
Department of Economics and Business 
Aarhus University 
Bartholins Allé 10 
DK-8000 Aarhus C 
Denmark 

Email: oekonomi@au.dk  
Tel: +45 8716 5515 

 

 

 
 
 
 
 
 
 

 
 
 
 

 
 
 
 

Asymptotic Theory for the QMLE in GARCH-X Models with 
Stationary and Non-Stationary Covariates 

 
Heejoon Han and Dennis Kristensen 

 
 

CREATES Research Paper 2012-25 
 
 
 
 
 
 
 

mailto:oekonomi@au.dk


Asymptotic Theory for the QMLE in GARCH-X

Models with Stationary and Non-Stationary

Covariates�

Heejoon Hany Dennis Kristensenz

May 2012

Abstract

This paper investigates the asymptotic properties of the Gaussian quasi-maximum-likelihood

estimators (QMLE�s) of the GARCH model augmented by including an additional explanatory

variable - the so-called GARCH-X model. The additional covariate is allowed to exhibit any

degree of persistence as captured by its long-memory parameter dx; in particular, we allow for

both stationary and non-stationary covariates. We show that the QMLE�s of the regression

coe¢ cients entering the volatility equation are consistent and normally distributed in large

samples independently of the degree of persistence. This implies that standard inferential tools,

such as t-statistics, do not have to be adjusted to the level of persistence. On the other hand,

the intercept in the volatility equation is not identi�ed when the covariate is non-stationary

which is akin to the results of Jensen and Rahbek (2004, Econometric Theory 20) who develop

similar results for the pure GARCH model with explosive volatility.
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1 Introduction

To better model and forecast the volatility of economic and �nancial time series, empirical re-

searchers and practitioners often include exogenous regressors in the speci�cation of the volatility

dynamics. One particularly popular model within this setting is the so-called GARCH-X model

where the basic GARCH speci�cation of Bollerslev (1986) is augmented by adding exogenous re-

gressors to the volatility equation; see, amongst others, Brenner et al. (1996) Fleming et al. (2008)

and Han (2011). While the GARCH-X model and its associated quasi-maximum likelihood estima-

tor (QMLE) has found widespread empirical use, the theoretical properties the estimator have not

been fully explored. In particular, there is no existing literature that establishes the asymptotic

properties of the QMLE for the GARCH-X model. This paper �lls this gap.

We provide a uni�ed asymptotic theory for the QMLE for the GARCH-X model allowing for

both stationary and nonstationary regressors. Our main results show that to a large extent applied

researchers can employ the same techniques when drawing inference regarding model parameters

regardless of the degree of persistence of the regressors. In particular, we show that in general

all parameters except for the intercept in the GARCH speci�cation can be consistently estimated

with the QMLE�s following a normal distribution in large samples. In addition, if the regressors

are stationary, the intercept estimator also follows a normal distribution. As such, our results

imply that standard errors and con�dence intervals for most parameters can be computed in a

standard fashion whether the regressors are stationary or not. Moreover, our asymptotic results

are established under weak moment restrictions on the covariates.

The robustness of the QMLE towards the persistence and moments properties of the chosen

covariate is a very attractive feature since it implies that the researcher does not have to conduct

any preliminary analysis of a given covariate before estimating the corresponding GARCH model.

A simulation study con�rms our theoretical �ndings, with the distribution of the QMLE showing

very little sensitivity to the degree of persistence of the included covariate.

In the analysis of the QMLE, we allow for both stationary and non-stationary covariates. In

the case of non-stationary regressors, we model the regressor as a (squared) I (dx) process with

1=2 < dx < 9=8. This allows for a wide-range of persistence as captured by the long-memory

parameter dx. In particular, our analysis includes regressors that contains unit roots (dx = 1) but

also includes processes with either weaker (dx < 1) or stronger dependence (dx > 1).

This high level of generality in terms of persistence is an important feature of our analysis

since economic or �nancial time series used as covariates in the GARCH-X models display varying

degrees of persistent. Choices of covariates found in empirical studies using the GARCH-X model

span a wide range of various economic or �nancial indicators. Examples include interest rate levels

(Brenner et al., 1996; Glosten et al, 1993; Gray, 1996), bid-ask spreads (Bollerslev and Melvin,

1994), interest rate spreads (Dominguez, 1998; Hagiwara & Herce, 1999), forward-spot spreads

(Hodrick, 1989), futures open interest (Girma and Mougoue, 2002), information �ow (Gallo and

Pacini, 2000), and trading volumes (Lamoureux and Lastrapes, 1990; Marsh and Wagner, 2005).

More recently, various realized volatility measures constructed from high frequency data have been
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adopted as covariates in the GARCH-X models with the rapid development seen in the �eld of

realized volatility; see Barndor¤-Nielsen and Shephard (2007), Cipollini et al. (2007), Engle (2002),

Engle and Gallo (2006), Hansen et al. (2010), Hwang and Satchell (2005), and Shephard and

Sheppard (2010).

Table 1 in Appendix C provides log-periodogram estimates of memory parameter dx and es-

timates of the �rst-order autocorrelation for some time series used as covariates in the literature.

For example, interest rate levels and bond yield spreads are more persistent: log-periodogram es-

timates of memory parameter dx are mostly larger than 0:8 and the autocorrelation estimates are

close to unity, which suggest unit root processes. Meanwhile, realized volatility measures (realized

variance) of various stock index and exchange rate return series are less persistent: log-periodogram

estimates of memory parameter dx are between 0:3 and 0:6 and the �rst-order autocorrelations are

much smaller than unity ranging from 0:64 to 0:88, which clearly reject unit root hypotheses. The

asymptotic theory established in this paper covers all of these choices of regressors.

Our theoretical results have important antecedents in the literature. Our theoretical results

for the non-stationary case rely on results developed in Han (2011) who analyzes the time series

properties of GARCH-X models when the regressor is a squared I(dx) process for �1=2 < dx < 1=2
or 1=2 < dx < 3=2. He shows how the GARCH-X process explains stylized facts of �nancial time

series such as the long memory property in volatility, leptokurtosis and IGARCH. Kristensen and

Rahbek (2005) provided theoretical results for the QMLE in the linear ARCH-X models in the

case of stationary regressors. We extend their theoretical results to allow for lagged values of the

volatility in the speci�cation and non-stationary regressors. Jensen and Rahbek (2004) analyzed

the QMLE in the pure GARCH model (without any covariates) and showed that the estimated

parameters (except for the intercept) remained consistent and asymptotically normally distributed

even when in the non-stationary regime. Similarly, we show that the QMLE in the GARCH-X

model exhibit the same behaviour whether stationary and non-stationary regressors are included.

Finally, Han and Park (2011) established the asymptotic theory of the QMLE for a GARCH-X

model where a nonlinear transformation of a unit root process was included as exogenous regressor.

Our work complements Han and Park (2011) in that we allow for a wider range of dependence

in the regressor, but on the other hand do not consider general nonlinear transformations of the

variable. In the special case with dx = 1, our results coincide with those of Han and Park (2011)

with their transformation chosen as the quadratic function.

The rest of the paper is organized as follows. Section 2 introduces the model and the QMLE.

Section 3 derives the asymptotic theory of the QMLE for the stationary and non-stationary case.

