
Department of Economics and Business

Aarhus University

Bartholins Allé 10

DK-8000 Aarhus C

Denmark

Email: oekonomi@au.dk

Tel: +45 8716 5515

Heterogeneous Computing in Economics:

A Simplified Approach

Matt P. Dziubinski and Stefano Grassi

CREATES Research Paper 2012-15

HETEROGENEOUS COMPUTING IN ECONOMICS: A
SIMPLIFIED APPROACH

MATT P. DZIUBINSKI AND STEFANO GRASSI

CREATES, Department of Economics and Business, Aarhus University,
Denmark

ABSTRACT. This paper shows the potential of heterogeneous comput-
ing in solving dynamic equilibrium models in economics. We illustrate
the power and simplicity of C++ Accelerated Massive Parallelism (C++
AMP) recently introduced by Microsoft. Starting from the same exer-
cise as Aldrich et al. (2011) we document a speed gain together with a
simplified programming style that naturally enables parallelization.

JEL Classification: C88.

Keywords: Code optimization; CUDA; C++; C++ AMP; Data paral-
lelism; DSGE models; Econometrics; Heterogeneous computing; High-
performance computing; Parallel computing.

1. INTRODUCTION

This paper shows the potential of heterogeneous computing in solving
dynamic equilibrium models in economics. Heterogeneous computing refers
to the use of different processing cores (types of computational units) to
maximize performance. 1

We rely on C++ Accelerated Massive Parallelism (C++ AMP), a new
technology introduced by Microsoft, that allows to use accelerators, such
as graphics processing units (GPUs), to speed up calculations. GPUs are a
standard part of the current personal computers and are designed for data

E-mail address: matt@creates.au.dk.
Date: June 17, 2012.
We acknowledge financial support by the Center for Research in Econometric Analysis

of Time Series, CREATES, funded by the Danish National Research Foundation.
1"A computational unit could be a general-purpose processor (GPP) – including but not

limited to a multi-core central processing unit (CPU), a special-purpose processor (i.e. dig-
ital signal processor (DSP) or graphics processing unit (GPU), a co-processor, or custom
acceleration logic (application-specific integrated circuit (ASIC) or field-programmable
gate array (FPGA)). In general, a heterogeneous computing platform consists of processors
with different instruction set architectures (ISAs)." Source: http://en.wikipedia.
org/wiki/Heterogeneous_computing.

1

http://en.wikipedia.org/wiki/Heterogeneous_computing
http://en.wikipedia.org/wiki/Heterogeneous_computing

2 HETEROGENEOUS COMPUTING IN ECONOMICS: A SIMPLIFIED APPROACH

parallel problems, such as graphical applications, video games, and im-
age processing.2 The video card technology has experienced a rapid de-
velopment mainly driven by the video game industry. Table 1 reports the
GigaFLOPS (i.e., billions of floating point operations per second) for two
different GPUs together with two processors (CPUs) used in this study.

TABLE 1. Performance of GPU and CPU used in the paper.

Type of video card Stream Cores Single-precision GFLOPS

NVIDIA GTS 450 192 601.34
NVIDIA GT 520M 48 155.51
Intel Core i7-920 4 31.65
Intel Core i7-2630QM 4 48.24

In February 2012, Microsoft released C++ AMP as an extension of Visual
Studio 2012 which allows to use the massively parallel and heterogeneous
hardware available nowadays. Microsoft is not the only entity active in
parallel computation, there are at least two other approaches: the Compute
Unified Device Architecture (CUDA) of NVIDIA and the Open Computing
Language (OpenCL) of the Khronos Group.

The CUDA (or, more precisely, C for CUDA) approach is an extension of
C and although very fast, as documented in Aldrich et al. (2011), it suffers
from vendor lock-in, since it only works with NVIDIA GPUs and cannot be
used with, for instance, ATI GPUs.3 OpenCL is designed for heterogeneous
parallel computing, and since it is not tied to any specific video card man-
ufacturer, it can work on NVIDIA and ATI GPUs. The main disadvantage
thereof is that OpenCL is based on C rather than C++ and, consequently, in-
volves significantly more manual intervention and low-level programming,
see Aldrich et al. (2011) for a discussion.

