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ABSTRACT. Macroeconomic forecasting using factor models estimated by princi-
pal components has become a popular research topic with many both theoretical
and applied contributions in the literature. In this paper we attempt to address an
often neglected issue in these models: The problem of outliers in the data. Most
papers take an ad-hoc approach to this problem and simply screen datasets prior
to estimation and remove anomalous observations. We investigate whether fore-
casting performance can be improved by using the original unscreened dataset
and replacing principal components with a robust alternative. We propose an
estimator based on least absolute deviations (LAD) as this alternative and es-
tablish a tractable method for computing the estimator. In addition to this we
demonstrate the robustness features of the estimator through a number of Monte
Carlo simulation studies. Finally, we apply our proposed estimator in a simulated
real-time forecasting exercise to test its merits. We use a newly compiled dataset
of US macroeconomic series spanning the period 1971:2-2011:4. Our findings
suggest that the chosen treatment of outliers does affect forecasting performance
and that in many cases improvements can be made using a robust estimator such
as our proposed LAD estimator.
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1. INTRODUCTION

As time goes by we accumulate information at an ever increasing rate. This
coupled with vast improvements in computation power has driven an intensive re-
search interest into the area of econometric analysis of large-dimensional datasets.
In macroeconomic forecasting in particular we often have many hundreds if not
thousands of time series at our disposal for forecasting. These are, however, of
no interest without the right set of tools for analysing them. The class of dynamic
factor models has found its way into many econometricians’ toolboxes and es-
pecially developments in this area over the last decade has made these models
increasingly popular for modelling large-dimensional data. A recent survey by
Stock and Watson (2011) provides a thorough overview of the state of the literature,
and is an important addition to previous surveys (e.g. Bai and Ng, 2008; Stock and
Watson, 2006).

Although a number of estimation methods for factor models have been proposed
in the literature, this paper will focus on probably the most popular method, namely
estimation by principal components (PC). One of the main advantages of PC
estimation is its ease of use. The estimation is quick and easily done even for
very large datasets with implementations only requiring a few lines of code. The
literature on macroeconomic forecasting using factor models estimated by PC was
popularized by two papers by Stock and Watson (2002a,b). In their papers they
coined the term diffusion indexes which refers to the estimated factors. The term
was chosen by Stock and Watson because they interpret estimated factors in terms
of the diffusion indexes developed by NBER business cycle analysts. So the name
only relates to the interpretation, the actual estimates are simply factors from a
factor model.

Stock and Watson (2002b) demonstrated the superiority of diffusion index fore-
casting when compared to many traditional models. Since their paper numerous
papers have applied factor models in forecasting settings. However, not all arrive
at similarly impressive results. In fact several papers have been pointing towards a
possible break-down of factor model forecasts in recent years, see e.g. Schumacher
(2007); Schumacher and Dreger (2004); Banerjee, Marcellino, and Masten (2006);
Gosselin and Tkacz (2001); Angelini, Henry, and Mestre (2001). In an attempt to
investigate the forecasting performance in more detail Eickmeier and Ziegler (2008)
conduct a meta-analysis of 52 forecasting applications of dynamic factor models,
and they also find mixed results regarding the performance of these models.

It is hence not clear why factor-based forecasts in some cases perform very
poorly. However, the literature is starting to see attempts to investigate this and
further develop the ideas behind the PC factor estimator. In this paper we will try
to address an often neglected issue in factor models, namely that of outliers in the
data. We believe that the presence of outliers might be one possible explanation of
the forecasting performance issues seen in empirical literature.



The problem of outliers is generally acknowledged in the literature albeit in a
rather indirect fashion. Often people will screen data for anomalous observations
and either remove these if the method used is capable of handling missing ob-
servations or replace them with more “normal” values. In the classical paper by
Stock and Watson (2002b) outliers were defined as observations exceeding the
median of the series by more than 10 times the interquartile range. It, however,
appears that the consensus in the empirical literature is leaning towards defining
outliers as observations exceeding the median of the series by more than six times
the interquartile range. Examples of this include Banerjee, Marcellino, and Mas-
ten (2008); Breitung and Eickmeier (2011); Stock and Watson (2009)!; and Artis,
Banerjee, and Marcellino (2005).

In this paper we will take a different approach to the problem. Instead of re-
garding it as a data problem, we claim that the problem is non-robustness of the
PC estimator. Working within the diffusion index forecasting framework we will
thus propose to replace the traditional PC estimator with a robust estimator based
on least absolute deviations (LAD). Our contributions are threefold: (i) we will
propose a new LAD factor estimator and establish a tractable estimation method;
(ii) through a series of Monte Carlo studies we will demonstrate the features of the
estimator and uncover similarities with the common screening approach; (iii) us-
ing a new dataset we will conduct a forecasting experiment where we illustrate the
importance of taking outliers into account and show that our LAD factor estimator
outperforms PC applied to screened data.

2. A LARGE-DIMENSIONAL FACTOR MODEL

Our point of departure is the classical dynamic factor model. Let X; be n macroe-
conomic variables we observe for t = 1,..., T and wish to use for forecasting some
variable of interest y;. We will assume that X, is stationary, centered at zero, and
that it follows a dynamic factor model of the form:

Xir = Ai(D) fr + ey 1)

fori=1,...,n. Assuming that A;(L) is of finite order of at most g, such that A;(L) =
Z;’:o Ai,jL’, we can rewrite the model in static form as:

Xir=AiFr+ej; 2)

where F; = (f],..., f[_) isTx1,and A; = Aior--Aig) is 1 x rwith r < (g + DT
We will exclusively consider this static representation as is also common in the
literature. Often it will be more convenient to work with the model in vector or
matrix form in which cases we will write it as:

X;=AF;+e¢; or X=FA +e 3)

!Although not discussed in the paper, the details can be found in their online replication files.



where A = (1},...,A)) isnxr, F=(F,...,Fp) is T xr,and X = (X,..., X7)" is
T x n.

Estimation of factor models entails a number of difficulties. Clearly, if either the
factors or loadings were known estimation would be easily accomplished since
the model would simplify to a multivariate linear regression. However, since only
X; is observed we must estimate both loadings A and factors F. Due to this we
are faced with an inherent identification problem because AF; = ARR™F, for any
non-singular r x r matrix R. We therefore generally need to impose identifying
restrictions in order to make estimation feasible. In the present paper we are
interested in the factors solely for forecasting purposes, and because of this need
not worry too much about identification. Any rotation of the estimated factors will
be captured by the estimated parameters in the forecasting model and should not
affect forecasting performance.

2.1. Least squares estimation. The theory underlying PC estimation of factor
models has been extensively studied and is well understood. We will, however,
spend a few moments defining the estimator and discussing its details. This is
meant to serve as a prelude to the introduction of our estimator below.

Consistency of the PC factor estimator was first shown by Connor and Korajczyk
(1986) for the exact static factor model assuming T fixed and n — oco. Stock and
Watson (2002a) extended their results to the case of the approximate static fac-
tor model, approximate in the sense of Chamberlain and Rothschild (1983), i.e.
allowing for weak correlation across time and series. Their results were derived as-
suming that both T'— oo and n — oco. These results have since been supplemented
by e.g. Bai and Ng (2002) who provided improved rates, Bai (2003) who derived the
asymptotic distribution of the factors and loadings, and Bai and Ng (2006) who
provided results for constructing confidence intervals for common components
estimated using the factors. Thus it would seem that the asymptotical theory of
the PC factor estimator has been very well covered. However, common for all these
results is that moment assumptions are made on the error terms, and hence they
do not allow for typical outlier distributions such as the Student- ¢ distribution with
a low degree of freedom which is the premise we will explore in this paper.

One very appealing characteristic of the PC estimator is that it is in fact simply a
least squares (LS) estimator. Consider the nonlinear LS objective function:

n T
VBSEAX) =D Y. Y (X — AiF)? (4)
i=1t=1

As argued above the parameters of this problem are not identified. However, by
imposing the identifying restriction that A’A = I, where I, is the identity matrix of
dimension r, we arrive at the PC estimator:

(F,A) =argmin VIS (FA; X) st. ANA=1, (5)
EA



To see that this is in fact PC we can concentrate F out of (4) to get the equivalent
problem

A=argmax tr [N X'XA] st. AA=1I, (6)
A

where tr[-] is the matrix trace, and the factor estimate is F = XA. This is PC in
its most basic form and is solved by setting A equal to the eigenvectors of X'X
corresponding to the r largest eigenvalues. If we recall that all X; are centered at
zero then we can alternatively write (6) in a perhaps more commonly used form as
Ar= argAmax var[Fi] st AjAg=1 and AA;j=0 Vj<k @)
k
where Fy = XAy, and A and Fy correspond to the kth columns of A and F, re-
spectively. Thus the first PC is defined as the linear combination of the variables
with maximal variance, and subsequent PCs are similarly defined but with the
restriction that their loadings must be orthogonal to all preceding PCs. Hence
PCs have a very nice interpretation where the first PC tries to explain as much of
the variation in the data as possible, the second PC then explains as much of the
variation left over after extracting the first PC as possible, and so on.
This sequential interpretation of the PC estimation can also be seen in an LS
perspective and is the way we choose to define the estimator:

Definition 1. PC Factor Estimator: The PC estimates of the first factor and associated
loadings are defined as:
(Fi,A) =argmin VIS(EA; X) st A'A=1 8)
EA
Let the residuals from the estimation of the kth factor be defined as ey, then the
subsequent estimates are given as:

(ﬁk,Ak) = argmin VIS(E A; er_1) st ANA=1 9)
EA

Hence the PC factor estimates of r factors and associated loadings are given as
F=(F,....,FE)andA=(Ay,...,A,).

The equivalence of Definition 1 and solving (5) is fairly obvious. Since the solu-
tion to (5) is given by the eigenvectors of X'X the estimates do not depend on the
number of factors estimated, i.e. the first factor will always be the one correspond-
ing to the eigenvector associated with the largest eigenvalue regardless of r. This is
why we can write the estimator in the sequential form of Definition 1. Thus at least
for the first factor there is clearly no difference between the two ways of writing the
problem. For the second factor (and subsequent factors) the equivalence is merely
a consequence of the spectral decomposition of X’ X.

Finally we should note that we could just as well concentrate A out of (4). This
would lead to a similar problem that would give factor estimates spanning the same
column space and therefore be equivalent for forecasting purposes. This could be



of interest in cases where T < n since the solution would be the eigenvectors of the
T x T matrix X X’ and hence computationally simpler.