The results of a simulation study is presented in Section 4. Section 5 concludes the paper. All

proofs have been relegated to Appendix A while Appendix B contains tables and �gures. Before we

proceed, a word on notation: Standard terminologies and notations employed in probability and

measure theory are used throughout the paper. In particular, notations for various convergences

such as !a:s:; !p and !d frequently appear, where all limits are taken as n ! 1 except where

otherwise indicated.
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2 Model and Estimator

The GARCH-X model is given by

yt = �t"t; (1)

where f"tg is the error process while
�
�2t
	
is the volatility process. The volatility dynamics are

given as

�2t = ! + �y
2
t�1 + ��

2
t�1 + �x

2
t�1; (2)

where fxtg is an observed covariate which is squared to ensure that �2t > 0. The model parameters
are ! > 0, � � 0, � � 0 and � � 0. We collect the parameters in # = (�; !) where � = (�; �; �).
The chosen decomposition of the full parameter vector into � and the intercept ! is due to the

special role played by the latter in the non-stationary case.

The regressor xt will be allowed to be either strictly stationary or a non-stationary long-memory

process. In the non-stationary case, we focus on the case where xt is a long-memory process de�ned

as

xt = xt�1 + �t; (3)

where, for a sequence fvtg which is i.i.d. (0; �2v),

(1� L)d �t = vt; � 1=2 < d < 1=8: (4)

Hence, xt is an I (dx) process with dx = d + 1 2 (1=2; 9=8). Note that f"tg and fvtg are allowed
to be dependent. Hence, the model can accommodate the leverage e¤ects catered for by the GJR-

GARCH model if f"tg and fvtg are negatively correlated. See Han (2011) for more details on the
model and its time series properties.

Dittmann and Granger (2002) analyzed the properties of x2t given xt is fractionally integrated

and showed that, when xt is a Gaussian fractionally integrated process of order dx, then x2t is asymp-

totically also a long memory process of order dx2 = dx. Hence, for 1=2 < dx < 9=8; the covariate x
2
t

is nonstationary long memory, including the case of unit root-type behaviour. Considering that the

range of memory parameter for real data used as covariates in the literature seldom exceeds unity,

the range of dx we consider is wide enough to cover all covariates used in the empirical literature.

Our model is related to the one considered in Han and Park (2011, henceforth HP) given by

�2t = �y
2
t�1 + ��

2
t�1 + f(xt�1; �);

where xt is integrated or near-integrated, and f(xt�1; �)1 is a positive nonlinear function; more

speci�cally it is an asymptotically homogeneous function as introduced by Park and Phillips (1999).

If we let dx = 1 in our model, xt is integrated and our model belongs to the model considered by

HP with f(xt�1; �) = �1 + �2x
2
t�1. While their model allows more general nonlinear function of

xt, our model allows for more general dependence structure of xt - either it is stationary or it

1Note a notational di¤erence in HP. Instead of f(xt�1; �), HP use f(xt; �) where (xt) is adapted to (Ft�1):
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is fractionally integrated process with 1=2 < dx < 9=8. In particular, our model and results are

applicable to regressors that exhibit long-memory such as realized volatility measures; this is not

covered by HP�s model. As shown in Table 1 (Appendix C), unit root hypothesis is clearly rejected

for realized volatility measures.

Let (yt; xt�1) for t = 1; :::; n, be n � 1 observations from the model and let #0 = (�0; !0) denote

the true data-generating parameter value. Given data, we wish to estimate #0. We propose to do

so through the Gaussian log-likelihood with "t �i.i.d. N (0; 1):

Ln (#) =
nX
t=1

`t (#) ; `t (#) = � log �2t (#)�
y2t

�2t (#)
;

where

�2t (#) = ! + �y
2
t�1 + �x

2
t�1 + ��

2
t�1 (#) : (5)

The volatility process �2t (#) is assumed to be initialized at some �xed parameter independent

value ��20 > 0, �
2
0 (#) = ��

2
0. We will not restrict "t to be normally distributed and hence Ln (#) is a

quasi-log likelihood.

Depending on whether we are in the stationary or non-stationary case, the intercept ! is es-

timable. In the non-stationary case, ! becomes unidenti�ed since, as explained in Han and Park

(2011), the constant term is then dominated by the nonstationary covariate or nonstationary volatil-

ity and become unimportant asymptotically. A similar �nding is reported in Jensen and Rahbek

(2004) who analyze the QMLE in the pure GARCH model (without covariates included) when the

volatility process is nonstationary. So in the non-stationary case, we can �x ! at an arbitrary value,

say, �! > 0, and only estimate the remaining parameters, �. Thus, the two estimators - depending

on whether xt is stationary or non-stationary - become:

xt stationary: #̂ = (�̂; !̂) = argmin
#2�

Ln (#) ; (6)

xt non-stationary: �̂ (�!) = argmin
�2�

Ln (�; �!) : (7)

In practice, it should not be necessary to di¤erentiate between the stationary and non-stationary

case when computing the estimator, and so we recommend using #̂ in both scenarios. The above

de�nition of �̂ (�!) is only used in the formal analysis of the estimators in the non-stationary case.

To formally prove that #̂ is a valid estimator in both scenarios, we would need to show that the

score and hessian of the quasi-log likelihood converge uniformly in ! in the non-stationary case

in which case the �-component of #̂, �̂, is asymptotically �rst-order equivalent to �̂ (�!). This is

technically very demanding though, and so we leave the proof of this for future research.

The main goal of the paper is then to derive the asymptotic distribution of the QMLE in both

scenarios.
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3 Asymptotic Theory

The basic arguments used to establish the asymptotic distribution of the QMLE are identical for

the two cases - stationary or non-stationary regressors. The only di¤erence is that in the non-

stationary case, we keep ! �xed at �! since this is not identi�ed while in this situation, we are

able to estimate ! together with the other parameters. We brie�y outline the proof strategy: We

denote the score vector by Sn;() = @Ln () =(@) =
Pn
t=1 s;t () and the Hessian matrix by

Hn;() = @
2Ln () =(@@

0) =
Pn
t=1 h;t (), respectively, where  = # or  = � depending on

whether we are in the stationary or non-stationary case. The asymptotic distribution of the QMLE,

̂, is then obtained from the �rst order Taylor expansion of the score vector, i.e.,

Sn;() = Sn;(0) +Hn;(�)(̂ � 0); (8)

where � lies on the line segment connecting ̂ and 0. If ̂ is an interior solution, we have Sn(̂) = 0.

Therefore, we may write from (8)

p
n(̂ � 0) = � [Hn;(�)=n]�1

�
Sn;(0)=

p
n
�
: (9)

We then proceed to verify the following conditions ML1-ML2; these will together yield the desired

result:

ML1 Sn;(0)=
p
n!d N (0; V).

ML2 �Hn;(�)=n!p H for some H > 0.

Combining eq. (9) with ML1-ML2, it straightforwardly follows that

p
n(̂ � 0) = � [Hn;(0)=n]�1

�
Sn;(0)=

p
n
�
+ op(1)!d N

�
0;H�1

 VH
�1


�
:

Let

V stat## =

"
V stat�� V stat�!

V stat!� V stat!!

#
2 R4�4; Hstat

## =

"
Hstat
�� Hstat

�!

Hstat
!� Hstat

!!

