226
HD 0.970 0.982 0.001 0.054 0.972 0.983 0.001 0.076 0.974 0.986 0.003 0.124
HPQ 0.973 0.954 0.000 0.000 0.975 0.957 0.001 0.000 0.978 0.960 0.007 0.000
IBM 0.982 0.984 0.032 0.047 0.984 0.986 0.046 0.070 0.988 0.990 0.105 0.150
INTC 0.976 0.969 0.001 0.001 0.977 0.969 0.001 0.001 0.978 0.971 0.002 0.002
JNJ 0.984 0.984 0.084 0.054 0.985 0.985 0.062 0.046 0.992 0.992 0.215 0.212
JPM 0.984 0.970 0.117 0.001 0.997 0.982 0.398 0.043 1.016 1.002 0.143 0.441
KFT 0.987 0.964 0.083 0.051 0.991 0.969 0.216 0.082 1.011 0.988 0.232 0.309
KO 0.981 0.971 0.025 0.011 0.982 0.971 0.031 0.014 0.983 0.973 0.042 0.019

MCD 0.969 0.928 0.001 0.000 0.969 0.928 0.001 0.000 0.969 0.928 0.001 0.000
MMM 0.956 0.961 0.001 0.000 0.965 0.969 0.001 0.000 0.975 0.979 0.002 0.005
MO 0.975 0.971 0.001 0.002 0.976 0.972 0.001 0.002 0.977 0.974 0.002 0.004

MRK 0.977 0.971 0.016 0.010 0.977 0.971 0.016 0.010 0.977 0.971 0.016 0.010
MSFT 0.967 0.967 0.000 0.002 0.978 0.978 0.011 0.025 0.996 0.995 0.334 0.355
PFE 0.961 0.909 0.000 0.000 0.961 0.909 0.000 0.000 0.962 0.910 0.000 0.000
PG 0.958 0.929 0.000 0.000 0.965 0.936 0.000 0.000 0.978 0.948 0.004 0.000
T 0.969 0.959 0.000 0.001 0.969 0.959 0.000 0.001 0.969 0.9590.000 0.001

UTX 0.975 0.977 0.000 0.011 0.978 0.980 0.001 0.029 0.982 0.985 0.009 0.096
VZ 0.970 0.970 0.001 0.002 0.971 0.970 0.001 0.002 0.971 0.971 0.001 0.002

WMT 0.967 0.967 0.000 0.000 0.968 0.968 0.000 0.000 0.971 0.970 0.001 0.001
XOM 0.965 0.956 0.000 0.000 0.971 0.962 0.000 0.000 0.979 0.969 0.003 0.000

Ten-Steps-Ahead
ARFIMA STARFIMA I STARFIMA II

Ratio I Ratio II GW I GW II Ratio I Ratio II GW I GW II Ratio I RatioII GW I GW II
AA 0.983 0.971 0.121 0.005 0.987 0.974 0.157 0.013 0.992 0.979 0.252 0.048
AXP 1.008 0.984 0.379 0.204 1.012 0.988 0.333 0.256 1.017 0.992 0.273 0.343
BA 0.979 0.970 0.034 0.028 0.980 0.971 0.040 0.032 0.982 0.973 0.054 0.039

BAC 1.004 1.009 0.439 0.379 1.010 1.016 0.352 0.305 1.020 1.025 0.236 0.207
CAT 0.978 0.978 0.048 0.068 0.978 0.978 0.048 0.068 0.978 0.978 0.048 0.068

