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Unit roots, nonlinearities and structural breaks1
Niels Haldrup∗ Robinson Kruse∗∗ Timo Teräsvirta∗ Rasmus T. Varneskov∗

Abstract

One of the most influential research fields in econometrics over the past decades con-
cerns unit root testing in economic time series. In macro-economics much of the interest
in the area originate from the fact that when unit roots are present, then shocks to the
time series processes have a persistent effect with resulting policy implications. From a
statistical perspective on the other hand, the presence of unit roots has dramatic impli-
cations for econometric model building, estimation, and inference in order to avoid the
so-called spurious regression problem. The present paper provides a selective review of
contributions to the field of unit root testing over the past three decades. We discuss the
nature of stochastic and deterministic trend processes, including break processes, that
are likely to affect unit root inference. A range of the most popular unit root tests are
presented and their modifications to situations with breaks are discussed. We also review
some results on unit root testing within the framework of non-linear processes.

1. Introduction

It is widely accepted that many time series in economics and finance exhibit trending
behavior in the level (or mean) of the series. Typical examples include asset prices, exchange
rates, real GDP, real wage series and so forth. In a recent paper White and Granger (2011)
reflect on the nature of trends and make a variety of observations that seem to characterize
these. Interestingly, as also noted by Phillips (2005), even though no one understands trends
everybody still sees them in the data. In economics and other disciplines, almost all observed
trends involve stochastic behaviour and purely deterministic trends are rare. However, a
combination of stochastic and deterministic elements including structural changes seems
to be a model class which is likely to describe the data well. Potentially the series may
contain nonlinear features and even the apparent deterministic parts like level and trend
may be driven by an underlying stochastic process that determines the timing and the size
of breaks.

In recent years there has been a focus on stochastic trend models caused by the presence of
unit roots. A stochastic trend is driven by a cumulation of historical shocks to the process and
hence each shock will have a persistent effect. This feature does not necessarily characterize
other types of trends where the source of the trend can be different and some or all shocks
may only have a temporary effect. Time series with structural changes and unit roots
share similar features that makes it diffi cult to discriminate between the two fundamentally
different classes of processes. In principle, a unit root (or difference stationary) process can
be considered as a process where each point in time has a level shift. On the other hand,
if a time series process is stationary but is characterized by infrequent level shifts, certain
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(typically large) shocks tend to be persistent whereas other shocks have only a temporary
influence. Many stationary nonlinear processes contain features similar to level shifts and
unit root processes. Some types of regime switching models belong to this class of processes.

It is not surprising that discriminating between different types of trend processes is
diffi cult. Still, there is an overwhelming literature which has focussed on unit root processes
and how to distinguish these from other trending processes, and there are several reasons
for this. One reason is the special feature of unit root processes regarding the persistence
of shocks which may have important implications for the formulation of economic models
and the measurement of impulse responses associated with economic policy shocks. Another
reason concerns the fact that the presence of unit roots can result in spurious inference and
hence should be appropriately accounted for in order to make valid inference when analyzing
multivariate time series. The development of the notion of cointegration by Granger (1981,
1983) and Engle and Granger (1987) shows how time series with stochastic trends can be
represented and modelled to avoid spurious relations. This field has grown tremendously
since the initial contributions. For the statistical theory and overview, see Johansen (1995).

The purpose of the present chapter is to review recent advances and the current status in
the field of unit root testing when accounting for deterministic trends, structural breaks and
nonlinearities. We shall also consider some of the diffi culties that arise due to other special
features that complicate inference. There is a vast literature on these topics. Review articles
include Haldrup and Jansson (2006) who focus on the size and power of unit root tests, and
Perron (2006) who deals with structural breaks in stationary and non-stationary time series
models. Other general overviews of unit root testing can be found in Stock (1994), Maddala
and Kim (1998), and Phillips and Xiao (1998). The present review updates the present state
of the art and includes a number of recent contributions in the field.

In section 2 we introduce a general class of basic processes where the focus is on unit root
processes that can be mixed with the presence of deterministic components that potentially
may exhibit breaks. In section 3 we review existing unit root tests that are commonly used
in practice, i.e. the augmented Dickey-Fuller, Phillips and Perron, and the trinity ofM -class
of tests suggested by Perron and Ng (1996). We also briefly touch upon the literature on
the design of optimal tests for the unit root hypothesis. The following two sections extends
the analysis to the situation where the time series have a linear trend or drift and the initial
condition is likely to affect inference. In particular, we address testing when there is general
uncertainty about the presence of trends and the size of the initial condition. Section 6
extends the analysis to unit root testing in the presence of structural break processes for the
cases where the break date is either known or unknown. Section 7 is concerned with unit root
testing in nonlinear models followed by a section on unit root testing when the data exhibit
particular features such as being bounded by their definition or exhibiting trends in both
the levels and growth rates of the series. The paper finishes with an empirical illustration.

There are numerous relevant research topics which for space reasons we cannot discuss
in this presentation. These include the literature on the design of optimal tests for the unit
root hypothesis but also the highly relevant area of using the bootstrap in non-standard
situations where existing procedures are likely to fail due to particular features of the data.
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2. Trends in time series

We begin by reviewing some of the basic properties of unit root and trend-stationary
processes including the possible structural breaks in such processes. Consider T + 1 obser-
vations from the time series process generated by

yt = f(t) + ut, t = 0, 1, 2, ..., T (1)

where
(1− αL)ut = C(L)εt,

ut is a linear process with εt
i.i.d.∼ N(0, σ2

ε) and C(L) =
∑∞

j=0 cjL
j,
∑∞

j=1 j|cj| < ∞, and
c0 = 1. L is the lag operator, Lxt = xt−1. f(t) is a deterministic component to be defined
later. When α = 1 the series contains a unit root and a useful decomposition due to Beveridge
and Nelson (1981) reads

∆ut = C(1)εt + ∆C∗(L)εt,

where C(1) 6= 0 and C∗(L) satisfies requirements similar to those of C(L). With this repre-
sentation

yt = y0 + f(t) + C(1)
t∑

j=1

εj +
t−1∑
j=1

c∗jεt−j (2)

where τ t = C(1)
∑t

j=1 εj is a stochastic trend component and C
∗(L)εt is a stationary com-

ponent.

When ut has no unit root, |α| < 1, and setting vt = C(L)εt, the process reads

yt = f(t) + (1− αL)−1vt

= αty0 + f(t) +
t−1∑
j=0

αjvt−j. (3)

Equations (2) and (3) encompass many different features of unit root and trend stationary
processes. As seen from (2), the presence of a unit root means that shocks will have a
permanent effect and the level of the series is determined by a stochastic trend component
in addition to the trend component f(t). In principle, each period is characterized by a level
shift through the term

∑t−1
j=0 vt−j. In the trend stationary case |α| < 1 shocks will only have a

temporary effect, but each period also has a level shift through the deterministic component
f(t).

The models point to many of the statistical diffi culties concerned with unit root testing in
practice and the complications to discriminate between the different types of processes. For
instance, in (2) and (3) we have not made any assumptions regarding the initial condition.
This could be assumed fixed, or it could be stochastic in a certain way. However, the
assumptions made are not innocuous with respect to the properties of unit root tests as we
shall discuss later. The presence of deterministic components may also cause problems since
deterministic terms can take many different forms. For instance the trend function can be
linear in the parameters: f(t) = d′tµ where dt is a k−vector, for instance an intercept, a
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linear trend, and possibly a quadratic where d′t = (1, t, t2), and µ is an associated parameter
vector. Moreover, these different terms could have parameters that change over time within
the sample. For example, the trend function may include changes in the level, the slope, or
both, and these structural breaks may be at known dates (in which case the trend is still
linear in parameters) or the break time may be generated according to a stochastic process,
e.g. a Markov switching process.

Other diffi culties concern the assumptions about the nature of the innovations governing
the process. Generally, the short run dynamics of the process are unknown, the innovation
variance may be heteroscedastic, and εt need not be Gaussian. We are going to address many
of these complications and how to deal with these in practice. First, we want to consider
a range of specifications of the trend function f(t) that are essential for practical unit root
testing.

2.1 Assumptions about the deterministic component f(t)

Linear trend. Following the empirical analysis of Nelson and Plosser (1982) it has been
commonplace to consider the unit root model against one containing a linear trend. Fun-
damentally, the question asked is whether the trending feature of the data can be best
described as a trend that never changes versus a trend that changes in every period. Assume
that f(t) = µ+ βt is a linear-in-parameters trend, in which case (3) becomes

yt = µ+ βt+ (1− αL)−1C(L)εt (4)

and

∆yt = (α− 1)yt−1 + µ(1− α) + αβ + (1− α)βt+ C(L)εt. (5)

By comparing (4) and (5) it is seen that the role of deterministic components is different
in the levels and the first differences representations. When a unit root is present, α = 1, the
constant term µ(1−α) +αβ = β in (5) represents the drift, whereas the slope (1−α)β = 0.
This shows the importance of carefully interpreting the meaning of the deterministic terms
under the null and the alternative hypothesis. Note that when β 6= 0, the linear trend will
dominate the series even in the presence of a stochastic trend component.

Structural breaks. As emphasized by Perron (2006), discriminating between trends that
either change every period or never change can be a rather rigid distinction. In many
situations a more appropriate question could be whether a trend changes at every period or
whether it only changes occassionally. This line of thinking initiated research by Rappoport
and Reichlin (1989) and Perron (1989, 1990) who considered the possibility of certain events
having a particularly strong impact on trends. Examples could include the Great Depression,
World War II, the oil crises in the 1970s and early 1980s, the German reunification in 1990,
the recent financial crisis initiated in 2007 and so forth. In modelling, such events may
be ascribed stochastic shocks but possibly of a different nature than shocks occurring each
period. The former are thus likely to be drawn from a different statistical distribution than
the latter.