2.2. Least absolute deviations. LAD has a long-standing position in the literature
as arobust alternative to LS. However, robustness is a somewhat vague and often
misunderstood concept. In econometrics we tend to define it in quite broad terms,
e.g. Amemiya (1985, p.71):

In general, we call an estimator, such as the median, that performs
relatively well under distributions heavier-tailed than normal a “ro-
bust” estimator.

Since this definition is stated in relative terms we must choose what to compare to.
With the obvious choice being LS, we can then for example compute the asymptotic
relative efficiency (ARE). Hence under this definition LAD is a robust estimator
when compared to least squares for distributions sufficiently heavy-tailed.

In statistics much effort has been put into quantifying robustness and thus a
number of measures have been developed. One of the most prominent measures
is undoubtedly the breakdown point. A treatment of this subject can be found in
Huber and Ronchetti (2009) where the breakdown point is defined (p. 8):

The breakdown point is the smallest fraction of bad observations
that may cause an estimator to take on arbitrarily large aberrant
values.

Naturally the breakdown point can take values between 0 and 0.5. In the case of
the linear regression model the breakdown point for an LAD fit is 0.5 when the
contamination occurs in the error term (Huber and Ronchetti, 2009, Sec. 11.2.3).
This can be compared to the breakdown point for an LS fit which is 1/n for a sample
size of n. The important thing to remark is that LAD is not robust to contamination
or outliers in the explanatory variables. Note that the breakdown point is typically
considered a finite sample measure as opposed to ARE.

In the case of our factor model we will assume that outliers occur in the error
term, and the presence of outliers will be defined as meaning that the distribution
of the error term is heavier-tailed than a normal distribution. In this setting we
would expect the LAD estimator to be robust in terms of the definitions above. In
cases where both LAD and PC are consistent we would expect LAD to be more
efficient since PC is an LS estimator. Furthermore, due to the high breakdown point
of LAD we would expect it to perform well even in extreme cases where PC would
fail.

The theory of LAD in the regression case is quite well developed. Bassett and
Koenker (1978) proved asymptotic normality of the LAD estimator for linear re-
gressions in the i.i.d. case. Alternative proofs have since been given by Pollard
(1991) and Phillips (1991). The theory has also been extended to more intricate
settings such as correlated errors (Weiss, 1990) and nonlinearity (Weiss, 1991). See
Dielman (2005) for a general review of the LAD literature. The robustness of LAD



has furthermore been demonstrated to be beneficial in forecasting by Dielman
(1986, 1989) and Dielman and Rose (1994).

Considering the LS formulation of the PC estimation problem it seems natural
to attempt to estimate the components using LAD in order to gain robustness. The
basic idea is to replace the objective function in (4) with

n T
VEPEAX) =D Y Y | X — MLiFy| (10)
i=1t=1
and estimate the model in the same sequential manner as Definition 1. Thus we
propose the following LAD factor estimator:

Definition 2. LAD Factor Estimator: The LAD estimates of the first factor and asso-
ciated loadings are defined as:
(F1,A) =argmin VP (FA; X) st A'A=1 (11)
EA

Let the residuals from the estimation of the kth factor be defined as ey, then the
subsequent estimates are given as:

(E, Ap) = argmin VAP (E Ajer_y) st AA=1 (12)

EA

Hence the LAD factor estimates of r factors and associated loadings are given as
F=(Fy,....,F)and A = (Ay,...,A;).

It is important to note that in contrast to PC this estimator will not produce
a solution with orthogonal loadings. This should, however, not be considered a
problem since the orthogonality restriction is simply an identification device. In
this LAD factor estimator identification is instead achieved implicitly through the
sequential estimation approach. This approach also reflects our interpretation of
the model, i.e. the notion that factors should explain “what is left over” after ex-
tracting previous factors, and not be defined by arbitrary identification restrictions.
In the case of PC, however, these two cases coincide.

Even though we have defined the estimator we still need to find a tractable way
of performing the estimation. The literature does contain methods for estimating
nonlinear LAD (e.g. Koenker and Park, 1996). However, these do not easily general-
ize to a factor model setting. A simple approach to the problem could instead be
to approximate the objective function based on the smoothed LAD estimator of
Hitomi and Kagihara (2001). We then define the smoothed objective function as:

n T
VP (EAX) =D Y Y \/ (Xi— AiF)? + d? (13)

i=1t=1
for some d > 0. Obviously, for d = 0 the problem is equivalent to (10) which is not
tractable. But by introducing the smoothing parameter d we have a differentiable
approximation which we can solve using standard optimization methods. The
smoothing parameter naturally controls the approximation error as summarized



in the following proposition which follows directly from sub-additivity of the square
root function:

Proposition 1. The approximation error of using (13) will at most be d, i.e.
0<VSIAP(E A X) - VIAP(EA; X) <d (14)

Alternatively, we could exploit the fact that the model is greatly simplified if
either the factors or loadings are known. If the loadings are known the factors can
be estimated by performing T separate linear LAD regressions, and if the factors
are known we can estimate the loadings by n separate linear LAD regressions, all
of which can be done using standard methods. This idea gives rise to the following
algorithm for solving the estimation problem:

Algorithm 1. Iterative approach to solving (11). In order to start the algorithm a
starting value for the factor is needed. Let this be denoted FV, and in general let
superscripts denote the iteration, then iteration v of the algorithm is given as:

(i) Calculate the loadings as AV = argmin VIAD(FOv=1 A. X,
(ii) Normalize the loadings to have length 1.
(iii) Calculate the factor as ") = argmin, VP (F, AM; X).
(iv) Check for convergence, e.g. squared difference of the factor estimates: Stop
algorithm if(ﬁ(v) — Fv=Dy/(FW _ Fv=1)y jg sufficiently small.

Hence steps (i) and (iii) are simply linear regressions. Note that steps (i) and
(ii) combined are equivalent to A®) = argmin, VIAP(F™), A; X) s.t. AMAM =1,
However, since unconstrained estimation is more easily implemented, this step
is split in two. Convergence of the algorithm is given in the following proposition,
proof of which can be found in the appendix.

Proposition 2. Consider the sequence {(F"), A™)} defined by Algorithm 1 and let
limy—oo(FY, AV = (A, F) be an accumulation point of the sequence, then:
@) {(F™, A"} has at least one accumulation point.
(i) If(F,A) and (F, ) are two accumulation points then VAP (F, A) = VIAD(F, A).
(iii) For every accumulation point (F,A)

max VP (EA) = max VMP(F A) = VAP (F A)
F AN A=1

Readers familiar with the PC literature will undoubtedly recognize Algorithm
1 as an LAD equivalent to the Nonlinear Iterated Partial Least Squares (NIPALS)
algorithm for computing PC (see e.g. Esbensen, Geladi, and Wold, 1987).

Clearly, estimation based on (13) is inferior to Algorithm 1 since it will always
have an approximation error. However, Algorithm 1 is not without pitfalls. Although
Proposition 2 guaranties convergence of the method, it still hinges on the assump-
tion that the minima of steps (i) and (iii) of the algorithm can be found. In order
to do this we must employ numerical routines and they might still fail. It is our
experience that the algorithm is very sensitive to the choice of starting values, and



that especially for small sample sizes the method might not converge or falsely
report convergence without having reached the optimum. We have therefore in-
cluded (13) in this exposition to serve as a device for obtaining starting values.
Using these starting values dramatically improves upon the stability of Algorithm 1
at only a small computational cost. In order to apply (13) it is necessary to choose
the smoothing parameter d. This choice is, however, not critical since it is used
only for starting values. We chose to use d = (nT) ™! which we found to give good
results and still be rather quick to estimate. In the remainder of this paper we will
thus refer to estimates obtained from Algorithm 1 using starting values from (13)
as LAD factor estimates.

3. MONTE CARLO RESULTS

The main aim of this paper is to obtain better macroeconomic forecasts, and
even though we have not set out to provide an asymptotic analysis of our estimator,
we will nonetheless still examine the statistical properties of it through a series of
Monte Carlo simulations.

As already discussed our view on outliers in this paper is that these occur in the
error term and not in the factors nor the loadings. Although the latter could also be
a problem, in light of what we know about the LAD estimator, it would not seem
plausible that it would be able to handle this (as neither would ordinary PC), and
hence we refrain from investigating this possibility. Considering the problem at
hand we hypothesize the following three possible effects of outliers:

(i) The factor estimates will become inconsistent or less efficient.
(ii) Determining the true number of factors will become difficult or impossible.
(iii) The ordering of the estimated factors will change.

Clearly, the first two points are potentially very critical to forecasting perfor-
mance, and hence we will investigate both, separately, below. The third point is
more subtle. In forecasting the ordering is not important if all relevant factors are
included in the forecasting model. However, if the number of factors is misspecified
it could have a large impact on the performance. We will not address this point
here, but postpone it until the empirical application.

Setting up the Monte Carlo framework will be done rather straightforwardly. We
want to keep the setup as simple as possible while still encompassing the relevant
cases. We will follow Stock and Watson (2002b) and define the data-generating
process as:

Xit:A,l'Ft‘l‘ei[ (15)
(1-aLl)eij;= A +bH i+ bvis, +bvi_y, (16)

As discussed in Stock and Watson (2002b) it is important to take into account
the possibility of correlation across both time and variables since the application
we have in mind is within macroeconomic forecasting. We therefore include the
possibility that the error term e;; is correlated i.e. it will be serially correlated



with an AR(1) coefficient of a and cross-series correlated with a (spatial) MA(1)
coefficient b. The error is driven by the random variable v;;, and this is where we
will introduce the outliers. We will be using the prototypical outlier distribution for
v, namely a Student-# distribution with a low degree of freedom. In addition to
this we will also include results for the limiting case of the Student-¢, the standard
normal distribution, as the reference of no outliers. Finally, both the factors F; and
loadings A; will be generated as independent standard normal variables.

Owing to our ultimate goal of using the estimated factors for forecasting we
will also examine how estimation difficulties propagate to the actual forecasts. We
therefore generate a uni-variate time series to be forecast

Ver1 =UFi+ € (17)

where ¢ is a vector of ones and €, is an independent standard normal error term.
Hence the different simulation scenarios are defined in terms of the parameters
a and b, the distribution of v;;, the number of factors r, the number of variables 7,
and the sample size T. Results will be presented both for the traditional PC factor
estimates and our proposed LAD factor estimates. In the latter case the estimation
is carried out as described in the previous section. In addition to this we will also be
comparing to the effects of screening the data. As mentioned in the introduction
screening is common practice in the literature and hence PC estimation based on
screened data is the natural alternative to our LAD estimator. We will use one of
the most typical screening rules, i.e. define outliers as observations exceeding the
median of the series by more than six times the interquartile range, and since our
estimation method cannot handle missing observations we will replace any outlier
with the median of the five observations preceding it. This is the method used in
e.g. Breitung and Eickmeier (2011), and Stock and Watson (2009). PC estimates
obtained using data screened according to this rule will be labelled PC-S.