CSCO 0.964 0.957 0.012 0.039 0.964 0.958 0.012 0.039 0.965 0.958 0.012 0.040
CVX 0.934 0.908 0.024 0.017 0.938 0.911 0.023 0.016 0.942 0.915 0.024 0.017
DD 0.967 0.954 0.003 0.003 0.972 0.960 0.004 0.006 0.980 0.967 0.016 0.018
DIS 0.976 0.961 0.050 0.008 0.990 0.975 0.257 0.056 1.026 1.010 0.073 0.288
GE 0.978 0.974 0.164 0.046 0.984 0.981 0.244 0.091 0.994 0.990 0.391 0.239
HD 0.975 0.972 0.038 0.035 0.976 0.974 0.048 0.043 0.979 0.976 0.068 0.061
HPQ 0.974 0.966 0.010 0.001 0.977 0.969 0.017 0.004 0.980 0.972 0.037 0.012
IBM 0.992 0.986 0.293 0.156 0.993 0.987 0.319 0.176 0.996 0.990 0.385 0.228
INTC 0.985 0.989 0.096 0.181 0.985 0.989 0.095 0.178 0.986 0.990 0.105 0.191
JNJ 1.002 0.997 0.455 0.427 0.997 0.993 0.438 0.293 1.003 0.998 0.424 0.452
JPM 0.989 0.969 0.292 0.023 1.005 0.985 0.409 0.163 1.029 1.009 0.137 0.341
KFT 1.004 0.978 0.411 0.196 1.007 0.982 0.358 0.245 1.034 1.008 0.089 0.402
KO 0.992 0.989 0.290 0.203 0.992 0.989 0.291 0.205 0.993 0.989 0.298 0.212

MCD 0.978 0.968 0.025 0.012 0.978 0.968 0.025 0.012 0.978 0.968 0.025 0.012
MMM 0.959 0.955 0.049 0.034 0.966 0.962 0.051 0.035 0.974 0.970 0.063 0.045
MO 0.972 0.966 0.006 0.006 0.973 0.967 0.007 0.006 0.974 0.969 0.010 0.008

MRK 0.978 0.984 0.049 0.084 0.978 0.984 0.049 0.084 0.978 0.984 0.049 0.084
MSFT 0.975 0.980 0.030 0.062 0.981 0.986 0.059 0.117 0.991 0.996 0.231 0.362
PFE 0.961 0.937 0.002 0.002 0.962 0.938 0.002 0.002 0.964 0.940 0.005 0.003
PG 0.953 0.922 0.028 0.001 0.958 0.926 0.020 0.001 0.965 0.934 0.019 0.001
T 0.965 0.963 0.004 0.009 0.965 0.963 0.004 0.009 0.965 0.9630.004 0.009

UTX 0.982 0.968 0.065 0.034 0.986 0.972 0.085 0.042 0.991 0.977 0.178 0.071
VZ 0.972 0.968 0.036 0.013 0.972 0.968 0.036 0.013 0.972 0.968 0.036 0.013

WMT 0.967 0.969 0.004 0.004 0.969 0.971 0.005 0.006 0.971 0.973 0.010 0.011
XOM 0.961 0.943 0.006 0.013 0.967 0.950 0.008 0.014 0.975 0.957 0.017 0.019



SUPPLEMENT TO NONLINEARITY, BREAKS, AND LONG-RANGE
DEPENDENCE IN TIME-SERIES MODELS

ERIC HILLEBRAND AND MARCELO C. MEDEIROS

1. INTRODUCTION

In this supplement we present additional results both for the simulations and the empirical

application. With respect to the simulations, we present results concerning the parameter esti-

mates when the sample size consists of 500 observations. We also report, for different values

of the parameter C, the performance of the sequence of LM tests in determining the number of

nonlinear terms in the model. Concerning the empirical example, we report descriptive statistics

as well as forecasting results when RVmed is considered.

2. ADDITIONAL SIMULATION RESULTS
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3. ADDITIONAL EMPIRICAL APPLICATION RESULTS

TABLE 3. FULL SAMPLE RESULTS: DESCRIPTIVE STATISTICS.

The table displays the sample moments of the realized volatility time series considered in this paper.

Date Sample Date Forecasts Sample BHLS (60 sec) RVmed
Starts Starts Size average std. dev. skewness kurtosis average std. dev. skewness kurtosis

AA 01/03/2000 01/03/2006 2409 1.25 0.91 0.77 3.89 1.43 0.88 0.85 3.71
AXP 01/03/2000 01/03/2006 2409 0.79 1.33 0.20 2.47 0.96 1.25 0.28 2.48
BA 01/03/2000 01/03/2006 2409 0.78 0.88 0.37 2.98 0.97 0.87 0.35 2.72

BAC 01/03/2000 01/03/2006 2409 0.56 1.42 0.81 3.41 0.71 1.38 0.87 3.47
CAT 01/03/2000 01/03/2006 2409 0.86 0.86 0.71 3.64 0.99 0.87 0.71 3.34