Perron (1989, 1990) suggested a general treatment of the structural break hypothesis
where four different situations were considered that allowed a single break in the sample: (a)
a change in the level, (b) a change in the level in the presence of a linear trend, (c) a change
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in the slope and (d) a change in both the level and slope. In implementing these models, two
different transition mechanisms were considered following the terminology of Box and Tiao
(1975); one is labeled the additive outlier (AO) model where the transition is instantaneous
and the trend break function is linear in parameters, and one is labeled the innovation outlier
(IO) model where changes occur via the innovation process and hence a gradual adjustment
of a "big" shock takes place in accordance with the general dynamics of the underlying series.
We will consider hypothesis testing later on and just note that distinguishing between these
classes of break processes is important in the design of appropriate testing procedures.

Additive outlier models with level shift and trend break. Define the dummy variables DUt
and DTt such that DUt = 1 and DTt = t − T1 for t > T1 and zero otherwise. The dummy
variables allow various breaks to occur at time T1. Using the classifications of Perron (2006)
the following four AO-models are considered:

AOa : yt = µ1 + (µ2 − µ1)DUt + (1− αL)−1C(L)εt
AOb : yt = µ1 + βt+ (µ2 − µ1)DUt + (1− αL)−1C(L)εt
AOc : yt = µ1 + β1t+ (β2 − β1)DTt + (1− αL)−1C(L)εt
AOd : yt = µ1 + β1t+ (µ2 − µ1)DUt + (β2 − β1)DTt + (1− αL)−1C(L)εt.

We assume that β1 6= β2 and µ1 6= µ2. Notice that under the null of a unit root, the
differenced series reads ∆yt = ∆f(t) + C(L)εt where ∆f(t) takes the form of an impulse at
time T1 for the AOa and AOb models, whereas the AOc model will have a level shift and the
AOd model will have a level shift plus an impulse blip at the break date.

Innovation change level shift and trend break models. The nature of these models depends
on whether a unit root is present or absent. Assume initially that |α| < 1. Then the IO-
models read

IOa : yt = µ+ (1− αL)−1C(L)(εt + θDUt)
IOb : yt = µ+ βt+ (1− αL)−1C(L)(εt + θDUt)
IOd : yt = µ+ βt+ (1− αL)−1C(L)(εt + θDUt + γDTt).

Hence, the impulse impact of a change in the intercept at time T1 is given by θ and the
long-run impact by θ(1 − α)−1C(1). Similarly, the immediate impact of a change in slope
is given by γ with long run impact γ(1 − α)−1C(1). Note that these models have similar
characteristics to those of the AO models apart from the temporal dynamic adjustments of
the IO models. Note that model c is not considered in the IO case because linear estimation
methods cannot be used and will cause diffi culties for practical applications.

Under the null hypothesis of a unit root, α = 1, the meaning of the breaks in the IO
models will cumulate unintentionally to higher order deterministic processes. It will therefore
be necessary to redefine the dummies in this case whereby the models read

IOa0 : yt = yt−1 + C(L)(εt + δ(1− L)DUt)
IOb0 : yt = yt−1 + β + C(L)(εt + δ(1− L)DUt)
IOd0 : yt = yt−1 + β + C(L)(εt + δ(1− L)DUt + ηDUt).
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where (1 − L)DUt is an impulse dummy and (1 − L)DTt = DUt. The impulse impact on
the level of the series is given by δ and the long-run impact is by δC(1), whereas for the
IOd0 model the impulse impact on the trend slope is given by η with long run slope equal
to ηC(1). Qualitatively, the implications of the various break processes are thus similar to
each other under the null and the alternative hypothesis.

2.2 Some other examples of trends

It is obvious from the examples above that in practice it can be diffi cult to discriminate
between unit root (or difference stationary) processes and processes that are trend stationary
with a possibly changing trend or level shifts. A stochastic trend has (many) innovations
that tend to persist. A break process implies the existence of "big" structural breaks that
tend to have a persistent effect. It goes without saying that distinguishing between these
fundamentally different processes is even harder when one extends the above illustrations
to cases with multiple breaks which potentially are generated by a stochastic process like a
Bernoulli or Markov regime switching process.

As an example of this latter class of models, consider the so-called "mean-plus-noise"
model in state space form, see e.g. Diebold and Inoue (2001):

yt = µt + εt

µt = µt−1 + vt

vt =

{
0 with probability (1− p)
wt with probability p

where wt
i.i.d.∼ N(0, σ2

w) and εt
i.i.d.∼ N(0, σ2

ε). Such a process consists of a mixture of shocks
that have either permanent or transitory effect. If p is relatively small, then yt will exhibit
infrequent level shifts. Asymptotically, such a process which is really a generalization of the
additive outlier level shift model AOa, will behave like an I(1) process. Granger and Hyung
(2004) consider a related process in which the switches caused by a latent Markov chain have
been replaced by deterministic breaks. A similar feature characterizes the STOPBREAK
model of Engle and Smith (1999). A special case of the Markov-switching process of Hamilton
(1989) behaves asymptotically as an I (0) process: it has the same stationarity condition as
a linear autoregressive model, but due to a Markov-switching intercept, it can generate a
very high persistence in finite samples and can be diffi cult to discriminate from unit root
processes, see e.g. Timmermann (2000) and Diebold and Inoue (2001). The intercept-
switching threshold autoregressive process of Lanne and Saikkonen (2005) has the same
property. It is a weakly stationary process but generates persistent realisations. Yet another
model of the same type is the nonlinear sign model by Granger and Teräsvirta (1999) that is
stationary but has ’misleading linear properties’. This means that autocorrelations estimated
from realisations of this process show high persistence, which may lead the practitioner to
think that the data have been generated by a nonstationary (long-memory), i.e., linear,
model.

It is also possible to assume a deterministic intercept and generate realisations that
have ’unit root properties’. The Switching-Mean Autoregressive model by González and
Teräsvirta (2008) may serve as an example. In that model the intercept is characterised by
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a linear combination of logistic functions of time, which make both the intercept and with
it the model quite flexible.

3. Unit root testing without deterministic components

In this section we will present unit root tests that are parametric or semiparametric ex-
tensions of the Dickey-Fuller test, see Dickey and Fuller (1979). We will state the underlying
assumptions and consider generalizations in various directions.

3.1 The Dickey-Fuller test

Historically, the Dickey-Fuller test initiated the vast literature on unit root testing. Let
us consider the case when (1) takes the simplified form of a AR(1) process

yt = αyt−1 + εt (6)

where we assume that the initial observation is fixed at zero and εt ∼i.i.d(0, σ2
ε). The hy-

pothesis to be tested is H0 : α = 1, and is tested against the one-side alternative H1 : α < 1.
The least squares estimator of α reads

α̂ =

∑T
t=1 yt−1yt∑T
t=1 y

2
t−1

.

The associated t−statistic of the null hypothesis is

tα =
α̂− 1

s/
√∑T

t=1 y
2
t−1

where s2 = 1
T

∑T
t=1 (yt − α̂yt−1)2 is the estimate of the residual variance. Under the null

hypothesis it is well known that these quantities have non-standard asymptotic distributions.
In particular,

T (α̂− 1)
d→
∫ 1

0
W (r)dW (r)∫ 1

0
W 2(r)dr

(7)

and

tα
d→
∫ 1

0
W (r)dW (r)√∫ 1

0
W 2(r)dr

(8)

where W (r) is a Wiener process (or standard Brownian motion) defined on the unit interval

and ”
d→ ” indicates convergence in distribution. These distributions are often referred to as

the Dickey-Fuller distributions even though they can be traced back to White (1958).

3.2 The Augmented Dickey-Fuller test

Because rather strict assumptions have been made regarding model (6) the limiting
distributions (7) and (8) do not depend upon nuisance parameters under the null, i.e. the
distributions are asymptotically pivotal. In particular, the assumption that innovations
are i.i.d. is restrictive and a violation will mean that the relevant distributions are not as
indicated above. To see this, assume that

yt = αyt−1 + ut (9)
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where ut = C(L)εt with C(L) satisfying the properties given in (1). We also assume that
y0 = 0.

This model allows more general assumptions regarding the serial correlation pattern
of yt − αyt−1 compared to the AR(1) model (6). Phillips (1987) shows that under these
assumptions, the distributions (7) and (8) are modified as follows:

T (α̂− 1)
d→
∫ 1

0
W (r)dW (r) + λ∫ 1

0
W 2(r)dr

(10)

and

tα
d→ ω

σ

∫ 1

0
W (r)dW (r) + λ√∫ 1

0
W 2(r)dr

(11)

where λ = (ω2 − σ2) / (2ω2) , σ2 = E [u2
t ] = σ2

ε

(∑∞
j=0 c

2
j

)
is the variance of ut, and ω2 =

limT→∞ T
−1E

[(∑T
t=1 ut

)2
]

= σ2
ε

(∑∞
j=0 cj

)2

is the "long-run variance" of ut. In fact, ω2 =

2πfu(0) where fu(0) is the spectral density of ut evaluated at the origin. When the inno-
vations are i.i.d., ω2 = σ2, the nuisance parameters vanish and the limiting distributions
coincide with those given in (7) and (8).