#
2 R4�4;

denote the matrices derived in the stationary case, while V nonstat�� 2 R3�3 and Hnonstat
�� 2 R3�3

denote the matrices obtained in non-stationary one. As we shall see, depending on whether xt
is stationary or not, the limiting covariance terms (V stat�� ;Hstat

�� ) and (V
nonstat
�� ;Hnonstat

�� ) will be

di¤erent. However, at the same time, as part of our proofs, we show that the following two

estimators converge towards the relevant versions of V�� and H�� irrespectively of whether we are

in the stationary or non-stationary regime:

V̂�� =
1

n

nX
t=1

s�;t(�̂)s�;t(�̂)
0; Ĥ�� =

1

n

nX
t=1

h��;t(�̂): (10)
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This implies that standard sample versions of t-statistics and (quasi-)likelihood-ratio statistics will

follow the same distributions asymptotically whether xt is stationary or not.

Since the techniques used to establish ML1-ML2 and the resulting limiting covariance matrices

di¤er between the stationary and non-stationary case, so we split the theoretical results into two

parts: The following subsection covers the stationary case, while the second one focuses on the

non-stationary case.

3.1 Stationary Case

For the stationary case, we provide a full, global analysis of the QMLE, #̂. As a �rst step, we

show that the estimators is globally consistent under the following conditions with Ft denoting the
natural �ltration:

Assumption 1

(i) f("t; xt)g is stationary and ergodic with E ["tjFt�1] = 0 and E
�
"2t jFt�1

�
= 1.

(ii) E
�
log
�
�0"

2
t�1 + �0

��
< 0 and E[x2qt ] <1 for some 0 < q <1.

(iii) � =
�
# : ! � ! � �!; 0 � � � ��, 0 � � � ��, 0 � � � ��

	
, where 0 < ! � �! < 1, �� < 1,

�� < 1 and �� <1. The true value #0 2 � with (�0; �0) 6= (0; 0).

(iv) For any a; b 2 R: a"2t + bx2t jFt�1 has a nondegenerate distribution.

Assumption 1(i) is a generalization of the conditions found in Escanciano (2009) who derives the

asymptotic properties of QMLE for pure GARCH processes (that is, no exogenous covariates are

included) with martingale di¤erence errors. It is identical to the assumption imposed in Kristensen

and Rahbek (2005).

The moment conditions in Assumption 1(ii) implies that a stationary solution to eqs. (1)-(2)

at the true parameter value #0 exists and has a �nite polynomial moment, c.f. Lemma 1 below.

We here allow for integrated GARCH processes (� + � = 1). We will in the following work under

the implicit assumption that we have observed the stationary solution.

The compactness condition in Assumption 1(iii) should be possible to weaken by following the

arguments of Kristensen and Rahbek (2005); this will lead to more complicated proofs though

and so we maintain the compactness assumption here for simplicity. Note that we cannot remove

the restriction on the parameter space of � < 1 though since this will lead to �2t (#) being non-

stationary. The requirement that (�0; �0) 6= (0; 0) is needed to ensure identi�cation of �0 since in
the case where (�0; �0) = (0; 0), �2t = �2t (#0) !a:s: !0= (1� �0) and so we would not be able to
jointly identify !0 and �0.

The non-degeneracy condition in Assumption 1(iv) is also needed for identi�cation. It rules out

(dynamic) collinearity between y2t�1 and x
2
t . It is similar to the no-collinearity restriction imposed

in Kristensen and Rahbek (2005).

To derive the asymptotic properties of #̂, we establish some preliminary results. The �rst lemma

states that a stationary solution to the model at the true parameter values exists:
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Lemma 1 Under Assumption 1: There exists a stationary and ergodic solution to eqs. (1)-(2) at
#0 satisfying E

�
�2st
�
<1 and E

�
y2st
�
<1 for some 0 < s < 1.

Next, we show that for any value of � in the parameter space, the recursion de�ning �2t (#) has

a stationary solution:

Lemma 2 Under Assumption 1: For any # 2 �, eq. (5) has a stationary ergodic solution given
by

�20;t (#) :=
1X
i=0

�iwt�i (#) ; ; wt (#) := ! + �y
2
t�1 + �x

2
t�1; (11)

satisfying E
�
sup#2� �

2s
0;t (#)

�
<1 with s > 0 given in Lemma 1.

Finally, we show that the initial value chosen for �2t (#) is asymptotically irrelevant such that

�2t (#) is asymptotically �rst-order equivalent to the corresponding stationary solution:

Lemma 3 Under Assumption 1: With s > 0 given in Lemma 1, there exists some Ks < 1 such

that

E
�
sup
#2�

���2t (#)� �20;t (#)��s� � Ks�st:
With these results in hand, we are now ready to show the �rst main result of this section:

Theorem 4 Under Assumption 1, the QMLE #̂ in eq. (6) is consistent.

Having shown that the QMLE is consistent, we verify ML1-ML2 under the following additional

assumption:

Assumption 2

(i) �4 = E[
�
"2t � 1

�2
] <1.

(ii) #0 is in the interior of �.

Assumption 2(i) is used to show that the variance of the score exists. Assumption 2(ii) is needed

in order to employ the Taylor expansion arguments outlined above when deriving the asymptotic

distribution.

To verify ML1-ML2 stated above, the following lemma proves useful. It basically shows that

the derivatives of the volatility process �2t (#) has properties that are similar to those of �
2
0;t (#):

The recursions de�ning the derivatives have stationary solutions with suitable moments:

Lemma 5 Under Assumptions 1-2: The models de�ning @�2t (#) = (@#) and @
2�2t (#) =

�
@#@#0

�
have stationary and ergodic solutions which we denote @�20;t (#) = (@#) and @

2�20;t (#) =
�
@#@#0

�
.
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Moreover, there exists stationary and ergodic sequences Bk;t 2 Ft�1, k = 0; 1; 2, which are

independent of # such that

�20;t (#0)

�20;t (#)
� B0;t;

@�20;t (#) = (@#)
�20;t (#)

� B1;t;
@2�20;t (#) = �@#@#0�

�20;t (#)
� B2;t

for all # in a neighbourhood of #0. The sequences satisfy E
�
B1;t +B

2
2;t

�
<1 and E

�
B0;t

�
B1;t +B

2
2;t

	�
<

1.

This lemma allows us to bound the score and hessian in a suitable way, thereby establishing

ML1-ML2:

Theorem 6 Under Assumptions 1-2, the QMLE in eq. (6) satis�es

p
n(#̂� #0)!d N

�
0;H�1

## V##H
�1
##

�
;

where, with �4 given in Assumption 2, V## = �4H## and

H## = E

"
1

�40;t (#)

@�20;t (#)

@#

@�20;t (#)

@#0

#
:

3.2 Non-stationary Case

For the non-stationary case, we cannot apply the same arguments to establish ML1-ML2 as used in

the stationary case. Instead, we adopt the techniques of HP, which is based on asymptotic results

for nonlinear, nonstationary time series by Park and Phillips (2001). The basic steps to prove the

asymptotic theory in this section are similar to those in HP. However, while the covariate xt in HP

is an I(1) process, the covariate in our model is an I(dx) process with the wide range of memory

parameter dx (1=2 < dx < 9=8). Hence, it requires some new technical tools as developed in Han

(2011).

We impose the following conditions on the model which are slightly stronger than the ones

imposed in the stationary case, but on the other hand allow for non-stationary regressors:

Assumption 3

(i) f("t; vt)g is i.i.d, adapted to fFtg, and satis�es E ["t] = E [vt] = 0, E
�
"2t
�
= 1, and E [jvtjp] <1

for some p � 2.

(ii) � =
�
# : ! � ! � �!; 0 � � � ��, 0 � � � ��, 0 � � � ��

	
, where 0 < ! � �! < 1, � + � < 1

and �� <1. #0 2 � with (�0; �0) 6= (0; 0) :

(iii) fxtg solves eqs. (3)-(4).