CSCO 01/03/2000 01/03/2006 2298 1.23 0.98 0.40 2.75 1.40 0.97 0.54 3.00
CVX 10/10/2001 01/03/2006 1966 0.41 0.86 0.85 4.78 0.51 0.85 0.90 4.87
DD 01/03/2000 01/03/2006 2409 0.68 0.93 0.42 2.96 0.89 0.87 0.50 2.92
DIS 01/03/2000 01/03/2006 2409 0.78 0.97 0.31 2.88 1.15 0.93 0.29 2.42
GE 01/03/2000 01/03/2006 2409 0.54 1.17 0.49 3.06 0.81 1.10 0.53 2.92
HD 01/03/2000 01/03/2006 2409 0.92 0.94 0.34 2.95 1.12 0.89 0.40 2.80

HPQ 01/03/2000 01/03/2006 2409 1.12 1.00 0.22 2.79 1.32 0.91 0.38 2.91
IBM 01/03/2000 01/03/2006 2409 0.42 0.99 0.48 3.02 0.59 0.91 0.59 3.10
INTC 01/03/2000 01/03/2006 2409 1.27 0.95 0.28 2.50 1.51 0.85 0.44 2.64
JNJ 01/03/2000 01/03/2006 2409 -0.04 0.97 0.33 3.16 0.20 0.87 0.42 3.08
JPM 01/03/2000 01/03/2006 2409 0.93 1.27 0.34 2.74 1.14 1.18 0.41 2.71
KFT 06/13/2001 01/03/2006 2045 0.14 0.80 0.46 3.79 0.22 0.75 0.78 4.05
KO 01/03/2000 01/03/2006 2409 0.17 0.92 0.41 3.25 0.42 0.85 0.53 2.99

MCD 01/03/2000 01/03/2006 2409 0.62 0.83 0.41 3.34 0.90 0.85 0.47 2.83
MMM 01/03/2000 01/03/2006 2409 0.35 0.88 0.59 3.52 0.47 0.80 0.73 3.76

MO 01/03/2000 01/03/2006 2409 0.37 0.94 0.46 3.39 0.66 1.00 0.73 3.20
MRK 01/03/2000 01/03/2006 2409 0.61 0.86 0.62 3.99 0.79 0.78 0.74 4.07
MSFT 01/03/2000 01/03/2006 2409 0.70 1.01 0.16 2.62 0.99 0.88 0.37 2.63
PFE 01/03/2000 01/03/2006 2409 0.53 0.88 0.40 3.32 0.90 0.81 0.56 2.87
PG 01/03/2000 01/03/2006 2409 0.09 0.92 0.64 3.74 0.32 0.85 0.67 3.34
T 01/03/2000 01/03/2006 2402 0.80 0.98 0.24 2.99 1.16 0.95 0.42 2.70

UTX 01/03/2000 01/03/2006 2409 0.57 0.93 0.51 3.22 0.70 0.83 0.68 3.51
VZ 01/03/2000 01/03/2006 2409 0.60 0.95 0.34 3.12 0.84 0.85 0.45 3.09

WMT 01/03/2000 01/03/2006 2409 0.50 0.93 0.47 2.92 0.69 0.88 0.54 2.72
XOM 01/03/2000 01/03/2006 2409 0.43 0.84 0.72 4.46 0.64 0.79 0.80 4.40

(E. Hillebrand) CREATES, DEPARTMENT OF ECONOMICS AND BUSINESS, AARHUS UNIVERSITY, DEN-

MARK.

E-mail address: ehillebrand@creates.au.dk

(M. C. Medeiros) DEPARTMENT OF ECONOMICS, PONTIFICAL CATHOLIC UNIVERSITY OF RIO DE JANEIRO,

RIO DE JANEIRO, RJ, BRAZIL.

E-mail address: mcm@econ.puc-rio.br
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TABLE 4. FULL SAMPLE RESULTS: BIC.

The table displays the BIC for the nonlinear ARFIMA models when the transition variable is either the past return or the time period. Four
different criteria are considered. LM is the sequence of robust LM tests. BIC and HQIC consists of the cases when either BIC or HQIC is
used as a criterium to determine the number of regimes.