Various approaches have been suggested in the literature to account for the presence of
nuisance parameters in the limiting distributions of T (α̂− 1) and tα in (10) and (11). It
was shown by Dickey and Fuller (1979) that when ut is a finite order AR process of order k,
then T (α̂− 1) and tα (known as the augmented Dickey-Fuller tests) based on the regression

yt = αyt−1 +
k−1∑
j=1

γj∆yt−j + vtk (t = k + 1, . . . , T ) (12)

have the asymptotic distributions (7) and (8). However, this result does not apply to more
general processes when ut is an ARMA(p, q) process (with q ≥ 1). In this case a fixed trun-
cation of the augmented Dickey-Fuller regression (12) with k = ∞ provides an inadequate
solution to the nuisance parameter problem. Following results of Said and Dickey (1984) it
has been shown by Chang and Park (2002), however, that when ut follows an ARMA(p, q)
process, then the limiting null distributions of T (α̂− 1) and tα coincide with the nuisance
parameter free Dickey-Fuller distributions, provided that εt has a finite fourth moment and
k increases with the sample such that k = o

(
T 1/2−δ) for some δ > 0.

It has been documented in numerous studies, see e.g. Schwert (1989) and Agiakloglou
and Newbold (1992), that the augmented Dickey-Fuller tests suffer from size distortion in
finite samples in the presence of serial correlation, especially when the dependence is of
(negative) moving average type. Ng and Perron (1995, 2001) have further scrutinized rules
for truncating long autoregressions when performing unit root tests based on (12) . Consider
the information criterion

IC (k) = log σ̃2
k + kCT/T, σ̃2

k = (T − k)−1
T∑

t=k+1

ṽ2
tk. (13)
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Here {CT} is a positive sequence satisfying CT = o (T ) . The Akaike Information Criterion
(AIC) uses CT = 2, whereas the Schwarz or Bayesian Information Criterion (BIC) sets
CT = log T. Ng and Perron (1995) find that generally these criteria select a too low value
of k, which is a source for size distortion. They also show that by using a sequential data
dependent procedure, where the significance of coeffi cients of additional lags is sequentially
tested, one obtains a test with improved size. This procedure, however, often leads to
overparametrization and power losses. An information criterion designed for integrated time
series which alleviates these problems has been suggested by Ng and Perron (2001). Their
idea is to select some lag order k in the interval between 0 and a preselected value kmax,
where the upper bound kmax satisfies kmax = o (T ) . As a practical rule, Ng and Perron
(2001) suggest that kmax =int(12(T/100)1/4). Their modified form of the AIC is given by

MAIC (k) = log σ̌2
k + 2(τT (k) + k)/(T − kmax), (14)

where σ̌2
k = (T − kmax)−1∑T

t=kmax+1 ṽ
2
tk and τT (k) = σ̌−2

k (ρ̃ − 1)2
∑T

t=kmax+1 y
2
t−1. Note that

the penalty function is data dependent which captures the property that the bias in the sum
of the autoregressive coeffi cients (i.e., α̂−1) is highly dependent upon the selected truncation
k. Ng and Perron have documented that the modified information criterion is superior to
conventional information criteria in truncating long autoregressions with integrated variables
when (negative) moving average errors are present.

3.3 Semi-parametric Z tests

Instead of solving the nuisance parameter problem parametrically as in the augmented
Dickey-Fuller test, Phillips (1987) and Phillips and Perron (1988) suggest to transform the
statistics T (α̂− 1) and tα̂ based on estimating the model (6) in such a way that the influ-
ence of nuisance parameters is eliminated asymptotically. This can be done after consistent
estimates of the nuisance parameters ω2 and σ2 have been found. More specifically, they
suggest the statistics

Zα = T (α̂− 1)− ω̂2 − σ̂2

2T−2
∑T

t=1 y
2
t−1

(15)

and

Ztα =
σ̂

ω̂
tα̂ −

ω̂2 − σ̂2

2
√
ω̂2T−2

∑T
t=1 y

2
t−1

. (16)

The limiting null distributions of Phillips’and Perron’s Z statistics correspond to the pivotal
distributions (7) and (8).

A consistent estimate of σ2 is

σ̂2 = T−1

T∑
t=1

û2
t , ût = yt − α̂yt−1,
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whereas for the estimate of the long run variance ω2 a range of kernel estimators can been
considered. These are typically estimators used in spectral density estimation and are of the
form

ω̂2
KER = T−1

T∑
t=1

û2
t + 2

T−1∑
j=1

w (j/MT )

(
T−1

T∑
t=j+1

ûtût−j

)
, (17)

where w (·) is a kernel (weight) function and MT is a bandwidth parameter, see e.g. Newey
and West (1987) and Andrews (1991).

Even though kernel estimators of the long run variance ω2 such as (17) are commonly used
to remove the influence of nuisance parameters in the asymptotic distributions it has been
shown by Perron and Ng (1996) that spectral density estimators cannot generally eliminate
size distortions. In fact, kernel based estimators tend to aggravate the size distortions,
which is also documented in many Monte Carlo studies, e.g. Schwert (1989), Agiakloglou
and Newbold (1992) and Kim and Schmidt (1990). The size distortions arise because the
estimation of α and ω2 are coupled in the sense that the least squares estimator α̂ is used
in constructing ût and hence affects ω̂

2
KER. The finite (and even large) sample bias of α̂ is

well known when ut exhibits strong serial dependence, and hence the nuisance parameter
estimator ω̂2

KER is expected to be very imprecise.
Following work by Berk (1974) and Stock (1999), Perron and Ng (1996) have suggested a

consistent autoregressive spectral density estimator which is less affected by the dependence
on α̂. The estimator is based on estimation of the long autoregression (12):

ω̂2
AR =

σ̃2
k(

1−
∑k−1

j=1 γ̃j

)2 , (18)

where k is chosen according to the information criterion (14). The filtered estimator (18)
decouples estimation of ω2 from the estimation of α and is therefore unaffected by any bias
that α̂ may otherwise have due the presence of serial correlation.

3.4 The M Class of Unit Root Tests

When comparing the size properties of the Phillips-Perron tests using the estimator ω̂2
AR

and the tests applying the commonly used Bartlett kernel estimator of ω2 with linearly
decaying weights, Perron and Ng (1996) found significant size improvements in the most
critical parameter space. Notwithstanding, size distortions can still be severe and remain so
even if ω̂2

AR is replaced by the (unknown) true value ω
2. This suggests that the bias of α̂ is

itself an important source of the size distortions. With this motivation Perron and Ng (1996)
and Ng and Perron (2001) suggest further improvements of existing tests with much better
size behaviour compared to other tests. Moreover, the tests can be designed such that they
satisfy desirable optimality criteria.

The trinity of M tests belongs to a class of tests which has been originally suggested
by Stock (1999). They build on the Z class of semiparametric tests but are modified in
a particular way to deal with the bias of α̂ and exploit the fact that a series converges
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at different rates under the null and the alternative hypothesis. The first statistic can be
formulated as

MZα = Zα +
T

2
(α̂− 1)2 . (19)

Since the least squares estimator α̂ is super-consistent under the null, i.e. α̂− 1 = Op (T−1) ,
it follows that Zα andMZα have the same asymptotic distribution. In particular, this implies
that the limiting null distribution ofMZα is the one given in (7) . The nextM statistic reads

MSB =

√√√√ω̂−2
ART

−2

T∑
t=2

y2
t−1, (20)

which is stochastically bounded under the null and Op (T−1) under the alternative, see also
Sargan and Bhargava (1983) and Stock (1999). Note that Ztα = MSB · Zα, and hence a
modified Phillips-Perron t test can be constructed as

MZtα = Ztα +
1

2


√√√√ω̂−2

AR

T∑
t=2

y2
t−1

 (α̂− 1)2 . (21)

The correction factors ofMZα andMZtα can be significant despite the super-consistency
of α̂. Perron and Ng show that the M -tests have lower size distortion relative to competing
unit root tests. The success of the test is mainly due to the use of the sieve autoregressive
spectral density estimator ω̂2

AR in (18) as an estimator of ω
2. Interestingly, the M -tests also

happen to be robust to e.g. measurement errors and additive outliers in the observed series,
see Vogelsang (1999).

4. Unit root testing with deterministic components but no breaks

Since many macroeconomic time series are likely to have some kind of deterministic
component, it is commonplace to apply unit root tests that yield inference which is invariant
to the presence of a particular deterministic component. In practice, a constant term is
always included in the model so the concern in most cases is that of whether to include or
not to include a linear trend in the model. In many cases auxiliary information may be
useful in ruling out a linear trend, for instance for interest rate data, real exchange rates, or
inflation rates. However, for many other time series a linear trend is certainly a possibility
such as GDP per capita, industrial production, and consumer prices (in logs).

In the previous section we excluded deterministic components from the analysis. Now
we consider the model (1) in the special case where

f(t) = d′tµ. (22)

In (22) dt is a k-vector of deterministic terms, (k ≥ 1), and µ is a parameter vector of
matching dimension. Hence the trend considered is linear-in-parameters. In particular, we
will consider in this section the cases where dt = 1 or dt = (1, t)′ since these are the most
relevant situations in applications. In principle, however, the analysis can even be extended
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to higher-order polynomial trends. Consequently we assume the possibility of a level effect
or a level plus trend effect (without breaks) in the model. In fact, the linear-in-parameters
specification also includes structural breaks of the additive outlier form discussed in section
2.1 when the break date is known. We return to this case later.

4.1 Linear-in-parameters trends without breaks

When allowing for deterministic components the augmented Dickey-Fuller (or Said-
Dickey) regressions should take the alternative form

yt = d′tµ+ αyt−1 +

k−1∑
j=1

γj∆yt−j + vtk. (23)

In a similar fashion the Phillips-Perron Z tests allow inclusion of deterministic compo-
nents in the auxiliary regressions, but alternatively one can also detrend the series prior to
testing for a unit root. In all cases where the models are augmented by deterministic com-
ponents the relevant distributions change accordingly; Brownian motion processes should be
replaced with demeaned and detrended Brownian motions of the form

W d (r) = W (r)−D (r)′
(∫ 1

0

D (s)D (s)′ ds

)−1(∫ 1

0

D (s)W (s) ds

)
, (24)

where D (r) = 1 when dt = 1 and D (r) = (1, r)′ when dt = (1, t)′ . The relevant distributions
of the ADF and Phillips-Perron tests are reported in Fuller (1996).