C++ AMP, in contrast, simply requires a generic GPU and it abstracts
the accelerators for the user. In other words, when using C++ AMP, the
user does not need to worry about the specific kind of accelerator available
in the system. More importantly, the programmer does not need to know
or use manual memory management (different for each GPU), since it is
performed automatically. This allows to write more natural and high-level
programs.

As an example, let us consider a simple case of matrix multiplication
C = AB, where the input matrices A and B are conformable, and C is
the output matrix. Let us only focus on the memory management part and

2See http://www.gregcons.com/CppAmp/OverviewAndCppAMPApproach.
pdf.

3While Thrust, a parallel algorithms library which resembles the C++ Standard Tem-
plate Library (STL), improves upon the low-level approach of C for CUDA, it still suffers
from the same vendor lock-in.

http://www.gregcons.com/CppAmp/OverviewAndCppAMPApproach.pdf
http://www.gregcons.com/CppAmp/OverviewAndCppAMPApproach.pdf

HETEROGENEOUS COMPUTING IN ECONOMICS: A SIMPLIFIED APPROACH 3

compare the source codes given in Listing 1 (CUDA) and Listing 2 (C++
AMP). In each listing, the views d_A, d_B, and d_C (available on the GPU)
alias the data in A, B, and C (available on the CPU), respectively. While
the intent and the meaning of the C++ AMP code are relatively clear, the
CUDA code involves a significant amount of low-level detail, such as man-
ual memory allocation and deallocation, manual memory access through
pointers (representing values stored in the computer memory using their ad-
dresses), manual memory transfer (which also requires manually specifying
the memory addresses using pointers and the direction of the transfer), and
even such low-level details as the size of a single-precision floating-point
data type float using the sizeof operator. This level of complexity
is not only completely unnecessary in the age of modern compilers well
capable of automatic type inference, but also more error-prone. 4 This is
example is intended to show why a low-level approach can pose a barrier to
the widespread adoption of GPU technology in the economics and econo-
metrics community.

1 / / "A" and "B" a r e s q u a r e m a t r i c e s
2 / / " s i z e " i s t h e row d imens ion of each m a t r i x
3 / / a l l o c a t i o n
4 c u d a E r r o r _ t e r r ;
5 f l o a t ∗d_A , ∗d_B , ∗d_C ;
6 e r r = cudaMal loc (&d_A , s i z e ∗ s i z e ∗ s i z e o f (f l o a t)) ; / /

i n p u t m a t r i x
7 e r r = cudaMemcpy (d_A , A, s i z e ∗ s i z e ∗ s i z e o f (f l o a t) ,

cudaMemcpyHostToDevice) ;
8 e r r = cudaMal loc (&d_B , s i z e ∗ s i z e ∗ s i z e o f (f l o a t)) ; / /

i n p u t m a t r i x
9 e r r = cudaMemcpy (d_B , B , s i z e ∗ s i z e ∗ s i z e o f (f l o a t) ,

cudaMemcpyHostToDevice) ;
10 e r r = cudaMal loc (&d_C , s i z e ∗ s i z e ∗ s i z e o f (f l o a t)) ; / /

o u t p u t m a t r i x
11 / / d e a l l o c a t i o n
12 e r r = cudaMemcpy (C , d_C , s i z e ∗ s i z e ∗ s i z e o f (f l o a t) ,

cudaMemcpyDeviceToHost) ;
13 e r r = c u d a F r e e (d_A) ;
14 e r r = c u d a F r e e (d_B) ;
15 e r r = c u d a F r e e (d_C) ;

LISTING 1. CUDA sample

4For instance, a programmer using C for CUDA has to remember to deallocate the
previously allocated memory – failure to do so may result in memory leaks; in contrast,
C++ AMP follows the common C++ approach of relying on the Resource Acquisition Is
Initialization (RAII) technique for automatic resource management, see Stroustrup (2000,
section 14.4).