(iv) E [j"tjq] <1 and E[
�
� + �"2t

�q=2
] < 1 for some q > 4.

9



(v) 1=p+ 2=q < 1=2 + d.

Assumption 3 precisely de�nes the covariate fxtg as an I (dx) process for 1=2 < dx < 9=8; and
introduces moments conditions for the innovation sequences fvtg and f"tg. While � + � = 1 is

allowed for the stationary case in the previous section, we do not consider this possibility in the

nonstationary case. To see why this restriction is not empirically restrictive, note that our model

can be rewritten as

y2t = ! + (�+ �) y
2
t�1 + �x

2
t�1 + (ut � �ut�1) ;

where ut = y2t � �2t is a martingale di¤erence sequence. When xt is an I(1) process and �+ � = 1;
y2t becomes as persistent as an I(2) process, which is not very likely for most economic and �nancial

time series. Hence, the assumption �+ � < 1 appears very plausible for economic data when xt is

non-stationary.

Assumptions 3(iv) is the same as Assumption 2(b) in HP and Assumption 3(v) corresponds to

Assumption 2(c) in HP. See HP for detailed explanations. Note that

E
�
log
�
� + �"2t

��
� log

�
E
�
� + �"2t

��
� 2

q
log
h
E
�
� + �"2t

�q=2i
for any q > 2, by the successive applications of Jensen�s inequality. As a result, it follows from

Assumptions 3(iv) that E
�
log
�
� + �"2t

��
< 0, which is necessary for the stationary case as in

Assumptions 1(ii).

For the proof of the nonstationary case, we �rst present some additional notation and some useful

results. Let �2n� = E[(
Pn
t=1 �t)

2] where �t is de�ned in eq. (4). It is known that �
2
n� = Op

�
n1+2d

�
for �1=2 < d < 1=2: Let [z] denote the integer part of z. Under suitable conditions, it is known

that

��1n�

[nr]X
t=1

�t !d Wd (r) ; r 2 [0; 1];

where Wd is a fractional Brownian motion, de�ned for d 2 (�1=2; 1=2) by

Wd (r) =
1

� (d+ 1)K
1=2
d

�Z r

0
(r � s)d dV0(s) +

Z 0

�1

h
(r � s)d � (�s)d

i
dB(s)

�
: (12)

Here, B is the standard Brownian motion and

Kd =
1

� (d+ 1)2

�
1

2d+ 1
+

Z 1

0

�
(1 + �)d � �d

�2
d�

�
:

The scale constant Kd is chosen to make E[W 2
d (1)] = 1:When xt = xt�1+ �t, it is also known that

1

n�n�

nX
t=1

xt !d

Z 1

0
Wd(r)dr;

1

n�2n�

nX
t=1

x2t !d

Z 1

0
(Wd(r))

2 dr:

For details, see the proof of Lemma 1(b) in Han (2011).
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We now proceed to analyze the QMLE, �̂(�!), as de�ned in eq. (7). Due to the combination of

non-stationary variables and parameters entering the model non-linearly, we only provide a local

analysis of the estimator. That is, we only give results for a shrinking neighbourhood around �0.

For a global analysis, we would �rst need to show that the QMLE is consistent as done in the

stationary case. This is however a quite di¢ cult task and so we, as most other papers on non-linear

estimators in a non-stationary environment, focus on the local properties.

We �rst consider the case where �! = !0, and the intial value of the volatility process used for

estimation, ��2, has been chosen to be equal to the data-generating intial value, ��2 = �20 (�0; !0).

We then extend our results to the general case where potentially �! 6= !0 and ��2 6= �20 (�0; !0). In
the following, we suppress functional dependence on �! = !0 since it remains �xed. As a �rst step,

we �rst show that �2t (�0) is well-approximated by

�20;t (�0) :=
�
!0 + �0x

2
t�1
�
zt; zt := 1 +

1X
k=1

kY
i=1

�
�0 + �0"

2
t�i
�

(13)

for t � 1. This is stated in the following lemma:

Lemma 7 Under Assumption 3, for all n large enough, for all i � 1, and for any arbitrary value
�! � 0:

��2n� max1�t�n

���2t (�0)� �20;t (�0)�� = op(1):
�i�1��2n� max1�t�n

jx2t�1zt�i � x2t�i�1zt�ij = op(1):

The above lemma is the non-stationary counterpart to the error bounds derived in Lemma

3. This allows us to replace �2t (�0) by �
2
0;t (�0) in the analysis of the score and hessian. In

particular, we show that the score w.r.t. � is �rst-order equivalent to M (�0)
PT
t=1 ut (�) where

ut (�) = (u1t (�) ; u2t (�) ; u3t (�))
0 is de�ned as

u1t (�) =
1X
i=1

�i�1
zt�i"2t�i
zt

�f"2t�1g; u2t (�) =
1X
i=1

�i�1
zt�i
zt
�f"2t�1g and u3t (�) =

1

(1� �) zt
�f"2t�1g;

and

M (�) = diag f1; 1; 1=�g : (14)

Note that fut (�)g is a martingale di¤erence sequence. In particular, as shown in Lemma 1 in HP,

1p
n

[nr]X
t=1

ut (�0)!d U(r); (15)

where U is a vector Brownian motion. Its covariance matrix given by E
�
ut (�)ut (�)

0� = �4V (�)

11



where �4 = E[
�
"2t � 1

�2
] and


 (�) = E

26666664
1

z2t

0BBBBBB@

� 1P
i=1
�i�1zt�i"2t�i

�2 1P
i=1
�i�1zt�i"2t�i

1P
i=1
�i�1zt�i

1
1��

1P
i=1
�i�1zt�i"2t�i

1P
i=1
�i�1zt�i"2t�i

1P
i=1
�i�1zt�i

� 1P
i=1
�i�1zt�i

�2
1
1��

1P
i=1
�i�1zt�i

1
1��

1P
i=1
�i�1zt�i"2t�i

1
1��

1P
i=1
�i�1zt�i

1
(1��)2

1CCCCCCA

37777775 :
(16)

This matrix will make up the covariance matrix of the score and hessian in the non-stationary case.

Note that it does not contain xt because its asymptotic impact on the score and hessian is negligible.

With Sn;�(�) and Hn;��(�) denoting the elements of the full score and hessian corresponding to �,

this is stated in the following theorem which also gives the asymptotic distribution of the QMLE:

Theorem 8 Let Assumption 3 hold, �! = !0 and ��2 = �20 (�0; !0). Then,

n�1=2Sn;�(�0) ! dN (0; V��) ;

�n�1Hn;��(�0) ! dH��;

where V�� = �4H�� and H�� = M (�0) 
 (�0)M (�0)
0with M (�) and 
 (�) given in eqs. (14) and

(16) respectively.

Therefore, with probability tending to one, there exists a unique minimum point �̂ of Ln(�; �!)

in the neighbourhood f� : jj� � �0jj < �g for some � > 0; it satis�es:

p
n(�̂ � �0)!d N

�
0;H�1

�� V��H
�1
��

�
:

The QMLE �̂ is consistent and converges with standard
p
n-rate of convergence towards a

Normal distribution. Theorem 8 implies that the standard inference procedure is valid even in

the nonstationary case. For example, the t-statistics for all individual parameters have standard

normal limit distribution. This means that regardless that the covariate in the GARCH-X model is

stationary or nonstationary, we can simply adopt the standard inference procedure for the QMLE

of the GARCH-X models.