Transition Variable: Past Return Transition Variable: Time
BHLS (60 sec) RVmed BHLS (60 sec) RVmed

LM BIC HQIC LM BIC HQIC LM BIC HQIC LM BIC HQIC
AA -1.524 -1.524 -1.521 -1.783 -1.783 -1.783 -1.524 -1.524 -1.524 -1.783 -1.783 -1.783

AXP -1.350 -1.351 -1.351 -1.710 -1.710 -1.712 -1.350 -1.350 -1.350 -1.708 -1.710 -1.712
BA -1.449 -1.452 -1.449 -1.788 -1.788 -1.785 -1.452 -1.452 -1.452 -1.788 -1.788 -1.788

BAC -1.410 -1.410 -1.403 -1.616 -1.620 -1.615 -1.412 -1.412 -1.397 -1.619 -1.619 -1.607
CAT -1.553 -1.553 -1.553 -1.785 -1.785 -1.785 -1.553 -1.553 -1.553 -1.785 -1.785 -1.782

CSCO -1.585 -1.585 -1.585 -1.703 -1.703 -1.703 -1.581 -1.581 -1.581 -1.703 -1.703 -1.703
CVX -1.595 -1.597 -1.597 -1.773 -1.776 -1.745 -1.594 -1.595 -1.594 -1.775 -1.775 -1.757
DD -1.534 -1.534 -1.530 -1.871 -1.871 -1.869 -1.531 -1.534 -1.531 -1.871 -1.871 -1.871
DIS -1.455 -1.455 -1.455 -1.774 -1.774 -1.774 -1.456 -1.456 -1.449 -1.770 -1.774 -1.770
GE -1.370 -1.372 -1.372 -1.677 -1.681 -1.681 -1.372 -1.372 -1.368 -1.682 -1.682 -1.682
HD -1.500 -1.501 -1.500 -1.801 -1.801 -1.801 -1.501 -1.501 -1.501 -1.797 -1.797 -1.797

HPQ -1.299 -1.299 -1.299 -1.555 -1.555 -1.551 -1.293 -1.299 -1.299 -1.555 -1.555 -1.550
IBM -1.520 -1.521 -1.520 -1.893 -1.894 -1.897 -1.514 -1.521 -1.521 -1.894 -1.894 -1.897
INTC -1.678 -1.678 -1.678 -1.916 -1.916 -1.912 -1.678 -1.678 -1.678 -1.908 -1.916 -1.916
JNJ -1.332 -1.332 -1.332 -1.826 -1.828 -1.828 -1.328 -1.331 -1.328 -1.824 -1.826 -1.824
JPM -1.381 -1.387 -1.387 -1.721 -1.721 -1.711 -1.384 -1.384 -1.384 -1.717 -1.717 -1.704
KFT -1.079 -1.091 -1.090 -1.267 -1.267 -1.266 -1.077 -1.091 -1.090 -1.260 -1.267 -1.259
KO -1.526 -1.526 -1.526 -1.896 -1.896 -1.896 -1.526 -1.526 -1.526 -1.896 -1.896 -1.896

MCD -1.311 -1.311 -1.310 -1.536 -1.536 -1.535 -1.311 -1.311 -1.310 -1.532 -1.536 -1.531
MMM -1.445 -1.445 -1.445 -1.775 -1.780 -1.780 -1.438 -1.442 -1.438 -1.775 -1.775 -1.771

MO -1.010 -1.010 -1.010 -1.273 -1.273 -1.273 -1.007 -1.010 -1.007 -1.272 -1.273 -1.272
MRK -1.192 -1.192 -1.186 -1.507 -1.507 -1.504 -1.192 -1.192 -1.192 -1.507 -1.507 -1.507
MSFT -1.499 -1.499 -1.494 -1.808 -1.808 -1.805 -1.494 -1.499 -1.494 -1.804 -1.808 -1.806
PFE -1.345 -1.345 -1.345 -1.753 -1.753 -1.753 -1.345 -1.345 -1.345 -1.753 -1.753 -1.750
PG -1.400 -1.400 -1.396 -1.822 -1.822 -1.822 -1.400 -1.400 -1.400 -1.822 -1.822 -1.822
T -1.270 -1.270 -1.270 -1.528 -1.528 -1.525 -1.270 -1.270 -1.270 -1.528 -1.528 -1.525

UTX -1.464 -1.464 -1.462 -1.852 -1.852 -1.849 -1.461 -1.464 -1.461 -1.852 -1.852 -1.848
VZ -1.384 -1.385 -1.384 -1.770 -1.770 -1.770 -1.385 -1.385 -1.385 -1.766 -1.766 -1.766

WMT -1.556 -1.558 -1.556 -1.876 -1.876 -1.875 -1.558 -1.558 -1.558 -1.869 -1.876 -1.876
XOM -1.559 -1.565 -1.565 -1.834 -1.834 -1.829 -1.563 -1.563 -1.563 -1.829 -1.830 -1.818
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TABLE 5. FORECASTING RESULTS RVMED: ONE-STEP-AHEAD.