Concerning the M -tests discussed in Section 3.4, Perron and Ng (2001) suggest an al-
ternative way to treat deterministic terms. They recommend to adopt the local GLS de-
trending/demeaning procedure initially developed by Elliott, Rothenberg and Stock (1996).
This has the further advantage that tests are “nearly”effi cient in the sense that they nearly
achieve the asymptotic power envelopes for unit root tests. For a time series {xt}Tt=1 of length
T and any constant c̄, define the vector xc̄ = (x1,∆x2 − c̄T−1x1, . . . ,∆xT − c̄T−1xT−1)

′
. The

so-called GLS detrended series {ỹt} reads

ỹt = yt − d′tβ̃, β̃ = arg min
β

(yc̄ − dc̄′β)
′
(yc̄ − dc̄′β) . (25)

Elliott, Rothenberg and Stock (1996) suggested c̄ = −7 and c̄ = −13.5 for dt = 1 and
dt = (1, t)′ , respectively. These values of c̄ correspond to the local alternatives against
which the local asymptotic power envelope for 5% tests equals 50%. When the M -tests
are constructed by using GLS detrended data and the long run variance estimator is ω̂2

AR

defined in (18) together with the modified information criterion (14), the tests are denoted
MZGLS

α ,MSBGLS, and MZGLS
t , respectively. Ng and Perron (2001) show that these tests

have both excellent size and power when a moving average component is present in the error
process.

The effi cient tests suggested by Elliott, Rothenberg and Stock (1996) have become a
benchmark reference in the literature. A class of these tests which we will later refer to is
the GLS detrended or demeaned ADF tests, ADFGLSt . Basically these tests are constructed
from the Dickey-Fuller t-statistic based on an augmented Dickey-Fuller regression without
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deterministic terms, like (12), where ỹt in (25) is used in place of yt. The lag truncation
again needs to be chosen via a consistent model selection procedure like theMAIC criterion
in (14). These tests can be shown to be near asymptotically effi cient. The GLS detrended
or demeaned ADF and M -tests can thus be considered parametric and semi-nonparametric
tests designed to be nearly effi cient. Regarding the t−statistic based tests ADFGLS

t and
MZGLS

t , the distributions for dt = 1 is the Dickey-Fuller distribution for the case without
deterministics (8) for which the critical values are reported in Fuller (1996). When dt = (1, t)′

the relevant distribution can be found in Elliott, Rothenberg and Stock (1996) and Ng and
Perron (2001) where the critical values for c = −13.5 are also reported.

As a final note, Perron and Qu (2007) have shown that the selection of k using MAIC
with GLS demeaned or detrended data may lead to power reversal problems, meaning that
the power against non-local alternatives may be small. However, they propose a simple
solution to this problem; first select k using the MAIC with OLS demeaned or detrended
data and then use this optimal autoregressive order for the GLS detrended test.

4.2 Uncertainty about the trend

The correct specification of deterministic components is of utmost importance to conduct
consistent and effi cient inference of the unit root hypothesis. Regarding the Dickey-Fuller
class of tests one would always allow for a nonzero mean at least. However, it is not always
obvious whether one should also allow for a linear trend. A general (conservative) advice
is that if it is desirable to gain power against the trend-stationary alternative, then a trend
should be included in the auxiliary regression (23), i.e., dt = (1, t)′. Note that under the null
hypothesis the expression (5) shows that the coeffi cient of the trend regressor is zero in the
model (23). However, if one does not include a linear time trend in (23) it will be impossible
to have power against the trend-stationary alternative, i.e. asymptotic power will be trivial,
leading to the conclusion that a unit root is present when the alternative is in fact true. In
other words, the distribution of the unit root test statistic allowing for an intercept but no
trend is not invariant to the actual value of the trend.

Although the use of a test statistic which is invariant to trends seems favourable in this
light, it turns out that the costs in terms of power loss can be rather significant when there is
no trend, see Harvey, Leybourne, and Taylor (2009). In fact, this is a general finding for unit
root tests where the decision of demeaning or detrending is an integral part of the testing
procedure. Therefore, it would be of great value if some prior knowledge were available
regarding the presence of a linear trend, but generally such information does not exist.

A possible strategy is to make pre-testing for a linear trend in the data an integral
part of the unit root testing problem, i.e. the unit root test should be made contingent
on the outcome of the trend pre-testing. However, this is complicated by the fact that
we do not know whether the time series is I(1) or I(0) (this is what is being tested), and
in the former case spurious evidence of trends may easily occur. A rather large literature
exists on trend testing where test statistics are robust to the integration order of the data;
a non-exhaustive list of references includes Phillips and Durlauf (1988), Vogelsang (1998),
Bunzel and Vogelsang (2005), and Harvey, Leybourne and Taylor (2007). It turns out that
testing for a trend prior to unit root testing generally is statistically inferior to alternative
approaches.

Harvey, Leybourne and Taylor (2009) discuss a number of different approaches to dealing
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with the uncertainty about the trend. In particular, they consider a strategy which entails
pre-testing of the trend specification, a strategy based on a weighting scheme of the Elliott,
Rothenberg and Stock (1996) GLS demeaned or detrended ADF unit root tests, and finally
a strategy based on a union of rejections of the GLS demeaned and detrended ADF tests.
They find that the last procedure is better than the first two. It is also straightforward to
apply since it does not require an explicit form of trend detection via an auxiliary statistic.
Moreover, the strategy has practical relevance since it embodies what applied researchers
already do, though in an implicit manner. Even though it is beyond the study of Harvey,
Leybourne and Taylor (2009) our conjecture is that the strategy can be equally applied to
the GLS filtered MZGLS

t -tests.
The idea behind the union of rejections strategy is a simple decision rule stating that one

should reject the I(1) null if either ADFGLS,1
t (demeaning case) or ADFGLS,(1,t)

t (detrending
case) rejects. The union of rejection test is defined as

UR = ADFGLS,1
t I(ADFGLS,1

t < −1.94) + ADF
GLS,(1,t)
t I(ADFGLS,1

t ≥ −1.94).

Here I(.) is the indicator function. If UR = ADFGLS,1
t the test rejects when UR < −1.94 and

otherwise, if UR = ADF
GLS,(1,t)
t a rejection is recorded when UR < −2.85. Alternatively, the

MZGLS,1
t and MZ

GLS,(1,t)
t tests can be used in place of the ADFGLS

t tests; the asymptotic
distributions will be the same. Based on the asymptotic performance and finite sample
analysis Harvey, Leybourne and Taylor (2009) conclude that despite its simplicity the UR
test offers very robust overall performance compared to competing strategies and is thus
useful for practical applications.

5. The initial condition

So far we have assumed that the initial condition y0 = 0. This may seem to be a rather
innocuous requirement since it can be shown that as long as y0 = op(T

1/2) the impact of
the initial observations is asymptotically negligible. For instance, this is the case when the
initial condition is modelled as a constant nuisance parameter or as a random variable with
a known distribution. However, problems occur under the alternative hypothesis and hence
have implications to the power of unit root tests.

To clarify the argument, assume that yt follows a stationary Gaussian AR(1) process with
no deterministic components and let the autoregressive parameter be α. In this situation
y0 ∼ N(0, 1/(1 − α2)). If we assume a local discrepancy from the unit root model, i.e.
by defining α = 1 + c/T to be a parameter local to unity where c < 0, then it follows that
T−1/2y0 ∼ N(0,−1/(2c)). For the initial value to be asymptotically negligible we thus require
this to be of a smaller order in probability than the remaining data points which seems to be
an odd property. Since stationarity is the reasonable alternative when testing for a unit root,
this example shows that even for a rather simple model the impact of the initial observation
is worth examining.

In practical situations it is hard to rule out small or large initial values a priori. As noted
by Elliott and Müller (2006) there may be situations where one would not expect the initial
condition to be exceptionally large or small relative to other observations. Müller and Elliott
(2003) show that the influence of the initial condition can be rather severe in terms of power
of unit root tests and the fact that what we observe is the initial observation, not the initial
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condition, see Elliott and Müller (2006). In practice this means that different conclusions
can be reached with samples of the same data which only differ by the date at which the
time series begins. Müller and Elliott (2003) derive a family of effi cient tests which allow
attaching different weighting schemes to the initial condition. They explore the extent to
which existing unit root tests belong to this class of optimal tests. In particular they show
that certain versions of the Dickey-Fuller class of tests are well approximated by members
of effi cient tests even though a complete removal of the initial observation influence cannot
be obtained.

Harvey, Leybourne and Taylor (2009) undertake a very detailed study of strategies for
dealing with uncertainty about the initial condition. The study embeds the set up in the
papers by Elliott and Müller as special cases. Interestingly, Harvey et al. find that when
the initial condition is not negligible asymptotically the ADFGLS

t class of tests of Elliott,
Rothenberg and Stock (1996) can perform extremely poorly in terms of asymptotic power
which tends to zero as the magnitude of the initial value increases. This contrasts the
performance of the ADFGLS

t tests when the initial condition is "small". However, the usual
ADF tests using demeaned or detrended data fromOLS regressions have power that increases
with the initial observation, and hence are preferable when the initial value is "large". This
finding made Harvey et al. suggest a union of rejections based test similar to the approach
adopted when there is uncertainty about the presence of a trend in the data. Their rule is to
reject the unit root null if either the detrended (demeaned) ADFGLS

t and the OLS detrended
(demeaned) ADF test rejects. Their study shows that in terms of both asymptotic and
finite sample behaviour the suggested procedure has properties similar to the optimal tests
suggested by Elliott and Müller (2006). This means that despite its simplicity the procedure
is extremely useful as a practical device for unit root testing.