4 HETEROGENEOUS COMPUTING IN ECONOMICS: A SIMPLIFIED APPROACH

1 / / "A" and "B" a r e s q u a r e m a t r i c e s
2 / / " s i z e " i s t h e row d imens ion of each m a t r i x
3 a r r a y_v i e w < c o n s t f l o a t , 2> d_A (s i z e , s i z e , A) ; / / i n p u t

m a t r i x
4 a r r a y_v i e w < c o n s t f l o a t , 2> d_B (s i z e , s i z e , B) ; / / i n p u t

m a t r i x
5 a r r a y_v i e w < f l o a t , 2> d_C (s i z e , s i z e , C) ; / / o u t p u t m a t r i x
6 d_C . d i s c a r d _ d a t a () ;

LISTING 2. C++ AMP sample

For further details, see “C++ AMP for the CUDA Programmer” by Steve
Deitz,5 which is also the source of the preceding example.

Another big advantage of C++ AMP is its flexibility, boosting developer
productivity. It is not necessary to write two different implementations of
the same program: one for the NVIDIA GPUs (e.g., using CUDA) and
another one for the AMD GPUs (e.g., using OpenCL). It is enough to write
one general implementation, since C++ AMP automatically adapts to the
specific hardware available on the target machine. In the case of multiple
GPUs in the system (e.g., one integrated within the CPU system and another
one discrete), they can be used at the same time, even if they come from
different vendors (e.g., an ATI GPU, an Intel GPU, and an NVIDIA GPU).

To date, the adoption of GPU computing technology in economics (and
econometrics) has been relatively slow compared to other fields. For a lit-
erature review, see Morozov and Mathur (2011). This fact can be explained
by the need to learn a new syntax, CUDA or OpenCL, the difficulty in-
volved in implementing a different program for each different device, and
the more error-prone programming involved in lower-level solutions, as
demonstrated in the preceding example. We believe that C++ AMP is a
solution to these problems and that it can help to promote and spread par-
allel programming in particular and heterogeneous programming in general
in the economics and econometrics community.

To show the potential of this approach we replicate the exercise of Aldrich
et al. (2011), which uses the value function iteration (VFI henceforth), an
algorithm easy to express as a data parallel computational problem, to solve
a dynamic equilibrium model.

We find that using VFI with binary search the (optimized) CUDA code is
a little bit faster than the naive (unoptimized) implementation in C++ AMP
just in one case. C++ AMP is much more powerful than CUDA in a grid
search with a Howard improvement step: in this case C++ AMP is up to 5
times faster than the CUDA code.

The rest of the paper is organized as follows. Section 2 describes the basic
idea of parallelization and heterogeneous programming. Section 3 presents

5http://blogs.msdn.com/b/nativeconcurrency/archive/2012/
04/11/c-amp-for-the-cuda-programmer.aspx

http://blogs.msdn.com/b/nativeconcurrency/archive/2012/04/11/c-amp-for-the-cuda-programmer.aspx
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/04/11/c-amp-for-the-cuda-programmer.aspx

HETEROGENEOUS COMPUTING IN ECONOMICS: A SIMPLIFIED APPROACH 5

the RBC model used in Aldrich et al. (2011). Section 4 reports some nu-
merical results and a comparison between the two approaches. Section 5
concludes.

2. PARALLELIZATION AND HETEROGENEOUS COMPUTING

In this paper we closely follow the algorithm of Aldrich et al. (2011),
providing a simple parallelization scheme for GPUs (here, generalized for
an arbitrary accelerator) for the VFI:

(1) Get the number of processors available, P , in the accelerator.
(2) Set a number of grid points, N , apportioning the state space such

that N = Nk ×Nz, assigning Nk points to capital and Nz points to
productivity.

(3) Allot N grid points to each of the P processors of the accelerator.
(4) Set V 0 to an initial guess.
(5) Copy V 0 to the memory of the accelerator.
(6) Compute V i+1 , given V i, using each processor for its alloted share.6

(7) Repeat step 6 until convergence: ‖V i+1 − V i‖ < ε
(8) Copy V i from the accelerator memory to the main memory.