The table displays the ratio of the root mean squared errors (RMSE) for different models. “ARFIMA” is a standard linear long memory model.
“STARFIMA I” is a nonlinear long memory model with lagged returns as transition variable. “STARFIMA II” uses time as transition variable.
“Ratio I” is the RMSE of the linear and nonlinear ARFIMA models divided by the RMSE of the linear HAR-RV model. “Ratio II” is the RMSE
of the linear and nonlinear ARFIMA models divided by the RMSE of the nonlinear HAR-RV model. “GW I” is the p-value of the Giacomini
and White test of equal predictive ability when the benchmark is the linear HAR-RV model. “GW II” is the p-value of the Giacomini and White
test when the benchmark is the nonlinear HAR-RV model.

ARFIMA STARFIMA I STARFIMA II
Ratio I Ratio II GW I GW II Ratio I Ratio II GW I GW II Ratio I Ratio II GW I GW II

AA 0.994 1.018 0.159 0.132 0.993 1.017 0.171 0.156 1.019 1.043 0.020 0.004
AXP 1.006 1.009 0.215 0.329 1.005 1.008 0.254 0.348 1.026 1.029 0.007 0.074
BA 0.999 1.012 0.445 0.163 1.000 1.013 0.472 0.165 1.029 1.043 0.002 0.001

BAC 1.008 1.012 0.139 0.295 1.008 1.012 0.136 0.293 1.026 1.030 0.003 0.094
CAT 1.001 1.014 0.385 0.092 1.001 1.013 0.427 0.101 1.001 1.014 0.404 0.090

CSCO 0.994 1.014 0.130 0.077 0.996 1.016 0.241 0.057 1.010 1.030 0.125 0.003
CVX 0.995 1.017 0.182 0.201 0.995 1.017 0.180 0.201 0.997 1.019 0.313 0.174
DD 0.997 1.009 0.257 0.232 0.992 1.004 0.082 0.363 1.030 1.043 0.001 0.001
DIS 0.998 1.019 0.365 0.097 0.998 1.019 0.365 0.097 1.058 1.080 0.001 0.000
GE 1.000 1.039 0.483 0.043 1.000 1.038 0.497 0.046 1.067 1.108 0.000 0.000
HD 0.996 1.020 0.266 0.068 0.995 1.018 0.215 0.092 0.996 1.019 0.263 0.057

HPQ 1.001 1.025 0.436 0.002 1.000 1.024 0.482 0.002 1.008 1.032 0.162 0.001
IBM 1.001 1.027 0.412 0.011 0.999 1.024 0.433 0.019 1.026 1.052 0.023 0.001
INTC 1.000 1.019 0.496 0.036 1.001 1.019 0.456 0.030 1.069 1.089 0.000 0.000
JNJ 1.001 1.031 0.425 0.066 1.001 1.031 0.425 0.066 1.024 1.054 0.002 0.005
JPM 1.011 1.047 0.037 0.002 1.052 1.090 0.000 0.000 1.056 1.094 0.000 0.000
KFT 1.006 1.011 0.075 0.092 1.005 1.010 0.092 0.100 1.026 1.031 0.000 0.001
KO 0.995 1.006 0.203 0.274 0.995 1.006 0.203 0.274 0.995 1.006 0.203 0.274

MCD 0.999 1.009 0.432 0.096 0.999 1.009 0.427 0.098 1.052 1.063 0.010 0.003
MMM 0.988 0.994 0.003 0.285 0.988 0.995 0.004 0.299 0.993 0.999 0.184 0.476