In practical situations there will typically be uncertainty about both the initial condition
and the deterministic components when testing for a unit root. In a recent paper Harvey,
Leybourne, and Taylor (2012) provide a joint treatment of these two major problems based
on the approach suggested in their previous works.

6. Unit roots and structural breaks

In section 2.1 it was argued that when structural breaks are present in the time series,
they share features similar to unit root processes. This is most apparent when analyzing the
statistical properties of unit root tests in the presence of breaks. It follows from the work
of Perron (1989, 1990) that in such circumstances inference can be strongly misleading. For
instance, a deterministic level shift will cause α̂ from the augmented Dickey-Fuller regression
to be biased towards 1 and a change in the trend slope makes the estimator tend to 1 in
probability as the sample size increases. Thus, the DF test will indicate the presence of a
unit root even when the time series is stationary around the deterministic break component.
In fact, these problems concern most unit root tests including the tests belonging to the
Phillips-Perron class of tests, see Montañes and Reyes (1998, 1999). A practical concern
therefore is how to construct appropriate testing procedures for a unit root when breaks
occur and power against the break alternative is wanted. In practice, what is important is
to identify any major breaks in the data since these would otherwise give rise to the largest
power loss of unit root tests. Minor breaks are more diffi cult to detect in finite samples than
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large ones, but then they only lead to minor power reductions. Hence the importance of
focusing on "large" breaks.

6.1 Unit root testing accounting for a break at known date

Additive outlier breaks. The way unit root tests should be formulated under the break
hypothesis depends on the type of break considered. Also, it is crucial for the construction
of tests that both the null and alternative is permitted in the model specification with the
autoregressive root allowed to vary freely. Here we present variants of the Dickey-Fuller tests
where the breaks allowed for are those of Perron (1989, 1990) with a known single break date.
This corresponds to the models discussed in section 2.1.

First we consider breaks belonging to the additive outlier class. In this situation the
testing procedure relies on two steps. In the first step the series yt is detrended, and in
the second step an appropriately formulated augmented Dickey-Fuller test with additional
dummy regressors included is applied to the detrended series. For the additive outlier models
AOa−AOd the detrended series are obtained by regressing yt on all the relevant deterministic
terms that characterize the model. That is, the detrended series in the additive outlier model
with breaks in both the level and the trend, (model AOd), is constructed as

yt = µ̃1 + β̃t+ µ̃∗1DUt + β̃
∗
DTt + ỹt (26)

where the parameters are estimated by the least squares method and ỹt is the detrended
series. The detrended series for the other AO models are nested within the above detrending
regression by appropriate exclusion of irrelevant regressors for the particular model consid-
ered. The unit root null is tested via a Dickey-Fuller t−test of ỹt. For the additive outlier
model (AOc) (with DUt absent from (26)) the Dickey-Fuller regression is like (12) applied to
ỹt. For the remaining AO models which all include DUt as a deterministic component, the
auxiliary regression takes the form

ỹt = α̂ỹt−1 +
k−1∑
j=1

d̂j(1− L)DUt−j +
k−1∑
j=1

ĉj∆ỹt−j + et (t = k + 1, . . . , T ) (27)

where k can be selected according to the criteria previously discussed. Note however, that the
selection of k using theMAIC criterion can be affected by the presence of breaks and hence
other information criteria may by considered as well, see Ng and Perron (2001), Theorem
3. Observe that the inclusion of consecutive impulse dummy variables (1 − L)DUt−j is a
temporary level shift patch that is caused by the general dynamics of the model. From this
it can also be seen why this component is absent in the AOc model. It can be shown that
the null distribution of the Dickey-Fuller t-test from this regression will depend upon the
actual timing of the break date T1. If λ1 determines the in-sample fraction of the full sample
where the break occurs, i.e. λ1 = T1/T, then the distribution reads

tα(λ1)
d→
∫ 1

0
W d(r, λ1)dW (r)√∫ 1

0
W d(r, λ1)2dr

(28)

where W d(r, λ1) is a process which is the residual function from a projection of W (r) on the
relevant continous time equivalent of the deterministic components used to detrend yt, i.e.
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1, I(r > r1), r, I(r > λ1)(r − λ1) depending on the model. The relevant distributions (28)
are tabulated in Perron (1989, 1990). Critical values for the AOc case are reported in Perron
and Vogelsang (1993).

Innovation outlier breaks. The innovation outlier models under both the null and alter-
native hypotheses can all be encompassed in the model

yt = µ+ θDUt + βt+ γDTt + δ(1− L)DUt + αyt−1 +
k−1∑
j=1

ci∆yt−j + et. (29)

The regressors t and DTt are absent from the IOa. The IOb model does not contain DTt.
Under the null hypothesis α = 1 and for a components representation this would generally
imply that many of the coeffi cients of the deterministic components would equal zero, even
though these restrictions are typically not imposed when formulating tests. Note however,
that when there is in fact a level shift under the null, then δ 6= 0 whereas under the alternative
δ = 0 and the remaining coeffi cients will typically be nonzero. By construction, the Dickey-
Fuller t-statistic from this regression is invariant to the mean and trend as well as a possible
break in them, provided the break date is correct. The distribution of tα̂(λ1) is in this case
identical to that given in (28).

The tests of Perron with known break dates have been generalized and extended in a
number of directions. Saikkonen and Lütkepohl (2002) consider a class of the AO type of
models that allow for a level shift whereas Lütkepohl, Müller and Saikkonen (2001) consider
level shift models of the IO type. They propose a GLS-type detrending procedure and a
unit root test statistic which has a limiting null distribution that does not depend upon the
break date. Invariance with respect to the break date is a result of GLS detrending and
in fact the relevant distribution is that of Elliott et al. (1996) for the case with a constant
term included as a regressor in their model. This approach has been shown, see Lanne and
Lütkepohl (2002), to have better size and power than the test proposed by Perron (1990).

It is important to stress, however, that there are many ways of misspecifying break dates
and choosing an incorrect break model will affect inference negatively. The dates of possible
breaks are usually unknown unless they refer to particular historical or economic events.
Hence procedures for unit root testing when the break date is unknown are necessary. Such
procedures will be discussed next.

6.2 Unit root testing accounting for break at unknown date

For the tests of Perron (1989, 1990) to be valid, the break date should be chosen inde-
pendently of the given data and it has been argued by Christiano (1992) for instance that
treating the break date as fixed in many cases is inappropriate. In practical situations the
search and identification of breaks implies pretesting that will distort tests that use critical
values for known break date unit root tests. Of course this criticism is only valid if in fact a
search has been conducted to find the breaks. On the other hand, such a procedure despite
of having a correct size may result in power loss if the break date is given without pretest-
ing. When the break date is unknown Banerjee, Lumsdaine and Stock (1992) suggested to
consider a sequence of rolling or recursive tests and then use the minimal value of the unit
root test and reject the null if the test value is suffi ciently small. However, because such
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procedures will be based on sub-sampling it is expected (and proven in simulations) that
finite sample power loss will result.

Zivot and Andrews (1992) suggested a procedure which in some respects is closely linked
to the methodology of Perron (1989) whereas in other respects it is somewhat different. Their
model is of the IO type. For the IOd model they consider the auxiliary regression model

yt = µ+ θDUt + βt+ γDTt + αyt−1 +
k−1∑
j=1

ci∆yt−j + et (30)

which essentially is (29) leaving out (1−L)DUt as a regressor. The test that α = 1 is based
on the minimal value of the associated t−ratio, tα(λ1), over all possible break dates in some
range of the break fraction that is pre-specified, i.e. [ε, 1 − ε]. Typically one sets ε = 0.15
even though Perron (1997) has shown that trimming the break dates is unnecessary. The
resulting test statistic has the distribution

t∗α = inf
λ1∈[ε,1−ε]

tα(λ1)
d→ inf

λ1∈[ε,1−ε]

∫ 1

0
W d(r, λ1)dW (r)√∫ 1

0
W d(r, λ1)2dr

(31)

with W d(r, λ1) defined in section 6.1.
The analysis of Andrews and Zivot (1992) has been extended by Perron and Vogel-

sang (1992) and Perron (1997) for the non-trending and trending cases, respectively. They
consider both the IO and AO models based on the appropriately defined minimal value
t−statistic of the null hypothesis. They also consider using the test statistics tα(λ1) for the
case of known break date where the break date T1 is determined by maximizing the numer-
ically largest value of the t−statistic associated with the coeffi cient of the shift dummy DUt
(in case of a level shift) and DTt (in case of slope change). Regarding the IO model they also
consider using the regression (29) rather than (30) since this would be the right regression
with a known break date.

A problem with the tests that build upon the procedure of Zivot and Andrews (1992)
is that a break is not allowed under the null hypothesis of a unit root but only under the
alternative. Hence the deterministic components are given an asymmetric treatment under
the null and alternative hypotheses. This is a very undesirable feature, and Vogelsang and
Perron (1998) showed that if a unit root exists and a break occurs in the trend function the
Zivot and Andrews test will either diverge or will not be invariant to the break parameters.
This caveat has motivated Kim and Perron (2009) to suggest a test procedure which allows a
break in the trend function at unknown date under both the null and alternative hypotheses.
The procedure has the advantage that when a break is present, the limiting distribution of
the test is the same as when the break date is known, which increases the power whilst
maintaining the correct size.