The practical coding is easier compared to CUDA or OpenCL.7 For ex-
ample, using CUDA and OpenCL one needs to spend quite a bit of time
learning the details of manual memory management of the GPU. Since
those are specific to each architecture, this can be a non-trivial problem,
see Morozov and Mathur (2011). In C++ AMP memory management is
automatic, and so the user has no need to learn the details of each specific
architecture.

Step one of the algorithm, which requires the number of processors in
the GPUs, is automatically handled in C++ AMP. The same applies for step
two, the division of the N grid points among the P processors of the GPUs,
which is a tuning parameter in CUDA (see Morozov and Mathur (2011) for
a nice and thoughtful discussion), which is automatically handled with our
approach.

3. AN APPLICATION: RBC MODEL REVISITED

As our illustrative example we use the basic RBC model studied in Aldrich
et al. (2011). In this model a representative household maximizes the utility
function choosing consumption {ct}∞t=0 and capital {kt}∞t=0:

max
{ct}∞t=0

E0

[
∞∑
t=0

βt
c1−ηt

1− η

]
, (1)

6Shared memory access ensures that upon termination of this step each processor can
read V i+1.

7The code for our application is available from the authors upon request and will be
made available under an open-source license.

6 HETEROGENEOUS COMPUTING IN ECONOMICS: A SIMPLIFIED APPROACH

where E0 denotes the conditional expectation operator, β the discount fac-
tor, and η risk aversion. The budget constraint is:

ct + it = ωt + rtkt, (2)

with ωt being the wage paid for the unit of labor that the household (in-
elastically) supplies to the market, rt the rental rate of capital, and it the
investment. The law of motion for capital accumulation is:

kt+1 = (1− δ)kt + it, (3)

where δ is the depreciation factor. The technology of a representative firm
is yt = ztk

α
t , where productivity zt follows an AR(1) process in logs:

log zt = ρ log zt−1 + εt, εt ∼ N(0, σ2). (4)

The resource constraint of the economy is

kt+1 + ct = ztk
α
t + (1− δ)kt. (5)

Given that the welfare theorems hold in this economy, we focus on solving
the social planner’s problem, which can be equivalently stated in terms of a
value function V and its Bellman equation

V (k, z) = max
c

{
c1−η

1− η
+ βE[V (k

′
, z

′
)|z]
}

s.t. k
′
= zkα + (1− δ)k − c

(6)

which can be solved with VFI, which is straightforward to parallelize.
For benchmarking purposes we use the same parameter values as in Aldrich

et al. (2011): α = 0.35, β = 0.984, δ = 0.01, η = 2, ρ = 0.95, and
σ = 0.005.

4. RESULTS

To implement the C++ AMP program that solves equation (6) we use
Microsoft Visual Studio 2012 Beta. The CUDA code that solves the same
problem, kindly provided at the following location, http://www.ealdrich.
com/Research/GPUVFI/, is compiled using Visual Studio 2010 since
the CUDA code cannot yet be compiled on Visual Studio 2012.

We use two test machines. The first is a generic PC with Intel Core i7-
920 CPU and an NVIDIA GeForce GTS 450 which is an entry-level video
card, with a total of 192 stream cores. The second is a standard laptop
with Intel Core i7-2630QM and a GeForce 520M with 48 stream cores.
Specifications of test machines, both running Windows Server 2008 R2, are
reported in Table 1.

We run two experiments. The first one uses VFI with binary search,
see Heer and Maussner (2005) for a discussion of this algorithm. In this
experiment we increase the capital and productivity points proportionally
until a grid of 1,572,864 is reached. The productivity process is discretized
using the procedure of Tauchen (1986). We report the execution time of
the CUDA and the C++ AMP programs in seconds, see Tables 2 and 3. In

http://www.ealdrich.com/Research/GPUVFI/
http://www.ealdrich.com/Research/GPUVFI/

HETEROGENEOUS COMPUTING IN ECONOMICS: A SIMPLIFIED APPROACH 7

the second experiment we use the Howard improvement method and grid
search; as pointed out by Aldrich et al. (2011), this algorithm yields a lower
return to parallelization when using CUDA. We run their experiment with
the value function maximized every n-th iteration of the algorithm, where
n is a tuning parameter decided by the user, see Tables 4 to 7.