3.1. Precision of the factor estimates. Before examining the Monte Carlo results
let us briefly review what we know about the LAD estimator in the classical i.i.d.
linear regression case. Assuming the regression model has an error term with a
symmetric distribution f(-) centered at zero and finite variance o2, and that the
explanatory variables are well-behaved, then both LAD and LS provide estimates
that are asymptotically normal. Hence in these cases we can directly compare the
two using e.g. their ARE. The ARE of LAD with respect to LS is ARE = g24£(0)?,
which for #(3) ARE =~ 1.62, for t(4) ARE =~ 1.13, for t(5) ARE =~ 0.96, and for N(0,1) =
0.64. In addition to this it is important to also recall that even if no moments of
the error terms exist, e.g. £(1) errors, the LAD estimator will still be consistent
and asymptotically normal. In contrast if the degrees of freedom is less than three
the distribution will not have a finite variance and hence LS cannot be expected
to work well. Therefore, if the error terms are Student-¢ distributed, then in the
classical model we expect LAD to outperform LS when the degrees of freedom in
the distribution is less than five. Furthermore, in the extreme cases with degrees of



freedom less than three we expect LS to work very poorly or outright break down.
In the case of our LAD factor model, however, things are clearly more complicated.
But we should remember that the model is still basically a regression model, so we
do expect it to share some traits with the classical regression model.

Assessing the precision of the factor estimates is done, as is common in the
literature, by computing the trace R? of a multivariate regression of the factor
estimates on the true factors

R*=tr[FF(F'F)'FE) It [F'E] (18)

and averaging this across Monte Carlo replications. Hence we obtain a statistic that
measure how well the estimated factors span the space of the true factors, with
values as close to 1 as possible being the desired goal.

For each Monte Carlo run we also perform a 1-step out-of-sample forecast based
on (17). Hence we fit the forecasting equation (17) by OLS using data until 7 -1
and obtain the forecast yr by fitting the equation using the data for period 7. On
the basis of this we can compute the mean square forecast error (MSFE) where the
mean is taken across Monte Carlo replications. The statistic presented in the tables
is the infeasible MSFE obtained by estimating (17) using the true factors relative
to the MSFE obtained using the estimated factors. Thus a relative MSFE close to
1 indicates that we are close to the infeasible forecasts we could have made if the
factors were known, whereas a smaller relative MSFE suggests that the forecasting
performance is adversely affected by the poor estimation of the factors.

We start by considering the simplest case where the error terms are i.i.d., hence
a=b = 0. In Table 1 results are given for both Student-¢ and normal errors with
either one or four factors. We quite clearly see the resemblance to the usual linear
regression case. Judging by the R? we see that for the #(1) errors PC is inconsistent
and LAD performs very well. Attempting to mitigate the outlier problem by screen-
ing the data does have some effect, but PC-S is still clearly inferior to LAD. The
precision (or lack thereof) of the factor estimates carry over to the forecasting per-
formance as measured by the relative MSFE. Comparing the caseof r =1tor =4
we see a slight drop in performance. This is, however, not surprising since, in the
latter case, we are estimating four times as many parameters with an unchanged
sample size.

Moving to the #(2) distribution we notice an increase in the PC performance,
although still clearly below LAD, and in spite of the increase the forecasting per-
formance of PC is still very low. Interestingly, the performance of PC-S is now only
slightly below that of LAD. In the case of the #(3) and #(5) distributions all three
methods perform very similarly, but especially in the #(5) case we see that LAD is
losing ground to PC. The distance between the estimators is further increased in
the case of normality where PC is the best performing method (although not by a
large margin). Note that in the case of normality PC and PC-S are identical since
there of course are no outliers to screen out.



TABLE 1. Monte Carlo results for the case ofi.i.d. errors,i.e. a=0, b=0.The
results are based on 1,000 replications. The Factor R? column is the (trace)
R? from a regression of the estimated factor(s) on the true factor(s). The
Rel. MSFE column is the mean squared forecast error from the infeasible
forecast using the true factors relative to the MSFE using the estimated
factors.

Factor R? Rel. MSFE Factor R? Rel. MSFE

T Dist. PC PC-S IAD PC PC-S ILAD PC PC-S LAD PC PC-S

LAD

25
25
50
50
100
150

50 (1) 0.02 032 0.77 0.01 0.60 0.83 0.08 045 0.47 0.00 0.32
100 #(1) 0.01 0.41 0.83 0.02 0.59 0.85 0.04 0.49 0.58 0.00 0.33
100 #(1) 0.01 0.43 092 0.03 0.61 092 0.04 056 0.88 0.00 0.43
200 (1) 0.01 0.53 0.93 0.00 066 0.93 0.02 062 0.89 0.00 0.48
200 (1) 0.01 0.49 0.97 0.00 066 0.96 0.02 063 0.94 0.00 0.56
200 (1) 0.01 0.42 0.98 0.00 0.60 0.97 0.02 0.62 0.96 0.00 0.61

0.32
0.41
0.63
0.70
0.85
0.88

25
25
50
50
100
150

50 ¢(2) 031 0.81 0.88 041 085 0.90 053 082 0.84 0.20 0.54
100 #(2) 0.29 0.83 0.89 0.11 0.87 090 0.50 0.84 0.86 0.12 0.59
100 #(2) 031 0.90 094 0.11 092 095 055 091 092 0.22 0.75
200 r(2) 032 091 095 0.11 090 0.94 055 091 0.93 0.11 0.72
200 f(2) 036 0.95 0.97 0.10 096 0.97 058 095 0.96 0.05 0.83
200 #(2) 036 096 0.98 0.12 096 0.98 0.59 097 0.97 0.06 0.88

0.56
0.60
0.78
0.77
0.90
0.91

25
25
50
50
100
150

50 (3) 079 0.88 0.89 077 088 0.90 0.84 0.89 0.87 0.52 0.67
100 ¢3) 0.83 0.89 091 086 0.87 0.87 086 0.90 0.88 0.65 0.69
100 ¢(3) 090 0.94 095 092 093 093 092 0.94 093 0.69 0.83
200 #(3) 091 0.95 0.95 0.86 0.96 0.97 093 095 094 0.38 0.81
200 £(3) 095 097 0.98 096 098 0.99 096 097 0.97 033 0.92
200 (3) 096 098 0.98 097 099 1.00 097 098 0.98 0.72 0.95

0.65
0.67
0.82
0.83
0.93
0.96

25
25
50
50
100
150

50 ¢(5) 091 091 090 094 094 092 092 092 0.88 0.75 0.76
100 ¢(5) 092 0.92 091 094 095 096 093 093 0.90 0.77 0.77
100 (5) 0.96 0.96 0.95 098 098 097 096 096 094 0.86 0.86
200 ¢(5) 096 096 0.96 096 096 0.96 096 096 0.94 0.86 0.86
200 ¢(5) 098 098 0.98 099 099 0.99 098 098 0.97 094 0.94
200 ¢(5) 098 098 0.98 099 099 1.00 098 098 0.98 0.96 0.96

0.66
0.72
0.80
0.84
0.91
0.93

25
25
50
50
100
150

50
100
100
200
200
200

094 094 091 094 094 092 094 094 090 0.87 0.87
095 095 092 096 096 094 095 095 091 0.85 0.85
097 097 096 099 099 098 097 097 095 094 0.93
097 097 096 098 098 097 098 098 095 091 091
0.99 099 098 1.00 1.00 0.99 0.99 099 097 0.95 0.95
0.99 099 098 1.00 1.00 0.99 0.99 099 098 0.97 0.97

ZZZ2Z2ZZ

0.74
0.73
0.84
0.83
0.93
0.93




TABLE 2. Monte Carlo results for the case of non-i.i.d. errors and four
factors, i.e. r = 4. The results are based on 1,000 replications. The Factor R?
column is the (trace) R? from a regression of the estimated factor(s) on the
true factor(s). The Rel. MSFE column is the mean squared forecast error
from the infeasible forecast using the true factors relative to the MSFE
using the estimated factors.

t(3) errors Normal errors
Factor R? Rel. MSFE Factor R? Rel. MSFE
n T a b PC PC-S LAD PC PC-S LAD PC PC-S LAD PC PC-S LAD
25 50 05 0 0.79 0.83 0.81 0.45 0.52 048 093 093 0.89 0.81 0.81 0.69
25 100 0.5 0 0.81 0.86 0.83 0.58 0.62 0.59 094 094 0.89 0.81 0.81 0.70
50 100 0.5 0 0.89 0.92 091 0.73 0.77 0.75 0.97 097 094 091 091 0.86
50 200 0.5 0 0.90 0.93 091 0.71 0.79 0.74 097 097 094 090 091 0.82
100 200 0.5 0 095 096 095 082 088 086 098 098 097 095 095 091
150 200 0.5 0 096 097 097 087 091 090 099 099 098 096 096 0.93
25 50 09 0 035 036 035 0.28 0.28 0.28 0.67 0.67 0.62 0.38 0.38 0.35
25 100 0.9 0 0.30 0.30 0.30 0.27 0.27 0.26 0.67 0.67 0.61 0.38 0.38 0.34
50 100 0.9 0 0.29 0.30 0.32 0.28 0.29 0.29 0.74 0.74 0.69 0.46 0.46 0.40
50 200 09 0 0.33 0.34 0.38 0.29 0.30 0.30 0.83 0.83 0.77 0.65 0.65 0.55
100 200 09 0 035 037 044 030 030 032 090 090 086 0.78 0.78 0.71
150 200 09 0 036 038 047 031 033 035 093 093 090 0.83 0.83 0.79
25 50 0 1 031 037 034 0.22 0.24 0.23 0.67 0.67 0.58 0.43 0.43 0.34
25 100 0 1 028 035 033 027 028 027 069 069 059 046 046 0.38
50 100 0 1 0.42 055 056 030 034 035 0.85 0.85 0.77 0.67 0.67 0.55
50 200 0 1 0.44 059 060 031 038 038 0.86 0.86 0.79 0.63 0.63 0.52
100 200 0 1 065 080 081 041 057 061 093 093 0.89 0.77 0.77 0.66
150 200 0 1 0.75 0.87 087 047 065 067 095 095 092 084 0.85 0.77
25 50 05 1 023 026 024 021 025 024 054 054 048 035 0.35 0.29
25 100 0.5 1 0.20 0.23 0.21 0.23 0.23 023 056 056 048 0.37 037 0.31
50 100 0.5 1 0.27 034 034 025 0.28 0.28 0.74 0.74 0.65 0.50 0.50 0.41
50 200 0.5 1 0.29 037 038 0.25 0.28 0.28 0.78 0.78 0.70 0.57 0.57 0.48
100 200 0.5 1 046 061 063 032 040 039 090 090 085 0.69 0.69 0.61
150 200 0.5 1 058 0.74 076 038 049 051 093 093 089 0.76 0.76 0.68