Basically, Kim and Perron (2009) consider the class of models initially suggested by
Perron (1989) with the modification that a possible break date T1 is assumed to be unknown.
The models they address are the additive outlier models that allow for a non-zero trend
slope AOb, AOc and AOd, and the innovation outlier models associated with IOb and IOd,
that is, the models implying a level shift, changing growth, or a combination of the two.
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The IOc models are not considered since it is necessary to assume that no break occurs
under the null hypothesis which contradicts the purpose of the analysis. When T1 is an
unknown parameter it is diffi cult in practice to estimate the models because the form of the
regressors to be included is unknown. Notwithstanding, an estimate of the break date may
be considered. The idea is to consider conditions under which the distribution of tα(λ̂1) for
the additive outlier case, for instance, is the same as the distribution of tα(λ1) given in (28);
in other words, the limiting distribution of the Perron test is unaffected of whether the break
is known in advance or has been estimated and hence the critical values for the known break
date can be used. It turns out that such a result will depend upon the consistency rate of
the estimate of the break fraction and also whether or not there is a non-zero break occuring
in the trend slope of the model. Suppose that we have a consistent estimate λ̂1 = T̂1/T of
the break fraction such that

λ̂1 − λ1 = Op(T
−a) (32)

for some a ≥ 0. For the models AOc, AOd, and IOd with a non-zero break the distribution of
the unit root hypothesis for the estimated break date case is the same as the case of known
break date when λ̂1 − λ1 = op(T

−1/2). A consistent estimate of the break date is therefore
not needed, but the break fraction needs to be consistently estimated at a rate larger than√
T .
Kim and Perron (2009) consider a range of different estimators that can be used to

estimate the break fraction with different rates of consistency. They also suggest an estimator
using trimmed data whereby the rate of convergence can be increased. The reader is referred
to Kim and Perron’s (2009) paper for details.

So far we have assumed that a break in trend occurs under both the null and alternative
hypotheses. When there is no such break the asymptotic results will no longer hold because
the estimate of the break fraction will have a non-generate distribution on [0,1] under the
null. Hence a pre-testing procedure is needed to check for a break, see e.g. Kim and Perron
(2009), Perron and Yabu (2009a), Perron and Zhu (2005), and Harris et al. (2009). When
the outcome of such a test indicates that there is no trend break the usual Dickey-Fuller
class of tests can be used.

In the models with a level shift, i.e. models AOb and IOb, Kim and Perron (2009) show
that known break date asymptotics will apply as long as the break fraction is consistently
estimated. On the other hand, if the break happens to be large in the sense that the
magnitude of the break increases with the sample size, then a consistent estimate of the
break fraction is not enough and a consistent estimate of the break date itself is needed.

Our review of unit root tests with unknown break dates is necessarily selective. Con-
tributions not discussed here include Perron and Rodríguez (2003), Perron and Zhu (2005),
and Harris et al. (2009) among others. Harris et al. (2009) suggests a procedure that is
adequate when there is uncertainty about what breaks occur in the data. In so doing they
generalize the approaches discussed in sections 4.2 and 5 where there is uncertainty about
the trend or the initial condition.

There is also a large literature dealing with the possibility of multiple breaks in time
series that are either known or unknown. We will not discuss these contributions but simply
note that even though accounting for multiple breaks may give testing procedures with a
controllable size, the cost will typically be a power loss that can often be rather significant,
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see Perron (2006) for a review.

7. Unit root testing against nonlinear models

This section is dedicated to recent developments in the field of unit root tests against
stationary nonlinear models. Amongst the nonlinear models we consider (i) smooth transition
autoregressive (STAR) models and (ii) threshold autoregressive (TAR) models. The model
under validity of the null hypothesis is linear which is in conjunction with the majority of
the literature. A notable exception is Yildirim, Becker and Osborn (2009) who suggest to
consider nonlinear models under both, H0 and H1.

When smooth transition models are considered as an alternative to linear non-stationary
models one often finds the Exponential STAR (ESTAR) model to be the most popular one;
see, however, Eklund (2003) who considers the logistic version of the STAR model under
the alternative. In particular, a three-regime ESTAR specification is used in most cases.
The middle regime is nonstationary, while the two outer regimes are symmetric and mean-
reverting. A prototypical model specification is given by

∆yt = ρyt−1(1− exp(−γy2
t−1)) + εt , γ > 0, ρ < 0 ,

see Haggan and Ozaki (1981). Kapetanios, Shin and Snell (2003) prove geometric ergodicity
of such a model. A problem which is common to all linearity tests against smooth transition
models (including TAR and Markov Switching (MS) models) is the Davies (1987) problem.
Usually, at least one parameter is not identified under the null hypothesis, see Teräsvirta
(1994). As unit root tests also take linearity as part of the null hypothesis, this problem
becomes relevant here as well. The shape parameter γ is unidentified under H0 : ρ = 0. As
shown by Luukkonen, Saikkonen and Teräsvirta (1988), this problem can be circumvented by
using a Taylor approximation of the nonlinear transition function (1− exp(−γy2

t−1)) around
γ = 0. The resulting auxiliary test regression is very similar to a standard Dickey-Fuller test
regression, see Kapetanios et al. (2003):

∆yt = δy3
t−1 + ut .

The limiting distribution of the t-statistic for the null hypothesis of δ = 0 is nonstandard
and depends on functionals of Brownian motions. The popularity of the test by Kapetanios
et al. (2003) may stem from its ease of application. Regarding serially correlated errors,
Kapetanios et al. (2003) suggest augmenting the test regression by lagged differences, while
Rothe and Sibbertsen (2006) consider a Phillips-Perron-type adjustment. Another issue
is tackled in Kruse (2011) who proposes a modification of the test by allowing for non-
zero location parameter in the transition function. Park and Shintani (2005) and Kilic
(2011) suggest to deal with the Davies problem in a different way. Rather than applying a
Taylor approximation to the transition function, these authors consider an approach which
is commonly used in the framework of TAR models, i.e. a grid-search over the unidentified
parameters, see also below.

Adjustment of deterministic terms can be handled in a similar way as in the case of
linear alternatives. Kapetanios and Shin (2008) suggest GLS-adjustment, while Demetrescu
and Kruse (2012) compare also recursive adjustment and the MAX-procedure by Leybourne
(1995) in a local-to-unity framework. The findings suggest that GLS-adjustment performs

20



best in the absence of a non-zero initial condition. Similar to the case of linear models, OLS
adjustment proves to work best, when the initial condition is more pronounced. Another
finding of Demetrescu and Kruse (2012) is that a combination of unit root tests against
linear and nonlinear alternatives would be a successful (union-of-rejections) strategy.

The ESTAR model specification discussed above can be viewed as restrictive in the sense
that there is only a single point at which the process actually behaves like a random walk,
namely at yt−1 = 0. In situations where it is more reasonable to assume that the middle
regime contains multiple points, one may use a double logistic STAR model which is given
by

∆yt = ρyt−1(1 + exp(−γ(yt−1 − c1)(yt−1 − c2))−1 + εt , γ > 0, ρ < 0 ,

see Jansen and Terävirta (1996). Kruse (2011) finds that unit root tests against ESTAR
have substantial power against the double logistic STAR alternative although the power is
somewhat lower as against ESTAR models. Such a result is due to similar Taylor approx-
imations and suggests that a rejection of the null hypothesis does not necessarily contain
information about the specific type of nonlinear adjustment. This issue is further discussed
in Kruse, Frömmel, Menkhoff and Sibbertsen (2011).

Another class of persistent nonlinear models which permits a region of nonstationarity
is the one of Self-Exciting Threshold Autoregressive (SETAR) models. Regarding unit root
tests against three-regime SETAR models, important references are Bec, Salem and Carrasco
(2004), Park and Shintani (2005), Kapetanios and Shin (2006) and Bec, Guay and Guerre
(2008). Similar to the case of smooth transition models, the middle regime often exhibits a
unit root. Importantly, the transition variable is the lagged dependent variable yt−1 which is
nonstationary under the null hypothesis. In Caner and Hansen (2001), stationary transition
variables such as the first difference of the dependent variable are suggested. The TAR
model with a unit root in the middle regime is given by (we abstract from intercepts here
for simplicity)

∆yt = ρ1yt−11(yt−1 ≤ −λ) + ρ3yt−11(yt−1 ≤ λ) + εt .

The nonstationary middle regime with a is defined by ∆yt = εt for |yt−1| < λ. Stationarity
and mixing properties of a more general specification of the TAR model are provided in Bec
et al. (2004). Similar to the STAR model, the parameter λ is not identified under the null
hypothesis of a linear unit root process. In order to tackle this problem, sup-type Wald
statistics can be considered:

supW ≡ sup
λ∈[λT ,λ̄T ]

WT (λ)

A nuisance parameter free limiting distribution of the supLM statistic can be achieved
by choosing the interval [λT , λ̄T ] appropriately. The treatment of the parameter space for
λ distinguishes most of the articles. Seo (2008) for example suggests a test based on a
compact parameter space similar to Kapetanios and Shin (2006). The test allows for a
general dependence structure in the errors and uses the residual-block bootstrap procedure
(see Paparoditis and Politis 2003) to calculate asymptotic p-values. Comparative studies
are, amongst others, Maki (2009) and Choi and Moh (2007).
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8. Unit roots and other special features of the data

We have considered unit root testing for a range of different situations that may charac-
terize economic time series processes. Here we will briefly describe some other features of the
data that often occurs to be important for unit root testing. This non-exhaustible review
will include issues related to higher order integrated processes, the choice of an appropri-
ate functional form, the presence of heteroscedasticity, and unit root testing when economic
variables by their construction are bounded upwards, downwards, or both.