We start with the utility of the representative household in the determin-
istic steady state as our V 0 and the convergence criterion is ‖V i+1− V i‖ <
(1 − β) × 10−5, since we are working in single precision. We will come
back to this point in Section 5.

Tables 2 and 3 report the results for the binary search algorithm with an
increasing number of capital and productivity points.

TABLE 2. Observed times (in seconds) for binary value
function on GeForce 450 GTS

N 2,048
(Nk=512,Nz=4)

8,192
(Nk=1,024,Nz=8)

32,768
(Nk=2,048,Nz=16)

98,304
(Nk=3072,Nz=32)

CUDA 1.278 1.436 5.041 19.175
C++ AMP 0.831 1.005 2.228 14.857

N 262,144
(Nk=4096,Nz=64)

655,360
(Nk=5120,Nz=128)

1,572,864
(Nk=6144,Nz=256)

CUDA 105.902 504.434 2305.667
C++ AMP 102.369 531.524 2389.653

TABLE 3. Observed times (in seconds) for binary value
function on GeForce 520M

N 2,048
(Nk=512,Nz=4)

8,192
(Nk=1,024,Nz=8)

32,768
(Nk=2,048,Nz=16)

98,304
(Nk=3072,Nz=32)

CUDA 1.888 2.660 15.811 71.852
C++ AMP 1.419 2.059 7.581 58.172

N 262,144
(Nk=4096,Nz=64)

655,360
(Nk=5120,Nz=128)

1,572,864
(Nk=6144,Nz=256)

CUDA 369.252 1623.091 N.A.
C++ AMP 336.367 1617.720 5435.050

The main result of Table 2 is that the optimized CUDA code (exploiting
memory access pattern, called tiling or blocking, to improve performance)
is faster than the naive (unoptimized) C++ AMP code on the GeForce GTS
450 GPU, but this difference is not very large. Using the GT520M, see
Table 3, characterized by less cores, the picture is different. In this case the
C++ AMP program is faster than the CUDA one, moreover we experience
problems in convergence for CUDA as soon as the grid reaches 1,572,864
points. This suggests that with such limited hardware C++ AMP behaves
better than CUDA; this point will require further research. It is worth noting
that C++ AMP can be used in two different ways. The first one is the
naive implementation which is very easy and quite similar to traditional
C++ code and is the programming approach used in this paper. The second

8 HETEROGENEOUS COMPUTING IN ECONOMICS: A SIMPLIFIED APPROACH

one is the tiling (blocking) optimization, as in the CUDA version, which
is more complex, but has potential to be significantly faster than the naive
implementation.

In Tables 4 to 7 we report the results for the grid search algorithm with a
Howard step. The value function is maximized only every n-th iteration of
the algorithm. In our experiment we set n = {10, 20}, see Tables 4, 5, 6,
and 7, respectively.

TABLE 4. Observed times (in seconds) for grid search al-
gorithm, with a Howard step every 10 iterations.
GPU GeForce GTS 450, CPU Core i7-920

N 32 64 128 256 512 1,024
CUDA (GPU) 1.207 1.171 1.077 1.143 1.161 1.929
C++ AMP (GPU) 0.457 0.518 0.510 0.652 0.707 0.763
C++ (CPU) 0.020 0.052 0.174 0.494 1.482 4.819

N 2,048 4,096 8,192 16,384 32,768 65,536
CUDA (GPU) 3.806 10.997 42.988 170.344 625.743 2,680.412
C++ AMP (GPU) 1.088 2.242 6.361 28.558 119.291 448.222
C++ (CPU) 18.102 74.782 270.553 1,147.977 4,662.768 17,896.416

TABLE 5. Observed times (in seconds) for grid search al-
gorithm, with a Howard step every 10 iterations.
GPU GeForce 520M, CPU Core i7-2630QM