Abandoning the i.i.d. premise of these results we now turn to Table 2 where we
consider cases of both serial and cross-sectional correlation. We choose to focus
on the case of four factors and compare normality to #(3) errors. Overall we see a
decline in performance compared to the i.i.d. case. This can, however, partly be
explained by the fact that the unconditional variance of the error term is larger than
in the i.i.d. case whereas the variance of the factors is unchanged, and hence we
would expect lower precision in the estimates. That being said, in the first scenario
where we have only a modest degree of persistence in the errors (a = 0.5, b = 0),
we see that the performance is quite close to the i.i.d. case and the results are very



similar. LAD performs best under #(3) and PC is best under normality. In the second
scenario we increase the persistence to a = 0.9 and overall the performance drops
as expected. It is, however, interesting to notice that for the #(3) errors the precision
(as measured by R?) of the PC and PC-S does not increase with the sample size.
This is in contrast to LAD and illustrates that in cases of high persistence PC is
further hampered by outliers. In the final two scenarios we also include correlation
across series (b # 0). Besides the general level of performance, including this only
gives rise to minor differences.

3.2. Determining the number of factors. We now turn to the problem of deter-
mining the correct number of factors in the true model. This is often tackled as a
model selection problem, and e.g. Stock and Watson (2002b) used the Bayesian In-
formation Criterion (BIC) applied to the forecasting equation. The intuition behind
this choice is described in an earlier version of their paper, where they proposed
amodified version of the BIC and showed that it would asymptotically select the
correct number of factors. However, their Monte Carlo results showed that the
ordinary BIC outperformed their modified version, and hence the ordinary BIC is
often used. These results can be found in Stock and Watson (1998). Their work has,
however, since been surpassed by Bai and Ng (2002), and the information criteria
suggested in their work has become the preferred approach in the literature. We
will therefore focus on their information criterion which is defined as:

IC; (k) =log(V'S(F, A; X)) + kg;(n, T) (19)
with three possible penalty terms:
n+T nT
1) = 1 20
g1, 1) nT ) Og(n+ T) 20)
n+T
ga(n T) = | —— )1og(c,21T) @1)
log(C? )
g(n,T)= gcznT ) (22)
nT

where k is the number of factors in the estimated model and C,ZlT =min(n, T). We
can then estimate the true number of factors as 7 = argmin, _;. . 1C; (k).

Although their results were derived in relation to PC, it is important to note that
according to Bai and Ng (2002, Corollary 2) their results hold for any consistent
estimator regardless of the estimation method used as long as the convergence
rate Cy, 7 is correctly specified. So even though we have not provided a formal proof
of the consistency of our LAD estimator, and hence do not know what the rate
of convergence might be, we would still expect IC; to perform well for the LAD
estimator in light of the Monte Carlo results provided above.?

21t might seem more intuitive to use VP in (19) for the LAD estimator. However, in addition
to having no theoretical justification for using it, our (non-reported) Monte Carlo results showed



The Monte Carlo setup is the same as outlined above. We set the true number of
factors to four, i.e. r = 4 and the maximum number of estimated factors to 12, i.e.
kmax = 12. The number of factors is estimated using the three variants of IC; and
the PC, PC-S and LAD methods.

TABLE 3. Estimated number of factors using the three variants of the IC;
information criterion for the case of i.i.d. errors, i.e. a =0, b = 0. The true
number of factors is 7 = 4. The Monte Carlo results are based on 1,000
replications.

PC PC-S LAD
n T Dist. 1Cy 1Cy IC3 1Cy ICy IC3 1Cy 1Cy 1C3

25 50 (1) 546 468 7.02 1.00 1.00 1.00 2.67 249 2.93
25 100 (1) 717 6.65 8.05 1.00 1.00 1.00 259 246 2.69
50 100 (1) 8.17 749 940 100 1.00 1.00 1.49 146 1.59
50 200 (1) 9.55 9.21 1013 1.00 1.00 1.00 1.43 1.40 1.54
100 200 #(1) 10.35 10.10 10.86 1.00 1.00 1.00 1.12 1.11 1.14
150 200 #(1) 10.71 10.52 11.10 1.00 1.00 1.00 1.04 1.04 1.07

25 50 1(2) 539 350 11.28 1.53 1.25 221 1.52 128 224
25 100 £(2) 536 441 867 150 136 1.87 145 132 1.87
50 100 £(2) 578 497 9.06 207 172 288 186 152 273
50 200 £(2) 592 556 7.08 228 209 281 214 192 267
100 200 ¢(2) 6.68 6.25 9.13 322 299 365 3.13 2.89 3.59
150 200 £(2) 713 6,56 1093 350 331 3.83 346 3.25 3.81

25 50 £(3) 443 4.04 958 366 339 455 311 263 3.72
25 100 £(3) 433 421 478 383 375 393 351 336 3.76
50 100 £(3) 436 426 495 399 398 4.00 398 396 4.00
50 200 £(3) 427 424 444 4.00 4.00 4.00 4.00 4.00 4.00
100 200 £(3) 432 426 468 4.00 4.00 4.00 4.00 4.00 4.00
150 200 £(3) 432 425 500 4.00 4.00 4.00 4.00 4.00 4.00

25 50 £(5) 4.03 398 682 4.00 397 590 381 368 394
25 100 £(5) 4.02 401 4.03 4.00 4.00 4.01 396 394 3.99
50 100 £(5) 401 400 4.04 4.00 4.00 4.00 4.00 4.00 4.00
50 200 (5 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00
100 200 £(5) 401 4.00 4.01 4.00 4.00 4.00 4.00 4.00 4.00
150 200 £(5) 4.00 4.00 4.02 4.00 4.00 4.00 4.00 4.00 4.00

25 50 N 4.00 4.00 483 4.00 4.00 4.83 398 396 3.99
25 100 N 4.00 4.00 4.00 4.00 4.00 4.00 4.00 399 4.00
50 100 N 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00
50 200 N 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00
100 200 N 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00
150 200 N 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

comparable, but slightly lower performance, when compared to using VS, hence we use the
traditional IC;.



TABLE 4. Estimated number of factors using the three variants of the IC;
information criterion for the case of non-i.i.d. errors and either normal
or t(3) distributed errors. The true number of factors is r = 4. The Monte
Carlo results are based on 1,000 replications.

PC PC-S LAD

n T a b Dist. IC1 ICZ ICg IC1 ICZ IC3 IC1 IC2 IC3
25 50 05 0 (3 461 370 975 357 299 6.18 258 200 3.55
25 100 0.5 O 3 437 413 587 368 350 4.00 3.05 278 352
50 100 0.5 O (3) 443 428 720 397 393 430 394 384 4.07
50 200 0.5 0 (3 429 424 452 399 399 4.00 399 398 4.00
100 200 0.5 0 £(3) 433 426 5.18 4.00 4.00 4.01 4.00 4.00 4.00
150 200 0.5 0 £(3) 438 428 774 4.00 4.00 4.07 4.00 4.00 4.00
25 50 05 0 N 4.09 4.00 749 4.09 400 747 392 385 399
25 100 05 0 N 4.00 4.00 4.11 4.00 4.00 411 399 399 4.00
50 100 05 0 N 4.00 4.00 4.45 4.00 4.00 445 4.00 4.00 4.00
50 200 05 0 N 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00
100 200 0.5 0 N 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00
150 200 0.5 0 N 4.00 4.00 429 4.00 4.00 4.29 4.00 4.00 4.00
25 50 0 1 3 11.89 821 12.00 4.03 155 837 133 1.14 288
25 100 0 1 @3 12.00 11.99 12.00 4.22 252 768 126 118 1.74
50 100 O 1 £(3) 293 1.41 12.00 1.22 1.04 690 1.05 1.02 1.63
50 200 0 1 (3 3.25 198 12.00 131 1.14 276 1.05 1.03 1.31
100 200 O 1 3 373 268 1190 234 167 398 149 1.16 3.39
150 200 O 1 3) 429 346 12.00 336 244 421 250 1.67 3.98
25 50 0 1 N 11.80 8.15 12.00 11.80 8.13 12.00 1.65 130 3.21
25 100 0 1 N 12.00 12.00 12.00 12.00 12.00 12.00 2.09 1.73 2.96
50 100 0 1 N 4.05 3.85 12.00 4.05 3.85 12.00 3.43 3.00 3.97
50 200 0 1 N 401 398 11.99 4.01 398 1199 3.84 3.74 3.97
100 200 0 1 N 4.00 4.00 891 4.00 4.00 890 4.00 4.00 4.00
150 200 0 1 N 4.00 4.00 11.55 4.00 4.00 11.55 4.00 4.00 4.00
25 50 05 1 13 8.72 3.86 11.57 447 183 856 151 125 3.44
25 100 0.5 1 #3) 11.91 11.61 1197 661 434 920 140 1.22 237
50 100 0.5 1 £(3) 498 148 1199 153 1.06 997 1.15 1.09 233
50 200 05 1 1£(3) 531 1.74 1199 123 1.06 6.83 1.07 1.04 1.29
100 200 0.5 1 3) 297 1.68 12.00 152 1.08 929 1.07 1.04 2.63
150 200 0.5 1 ¢(3) 3.73 2.05 12.00 224 128 11.26 1.28 1.06 4.09
25 50 05 1 N 956 4.61 11.83 955 460 11.83 1.49 1.16 3.39
25 100 05 1 N 11.99 11.86 12.00 11.99 11.86 12.00 1.61 134 2.63
50 100 05 1 N 6.66 3.65 12.00 6.65 3.65 12.00 2.56 1.89 4.54
50 200 05 1 N 6.02 4.10 12.00 6.00 4.10 12.00 3.21 290 3.80
100 200 05 1 N 4.08 4.00 12.00 4.08 4.00 12.00 3.99 397 4.21
150 200 05 1 N 4.02 4.00 12.00 4.02 4.00 12.00 4.00 4.00 5.09




In Table 3 results are given for thei.i.d. case, i.e. where a = b = 0. Again, just as the
precision of the PC estimates is poor in the case of £(1) errors, the ability to correctly
determine the number of factors is also adversely affected. The estimated number
of factors diverge to the maximum of k. = 12 as the sample size increases. Both
LAD and PC-S appear to have the opposite problem. PC-S sets the true number of
factors to one in all cases, and LAD seems to converge to one as the sample size
increases. However, for small sample sizes LAD is closer to the true value of four.
In the case of #(2) errors we see both LAD and PC-S increasing their performance
whereas PC still provides more or less divergent results. In the remaining cases all
methods are quite close to the true value. One small difference that should be noted
is that for the smallest sample size (n =25, T = 50) IC3 tends to overestimate the
number of factors for the PC and PC-S estimates. This is, however, not a problem
for the LAD estimates.