MO 0.996 0.999 0.215 0.442 0.994 0.996 0.098 0.305 0.998 1.001 0.348 0.465
MRK 0.992 1.000 0.001 0.496 0.992 1.000 0.001 0.496 1.003 1.011 0.289 0.062
MSFT 1.002 1.015 0.391 0.077 1.004 1.017 0.284 0.058 1.142 1.158 0.000 0.000
PFE 0.992 0.999 0.046 0.456 0.992 0.999 0.046 0.456 1.018 1.026 0.013 0.006
PG 0.990 1.006 0.014 0.332 0.990 1.006 0.014 0.332 0.990 1.006 0.014 0.332
T 0.991 1.009 0.046 0.184 0.991 1.009 0.046 0.184 1.091 1.111 0.000 0.000

UTX 0.997 1.031 0.303 0.022 0.997 1.031 0.303 0.022 1.002 1.036 0.395 0.009
VZ 0.992 1.017 0.095 0.102 0.993 1.018 0.128 0.088 0.991 1.016 0.087 0.116

WMT 0.994 1.015 0.124 0.109 0.991 1.013 0.069 0.132 1.077 1.100 0.000 0.000
XOM 0.998 1.018 0.366 0.190 0.991 1.011 0.153 0.313 1.032 1.053 0.001 0.006
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TABLE 6. FORECASTING RESULTS RVMED: FIVE- AND TEN-STEPS-AHEAD.

The table displays the ratio of the root mean squared errors (RMSE) for different models. “ARFIMA” is a standard linear long memory model.
“STARFIMA I” is a nonlinear long memory model with lagged returns as transition variable. “STARFIMA II” uses time as transition variable.
“Ratio I” is the RMSE of the linear and nonlinear ARFIMA models divided by the RMSE of the linear HAR-RV model. “Ratio II” is the RMSE
of the linear and nonlinear ARFIMA models divided by the RMSE of the nonlinear HAR-RV model. “GW I” is the p-value of the Giacomini
and White test of equal predictive ability when the benchmark is the linear HAR-RV model. “GW II” is the p-value of the Giacomini and White
test when the benchmark is the nonlinear HAR-RV model.

Five-Steps-Ahead
ARFIMA STARFIMA I STARFIMA II

Ratio I Ratio II GW I GW II Ratio I Ratio II GW I GW II Ratio I Ratio II GW I GW II
AA 0.967 0.974 0.001 0.007 0.974 0.981 0.004 0.063 0.984 0.991 0.057 0.272

AXP 0.987 0.984 0.213 0.193 0.991 0.989 0.283 0.257 1.004 1.002 0.384 0.455
BA 0.971 0.969 0.003 0.009 0.976 0.974 0.015 0.033 0.983 0.981 0.085 0.115

BAC 0.984 0.993 0.160 0.378 0.989 0.999 0.247 0.483 1.000 1.010 0.487 0.312
CAT 0.967 0.975 0.001 0.029 0.967 0.975 0.000 0.027 0.967 0.975 0.000 0.026

CSCO 0.955 0.939 0.000 0.000 0.960 0.944 0.000 0.000 0.966 0.950 0.000 0.000
CVX 0.952 0.947 0.000 0.000 0.952 0.947 0.000 0.000 0.953 0.948 0.000 0.000
DD 0.967 0.968 0.000 0.002 0.976 0.977 0.001 0.033 0.988 0.989 0.102 0.225
DIS 0.972 0.946 0.006 0.000 0.979 0.953 0.030 0.002 0.992 0.966 0.253 0.023
GE 0.979 0.990 0.085 0.237 0.985 0.996 0.163 0.391 0.995 1.006 0.384 0.347
HD 0.969 0.968 0.000 0.003 0.971 0.971 0.001 0.006 0.975 0.974 0.003 0.018

HPQ 0.971 0.958 0.001 0.000 0.975 0.962 0.004 0.001 0.980 0.966 0.023 0.007
IBM 0.971 0.963 0.003 0.001 0.974 0.966 0.005 0.002 0.980 0.972 0.024 0.012
INTC 0.965 0.943 0.000 0.000 0.973 0.951 0.001 0.000 0.984 0.962 0.048 0.012
JNJ 0.976 0.965 0.030 0.001 0.978 0.966 0.037 0.002 0.981 0.969 0.062 0.005
JPM 0.982 0.966 0.070 0.004 0.996 0.979 0.358 0.048 1.015 0.998 0.110 0.444
KFT 0.983 0.981 0.025 0.081 0.991 0.989 0.126 0.203 1.015 1.013 0.132 0.225
KO 0.972 0.939 0.002 0.000 0.972 0.939 0.002 0.000 0.972 0.939 0.002 0.000