As noted earlier, the covariance matrices making up the asymptotic variance of �̂ does not

contain xt when this is non-stationary. In contrast, in the stationary case, the corresponding

covariance matrices do contain information about xt, c.f. Theorem 6. However, the estimators

given in eq. (10) converge towards the correct limits in both cases. For example, the �nite-sample

t-statistic satis�es

t = f�̂4Hn;��(�0)g�1=2 f�̂ � �0g !d N (0; I3) ;

where �̂4 is an estimator of �4, whether xt is stationary or non-stationary. As such, standard

inferential procedures regarding � are robust to the persistence of xt.

When xt is an I(1) process, our model belongs to the model considered by HP with their

volatility function f(xt) being linear in parameter. Not surprisingly, the asymptotic distribution is

12



identical, which is expressed in HP as � 0n(�̂n��0)!d N
�
0; �4


�1� where �n = pndiag f(1; 1; 1=�0g.
Next, we analyze the behaviour of the QMLE when �! 6= !0 and ��2 6= �20 (�0; !0):

Theorem 9 Let Assumption 3 hold with d > �1=4. Then the conclusions of Theorem 8 hold for

any �! 6= !0 and ��2 6= �20 (�0; !0).

Unfortunately, we have only been able to extend the result in Theorem 9 to the case with

d > �1=4. We conjecture that this is caused by some of the inequalities employed in the proof of
Theorem 9 not being sharp enough, and that the conclusions also hold for d � �1=4.

4 Simulation Study

To investigate the relevance and usefulness of our asymptotic theories, we conduct a simulation

study. In particular, we wish to investigate the sensitivity of the QMLE towards the level of

persistence, dx. Furthermore, we would like to validate our conjecture that in practice the non-

identi�cation of ! is irrelevant for the performance of the estimators of the remaining parameters.

Our simulation design is based on the GARCH-X model with the exogenous regressor xt being

generated by

xt = (1� L)�dx vt:

The data-generating GARCH parameter values are set to be !0 = 0:01; �0 = 0:1; �0 = 0:4 and

�0 = 0:1: The innovation processes f"tg and fvtg are chosen to be i.i.d. standard normal and
mutually independent.2 The initial values are set x0 = 0 and �20 = 0:01: We consider the following

four data generating processes depending on dx in xt:

stationary cases nonstationary cases

DGP 1 dx = 0 DGP 3 dx = 0:7

DGP 2 dx = 0:3 DGP 4 dx = 0:1

In our simulation, the null distributions of the t-statistics for individual parameters �; � and

� are simulated for n = 500 and 5; 000 with 10; 000 iterations. We do not report the result for !

because it is unidenti�ed in the nonstationary case as explained in the previous section. However,

note that we estimate all parameters including ! for all DGP�s in our simulations.

The simulation results are reported in Figures 1 and 2 in Appendix C. Figure 1 reports the

results for the stationary cases. The Gaussian limit distribution theory is e¤ectively demonstrated

in Figures 1. It is also true for the nonstationary cases reported in Figure 2. The empirical

distributions of the t-statistics are close to normal and become more so as the sample size increases.

This is true regardless of the value of the memory parameter dx in xt.

Our simulation results imply that the QMLE�s of (�; �; �) are robust towards the dependence

structure of xt in the GARCH-X model. Researchers do not need to determine whether xt is sta-

tionary or not before they implement the QMLE in the GARCH-X model. The standard inference

procedure will be valid regardless of the dependence structure of xt:
2We also tried the case for vt = �"t and the results are still similar.
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5 Conclusion

We have here developed asymptotic theory of QMLE�s in GARCH models with additional persistent

covariates. It is shown that the asymptotic distributions of the regression coe¢ cients - �, � and �

- are robust towards the level of persistence, while the intercept - ! - becomes unidenti�ed when

the regressor is non-stationary.

A number of extensions of the theory would be of interest: For example, to analyze the properties

of the QMLE in alternative GARCH speci�cations with persistent regressors; provide a formal

proof of our conjecture that in the non-stationary case the choice of the unidenti�ed parameter !

is irrelevant for the estimation of the remaining parameters (this is supported by our simulation

results); and provide a global analysis of the QMLE in the non-stationary case.
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A Proofs of Section 3.1

Proof of Lemma 1. With at := �0"2t�1 + �0 � 0, and bt := !0 + �0x2t � 0, rewrite eq. (??) as

�2t = at�
2
t�1 + bt:

This is a stochastic recursion where f(at; bt)g is a stationary and ergodic sequence. The �rst part
of the result now follows from Brandt (1986) since Assumption 1(ii) implies that the Lyapunov

coe¢ cient associated with the above stochastic recursion is negative and that E
�
log+ (bt)

�
< 1.

The stationary solution can be written as

�2t = bt +
1X
i=0

at � � � at�ibt�i�1: (17)

Following Berkes et al (2003, p. 207-208), the negative Lyapunov coe¢ cient implies that E[(a0 � � � am)2s] <
1 for some s > 0 and m � 1; thus, E[(at � � � at�i)2s] � c�i for some c <1 and � < 1. Without loss

of generality, we choose s < q=2 with q given in Assumption 1(ii) such that E
�
b2st
�
<1. Thus,

E
�
�2st
�
� E [bst ] +

1X
i=0

E [(at � � � at�i)s bst ]

� E [bst ] +
q
E
�
b2st
� 1X
i=0

r
E
h
(at � � � at�i)2s

i
= E [bst ] + c

q
E
�
b2st
�
(1� �)�1

< 1:

That E
�
y2st
�
<1 follows from eq. (1) together with Assumption 1(ii).

Proof of Lemma 2. Eq. (5) can be rewritten as �2t (#) := ��2t�1 (#) + vt (#) which is an

AR(1) model with stationary errors wt (#). The �rst part of the result now follows by Berkes

et al (2003, Lemma 2.2). From Lemma 1 together with Assumption 1(ii), E [sup#2�wst (#)] �
�!s + ��sE

�
y2st�1

�
+ ��sE

�
x2st�1

�
<1. Thus,

E
�
sup
#2�

�2s0;t (#)

�
�

1X
i=0

��
isE
�
sup
#2�

wst (#)

�
<1:

Proof of Lemma 3. Observe that

�2t (#)� �20;t (#) = �
�
�2t�1 (#)� �20;t�1 (#)

	
= :::: = �t

�
��20 � �20;0 (#)

	
;

where ��20 > 0 is the �xed, intial value used to compute the likelihood function. The result now

follows with Ks = E[sup#2D
����20 � �20;0 (#)��s] which is �nite according to Lemma 1.
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Proof of Theorem 4. De�ne #̂
�
= argmax#2� L

�
n (#) where L

�
n (#) =

Pn
t=1 `

�
t (#), `

�
t (#) =

� log �20;t (#)� y2t =�20;t (#), denotes the stationary version of the quasi-log likelihood. We �rst show
consistency of #̂

�
by verifying the conditions in Kristensen and Rahbek (2005, Proposition 2):

(i) The parameter space � is a compact Euclidean space with #0 2 �.
(ii) # 7! `�t (#) is continuous almost surely.

(iii) L�n (#) =n!p L (#) := E [`�t (#)] where the limit exists, 8# 2 �.
(iv) L (#0) > L (#), 8# 6= #0.
(v) E [sup#2D `�t (#)] < +1 for any compact set D � � with �0 =2 D.