In Table 4 we compare £(3) errors to normality in three different non-i.i.d. sce-
narios. The results are much in line with what was observed in Table 2 regarding
precision. In the first scenario with only moderate persistence (a = 0.5, b = 0) PC-S
and LAD perform best with the PC estimates being inflated due to the outliers
in the #(3) distribution. It should, however, again be noted that for PC and PC-S,
IC3 overestimate the number of factors. In the second scenario we only include
cross-sectional correlation (a =0, b = 1). What is interesting about this case is that
LAD outperforms PC (and PC-S) under normality where especially IC3 tends to
diverge to the maximum of 12 factors. In the case of £(3) errors we do, nonetheless,
notice that LAD has a tendency to underestimate the number of factors. Finally, in
the last scenario we have both time and cross-sectional correlation (a = 0.5, b =1).
The results here are quite close to the second scenario indicating that correlation
across series is more crucial to the performance than correlation across time (at
least in the case of only moderate persistence).

Summing up the results in this section we in general see many of the same
characteristics of the LAD estimator in the factor setting as we would in a standard
linear regression setting. In the i.i.d. case LAD is capable of estimating the factors
even in extreme case of (1) errors, whereas PC require at least 3 degrees of freedom
in the Student-¢ distribution for acceptable results. The closer we get to normality,
the better PC performs with a turning point around 5 degrees of freedom. Adding
correlation to the error term lowers performance, and in particular the combination
of high persistence and heavy tails hampers performance of the PC estimator.
Determining the number of factors is also affected by outliers. In general LAD also
outperforms PC here, though LAD has difficulties giving correct estimates in the
extreme cases. Furthermore, there is a tendency for IC3 to overestimate the number
of factors (in some cases quite severely) when applied to the PC and PC-S estimates.
Screening before applying PC lessens the problem in all cases but is not as effective
as using the LAD estimator.



4. EMPIRICAL APPLICATION

Forecasting in our factor model was already alluded to in the previous section.
We shall now consider our empirical application and hence return to it in more
detail. The forecasting framework used is very similar to what is often applied in
the literature, e.g. Stock and Watson (2002b). The aim is to obtain /-step-ahead
forecasts of a number of macroeconomic variables. In order to avoid having to
specify a process for the factors we will only consider direct forecasting. In general
we will consider the following forecasting model:

Y = an+ BuL)Fr+ynDy, +e, 23)

where (L) and yj (L) are lag polynomials. The explicit dependence on the forecast
horizon should be noted as the model is specific to the horizon.

The variables to be forecast are assumed to be either I(1) or I(2) in logarithms.
Let z; be the original variable of interest recorded at a monthly frequency, then in
the case of I(1) we define the h-step-ahead variable as:

yr = 1200/ h)log(z,n! ) (24)

i.e. annualized growth over the horizon in percent. In the case of I(2) we define it
as:

yr = (1200/h)10g(z,+n/ 2;) — 1200lo0g(z,/ 2(-1) (25)

i.e. the difference between annualized growth over the horizon in percent and
annualized growth over the last month.

Since the forecasting model (23) contains the unobserved factors F;, estimation
is done in a two-step approach. First the factors are estimated using either PC or
our proposed LAD procedure. Then in the second step (23) is estimated by OLS
with the estimated factors in place of the unobserved true ones. Hence, for a dataset
ending at time T we obtain the forecast of T + & by fitting the forecasting equation
using the OLS estimates:

k P
Premr =@n+ Y BnjFrj+ Y njyr-in (26)
j=1 j=1

Clearly, in order to fully specify the forecasting model, k and p need to be speci-
fied, i.e. the number of factors to include and how many lags of y; to include. Note
that in the following we will also allow for the possibility of including no lags of y;,
this case will be referred to as p = 0. Either BIC or the IC; criterion by Bai and Ng
(2002) as described earlier will be used to select the number of factors, and BIC to
select the number of lags. In addition to this the possibility of simply fixing k and p
will also be considered.

Before estimation can be carried out the data need to be prepared. Recall that
the factor model assumes the variables to be stationary and centered at zero. We
will need to ensure that the data reflect this. Therefore all series are transformed
to be stationary, the details on which can be found in the data appendix. For the



PC estimation we further center all variables such that they have mean zero. The
intuition behind this is that the factor estimation is basically a regression without
an intercept, centering corrects for this. In some cases the mean of the series is
even referred to as the zeroth PC. The LAD estimation will also require centering.
However, since LAD estimates the median, centering will be done at the median.

Finally, the data have to be scaled. The need for this is not immediately apparent
from the general model setup, but is in fact quite critical. Recall that the solution
to the PC estimation problem is the loadings that maximize the variances of the
individual factors. Therefore it is quite clear that if some variables have a high
variance and others a low variance the latter will be crowded out by the former. To
avoid this problem it is common to scale all variables to have unit variances. By
doing this we ensure that the “choice” of variables in the factors is not driven by
differences in the variances.

Although scaling the variables to have unit variances is the obvious choice, we
must remember that the variance is not a robust measure of dispersion. In the
case of our LAD estimator one could imagine more appropriate scalings. A popular
robust alternative to the variance (or rather the standard deviation) is the median
absolute deviation (MAD): 3

MAD(x) = med [|x; - med ]| 27)

Consequently, we will consider the following methods for estimating the factors. PC:
Estimation by PC using data centered at the mean and scaled to have unit variance;
LAD: Estimation by LAD using data centered at the median and scaled to have
unit variance; LAD-MAD: Estimation by LAD using data centered at the median
and scaled to have unit MAD. We will also compare to the effects of screening the
data, hence we also have a PC-S model, i.e. estimation by PC using data centered
at the mean, scaled to have unit variance and screened for outliers. The screening
procedure used is the same as in the previous section.*

4.1. The dataset. Many of the papers written on the subject of factor model fore-
casting use the same few datasets available online. More specifically data from
Stock and Watson (2002b), Stock and Watson (2005), or an updated version of the
latter from Ludvigson and Ng (2010). For this paper, however, a more up-to-date
dataset shall be considered, and hence we have collected a new dataset. All vari-
ables used are either directly from the Federal Reserve Economic Data (FRED)
database made available by the Federal Reserve of St. Louis or have been computed
on the basis of these. We have attempted to keep the composition of the dataset

3 Often MAD is scaled by a constant (= 1.4826) to make it consistent for the standard deviation
in the case of Gaussian data. See Huber and Ronchetti (2009) for details. In our case this is of course
irrelevant.

41 could perhaps be tempting to use MAD scaling in conjunction with the PC estimator as a
shortcut to robustness. However, as argued this is an illogical choice and indeed it produces very
poor results. We therefore do not include it in the paper.



close to the original Stock and Watson datasets. A total of 111 monthly US macroe-
conomic variables are included in our dataset, and hence it is slightly smaller than
the typical datasets. The data have been taken in seasonally adjusted form from
FRED and hence we have not performed any adjustments ourselves.

We will be forecasting six variables; three variables measuring real economic
activity: Industrial production (INDPRO), real personal income excluding current
transfer receipts (W875RX1), and the number of employees on nonagricultural
payrolls (PAYEMS); as well as three price indexes: The consumer price index less
food and energy (CPILFESL), the personal consumption expenditures price index
(PCEPI), and the producer price index for finished goods (PPIFGS). We assume that
the first three are I(1) in logarithms and that the last three are I(2) in logarithms.

A balanced dataset is needed for the estimation procedures and hence the span
of the dataset will be determined by the variable with the shortest span after
possibly being differenced to obtain stationarity. We will therefore be considering
data spanning the period 1971:2-2011:4. Data are available for the variables we
wish to forecast prior to 1971:2 and hence the span is not reduced when lags are
included in the forecasting model.

The forecasting exercise will be carried out as a pseudo-real-time forecasting
experiment; real-time in the sense that both the factors and the forecasting model
are reestimated in each period using only data available up until that period; and
pseudo in the sense that we are not using actual real-time data, but rather final
vintage data which may have undergone revision. Forecasting will be done for the
period 1981:1-2011:4.

4.2. Results. Before examining the forecasting results we start with an inspection
of the factor estimates for the different models. In Figure 1 the first four factors
estimated using the four main models and the entire dataset are plotted. All four
methods give very similar estimates of the first factor, with one difference being
the LAD-MAD estimate which appears to be scaled differently. Clearly, this is due
to the MAD scaling of the dataset. For the next three factors the methods agree
less. Although it might not be obvious from these plots, it does appear that some
of the factors have interchanged. To illustrate this further we have provided the
correlation between the different factor estimates in Table 5. The correlations
confirm that the methods agree on the estimation of the first factor and that the
difference for the LAD-MAD estimate is indeed simply a scale effect. For the second
factor, we see that the two LAD methods agree on the estimate. For the PC estimates
the screening has caused factors two and three to switch, but these factors are
different from the second factor estimated by LAD. Instead the second PC factor (or
third PC-S factor) appears to be similar to the fourth LAD factor. Furthermore, the
fourth LAD factor is highly correlated with the third LAD-MAD factor but distinct
from the rest. Thus, in this case the scaling of the data also affects the ordering of
the factors. Finally, the PC and PC-S methods agree on the fourth factor.



FIGURE 1. Plots of the estimated factors. The left column of the figure
depicts factors 1 through 4 (top to bottom) for the PC estimates (blue solid
line) and the PC-S estimates (red dashed line). Likewise for the right col-
umn with the LAD estimates (blue solid line) and the LAD-MAD estimates

(red dashed line).
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For this particular application we can thus confirm our conjecture from the
previous section that outliers (or at least screening) does affect the ordering of the
factors. The ordering is of course not important for the forecasting performance if



we indeed include all factors in the forecasting model. However, if the number of
factors is not correctly determined it may be crucial for the performance.