MCD 0.979 0.926 0.017 0.000 0.982 0.929 0.039 0.000 0.991 0.937 0.191 0.001
MMM 0.950 0.957 0.001 0.000 0.956 0.963 0.001 0.000 0.963 0.970 0.001 0.001

MO 0.975 0.963 0.000 0.000 0.976 0.964 0.000 0.000 0.978 0.966 0.001 0.001
MRK 0.967 0.955 0.001 0.001 0.970 0.958 0.004 0.002 0.978 0.966 0.034 0.012
MSFT 0.973 0.965 0.004 0.005 0.981 0.973 0.027 0.022 0.997 0.989 0.376 0.207
PFE 0.959 0.913 0.000 0.002 0.966 0.919 0.000 0.005 0.975 0.928 0.003 0.015
PG 0.955 0.905 0.000 0.000 0.955 0.905 0.000 0.000 0.955 0.905 0.000 0.000
T 0.974 0.947 0.002 0.000 0.981 0.954 0.012 0.001 0.994 0.966 0.253 0.014

UTX 0.971 0.964 0.000 0.000 0.973 0.965 0.000 0.001 0.976 0.969 0.001 0.005
VZ 0.972 0.965 0.002 0.001 0.973 0.966 0.003 0.002 0.975 0.968 0.005 0.002

WMT 0.964 0.963 0.000 0.000 0.969 0.968 0.000 0.000 0.979 0.978 0.003 0.009
XOM 0.962 0.964 0.000 0.000 0.976 0.978 0.005 0.009 0.997 0.999 0.405 0.469

Ten-Steps-Ahead
ARFIMA STARFIMA I STARFIMA II

Ratio I Ratio II GW I GW II Ratio I Ratio II GW I GW II Ratio I Ratio II GW I GW II
AA 0.983 0.977 0.143 0.025 0.987 0.982 0.199 0.054 0.994 0.988 0.327 0.157

AXP 1.004 0.984 0.440 0.192 1.010 0.990 0.338 0.285 1.028 1.008 0.125 0.335
BA 0.983 0.983 0.144 0.146 0.987 0.986 0.211 0.216 0.992 0.992 0.319 0.323

BAC 1.002 1.013 0.465 0.331 1.008 1.018 0.380 0.259 1.020 1.031 0.210 0.130
CAT 0.968 0.979 0.021 0.083 0.968 0.979 0.019 0.081 0.968 0.979 0.019 0.081

CSCO 0.952 0.939 0.007 0.012 0.957 0.943 0.006 0.012 0.962 0.948 0.006 0.013
CVX 0.941 0.922 0.040 0.036 0.941 0.923 0.042 0.037 0.942 0.923 0.044 0.038
DD 0.967 0.957 0.003 0.005 0.975 0.965 0.011 0.019 0.986 0.975 0.114 0.090
DIS 0.989 0.969 0.285 0.058 0.993 0.973 0.353 0.078 1.004 0.984 0.427 0.207
GE 0.981 0.983 0.215 0.141 0.985 0.987 0.262 0.197 0.990 0.993 0.349 0.326
HD 0.975 0.967 0.030 0.008 0.976 0.968 0.031 0.010 0.978 0.970 0.040 0.015

HPQ 0.984 0.981 0.098 0.042 0.986 0.983 0.138 0.079 0.990 0.987 0.212 0.149
IBM 0.981 0.979 0.086 0.046 0.982 0.980 0.094 0.055 0.987 0.985 0.169 0.121
INTC 0.973 0.976 0.015 0.058 0.980 0.983 0.038 0.152 0.989 0.992 0.162 0.332
JNJ 0.989 0.985 0.305 0.192 0.990 0.986 0.308 0.194 0.991 0.987 0.328 0.214
JPM 0.990 0.972 0.281 0.026 1.005 0.987 0.393 0.164 1.025 1.007 0.098 0.312
KFT 0.997 1.014 0.405 0.236 1.001 1.017 0.463 0.178 1.032 1.049 0.071 0.031
KO 0.983 0.972 0.086 0.047 0.983 0.972 0.086 0.047 0.983 0.972 0.086 0.047