N 32 64 128 256 512 1,024
CUDA (GPU) 1.531 1.539 1.604 1.755 2.253 3.685
C++ AMP (GPU) 1.232 1.217 1.234 1.326 1.435 1.716
C++ (CPU) 0.016 0.031 0.109 0.374 1.326 4.165

N 2,048 4,096 8,192 16,384 32,768 65,536
CUDA (GPU) 12.622 45.758 175.330 719.923 3,087.640 11,856.700
C++ AMP (GPU) 3.369 10.233 34.585 151.851 580.648 2,393.450
C++ (CPU) 16.162 67.907 239.429 1,121.230 3,920.550 16,454.090

The main finding is that the naive implementation using C++ AMP is
very fast, up to 5 times faster than the CUDA implementation. As explained
in Aldrich et al. (2011) the CPU approach is much slower than the GPU one.

HETEROGENEOUS COMPUTING IN ECONOMICS: A SIMPLIFIED APPROACH 9

TABLE 6. Observed times (in seconds) for grid search al-
gorithm, with a Howard step every 20 iterations.
GPU GeForce GTS 450, CPU Core i7-920

N 32 64 128 256 512 1,024
CUDA (GPU) 1.136 1.007 1.019 1.171 1.204 1.442
C++ AMP (GPU) 0.489 0.496 0.505 0.598 0.633 0.646
C++ (CPU) 0.023 0.056 0.143 0.382 0.997 3.252

N 2,048 4,096 8,192 16,384 32,768 65,536
CUDA (GPU) 2.492 6.615 22.617 88.949 353.202 1,452.964
C++ AMP (GPU) 0.819 1.369 4.192 17.561 53.414 266.218
C++ (CPU) 12.372 48.076 148.888 638.175 2,542.604 10,170.048

TABLE 7. Observed times (in seconds) for grid search al-
gorithm, Howard step every 20 iterations. GPU
GeForce 520M, CPU Core i7-2630QM

N 32 64 128 256 512 1,024
CUDA (GPU) 1.512 1.541 1.537 1.634 1.932 3.082
C++ AMP (GPU) 1.236 1.232 1.248 1.341 1.388 1.575
C++ (CPU) 0.016 0.031 0.062 0.265 0.905 2.933

N 2,048 4,096 8,192 16,384 32,768 65,536
CUDA (GPU) 7.486 24.242 93.862 373.019 1485.410 6126.650
C++ AMP (GPU) 2.480 5.694 18.049 81.010 322.327 1286.190
C++ (CPU) 10.920 44.070 135.439 580.181 2222.960 9754.130

5. CONCLUSION

We propose and present a new approach for massively parallel program-
ming in economics, C++ AMP. We show that this approach has a lot of po-
tential. First, the programming simplicity, second the hardware generality
(C++ AMP adapts to different GPUs automatically) and third the perfor-
mance (in some cases it is much faster than a specialized approach such as
CUDA).

As a future research project we are also interested in investigating the
reasons behind the 5x speed-up in select cases. A potential solution would
involve comparing the generated PTX (Parallel Thread Execution) code on
the CUDA side with the HLSL (High Level Shader Language) code on the
C++ AMP side. However, the current (beta) version of C++ AMP does not
offer the capability to view the generated HLSL code.

Our results are solely intended as an illustration of a lower bound of this
technology for two reasons. First, it is still in the early beta testing phase
and a lot of improvements are expected with the final release by the end of
2012. Second, since C++ AMP is an open standard, it can be implemented
by different vendors, such as ATI, for different platforms, such as Unix-like
systems.

10 HETEROGENEOUS COMPUTING IN ECONOMICS: A SIMPLIFIED APPROACH

At the moment there is still a drawback to using double precision com-
putation. For the GPUs used in this study, C++ AMP offers full support
for double precision computation on Windows NT 6.2 (i.e., “Windows 8”
and “Windows Server 2012”) only. The upcoming release of new drivers
from the major vendors, such as NVIDIA and ATI, should solve this prob-
lem for the current Windows operating systems (NT 6.1 – i.e., “Windows
7” and “Windows Server 2008 R2”).8 For the other high-end GPUs, such as
GeForce GTX 460, full double precision support is already available.