Condition (i) holds by assumption, while (ii) follows by the continuity of # 7! �20;t (#) as given

in eq. (11). Condition (iii) follows by the LLN for stationary and ergodic sequences if the limit

L (#) exists; the limit is indeed well-de�ned since `�t (#) � � log (!) such that E
�
`�t (#)

+� <1. To
prove condition (iv), �rst observe that L (#0) 2 (�1;1):

`�t (#0) = � log
�
�20;t (#0)

�
�
�20;t (#0) "

2
t

�20;t (#0)
= � log

�
�20;t (#0)

�
� "2t ;

where E
�
"2t
�
= 1 by Assumption 1(ii). Moreover, !0 � log

�
�20;t (#0)

�
such that E[

�
log �20;t (#0)

��
] <

1, while E[
�
log �20;t (#0)

�+
] �

�
logE

�
�2s0;t (#0)

��+
=s < 1 by Jensen�s inequality and Lemma 2.

Thus, E [j`�t (#0) j] < 1 is well-de�ned, while either (a) L (#) = �1 or (b) L (#) 2 (�1;1).
Now, let # 6= #0 be given: Then, if (a) holds, L (#0) > �1 = L (#). If (b) holds, the following

calculations are allowed:

L (#) = �E
"
log
�
�20;t (#)

�
+

y2t
�20;t (#)

#
= �E

"
log
�
�20;t (#)

�
+
�20;t (#0)

�20;t (#)

#
;

where we have used that E
�
"2t jyt�1; yt�2; :::

�
= 1. From the last equality,

L (#0)� L (#) = 1� E
"
log

 
�20;t (#)

�20;t (#0)

!
+
�20;t (#0)

�20;t (#)

#
� 0

with equality if and only if �20;t (#) = �
2
0;t (#0) a.s. Suppose that �

2
0;t (#) = �

2
0;t (#0) a.s, or equiva-

lently,

!0 +
1X
i=1

ci (#0)Xt�i = ! +
1X
i=1

ci (#)Xt�i, (18)

where ci (#) =
�
��i�1; ��i�1

�0
and Xt�1 =

�
y2t�1; x

2
t�1
�0. We then claim that !0 = ! and ci (#0) =

ci (#) for all i � 1; this in turn implies # = #0. We show this by contradiction: Let m > 0 be the

smallest integer for which ci (#0) 6= ci (#) (if ci (#0) = ci (#) for all i � 1, then !0 = !). Thus,

a0y
2
t�m + b0x

2
t�m = ! � !0 +

1X
i=1

aiy
2
t�m�i +

1X
i=1

bix
2
t�m�i;
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where ai := �0�i�10 ���i�1 and bi := �0�i�10 ���i�1. The right hand side belongs to Ft�m�1. Thus,
a0y

2
t�m+ b0x

2
t�mjFt�m�1 is constant. This is ruled out by Assumption 1(iv). Finally, condition (v)

follows from sup#2D `
�
t (#) � � sup#2D log (!) � � log (!) < +1.

Now, return to the actual, feasible QMLE, #̂. Using Lemma 3,

sup
#2�

jL�n (#)� Ln (#)j �
nX
t=1

sup
#2�

j`�t (#)� `t (#)j

�
nX
t=1

sup
#2�

(������2t (#)� �20;t (#)�2t (#)�
2
0;t (#)

����� y2t�1 +
�����log

 
1 +

�2t (#)� �20;t (#)
�2t (#)

!�����
)

� K

!2

nX
t=1

��
t
y2t�1 +

K

!2

nX
t=1

��
t
;

where limn!1
Pn
t=1

��
t
=
�
1� ��

��1
< 1 while limn!1

Pn
t=1

��
t
y2t�1 < 1 by Berkes et al (2003,

Lemma 2.2) in conjunction with Lemma 1. Thus, sup#2� jL�n (#)� Ln (#)j =n = OP (1=n). Com-
bining this with the above analysis of L�n (#), it then follows from Kristensen and Shin (2012,

Proposition 1) that jj#̂� � #̂jj = OP (1=n). In particular, #̂ is consistent.

Proof of Lemma 5. Observe that

@�2t (#)

@!
= 1 + �

@�2t�1 (#)

@!
= ::: =

tX
i=0

�i; (19)

@�2t (#)

@�
= y2t�1 + �

@�2t�1 (#)

@�
= ::: =

tX
i=0

�iy2t�i�1;

@�2t (#)

@�
= x2t�1 + �

@�2t�1 (#)

@�
= ::: =

tX
i=0

�ix2t�i�1;

@�2t (#)

@�
= �2t�1 (#) + �

@�2t�1 (#)

@�
= ::: =

tX
i=0

�i�2t�i�1 (#) :

By the same arguments as in the proof of Lemma 2, these equations have stationary solutions.

The proof for the second-order partial derivatives w.r.t. !, � and � proceeds along the lines

of Franq and Zakoian (2004, p. 619) since these do not involve xt. Regarding the second-order

derivatives involving �, using the above expressions of the �rst-order derivatives:

@2�2t (#)

@!@�
= �

@�2t�1 (#)

@!@�
= ::: = 0 (20)

@�2t (#)

@�@�
= �

@�2t�1 (#)

@�@�
= ::: = 0;

@�2t (#)

@�2
= �

@�2t�1 (#)

@�@�
= ::: = 0;

@�2t (#)

@�@�
=

@�2t�1 (#)

@�
+ �

@2�2t�1 (#)

@�@�
= ::: =

tX
i=0

�i
@�2t�i�1 (#)

@�
:
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Again, there clearly exist stationary solutions to these equations.

Moreover, by the same arguments as in Franq and Zakoïan, 2004, p. 622), there exists constants

c <1 and 0 < � < 1 such that for all # in a neighbourhood of #0 and all 0 < r � s,

�20;t (#0)

�20;t (#)
� c

1X
i=0

�ri �wrt ;

where �wt := �! + ��y2t�1 + ��x
2
t is stationary and ergodic with E [ �wrt ] <1. This in turn implies thatP1

i=0 �
is �wrt is stationary and ergodic with �rst moment. Given the representations of the stationary

solutions �20;t (#0) and @�
2
t (#0) = (@#), it is easily shown that for some constant c <1 the following

inequalities hold for all # in a neighbourhood of #0.(see Franq and Zakoïan, 2004, p. 619)

1

�20;t (#0)

@�20;t (#0)

@!
� 1

!0
;

1

�20;t (#)

@�20;t (#)

@�
� 1

�0
;

1

�20;t (#)

@�20;t (#)

@�
� 1

�0
;

1

�20;t (#)

@�20;t (#)

@�
� c

1X
i=0

��
ri
�wrt ;

Finally, by the same arguments as in Franq and Zakoian (2004, p. 620), it also holds that

1

�20;t (#)

@�20;t (#)

@�@�
� c

1X
i=0

��
ri
�wrt

By inspection of the de�nitions of B0;t, B1;t and B2;t, one �nds that stated moment exists by

choosing r > 0 su¢ ciently small.