MCD 0.988 0.956 0.186 0.026 0.989 0.957 0.216 0.031 0.995 0.963 0.369 0.054
MMM 0.947 0.946 0.045 0.033 0.952 0.951 0.046 0.035 0.959 0.958 0.049 0.040

MO 0.976 0.968 0.019 0.002 0.977 0.968 0.022 0.002 0.978 0.970 0.030 0.003
MRK 0.971 0.979 0.038 0.048 0.969 0.977 0.034 0.040 0.976 0.984 0.087 0.126
MSFT 0.985 0.988 0.156 0.197 0.988 0.991 0.175 0.236 0.995 0.998 0.342 0.440
PFE 0.962 0.976 0.003 0.280 0.969 0.983 0.007 0.347 0.978 0.992 0.045 0.430
PG 0.951 0.930 0.025 0.002 0.951 0.930 0.025 0.002 0.951 0.930 0.025 0.002
T 0.977 0.963 0.041 0.013 0.983 0.968 0.073 0.019 0.991 0.977 0.239 0.060

UTX 0.978 0.966 0.032 0.036 0.981 0.969 0.037 0.042 0.985 0.973 0.064 0.058
VZ 0.974 0.972 0.039 0.019 0.974 0.972 0.040 0.019 0.975 0.972 0.042 0.021

WMT 0.964 0.968 0.001 0.001 0.966 0.969 0.001 0.001 0.970 0.973 0.004 0.002
XOM 0.961 0.957 0.007 0.003 0.975 0.972 0.042 0.015 0.998 0.994 0.461 0.367



Research Papers 

2012 

 

 

 

2012-14: Niels Haldrup, Robinson Kruse, Timo Teräsvirta and Rasmus T. 
Varneskov: Unit roots, nonlinearities and structural breaks 

2012-15: Matt P. Dziubinski and Stefano Grassi: Heterogeneous Computing in 
Economics: A Simplified Approach 

2012-16: Anders Bredahl Kock and Laurent A.F. Callot: Oracle Inequalities for 
High Dimensional Vector Autoregressions 

2012-17: Eric Hillebrand, Huiyu Huang, Tae-Hwy Lee and Canlin Li: Using the 
Yield Curve in Forecasting Output Growth and Inflation 

2012-18: Eric Hillebrand and Tae-Hwy Lee: Stein-Rule Estimation and 
Generalized Shrinkage Methods for Forecasting Using Many Predictors 

2012-19: Bent Jesper Christensen, Morten Ørregaard Nielsen and Jie Zhu: The 
impact of financial crises on the risk-return tradeoff and the 
leverage effect 

2012-20: Hendrik Kaufmann, Robinson Kruse and Philipp Sibbertsen: On tests 
for linearity against STAR models with deterministic trends 

2012-21: Andrey Launov, Olaf Posch and Klaus Wälde: On the estimation of the 
volatility-growth link 

2012-22: Peter O. Christensen and Zhenjiang Qin: Information and 
Heterogeneous Beliefs: Cost of Capital, Trading Volume, and Investor 
Welfare 

2012-23: Zhenjiang Qin: Heterogeneous Beliefs, Public Information, and 
Option Markets 

2012-24: Zhenjiang Qin: Continuous Trading Dynamically Effectively Complete 
Market with Heterogeneous Beliefs 

2012-25: Heejoon Han and Dennis Kristensen: Asymptotic Theory for the QMLE 
in GARCH-X Models with Stationary and Non-Stationary Covariates 

2012-26: Lei Pan, Olaf Posch and Michel van der Wel: Measuring Convergence 
using Dynamic Equilibrium Models: Evidence from Chinese Provinces 

2012-27: Lasse Bork and Stig V. Møller: Housing price forecastability: A factor 
analysis 

2012-28: Johannes Tang Kristensen: Factor-Based Forecasting in the Presence 
of Outliers: Are Factors Better Selected and Estimated by the Median 
than by The Mean? 

2012-29: Anders Rahbek and Heino Bohn Nielsen: Unit Root Vector Auto-
regression with volatility Induced Stationarity 

2012-30: Eric Hillebrand and Marcelo C. Medeiros: Nonlinearity, Breaks, and 
Long-Range Dependence in Time-Series Models 

 

  

 