TABLE 5. Correlation matrix for the first four factors estimated using the PC,
PC-S, LAD and LAD-MAD methods (the latter abbreviated L-M here). Note
that the coefficients are shown in absolute values and that only entries
larger than 0.8 in the lower triangular part of the matrix are included.

Factor 1 Factor 2 Factor 3 Factor 4

PC PC-SLAD L-M PC PC-SIAD L-M PC PC-SIAD L-M PC PC-SLAD L-M

PC|1.00
PC-S|1.00 1.00

LAD | 0.98 0.98 1.00
L-M |0.98 0.98 1.00 1.00

Factor 1

PC 1.00
PC-S 1.00
LAD 1.00
L-M 0.99 1.00

Factor 2

PC 0.97 1.00
PC-S 0.88 1.00
LAD 1.00
L-M 1.00

Factor 3

PC 1.00
PC-S 0.88 1.00
LAD 0.91 0.90 1.00
L-M 0.99 1.00

Factor 4

In Table 6 we present the main forecasting results for the 12-month horizon.
The results are divided into seven main scenarios. In the first scenario we fix the
number of factors at four and include no AR terms. In the next three scenarios we
determine the number of factors using IC; and include no AR terms, six AR terms,
or let BIC determine the number of AR terms. The fifth and sixth scenarios use
BIC to determine the number of AR terms and either IC, or IC3 for the number or
factors. Finally, the seventh scenario uses BIC for both the number of AR terms
and factors. In addition to this we include a naive scenario where the forecast is
computed as the unconditional mean or median of either the entire data series or
the latest & observations (denoted /-window).

For each variable of interest we report the mean squared forecast error (MSFE)
relative to the MSFE of an AR(p) forecast with 0 < p < 6 chosen by BIC, i.e. forecasts
based on model (23) without factors. The root mean squared forecast error (RMSFE)
of this model is included in the final row of the table. For each scenario the lowest
MSFE is underlined and the overall lowest MSFE is bold.



TABLE 6. Results for h = 12 reported as relative MSFEs. The root MSFE of
the AR model is given in the last row. Underlined MSFE indicates lowest
value within each specification of p and k, and bold MSFE indicates overall
lowest value. The average number of included factors is k.

Model Variables

Method p k i IP PI Emp. CPI PCE PPI

PC 0 4 4.0 0.9830 0.9041 1.0408 1.3819 1.8930 1.8550
PC-S 0 4 4.0 0.9590 0.8999 1.0238 1.3543 1.8918 1.8242
LAD 0 4 4.0 1.0454 0.9795 1.0942 1.4532 1.8708 1.8597
LAD-MAD 0 4 4.0 1.0353  0.9091 1.0600 1.5028 1.9406 1.9113
PC 0 IC; 9.4 1.0435 09486 0.9974 1.5430 1.9241 1.9086
PC-S 0 IC; 43 1.0353 09469 1.1274 1.4075 1.8982 1.8256
LAD 0 1C; 4.9 1.0817 1.0142 1.0822 1.4592 1.9158 1.8300
LAD-MAD 0 IC; 2.4 0.9381 0.8075 0.9211 1.3086 1.8593 1.9006
PC 6 1C; 9.4 1.0434 0.9565 0.9889 1.3994 1.2139 1.1344
PC-S 6 IC, 4.3 1.0573  0.9769 1.1281 1.4052 1.2290 1.1281
LAD 6 IC; 49 1.0924 1.0359 1.0898 1.5536 1.2094 1.1146
LAD-MAD 6 IC; 24 09434 0.8186 0.8972 1.0000 1.0876 1.0792
PC BIC IC, 9.4 1.0433 0.9402 0.9831 1.3994 1.2228 1.1344
PC-S BIC IC; 4.3 1.0356 0.9486 1.1218 1.4052 1.2301 1.1281
LAD BIC IC; 4.9 1.0843 1.0028 1.0872 15536 1.2188 1.1146
LAD-MAD BIC 1IC; 2.4 09426 0.7742 0.8998 1.0006 1.1137 1.0800
PC BIC 1IC, 8.1 1.0221 0.9232 0.9915 1.3462 1.2083 1.1153
PC-S BIC IC, 4.0 1.0394 0.9489 1.1309 1.3922 1.2251 1.1253
LAD BIC IC, 4.5 1.0681 0.9820 1.0924 1.5494 1.2393 1.1294
LAD-MAD BIC 1IC, 1.8 0.9444 0.7366 0.8955 1.0493 1.0781 1.0523
PC BIC IC3 12.0 1.0605 0.9492 0.9614 15170 1.2071 1.1355
PC-S BIC IC3 7.0 1.0286 0.9698 1.0694 1.4798 1.2284 1.1323
LAD BIC IC3 7.9 1.1179 1.0232 1.0945 1.5904 1.2203 1.1151
LAD-MAD BIC ICs 4.3 1.0585 0.9008 1.0045 1.1068 1.1098 1.0848
PC BIC BIC - 1.0916 0.9660 0.9834 1.3424 1.1943 1.0990
PC-S BIC BIC - 1.0565 0.9675 0.9885 1.3560 1.2345 1.1157
LAD BIC BIC - 1.1632 1.0029 1.0264 1.6138 1.2618 1.1175
LAD-MAD BIC BIC — 1.1904 0.9966 1.0733 1.3445 1.2675 1.1646
Uncond. mean 1.1074 1.0516 1.7843 1.8484 2.3316 2.6947
Uncond. mean, h-window 2.2059 1.5040 2.1627 2.0076 2.5194 3.0456
Uncond. median 2.0321 1.4188 2.0458 2.1321 2.5420 3.0614
Uncond. median, i#-window 1.2222 1.0939 2.1126 1.8410 2.3354 2.6971
RMSFE, AR Model 4.3887 2.5596 1.5839 1.1686 1.5555 4.3613




First, notice that across all variables and scenarios the lowest MSFE is obtained
by the LAD-MAD method and that for the scenarios using IC; and IC;, LAD-MAD
is always associated with the lowest MSFE. Hence it appears that LAD-MAD is
the superior method for this application. To a large extent it appears that this is
driven by the number of factors included in the forecasting equation. Looking at
the average number of factors across the experiment horizon k we see that the
number of factors is consistently lowest for the LAD-MAD method. PC-S and LAD
on the other hand roughly choose the same number of factors, which is perhaps
to be expected since our Monte Carlo results did show very similar performance
for these two methods in many cases. It is, however, surprising that LAD-MAD
chooses fewer factors than LAD. This suggests that scaling using a non-robust
dispersion measure may incorrectly increase the number of factors and thereby
hamper forecasting performance. Furthermore, if the true number of factors is
as low as 2-3 as suggested by the LAD-MAD method the ordering of the factors
becomes very important. Even if the other methods do estimate these factors but
ordered differently, we may need to include many more estimated factors to ensure
we include the few truly relevant ones. This may then in turn lead to degradation
of the performance since we include irrelevant factors.

The results for the PC model are very interesting since they highlight the effects
of screening when compared to PC-S. In general PC tends to choose a quite high
number of factors. The drop in the number of factors between PC and PC-S suggests
that we do have outliers in the data. However, it is not always the case that this
translates into higher forecasting performance. This could again be explained
by the ordering of the factors. If the ordering is such that not all true factors are
included in PC-S and the severity of not including all true factors is greater than
the performance decrease due to possibly including irrelevant factors, then we
should include more estimated factors as in the PC model.

In the final two scenarios either IC3 or BIC is used to choose k. None of these
scenarios provide results of comparable performance. For IC3 the Monte Carlo
results demonstrated a tendency to overestimate the number of factors. In these
empirical results we also find that IC3 in general includes more factors than IC;
and IC,. This may very well be the reason for the poor performance. Further,
as we mentioned earlier, the use of BIC is no longer common, and hence the
poor performance is expected. Note, that one crucial difference between the IC;
criterion and BIC is that BIC is applied to the forecasting equation and hence
depends on the variable being forecast. Although this could give rise to better
performance than ICj, it is not in line with the general theory of the factor model
which assumes one model with r factors regardless of what is being forecast. This
is also why k is not reported in the tables for the BIC case. Finally, it is clear that
the naive alternatives are inferior to the models considered as they underperform
in all cases.

Similar forecasting experiments for 6- and 24-month horizons have also been
conducted. These results can be found in the appendix in Tables 7 and 8. For the



6-month horizon the results are quite similar to the 12-month forecasts. In general
LAD-MAD is still the superior method and the MSFEs are marginally lower than
in the 12-month case. Interestingly, we are now able to beat the AR forecast for
CPI, i.e. the relative MSFE is less than one. In the 12-month case the factor-based
forecasts did not improve on the AR forecasts for any of the price indexes. The only
variable where LAD-MAD is not the best performing model is PPI. Here PC is now
the best method, but it is still inferior to a simple AR forecast. For the 24-month
horizon the results are less clear-cut, but LAD-MAD still performs well in many
cases. However, for nonagricultural employees the lowest MSFE is now obtained by
PC. Note, however, that in general the sizes of the results are difficult to compare
across horizons since the the definition of the variable being forecast changes
with the horizon. Specifically this means that the variable being forecast becomes
smoother as the horizon increases. This is also evident from the root MSFE of the
AR model which actually decreases with the horizon.

5. CONCLUDING REMARKS

In this paper we set out to challenge the common perception that outliers can
easily be dealt with in factor models by simply screening the data. Building on the
virtues of the LAD estimator we have established a tractable LAD factor estimator
and demonstrated that in the presence of outliers a robust estimation method is
preferable to ad-hoc screening.

Throughout the paper we have attempted to cling firmly to an ultimate goal of
applicability. After all, what good is a model that does not perform when faced with
real data? Because of this we have especially focussed on two issues: Establishing
not only a tractable, but also fairly quick estimation method; and demonstrating
its use on a relevant dataset. We particularly find the last point important since a
model’s ability to forecast an old dataset says nothing about its applicability today.

In our Monte Carlo simulation study we have demonstrated that outliers not
only affect the precision of the PC factor estimates adversely, but also tend to inflate
the estimated number of factors. Our proposed LAD factor estimator was shown to
share many traits with its regression counterpart and was in general not negatively
affected by the presence of the outliers.

Taking the LAD factor estimator to our newly collected dataset covering 111 US
macroeconomic variables illustrated the importance of taking outliers into account
in factor-based forecasting. When applying our LAD estimator to a dataset that
had been robustly scaled using MAD we were able to achieve a gain in forecasting
performance compared to the traditional PC approach using screened data.