Proof of Theorem 6. As shown in the proof of Theorem 4, jj#̂� � #̂jj = OP (1=n); thus, it

su¢ ces to analyze #̂
�
. By a �rst-order Taylor expansion of the �rst-order condition,

0 = S�n;# (#0) +H
�
n;##

�
�#
�
(#̂
� � #0);

where �# lies on the line segment connecting #̂
�
and #0, and

S�n;# (#) =
@L�n (#)

@#
=

nX
t=1

1

�20;t (#)

@�20;t (#)

@#

(
y2t

�20;t (#)
� 1
)
;

H�
n;## (#) =

@2L�n (#)

@#@#0
=

nX
t=1

h�##;t (#) ;
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where derivatives w.r.t. �20;t (#) can be found in the proof of Lemma 5, and

h�##;t (#) =

(
1

�20;t (#0)

@2�20;t (#0)

@#@#0
� 1

�40;t (#0)

@�20;t (#)

@#

@�20;t (#)

@#0

)(
y2t

�20;t (#)
� 1
)

�
@�20;t (#)

@#

@�20;t (#)

@#0
y2t

�60;t (#)
:

We now verify the three conditions, ML1-ML2, which in turn will yield the desired result.

Regarding ML1: By the CLT for stationary Martingale di¤erences (Brown, 1971),

1p
n
S�n;# (#0) =

1p
n

nX
t=1

��20;t (#0)
@�20;t (#0)

@#

�
"2t � 1

	
!d N (0; V## (#0)) ; (21)

since E[��40;t (#0)
@�20;t (#0) =@#2] <1 by Lemma 5.

Regarding ML2: Observe that by Lemma 5,

jjh�##;t (#) jj �
�
B2;t +B

2
1;t

	�
1 +B0;t"

2
t

	
+B21;tB0;t"

2
t :

for all # in some neighbourhood of #0, where the right-hand side has �nite �rst moment. It

now follows by standard uniform convergence results for averages of stationary sequences (see e.g.

Kristensen and Rahbek (2005, Proposition 1) that supk#�#0k<�
H�

n;##(#)=n�H##(#)
 !p 0, for

some � > 0, where H##(#) is de�ned in the theorem. Moreover, # 7! H## (#) is continuous.

Since #̂
� !p #0, �# !p #0 and so lies in any arbitrarily small neighbourhood with probability

approaching one. To complete the proof, we verify that H## (#0) is non-singular: The process

	t := @�
2
0;t (#0) = (@#) 2 R4 can be written as

	t = �	t�1 +Wt; Wt :=
�
1; yt�1; xt�1; �

2
0;t�1 (#0)

�0
:

Suppose that there exists � 2 R4n f0g and t � 1 such that �0	t = 0 a.s. Since 	t is stationary, this
must hold for all t. Given the above equation, this implies that �0Wt = 0 for all t � 1. However,
this is ruled out by Assumption 1(iv). It must therefore hold that �0	t=�20;t (#0) = 0 if and only if

� = 0; thus, H## (#0) = E
�
	t	

0
t=�

4
0;t (#0)

�
is non-singular.

B Proofs of Section 3.2

Proof of Lemma 7. If ��2n� max1�t�n j!0ztj = op(1); the stated result follows from Han (2011,

Lemma 5). It is shown in the proof of Lemma B in HP that

max
1�t�n

jztj = Op
�
�nn

2=q
�
+ op (1)
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where �n = nr with 0 < r < 1=4 + d=2� 1=2p� 1=q. Note in particular that

�n !1 and �2nn
�1=2�d+1=p+2=q = n2r�1=2�d+1=p+2=q ! 0:

Therefore, due to �2n� = Op
�
n1+2d

�
;

��2n� max1�t�n
j!0ztj = j!0j��2n� max1�t�n

jztj � j!0jOp
�
�nn

�1�2d+2=q
�
+ j!0j op

�
n�1�2d

�
= op(1):

This completes the proof.

The second part of the stated result follows from Lemma 6 in Han (2011).

Proof of Theorem 8. We verify ML1-ML2. The strategy of proof and the arguments employed

are similar to those in the proof of Lemma 2 in HP, and so we only provide details where the

arguments di¤er.3

To prove ML1, let

Sn;�(�) =
@Ln(�)

@�
=
1

n

nX
t=1

��2t (�)
@�2t (�)

@�

�
y2t
�2t (�)

� 1
�

be the score function w.r.t. � at ! = !0. That is, it contains the �rst three components of S�n(#)

as given in the proof of Theorem 6. We �rst show that

n�1=2Sn;�(�0)!d

�
U1(1); U2(1);

1

�0
U3(1)

�0
; (22)

where U (r) = (U1 (r) ; U2 (r) ; U3 (r)) was de�ned in eq. (15).

It follows from Lemma 7 that

�i�1��2n� �
2
t�i(�0) = �

i�1
�
��2n� �0x

2
t�i�1

�
zt�i + op(1) = �

i�1
�
��2n� �0x

2
t�1

�
zt�i + op(1)

for all i � 1 uniformly in t = 1; : : : ; n, and note that

max
1�t�n

���� 1�20t � 1

�0x2t�1zt

���� � !0�
�0x2t�1

�2 = ��4n�Op(1):
These in turn yield

y2t�i
�20;t

=
�i�1��2n� �

2
t�i(�0; !0)

�i�1��2n� �
2
0;t

"2t�i =
zt�i"2t�i
zt

+ op(1) (23)

x2t�i�1
�20;t

=
�i�1��2n� x

2
t�1

�i�1��2n�
�
�0x2t�1

� 1
zt
+ op(1) =

1

�0zt
+ op(1) (24)

3Note a notatonal di¤erence in HP. Instead of xt�1, HP use xt that is adapted to (Ft�1):
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uniformly in t = 1; : : : ; n. Eq. (22) now follows from (15), (23) and (24). For example,

n�1=2Sn;�(�0) =
1p
n

nX
t=1

1X
i=0

�i0
�i�1��2n� x

2
t�1

�i�1��2n�
�
�0x2t�1

� 1
zt
("2t � 1) + op(1)

=
1X
i=0

�i0
1p
n

nX
t=1

1

�0zt
("2t � 1) + op(1)

!d

1X
i=0

�i0

Z 1

0

1

�0
d (1� �0)U3(r) =

1

�0
U3(1): (25)

Consequently,

n�1=2Sn(�0)!d MU(1) = N
�
0; �4M (�0) 
 (�0)M (�0)

0� :
Next, to verify ML2, we show the following two claims:

Claim 1: �Hn(�0)=n!p M (�0) 
 (�0)M (�0)
0.

Claim 2: There exists a sequence �n > 0 such that �n=
p
n! 0, and such that

sup
#2Nn

��2n [Hn(�)�Hn(�0)]!p 0;

where Nn = f� 2 � : k�n (� � �0)k � 1g is a sequence of shrinking neighborhoods of �0:

Proof of Claim 1: The Hessian Hn;��(�) = @2Ln(�)=
�
@�@�0

�
is given in the Proof of Theorem 6

with @�2t (�) =@� and @
2�2t (�) =

�
@�@�0

�
given in eqs. (19)-(20) with ! = !0. We write Hn;��(�) =

Ha
n;��(�) +H

b
n;��(�), where

Ha
n;��(�) =

nX
t=1

��
1� 2y2t

�2t (�)

�
1

�4t (�)

@�2t (�)

@�

@�2t (�)

@�0

�
=
�
Ha
n;ij(�0)

�
i;j=1;2;3

and

Hb
n;��(�0) =

nX
t=1

��
y2t

�2t (�)
� 1
�

1

�2t (�)

@2�2t (�)

@�@�0

�
=
h
Hb
n;ij(�0)

i
i;j=1;2;3

:

First, by the same arguments as in the second step of the proof of Lemma 2 in HP, it follows

that

�n�1Ha
n;��(�0)!p M (�0)V (�0)M (�0)