Since heterogeneous computing is a fast-evolving field we expect that
additional findings will be forthcoming soon.

REFERENCES

Aldrich, E. M., Fernández-Villaverde, J., Gallant, A. R., and Ru-
bio Ramırez, J. F. (2011). Tapping the Supercomputer Under Your Desk:
Solving Dynamic Equilibrium Models with Graphics Processors. Jour-
nal of Economic Dynamics and Control, Vol. 35:pp. 386–393.

Heer, B. and Maussner, A. (2005). Dynamic General Equilibrium Mod-
elling: Computational Methods and Applications. Springer, Berlin.

Morozov, S. and Mathur, S. (2011). Massively Parallel Computation Us-
ing Graphics Processors with Application to Optimal Experimentation in
Dynamic Control. Computational Economics, pages 1–32.

Stroustrup, B. (2000). The C++ Programming Language. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 3rd edition.

Tauchen, G. (1986). Finite State Markov-Chain Approximations to Uni-
variate and Vector Autoregressions. Economics Letters, Vol. 20:pp. 177
– 181.

8For more details, see http://blogs.msdn.com/b/nativeconcurrency/
archive/2012/02/07/double-precision-support-in-c-amp.aspx.

http://blogs.msdn.com/b/nativeconcurrency/archive/2012/02/07/double-precision-support-in-c-amp.aspx
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/02/07/double-precision-support-in-c-amp.aspx

Research Papers

2012

2011-52: Lars Stentoft: What we can learn from pricing 139,879 Individual
Stock Options

2011-53: Kim Christensen, Mark Podolskij and Mathias Vetter: On covariation
estimation for multivariate continuous Itô semimartingales with noise
in non-synchronous observation schemes

2012-01: Matei Demetrescu and Robinson Kruse: The Power of Unit Root Tests
Against Nonlinear Local Alternatives

2012-02: Matias D. Cattaneo, Michael Jansson and Whitney K. Newey:
Alternative Asymptotics and the Partially Linear Model with Many
Regressors

2012-03: Matt P. Dziubinski: Conditionally-Uniform Feasible Grid Search
Algorithm

2012-04: Jeroen V.K. Rombouts, Lars Stentoft and Francesco Violante: The
Value of Multivariate Model Sophistication: An Application to pricing
Dow Jones Industrial Average options

2012-05: Anders Bredahl Kock: On the Oracle Property of the Adaptive LASSO
in Stationary and Nonstationary Autoregressions

2012-06: Christian Bach and Matt P. Dziubinski: Commodity derivatives pricing
with inventory effects

2012-07: Cristina Amado and Timo Teräsvirta: Modelling Changes in the
Unconditional Variance of Long Stock Return Series

2012-08: Anne Opschoor, Michel van der Wel, Dick van Dijk and Nick Taylor:
On the Effects of Private Information on Volatility

2012-09: Annastiina Silvennoinen and Timo Teräsvirta: Modelling conditional
correlations of asset returns: A smooth transition approach

2012-10: Peter Exterkate: Model Selection in Kernel Ridge Regression

2012-11: Torben G. Andersen, Nicola Fusari and Viktor Todorov: Parametric
Inference and Dynamic State Recovery from Option Panels

2012-12: Mark Podolskij and Katrin Wasmuth: Goodness-of-fit testing for
fractional diffusions

2012-13: Almut E. D. Veraart and Luitgard A. M. Veraart: Modelling electricity
day–ahead prices by multivariate Lévy

2012-14: Niels Haldrup, Robinson Kruse, Timo Teräsvirta and Rasmus T.
Varneskov: Unit roots, nonlinearities and structural breaks

2012-15: Matt P. Dziubinski and Stefano Grassi: Heterogeneous Computing in
Economics: A Simplified Approach

	1. Introduction
	2. Parallelization and Heterogeneous Computing
	3. An Application: RBC Model revisited
	4. Results
	5. Conclusion
	References