Since our focus has been the applicability of the model we have not delved
into the theoretical aspects of the model. However, considering the encouraging
forecasting results this would undoubtedly be a very interesting thing to do as part
of the future research into this area.



APPENDIX A: PROOFS

Proof. The proof makes use of Oberhofer and Kmenta (1974, Lemma 1) and follows
the same line of reasoning as the proof of Oberhofer and Kmenta (1974, Theorem
1). Let a = (F, A) be the parameter of interest, and write the objective function as

n T
f@=-nT-V(EAX) == ) [Xii— LiF| (28)
i=11=1
where a € U, U = U x U,. Since we minimize the objective function subject
to A’A = 1 we have that Uy = {A | A’A = 1}. We further take Uy to be R”. The
proposition then follows directly from Oberhofer and Kmenta (1974, Lemma 1)
given their three assumptions hold:

(i) There exists an s such that theset S={a|ae€ U, f(a) = s} is nonempty and
bounded.

(ii) f(a) is continuous in S.

(iii) Uy is closed and Ur = RT.
Starting from the bottom, (iii) is satisfied by the definition of the parameters spaces.
(ii) is satisfied by continuity of the absolute value function. Hence the crucial
assumption to verify is (i). The choice of s is arbitrary but can e.g. be set to f(a®)
where a' is the starting value for the algorithm. To show S is bounded, assume
the opposite is the case to arrive at a contradiction. Then there must be a sequence
a™ in S such that

lim [a™a™] = 0o (29)
vV—00
Since A € U, which is closed this implies that
lim [F"'FV] = 0o (30)
vV—00
which in turn implies that
lim (X = FYAMY (X = FOAMY = T - VIS(FW A™M: X) = 00 (31)

V—00

However, by subadditivity of the square root function we have that

0< \/ nT-VIS(FM AM: X) < nT- VP (FM AW x) (32)

It therefore must follow that lim,_., f (a)) = —oco. However, this contradicts the
fact that a™ € S and thus S must be bounded. ]



APPENDIX B: ADDITIONAL RESULTS

TABLE 7. Results for h = 6 reported as relative MSFEs. The root MSFE of
the AR model is given in the last row. Underlined MSFE indicates lowest
value within each specification of p and k, and bold MSFE indicates overall
lowest value. The average number of included factors is k.

Model Variables

Method p k k IP PI Emp. CPI PCE PPI

PC 0 4 4.0 1.0080 0.8376 1.0320 1.5462 1.7267 1.6210
PC-S 0 4 4.0 0.9855 0.8310 1.0052 1.5187 1.7519 1.6015
LAD 0 4 4.0 1.0378  0.8966 1.0521 1.5882 1.7126 1.6215
LAD-MAD 0 4 4.0 0.9981 0.8311 1.0242 1.5825 1.7607 1.6318
PC 0 IC; 94 1.0557 09080 0.9682 1.6609 1.7888 1.6654
PC-S 0 IC; 4.3 1.0437 0.8726 1.1198 1.5309 1.7504 1.5931
LAD 0 I1C; 4.9 1.0582  0.9099 1.0143 1.5821 1.7532 1.5975
LAD-MAD 0 I1C; 2.4 0.9627 0.7495 0.9244 1.5483 1.7219 1.6425
PC 6 IC, 9.4 1.0861 0.9337 0.9076 1.1260 1.1911 1.1006
PC-S 6 IC; 4.3 1.0921 0.9001 1.0313 1.1892 1.2249 1.1287
LAD 6 IC; 4.9 1.1047 09612 09919 1.1652 1.2019 1.1101
LAD-MAD 6 IC; 2.4 1.0214 0.7968 0.8604 0.8807 1.1140 1.0708
PC BIC IC, 9.4 1.0454 0.9200 0.9472 1.1634 1.1950 1.1006
PC-S BIC IC; 4.3 1.0544  0.8803 1.0700 1.2220 1.2279 1.1287
LAD BIC IC; 4.9 1.0506 0.9090 1.0060 1.1913 1.2039 1.1101
LAD-MAD BIC 1IC; 2.4 09660 0.7547 0.8837 0.9178 1.1222 1.0708
PC BIC IC, 8.2 1.0097 0.9026 0.9513 1.1483 1.1880 1.0899
PC-S BIC IC, 4.0 1.0646 0.8784 1.0955 1.2163 1.2277 1.1281
LAD BIC IC, 4.5 1.0427  0.8930 1.0171 1.1894 1.2141 1.1182
LAD-MAD BIC 1IC, 1.9 0.9328 0.6836 0.8811 0.9699 1.0875 1.0504
PC BIC ICs3 12.0 1.0759 0.9511 0.9218 1.2141 1.2214 1.1092
PC-S BIC ICs 7.0 1.0535 0.9391 1.0437 1.2147 1.2328 1.1312
LAD BIC IC3 8.0 1.0775 0.9302 1.0192 1.1766 1.2114 1.1134
LAD-MAD BIC ICs 4.4 1.0403 0.8458 0.9476 0.9468 1.1223 1.0768
PC BIC BIC - 1.0174 0.9129 0.9454 1.1345 1.1034 1.0465
PC-S BIC BIC - 1.0195 0.9364 0.9817 1.1686 1.1708 1.0589
LAD BIC BIC - 1.0936 0.9018 0.9830 1.1925 1.1795 1.0649
LAD-MAD BIC BIC — 1.1142  0.9003 1.0223 1.1055 1.1693 1.0651
Uncond. mean 1.2472 1.0341 2.6319 2.0865 2.1006 2.2795
Uncond. mean, h-window 1.6566 1.0855 1.7362 2.4718 2.5768 2.8826
Uncond. median 1.6014 1.0712 1.6959 2.1711 25078 2.7123
Uncond. median, #-window 1.3249 1.0636 3.0894 2.0778 2.1198 2.2830
RMSFE, AR Model 4.7320  3.0009 1.3548 1.1214 1.6777 4.9234




TABLE 8. Results for h = 24 reported as relative MSFEs. The root MSFE of
the AR model is given in the last row. Underlined MSFE indicates lowest
value within each specification of p and k, and bold MSFE indicates overall
lowest value. The average number of included factors is k.

Model Variables

Method p k i IP PI Emp. CPI PCE PPI

PC 0 4 4.0 09903 1.0558 1.0247 1.2793 1.9947 2.0709
PC-S 0 4 4.0 09749 1.0568 1.0405 1.2638 1.9528 2.0296
LAD 0 4 4.0 1.0240 1.0807 1.0511 1.3783 2.0187 2.0968
LAD-MAD 0 4 4.0 0.9775 1.0101 0.9969 1.5155 2.1371 2.2128
PC 0 IC; 9.3 09819 1.0466 0.8954 1.5249 2.0851 2.1980
PC-S 0 IC; 43 1.0191 1.0746 1.0851 1.3584 1.9795 2.0409
LAD 0 IC; 4.9 1.0440 1.0830 1.0182 1.4187 2.0690 2.0472
LAD-MAD 0 IC; 2.4 0.9302 0.9360 0.9252 1.2217 1.9878 2.1997
PC 6 1C; 9.3 0.9981 1.0708 0.9137 1.2526  1.2533 1.1823
PC-S 6 IC; 43 1.0452 1.1075 1.1039 1.2532 1.2237 1.1279
LAD 6 IC; 4.9 1.0507 1.1357 1.0458 1.2811 1.2266 1.1312
LAD-MAD 6 IC; 24 09256 0.9730 09271 0.9880 1.1448 1.1601
PC BIC IC, 9.3 0.9773 1.0432  0.8962 1.2548 1.2536 1.1823
PC-S BIC IC; 4.3 1.0334 1.0711 1.0778 1.2532 1.2300 1.1243
LAD BIC IC; 4.9 1.0311 1.0763 1.0160 1.2811 1.2403 1.1312
LAD-MAD BIC 1IC; 2.4 0.9298 0.9244 0.9130 0.9888 1.1690 1.1593
PC BIC 1IC, 8.0 0.9692 1.0349  0.9200 1.2717 1.2392 1.1461
PC-S BIC IC, 4.0 1.0330 1.0714 1.0802 1.2408 1.2228 1.1222
LAD BIC IC, 4.5 1.0093 1.0554 1.0093 1.3183 1.2582 1.1552
LAD-MAD BIC 1IC, 1.8 1.0323 0.9538 0.9216 1.1398 1.1407 1.1304
PC BIC IC3 12.0 1.0127 1.0516 0.8946 1.2434 1.2738 1.2166
PC-S BIC IC3 7.1 1.0543 1.0834 1.0350 1.2333 1.2292 1.1364
LAD BIC IC3 8.0 1.0561 1.1031 1.0256 1.2737 1.2683 1.1699
LAD-MAD BIC 1ICs 4.5 0.9819 1.0082 0.9729 1.0846 1.1928 1.1653
PC BIC BIC - 1.0215 1.0389 0.9015 1.1813 1.2073 1.1535
PC-S BIC BIC - 0.9796 1.0338 0.9260 1.2558 1.2358 1.1391
LAD BIC BIC - 1.0722 1.1579 0.9241 1.3044 1.2064 1.1421
LAD-MAD BIC BIC — 1.0493 1.1049 0.9726 1.2606 1.2645 1.1634
Uncond. mean 1.0000 1.0000 1.2005 1.5110 2.2995 2.8267
Uncond. mean, h-window 1.4827 1.6185 1.8464 2.0706 2.5481 3.0183
Uncond. median 1.4469 1.5310 1.7396 1.9737 2.5369 2.9697
Uncond. median, i#-window 1.1163 1.0561 1.4818 1.6403 2.3294 2.8622
RMSFE, AR Model 3.3878 2.1985 1.6658 1.4364 1.5813 4.1238




APPENDIX C: DATA

The dataset has been collected from the FRED database at the Federal Reserve
Bank of St. Louis (http://research.stlouisfed.org/fred2/). Transforming
the variables to be stationary is done according to the transformation codes (TC): 1,
no transformation; 2, first difference; 4, logarithms; 5, first difference of logarithms;
6, second difference of logarithms. In addition to this, some variables have been
seasonally adjusted according to the S.Adj. column: SA, seasonally adjusted; SAAR,
seasonally adjusted at an annual rate; NA, not applicable.

TABLE 9. FRED dataset: Variable list.

Mnemonic Description TC  Units S.Adj.