0 :

For example,

�n�1Ha
n;��(�0) =

1

n

nX
t=1

�
2"2t � 1

� P1
i=0 �

i
0�
�2
n� x

2
t�i�1

��2n� �
2
t (�0)

P1
i=0 �

i
0�
�2
n� x

2
t�i�1

��2n� �
2
t (�0)

+ op(1)

=
1

n

nX
t=1

1

z2t

 1X
i=0

�i0
�i�1��2n� x

2
t�1

�i�1��2n�
�
�0x2t�1

�!2 + op(1)
!d E

�
1

(1� �0)2z2t

�
1

�20
:
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Next, since
�
"2t � 1

	
is a martingale di¤erence sequence,

n�1=2Hb
n;��(�0) =

1p
n

nX
t=1

��
"2t � 1

� 1

�2t (�0)

@2�2t (�0)

@�0@�
0
0

�
+ op(1) = Op(1); (26)

see Han (2011, Remark A1) for details. For example,

n�1=2Hb
n;��(�0) =

1p
n

nX
t=1

�
"2t � 1

� 1

�2t (�0)

1X
i=1

�i�10

1X
k=0

�k0x
2
t�i�k�1 + op(1)

=

1X
i=1

�i�10

1X
k=0

�k0
1p
n

nX
t=1

�i�1��2n� x
2
t�1

�i�1��2n�
�
�0x2t�1

� 1
zt
("2t � 1) + op(1)

! d

1X
i=1

�i�10

1X
k=0

�k0

Z 1

0

1

�0
d (1� �0)U3(r) =

1

�0 (1� �0)
U3(1):

Note that we do not need the fourth step in the proof of Lemma 2 in HP due to @2�2t (�) =(@�)
2 = 0

and (26). We conclude that

�n�1Hn;��(�0) = �n�1Ha
n;��(�0) + op(1)!p M (�0) 
 (�0)M (�0)

0 ;

which establishes Claim 1.

Proof of Claim 2: We �rst note that, for any �s > 0, there exists � > 0 such that

�p
n
��1+� �4n� supjsj��s

�
sup
�2Nn

(�
p
ns)�4

�! 0: (27)

Since �2n� = Op
�
n1+2d

�
;

�p
n
��1+�

�4n�(
p
n)�4 = Op

�
n�1=2+�=2+4dx

�
= op(1)

if � < 1� 8d. Eq. (27) in turn implies that

�p
n
��1+� �2n� supjsj��s

�
sup
�2Nn

(�
p
ns)�2

�! 0: (28)

Note that (27) and (28) correspond to Assumption 4 in HP.

To establish Claim 2, we now choose ~� such that 0 < ~� < �=6; and �n = n1=2�
~� so that

�n=
p
n! 0 as required. In particular,n1=2�~� (� � �0) � 1 (29)
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for all � 2 Nn. To establish

��2n fHn;��(�)�Hn;��(�0)g = op(1);

we only need to show

n�1+2
~�
�
Ha
n;��(�)�Ha

n;��(�0)
	
!p 0 (30)

uniformly for all � 2 Nn, because (26) implies
��2n n

Hb
n;��(�)�Hb

n;��(�0)
o = op(1). The veri�-

cation of (30) is done by combining the arguments of the third step in the proof of Lemma 2 in HP

with the limit results in Han (2011). For example, with gt(xt; �n�; �) =
P1
i=0 �

i��4n� x
4
t�i�1,

n�1
nX
t=1

gt(xt; �n�; �)!d
1

1� �

Z 1

0
(Wd(r))

4 dr

by Lemmas 1(b) and 4 in Han (2011). This in turn implies that���n�1+2~� �Ha
n;��(�)�Ha

n;��(�0)
	���

�
����� 1

n1�2~�

nX
t=1

1

�4t (�)
(�0 � �) g(xt; �n�; �)

�����
<

n3
~�

p
n
�4n� sup

jsj��s
sup
�2Nn

���� 1

(�(
p
ns)2)2

���� 1n
nX
t=1

jgt(xt; �n�; �)j

= op(1); (31)

where the third line follows from (29) and 0 < ��2t (�) < 1=
�
�x2t�1

�
for � > 0 and x2t�1 > 0, while

the fourth one is a consequence of (27). By similar arguments, it is shown that the remaining

elements of the matrix in (30) go to zero in probability uniformly in � 2 Nn: This completes the
proof.

Proof of Theorem 9. To analyze the impact of �! 6= !0, we proceed along the same lines as in
Jensen and Rahbek (2004, Proof of Lemma 13):

y2t
�2t (�0; �!)

= "2t +
(!0 � �!) "2t
�! + �0x2t�1

;

and so the score satis�es

1p
n

nX
t=1

��2t (�0; �!)
@�2t (�0; �!)

@�0

�
y2t

�2t (�0; �!)
� "2t

�
= op(1); (32)
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for d > �1=4. For example,

1p
n

nX
t=1

1X
i=0

�i0
x2t�i�1
�20;t

(!0 � �!) "2t
�! + �0x2t�1

� 1

1� �0
p
n max
1�t�n

���� 1

x2t�1

���� 1n
nX
t=1

j!0 � �!j
�20zt

"2t + op(1)

=
p
n��2n�Op (1) = Op

�
n�1=2�2d

�
:

Similar to eq. (32), we have that

n�1
nX
t=1

"�
y2t

�2t (�0; �!)
� "2t

�
1

�40;t

@�2t (�0; �!)

@�

@�2t (�0; �!)

@�0

#
= op(1);

and

n�1=2
nX
t=1

"�
y2t

�2t (�0; �!)
� "2t

�
1

�20;t

@2�2t (�0; �!)

@�@�0

#
= op(1);

and so the impact of �! 6= !0 on the hessian is also negiglible.
The proof of the particular choice of the initial value ��2 being asymptotically negiglible follows

along similar lines and so are left out; see also Jensen and Rahbek (2004, Lemma 14).
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C Tables and Figures

Table 1. Estimates of memory parameter dx and AR coe¢ cient for various time series

time series d̂x AR coe¢ cient sample period T

3M treasury bill rate level 0:94 1:00 1996=01=02� 2009=02=27 3434

Bond yield spread (AAA-BAA) 0:88 0:99 1987=11=02� 2003=06=30 3938

RV of Dow Jones Industrials 0:46 0:66 1996=01=03� 2009=02=27 3261

RV of CAC 40 0:44 0:66 1996=01=03� 2009=02=27 3301

RV of FTSE 100 0:42 0:64 1996=01=03� 2009=02=27 2844

RV of German DAX 0:42 0:66 1996=01=03� 2009=02=27 3296

RV of British Pound 0:56 0:88 1999=01=04� 2009=03=01 2576

RV of Euro 0:34 0:67 1999=01=04� 2009=03=01 2592

RV of Swiss Franc 0:43 0:69 1999=01=04� 2009=03=01 2571

RV of Japanese Yen 0:47 0:70 1999=01=04� 2009=03=01 2590

Notes: d̂x is the log periodogram estimate of the memory parameter dx and T is the number of observations.

RV represents the realized variance of return series. All realized variance series are from �Oxford-Man

Institute�s realised library�, produced by Heber et al. (2009).4 All time series are at the daily frequency.

4See http://realized.oxford-man.ox.ac.uk/.
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Figure 1. The simulated densities of t-statistics for the stationary cases
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Figure 2. The simulated densities of t-statistics for the nonstationary cases
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