I(2) processes. So far we have addressed the unit root hypothesis implying that the
time series of interest is I(1) under the null hypothesis. There has been some focus in the
literature on time series processes with double unit roots, so-called I(2) processes. As seen
from equation (2) an I(1) process is driven by a stochastic trend component of the form∑t

j=1 εj. If, on the other hand, ut in (1) is I(2), then (1 − L)2ut = C(L)εt, and the series
can be shown to include a stochastic trend component of the form

t∑
k=1

k∑
j=1

εj = tε1 + (t− 1)ε2 + ...+ 3εt−2 + 2εt−1 + εt. (33)

As seen, a shock to the process will have an impact that tends to increase over time.
This may seem to be an odd feature but it is implied by the fact that (if the series is log
transformed) then shocks to the growth rates are I(1), and hence will persist, and this will
further amplify the effect on the level of the series when cumulated. In practice, testing for
I(2) is often conducted by testing whether the first differences of the series have a unit root
under the null hypothesis. This can be tested using the range of tests available for the I(1)
case. See for instance Haldrup (1998) for a review on the statistical analysis of I(2) processes.

Functional form. From practical experience researchers have learned that unit root
testing is often sensitive to non-linear transformations of the data. For instance, variables
expressed in logarithms are sometimes found to be stationary, whereas the same variables in
levels are found to be non-stationary. Granger and Hallman (1991) addressed the issue of
appropriate non-linear transformations of the data and developed a test for unit roots that
is invariant to monotone transformations of the data such as y2

t , y
3
t , |yt|, sgn(yt), sin(yt), and

exp(yt). Franses and McAleer (1998) developed a test of nonlinear transformation to assess
the adequacy of unit root tests of the augmented Dickey-Fuller type. They considered the fol-
lowing generalized augmented Dickey-Fuller regression (ignoring deterministic components)
of a possibly unknown transformation of yt

yt(δ) = αyt−1(δ) +

k−1∑
j=1

γj∆yt−j(δ) + vtk (t = k + 1, . . . , T ) (34)

where yt(δ) denotes the transformation of Box and Cox (1964) given by

yt(δ) = (yδt − 1)/δ δ 6= 0, yt ≥ 0
= log yt(δ) δ = 0, yt > 0.

(35)

For this model Franses and McAleer (1998) considered the null hypothesis of a unit root
for some assumed value of the Box-Cox parameter δ, but without estimating the parameter
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directly. Based on a variable addition test they showed how the adequacy of the transfor-
mation could be tested. Fukuda (2006) suggested a procedure based on information criteria
to jointly decide on the unit root hypothesis and the transformation parameter.

Bounded time series. Many time series in economics and finance are bounded by con-
struction or are subject to policy control. For instance the unemployment rate and budget
shares are variables bounded between zero and one and some variables, exchange rates for
instance, may be subject to market intervention within a target zone. Conventional unit root
tests will be seriously affected in this situation. Cavaliere (2005) showed that the limiting
distributions in this case will depend upon nuisance parameters that reflect the position of
the bounds. The tighter bounds, the more will the distribution be shifted towards the left
and thus bias the standard tests towards stationarity. Only when the bounds are suffi ciently
far away will conventional unit root tests behave according to standard asymptotic theory.
Cavaliere and Xu (2011) have recently suggested a testing procedure for augmented Dickey-
Fuller tests and the autocorrelation-robust M−tests of Perron and Ng (1996) and Ng and
Perron (2001) even though in principle the procedure can be used for any commonly used
test.

The processes considered by Cavaliere and Xu (2011) behave like random walks but are
bounded above, below or both; see also Granger (2010). The time series xt is assumed to
have (fixed) bounds at b, b, (b < b), and is a stochastic process xt ∈ [b,b] almost surely for all
t. This means that the increments∆xt necessarily have to lie in the interval [b−xt−1,b−xt−1].
Rewrite the process in the following form

xt = µ+ yt (36)

yt = αyt−1 + ut, α = 1

where ut is further decomposed as

ut = εt + ξ
t
− ξt. (37)

Furthermore, εt is a weakly dependent zero-mean unbounded process and ξt, ξt are non-
negative processes satisfying

ξ
t
> 0 for yt−1 + εt < b− θ

ξt > 0 for yt−1 + εt > b− θ. (38)

A bounded I(1) process xt will revert because of the bounds. When it is away from the
bounds it behaves like a unit root process. When being close to the bounds the presence of
the terms ξ

t
and ξt will force xt to lie between b and b. In the stochastic control literature,

see Harrison (1985), the stochastic terms ξ
t
and ξt are referred to as "regulators".

To derive the appropriate asymptotic distributions of the augmented Dickey-Fuller test
and the M−tests defined in sections 3.2 and 3.4 Cavaliere and Xu (2011) relate the position
of the bounds b and b (relative to the location parameter θ) to the sample size T as (b −
θ)/(λT 1/2) = c + o(1) and (b − θ)/(λT 1/2) = c + o(1) where c ≤ 0 ≤ c, c 6= c. It occurs
that the parameters c and c will appear as nuisance parameters in the relevant asymptotic
distributions expressed in terms of a regulated Brownian motion W (r; c, c), see Nicolau
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(2002). When the bounds are one-sided c = −∞ or c = ∞ and when there are no bounds
W (r; c, c) → W (r) for c → −∞ and c → ∞. Hence the usual bounds-free unit root
distributions will apply as a special case.

The lesson to be learned from the analysis is that standard unit root inference is affected
in the presence of bounds. If the null hypothesis is rejected on the basis of standard critical
values, it is not possible to assess whether this is caused by the absence of a unit root
or by the presence of the bounds. On the other hand, the nonrejection of the unit root
hypothesis is very strong evidence for the null hypothesis under these circumstances. To
provide valid statistical inference, Cavaliere and Xu (2011) suggest a testing procedure based
on first estimating the nuisance parameters c and c. Based on these estimates, they suggest
simulating the correct asymptotic null distribution from which the asymptotic p−value of
the unit root test can be inferred. In estimating the nuisance parameters c and c they define
the consistent estimators

ĉ =
b− x0

ω̂2
ART

1
2

, ĉ =
b− x0

ω̂2
ART

1
2

(39)

where b and b are assumed known in advance and ω̂2
AR is defined in (18). We will refer

to Cavaliere and Xu (2011) for details about the algorithm that can be used to simulate
the Monte Carlo p-values of the tests. In their paper they also suggest how heteroscedastic
shocks can be accounted for. When the bounds b and b are unknown there are various ways to
proceed. For instance the bounds can sometimes be inferred from historical observations or
one can conduct a more formal (conservative) testing procedure by taking the minimum of the
simulation-based p-values over a grid of admissible bound locations. In a different context,
Lundbergh and Teräsvirta (2006) suggest a procedure for estimating implicit bounds, such
as inoffi cial exchange rate target zones inside announced ones, should they exist.

Non-constant volatility. It is generally believed that (mild) heteroscedasticity is a minor
issue in unit root testing because the tests allow for heterogenous mixing errors, see e.g. Kim
and Schmidt (1993). This applies for the range of tests based on the Phillips-Perron type
of unit root tests including the M−class of tests, mainly because they are derived in a non-
parameteric setting. But actually the parametric counterparts like the augmented (Said)
Dickey-Fuller tests are robust to some form of heteroscedasticity. Notwithstanding, when
volatility is non-stationary the standard unit root results no longer apply. Non-stationary
volatility may occur for instance when there is a single or multiple permanent breaks in the
volatility process, a property that seems to characterize a wide range of financial time series
in particular. Cavaliere (2004) provides a general framework for investigating the effects of
permanent changes in volatility on unit root tests.

Some attempts have been made in the literature to alleviate the problems with non-
stationary volatility. Boswijk (2001) for instance has proposed a unit root test for the case
where volatility is following a nearly integrated GARCH(1,1) process. Kim et al. (2002)
consider the specific case of of a single abrupt change in variance and suggest a procedure
where the breakpoint together with the pre- and post-break variances are first estimated.
These are then employed in modified versions of the Phillips-Perron unit root tests. The
assumption of a single abrupt change in volatility is, however, not consistent with much
empirical evidence which seems to indicate that volatility changes smoothly and that multiple
changes in volatility are common when the time series are suffi ciently long, see e.g. van Dijk
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et al. (2002) and Amado and Teräsvirta (2012).
Cavaliere and Taylor (2007) propose a methodology that accomodates a fairly general

class of volatility change processes. Rather than assuming a specific parametric model for
the volatility dynamics they only require that the variance is bounded and implies a count-
able number of jumps and hence allow both smooth volatility changes and multiple volatility
shifts. Based on a consistent estimate of the so-called variance profile they propose a numer-
ical solution to the inference problem by Monte Carlo simulation to obtain the approximate
quantiles from the asymptotic distribution of the M−class of unit root tests under the null.
Their approach can be applied to any of the commonly used unit root tests. We refer to the
paper by Cavaliere and Taylor (2007) for details about the numerical procedure. Finally,
bootstrap tests for a unit root under non-stationary volatility have been suggested by Chang
and Park (2003), Park (2003), Cavaliere and Taylor (2007, 2008, 2009) among others.