DSPIC96 Real Disposable Personal Income 5  Bil. of Chn. 2005 $ SAAR

W875RX1 Personal income excluding current 5  Bil. of Chn. 2005 $ SAAR
transfer receipts

INDPRO Industrial Production Index 5  Index 2007=100 SA

IPBUSEQ Industrial Production: Business 5  Index2007=100 SA
Equipment

IPCONGD Industrial Production: Consumer 5  Index 2007=100 SA
Goods

IPDCONGD  Industrial Production: Durable Con- 5 Index2007=100 SA
sumer Goods

IPFINAL Industrial Production: Final Products 5  Index 2007=100 SA
(Market Group)

IPMAT Industrial Production: Materials 5  Index2007=100 SA

IPNCONGD  Industrial Production: Nondurable 5 Index2007=100 SA
Consumer Goods

TCU Capacity Utilization: Total Industry 2 % of Capacity SA

PAYEMS All Employees: Total nonfarm 5  Thous. SA

MANEMP All Employees: Manufacturing 5  Thous. SA

USCONS All Employees: Construction 5  Thous. SA

DMANEMP All Employees: Durable goods 5  Thous. SA

USEHS All Employees: Education & Health 5  Thous. SA
Services

USFIRE All Employees: Financial Activities 5  Thous. SA

USGOOD All Employees: Goods-Producing 5  Thous. SA
Industries

USGOVT All Employees: Government 5  Thous. SA

USINFO All Employees: Information Services 5  Thous. SA

USLAH All Employees: Leisure & Hospitality 5  Thous. SA

USMINE All Employees: Mining and logging 5  Thous. SA

NDMANEMP All Employees: Nondurable goods 5  Thous. SA

USSERV All Employees: Other Services 5  Thous. SA

USPBS All Employees: Professional & Busi- 5  Thous. SA
ness Services

USTRADE All Employees: Retail Trade 5  Thous. SA




TABLE 9. FRED dataset: Variable list (continued).

Mnemonic Description TC  Units S.Adj.

SRVPRD All Employees: Service-Providing 5  Thous. SA
Industries

USPRIV All Employees: Total Private Indus- 5  Thous. SA
tries

USTPU All Employees: Trade, Transportation 5  Thous. SA
& Utilities

USWTRADE  All Employees: Wholesale Trade 5  Thous. SA

UEMP150V  Civilians Unemployed - 15 Weeks & 5  Thous. of Persons SA
Over

UEMP15T26  Civilians Unemployed for 15-26 5  Thous. of Persons SA
Weeks

UEMP270V  Civilians Unemployed for 27 Weeks 5  Thous. of Persons SA
and Over

UEMP5TO14  Civilians Unemployed for 5-14 Weeks 5  Thous. of Persons SA

UEMPLIT5 Civilians Unemployed - Less Than 5 5  Thous. of Persons SA
Weeks

UNRATE Civilian Unemployment Rate 2 % SA

UEMPMEAN  Average (Mean) Duration of Unem- 2 Weeks SA
ployment

ICSA Initial Claims Number SA

AWHMAN Average Weekly Hours of Production 1  Hours SA
and Nonsupervisory Employees:
Manufacturing

AWOTMAN Average Weekly Overtime Hours of 2 Hours SA
Production and Nonsupervisory
Employees: Manufacturing

AWHNONAG Average Weekly Hours Of Production 1  Hours SA
And Nonsupervisory Employees:
Total private

HOUSTMW  Housing Starts in Midwest Census 4  Thous. of Units SAAR
Region

HOUSTNE Housing Starts in Northeast Census 4 Thous. of Units SAAR
Region

HOUSTS Housing Starts in South Census Re- 4 Thous. of Units SAAR
gion

HOUSTW Housing Starts in West Census Region 4  Thous. of Units SAAR

HOUST Housing Starts: Total: New Privately 4 Thous. of Units SAAR
Owned Housing Units Started

PERMIT New Private Housing Units Autho- 4  Thous. of Units SAAR
rized by Building Permits

PERMITMW  New Private Housing Units Autho- 4  Thous. of Units SAAR
rized by Building Permits in the Mid-
west Census Region

PERMITNE New Private Housing Units Autho- 4  Thous. of Units SAAR

rized by Building Permits in the
Northeast Census Region




TABLE 9. FRED dataset: Variable list (continued).

Mnemonic Description TC  Units S.Adj.

PERMITS New Private Housing Units Autho- 4  Thous. of Units SAAR
rized by Building Permits in the
South Census Region

PERMITW New Private Housing Units Autho- 4 Thous. of Units SAAR
rized by Building Permits in the West
Census Region

NAPMII ISM Manufacturing: Inventories 1  Index SA
Index

NAPMNOI ISM Manufacturing: New Orders 1 Index SA
Index

NAPMSDI ISM Manufacturing: Supplier Deliver- 1  Index SA
ies Index

MISL M1 Money Stock 6 Bil.of$ SA

M2SL M2 Money Stock 6 Bil.of$ SA

CURRSL Currency Component of M1 6 Bil.of$ SA

BOGAMBSL Board of Governors Monetary Base, 3 Bil. of $ SA
Adjusted for Changes in Reserve
Requirements

TRARR Board of Governors Total Reserves, 6 Bil.of$ SA
Adjusted for Changes in Reserve
Requirements

BUSLOANS Commercial and Industrial Loans at 6 Bilof$ SA
All Commercial Banks

BOGNONBR Non-Borrowed Reserves of Deposi- 6  Bil. of $ SA
tory Institutions

NONREVSL Total Nonrevolving Credit Outstand- 6 Bil.of$ SA
ing

SP500 S&P 500 Index 5 Index NA

FEDFUNDS Effective Federal Funds Rate 2 % NA

TB3MS 3-Month Treasury Bill: Secondary 2 % NA
Market Rate

TB6MS 6-Month Treasury Bill: Secondary 2 % NA
Market Rate

GS1 1-Year Treasury Constant Maturity 2 % NA
Rate

GS5 5-Year Treasury Constant Maturity 2 % NA
Rate

GS10 10-Year Treasury Constant Maturity 2 % NA
Rate

AAA Moody’s Seasoned Aaa Corporate 2 % NA
Bond Yield

BAA Moody’s Seasoned Baa Corporate 2 % NA
Bond Yield

STB3MS Spread: TB3MS-FEDFUNDS 1 % NA

STB6MS Spread: TBEMS-FEDFUNDS 1 % NA

SGS1 Spread: SGS1-FEDFUNDS 1 % NA




TABLE 9. FRED dataset: Variable list (continued).

Mnemonic Description TC  Units S.Adj.
SGS5 Spread: SGS5-FEDFUNDS 1 % NA
SGS10 Spread: SGS10-FEDFUNDS 1 % NA
SAAA Spread: AAA-FEDFUNDS 1 % NA
SBAA Spread: BAA-FEDFUNDS 1 % NA
EXCAUS Canada / U.S. Foreign Exchange Rate 5 Canadian$to1U.S. NA
$
EXDNUS Denmark / U.S. Foreign Exchange 5  Danish Kroner to1 NA
Rate US. $
EXUSAL U.S. / Australia Foreign Exchange 5 US.$tolAustralian NA
Rate $
EXUSUK U.S. / U.K Foreign Exchange Rate 5 U.S. $ to 1 British NA
Pound
EXSZUS Switzerland / U.S. Foreign Exchange 5 Swiss Francs to 1 NA
Rate UsS.$
EXJPUS Japan / U.S. Foreign Exchange Rate 5 Japanese Yen to 1 NA
US.$
PPICFF Producer Price Index: Crude Food- 6  Index 1982=100 SA
stuffs & Feedstuffs
PPICRM Producer Price Index: Crude Materi- 6  Index 1982=100 SA
als for Further Processing
PPIFCF Producer Price Index: Finished Con- 6 Index 1982=100 SA
sumer Foods
PPIFCG Producer Price Index: Finished Con- 6  Index 1982=100 SA
sumer Goods
PFCGEF Producer Price Index: Finished Con- 6 Index 1982=100 SA
sumer Goods Excluding Foods
PPIFGS Producer Price Index: Finished Goods 6  Index 1982=100 SA
PPICPE Producer Price Index: Finished 6 Index 1982=100 SA
Goods: Capital Equipment
PPIFLF Producer Price Index: Finished Goods 6 Index 1982=100 SA
Excluding Foods
PPIIFF Producer Price Index: Intermediate 6 Index 1982=100 SA
Foods & Feeds
PPIITM Producer Price Index: Intermediate 6  Index 1982=100 SA
Materials: Supplies & Components
CPIAUCSL Consumer Price Index for All Urban 6 Index 1982-84=100 SA
Consumers: All Items
CPILEGSL Consumer Price Index for All Urban 6 Index 1982-84=100 SA
Consumers: All Items Less Energy
CPIULFSL Consumer Price Index for All Urban 6 Index 1982-84=100 SA
Consumers: All Items Less Food
CPILFESL Consumer Price Index for All Urban 6 Index 1982-84=100 SA
Consumers: All Items Less Food &
Energy
CPIAPPSL Consumer Price Index for All Urban 6 Index 1982-84=100 SA

Consumers: Apparel




TABLE 9. FRED dataset: Variable list (continued).

Mnemonic Description TC  Units S.Adj.

CPIENGSL Consumer Price Index for All Urban 6  Index1982-84=100 SA
Consumers: Energy

CPIUFDSL Consumer Price Index for All Urban 6  Index 1982-84=100 SA
Consumers: Food

CPIFABSL Consumer Price Index for All Urban 6 Index1982-84=100 SA
Consumers: Food and Beverages

CPIHOSSL Consumer Price Index for All Urban 6  Index 1982-84=100 SA
Consumers: Housing

CPIMEDSL Consumer Price Index for All Urban 6  Index 1982-84=100 SA
Consumers: Medical Care

CPIOGSSL Consumer Price Index for All Urban 6 Index1982-84=100 SA
Consumers: Other Goods and Ser-
vices

CPITRNSL Consumer Price Index for All Urban 6  Index 1982-84=100 SA
Consumers: Transportation

PCEPI Personal Consumption Expenditures: 6  Index 2005=100 SA
Chain-type Price Index

PCEPILFE Personal Consumption Expenditures: 6  Index 2005=100 SA
Chain-Type Price Index Less Food
and Energy

PCE Personal Consumption Expenditures 5 Bil.of$ SAAR

PCEDG Personal Consumption Expenditures: 5  Bil. of $ SAAR
Durable Goods

PCEND Personal Consumption Expenditures: 5  Bil. of $ SAAR
Nondurable Goods

PCES Personal Consumption Expenditures: 5  Bil. of $ SAAR

Services
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