9. Empirical illustration

To illustrate different approaches and methodologies discussed in this survey we conduct
a small empirical analysis using four macroeconomic time series and a selected number of
the tests presented. The time series are the monthly secondary market rate of the 3-month
US Treasury bill (T-bill, henceforth) from 1938:1 to 2011:11 (935 observations), the monthly
US civilian unemployment rate from 1948:1 to 2011:11 (767 observations), the monthly US
CPI inflation from 1947:2 to 2012:1 (780 observations) and the quarterly log transformed US
real GDP from 1947:1 to 2011:7 (259 observations). The series are depicted in Figure 1.
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Figure 1. Four macroeconomic time series. The 3-month US T-bill rate (upper left), the log-
transformed US real GDP (upper right), the US unemployment rate (lower left) and the US inflation
(lower right), respectively. Source: Federal Reserve Economic Data, Federal Reserve Bank of St.
Louis, http://research.stlouisfed.org/fred2/.
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The individual characteristics of the series look fundamentally different. The log real
GDP series has a practically linear deterministic trend, the unemployment rate is a bounded
variable, and the inflation rate series contains sharp fluctuations. Estimation of ARMA
models (not reported) show that especially the model for the inflation rate series has a
strong negative moving average component, thus suggesting that standard ADF and Z tests
may suffer from severe size distortions when applied to this series, see e.g. Perron and Ng
(1996).

We implement six different tests using both dt = 1 and dt = (1, t)′ as deterministic
components. These are the trinity of GLS demeaned/detrended tests ADFGLS

t , ZGLS
tα , and

MZGLS
tα defined in section 3 where the lag length k is selected using the MAIC with OLS

demeaned/detrended data to avoid power reversal problems, see Perron and Qu (2007). The
standard ADFt, Ztα and MZtα tests are based on the long autoregression in (23) using the
same k. While Harvey, Leybourne and Taylor (2009) only consider a union of rejection (UR)
strategies for ADFGLS

t , our conjecture is that similar procedures may be defined for the five
remaining tests and results from these are reported as well. The results of full sample unit
root tests are presented in Table 1.

Full Sample Unit Root Testing
3-Month T-bill Log Real GDP

dt = 1 dt = (1, t)′ UR dt = 1 dt = (1, t)′ UR
ADF -2.06 -1.77 -1.77 -1.93 -1.45 -1.45
ADFGLS -1.43 -1.86 -1.86 3.52 -1.05 -1.05
Ztα -2.02 -2.01 -2.01 -0.17 -1.71 -1.71
ZGLS
tα -1.73∗ -2.10 -1.73∗ -0.19 -1.59 -1.59

MZtα -2.01 -2.01 -2.01 -0.17 -1.71 -1.71
MZGLS

tα -1.73∗ -2.09 -1.73∗ -0.19 -1.59 -1.59
Unemployment Rate Inflation

dt = 1 dt = (1, t)′ UR dt = 1 dt = (1, t)′ UR
ADF -2.33 -2.56 -2.33 -11.4∗∗∗ -11.4∗∗∗ -11.4∗∗∗

ADFGLS -1.06 -2.43 -2.43 -2.61∗∗∗ -12.5∗∗∗ -2.61∗∗∗

Ztα -2.55 -2.97 -2.97 -16.31∗∗∗ -16.24∗∗∗ -16.31∗∗∗

ZGLS
tα -1.55 -2.86∗ -2.86∗ -9.06∗∗∗ -23.75∗∗∗ -9.06∗∗∗

MZtα -2.55 -2.97 -2.97 -13.72∗∗∗ -13.64∗∗∗ -13.72∗∗∗

MZGLS
tα -1.55 -2.86∗ -2.86∗ -4.45∗∗∗ -22.68∗∗∗ -4.45∗∗∗

Table 1: Unit root testing of four macroeconomic time series. (∗), (∗∗) and (∗∗∗) denotes significance at
a 10%, 5% and 1% level, respectively, based on the critical values from Fuller (1996) for the standard case
and from Ng and Perron (2001) for the GLS detrended case.

Several interesting observations can be made from results in Table 1. First, α = 1
is clearly rejected for inflation, but the relative (negative) magnitude of the test statistics
show the distortions due to a negative moving average component on standard ADF and Z
tests. Second, it seems that the correction factor used in the construction of the MZ tests
is often negligible, which may well be the result of large sample sizes and strongly consistent
estimates of the unit root in the test regressions: often α̂ ≈ 0.99. Finally, we are likely to see
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an increase in the asymptotic power of the GLS demeaning/detrending procedure applied to
the 3-month T-bill and unemployment series since only ZGLS

tα and MZGLS
tα reject α = 1 at

the 10% level. Before dismissing a unit root for unemployment it should be noted, however,
that the critical values must be altered to reflect the bounds of b = 0 and b̄ = 100. Because
critical values are becoming numerically larger in this case, a consequence of this is that the
unit root hypothesis cannot be rejected at 1% and 5% levels of significance.

9.1 Unit root testing in the recent financial crises

Figure 1 shows that we may have to be concerned with several structural breaks in each
series. Nevertheless, for ease of exposition, we shall only treat the sample starting from
1990:1, and we assume that there is a known break in the series caused by the most recent
financial crises. We do not analyze inflation, since α = 1 is clearly rejected even in the
presence of structural breaks. For both the 3-month T-bill and unemployment series, we let
T1 correspond to 2008:9, such that λ1 ≈ 0.85. Similarly, for the real GDP T1 corresponds to
2009:1, implying λ1 ≈ 0.89, since the decline in output seems to occur later corresponding
to one quarter.

To emphasize the importance of correcting for a structural break in mean, we consider
standard ADF, Z, andMZ tests based on the AOa and AOb models. The ADFt test is based
on the auxiliary regression (27), whereas the Zt and MZt tests, following Perron (1990) and
Perron and Vogelsang (1992a), are based on the estimate α̂ from

ỹt = α̂ỹt−1 + d̂(1− L)DUt + εt,

where (27) is used to estimate the long run variance ω̂2
AR. We use AIC to select k, since,

as argued in section 6.1, it is unclear what the implications of structural breaks are on the
MAIC criterion in finite samples. Table 2 shows the three unit root tests both with and
without accounting for a structural break.

Subsample Unit Root Testing both with and without Structural Breaks
3-Month T-bill Log Real GDP Unemployment Rate

No Breaks dt = 1 dt = (1, t)′ UR dt = 1 dt = (1, t)′ UR dt = 1 dt = (1, t)′ UR
ADF -1.44 -1.79 -1.79 - -0.453 -0.453 -0.783 -0.955 -0.955
Ztα -0.969 -1.88 -1.88 - -1.43 -1.43 -1.26 -1.47 -1.47
MZtα -0.969 -1.87 -1.87 - -1.42 -1.42 -1.26 -1.46 -1.46

3-Month T-bill Log Real GDP Unemployment Rate
Breaks dt = 1 dt = (1, t)′ UR dt = 1 dt = (1, t)′ UR dt = 1 dt = (1, t)′ UR
ADF -2.96∗ -3.21 -2.96∗ - -3.20 -3.20 -1.40 -3.25 -3.25
Ztα -3.05∗ -4.13∗∗ -4.13∗∗ - -3.22 -3.22 -2.24 -3.16 -3.16
MZtα -3.04∗ -4.13∗∗ -4.13∗∗ - -3.15 -3.15 -2.22 -3.16 -3.16

Table 2: Unit root testing of three macroeconomic time series both with and without structural breaks.
(∗), (∗∗) and (∗∗∗) denote significance at a 10%, 5% and 1% level, respectively, based on the critical values
from Fuller (1996, Appendix 10.A) for the standard case and from Perron (1989, 1990) for the cases with
breaks.
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It follows from Table 2 that without accounting for a structural break caused by the
financial crises, we accept α = 1 for all series. However, by allowing for the structural break,
we are able to reject α = 1 for the 3-month T-bill series, while the values of the test statistics
for both the real GDP and unemployment are fairly close to the critical values at a 10%
level. While this small analysis is conducted under the simplifying and strong assumption of
a single known break, it illustrates the importance of accounting for structural breaks when
statistical properties of persistent and trending time series are considered.

10. Conclusion

This paper has provided a selective review of the literature on testing for a unit root. As
seen, the field has grown in numerous different directions. New tests have been developed
over time to improve power and size properties of previous tests, and testing methodologies
and procedures have been extended and modified to allow for an increasing complexity of
models with breaks and non-linearities.

Unfortunately, there are many topics that we had to exclude from the exposition even
though these areas deserve equal mention. For instance, the use of bootstrap methods for
unit root testing in situations where standard assumptions are likely to fail has become a
rapidly developing research area during the past decade or so and there still seems to be
a potential for new results in this area, see e.g. Cavaliere and Taylor (2007, 2008, 2009),
Chang and Park (2003), Paparoditis and Politis (2003), and Park (2003) among others.

Another topic concerns testing when the hypothesis being tested is reversed, i.e. the
null of stationarity is tested against the alternatively of a unit root, see e.g. Kwiatkowski,
Phillips, Schmidt, and Shin (1992).

In the review of tests for a unit root in the presence of structural breaks it has either been
assumed that the break date was known or could be estimated consistently at a suffi ciently
fast rate. However, this is not always the case and testing for (possibly multiple) breaks in a
time series is a separate research area which has attracted a lot of attention. See for instance
Perron (2006) for a review and Kejriwal and Perron (2010), and Perron and Yabu (2009a,b)
for recent contributions.

Finally, we would like to mention the fractional unit root literature where the order of
differencing is fractional rather than being integer valued. Fractionally integrated processes
have autocorrelations that die out at a slow hyperbolic rate and hence are often referred to as
being long memory. Baillie (1996) provided an early review of this literature but since then
the field has grown tremendously. Velasco (2006) provides a recent review of semiparametric
estimators of long memory models. More recently there has been an increased focus on
how fractional integration and long memory interfere with persistent components caused
by structural breaks or non-linearities, see e.g. Diebold and Inoue (2001), Perron and Qu
(2010), and Varneskov and Perron (2011). Hence the known problems of discriminating a
unit root from structural break models equally apply to fractional long memory models.
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