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Abstract

This paper presents a goodness-of-fit test for the volatility function of a SDE driven
by a Gaussian process with stationary and centered increments. Under rather weak
assumptions on the Gaussian process, we provide a procedure for testing whether
the unknown volatility function lies in a given linear functional space or not. This
testing problem is highly non-trivial, because the volatility function is not identifiable
in our model. The underlying fractional diffusion is assumed to be observed at high
frequency on a fixed time interval and the test statistic is based on weighted power
variations. Our test statistic is consistent against any fixed alternative.

Keywords: central limit theorem, goodness-of-fit tests, high frequency observa-
tions, fractional diffusions, stable convergence.

JEL Classification: C10, C13, C14.

1 Introduction

In this paper we consider a stochastic differential equation

dXt = a(t,Xt)dt+ σ(t,Xt)dGt, X0 = x ∈ R,

driven by a Gaussian process (Gt)t≥0 with stationary and centered increments. Our aim is
to derive a goodness-of-fit test for the volatility function σ2 : [0, 1]×R→ R+ on the basis
of discrete high frequency observations Xi∆n , i = 0, . . . , [1/∆n], of the path (Xt)t∈[0,1].
The notion of high frequency refers to the infill asymptotics setting, i.e. ∆n → 0. More
precisely, we will propose a procedure for testing whether the unknown volatility function
σ2 lies in a linear subspace generated by given volatility functions σ2

k : [0, 1] × R → R+,
1 ≤ k ≤ d.
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This type of goodness-of-fit testing has been studied in the literature for the case of
classical diffusions that are driven by a standard Brownian motion (see e.g. [6]; we also
refer to [1] for similar testing problems under a different sampling scheme). Compared to
the classical case, we will have to deal with additional non-trivial theoretical challenges.
First of all, under our mild assumptions on the driving Gaussian process G, the volatility
function σ2 is not identifiable. This fact can be easily seen by observing that a multi-
plication of the volatility function σ2 by a constant can not be distinguished from the
multiplication of G by the same constant. Secondly, the resulting test statistic should
be robust to the presence of the drift process a (i.e. the limit theory should not depend
on a), because the drift a can not be estimated on a fixed time interval [0, 1]. The third
theoretical problem is coming from the fact that the (stable) central limit theorems for
usual power variation statistics, which will be the main tool for hypothesis testing, only
hold for a subrange of smoothness parameters of G, while we would like to obtain a valid
testing procedure for all smoothness parameters of G.

Our test statistic is a function of various weighted power variations based on the second
order differences of X. Higher order differences is a key instrument for obtaining valid
central limit theorems for all smoothness parameters of G, but more importantly they
also insure the robustness to the drift process a (in contrast to the first order differences).
The second crucial issue of our test statistic is the self-scaling property, which makes it
independent of the unknown variance of dGt. This solves the non-identifiability problem
that we mentioned above.

Our paper is organised as follows. In section 2 we present the main assumptions on the
processes a, σ2 and G, which ensure the existence of the unique solution of the above SDE
and the validity of the asymptotic results. In section 3 we explain the testing problem and
construct a distance measure, which enables us to make statistical decisions. In section 4
we derive our test statistic and show its asymptotic mixed normality. Section 5 is devoted
to proofs.

2 Model and assumptions

We consider a one-dimensional fractional diffusion model of the form

Xt = x+

∫ t

0
a(s,Xs)ds+

∫ t

0
σ(s,Xs)dGs, t ∈ [0, 1], (2.1)

defined on a probability space (Ω,F ,P) with x ∈ R. Here the function a : [0, 1] × R →
R represents the drift, σ : [0, 1] × R → R is the non-vanishing volatility function and
G = (Gt)t∈[0,1] is a Gaussian process with stationary and centered increments. To ensure
the existence of the second integral in (2.1) (in the Riemann-Stieltjes sense) we need to
assume that the process G is Hölder continuous of order bigger than 1/2. More precisely,
we impose structural assumptions on the covariance kernel of the Gaussian driver G. Let
R denote the variance function of the increments of G, i.e.

R(t) = E[|Gt+s −Gs|2], t ≥ 0, (2.2)
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which is independent of s sinceG has stationary increments. Below, the functions LR, LR(4) :
R>0 → R are assumed to be continuous and slowly varying at 0, f (k) denotes the k-th
derivative of a function f and H ∈ (1/2, 1). We assume that the following conditions are
satisfied:

(i) R(t) = t2HLR(t).

(ii) R(4)(t) = t2H−4LR(4)(t).

(iii) There exists a constant b ∈ (0, 1) such that

lim sup
x→0

sup
y∈[x,xb]

∣∣∣LR(4)(y)

LR(x)

∣∣∣ <∞.
We remark that condition (i) implies that G is Hölder continuous of all orders smaller
than H ∈ (1/2, 1). Of course, the whole set of conditions is not required to guarantee the
existence of a unique solution of the SDE (2.1), but we do require assumptions (i)-(iii) for
the central limit theorems that are presented in section 4 (cf. [3]). Notice that condition
(i) indicates that the local behaviour of the Gaussian process G is similar to the local
behaviour of the fractional Brownian motion with Hurst parameter H ∈ (1/2, 1). This
fact will be reflected in the central limit theorems presented in section 4.

Now, the results of [9] imply the existence of a unique solution of the SDE (2.1), where
the second integral in (2.1) is defined pathwise in the Riemann-Stieltjes sense, given the
following set of conditions is satisfied:

(iv) The function a(t, ·) is Lipschitz, uniformly in t ∈ [0, 1]. The function a(·, x) is Hölder
continuous of order γ ≥ H, uniformly in x ∈ R. Furthermore, it satisfies the growth
condition

|a(t, x)| ≤ C|x|+ a0(t)

for some C > 0 and a0 ∈ Lp([0, 1]) for some p > 1
1−H .

(v) The function σ(t, ·) is Lipschitz, uniformly in t ∈ [0, 1], and σ is continuously dif-
ferentiable in x. Furthermore, there exist constants 0 < α, β ≤ 1 with β > 1/2 and
α > 1

H − 1 such that: (a) ∂
∂xσ(t, ·) is locally Hölder continuous of order α, uniformly in

t ∈ [0, 1], (b) σ(·, x) and ∂
∂xσ(·, x) are Hölder continuous of order β, uniformly in x ∈ R.

The assumptions (iv) and (v) include some conditions that are required to prove our
asymptotic results; hence, they are slightly stronger than considered in [9]. Furthermore,
under conditions (iv)-(v), the unique solution of (2.1) satisfies

X ∈ C1−δ([0, 1]) a.s., (2.3)

for any δ ∈ (1−H,min{1
2 , α,

β
1+β}) (see again [9]). Throughout this paper we assume that,

for any k ∈ N and any t1, . . . , tk > 0, the random vector (Xt1 , . . . , Xtk) has a Lebesgue
density. This technical conditions ensures the invertibility of the matrices Σ and Σn defined
by (3.6) and (4.3), respectively.
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3 The test problem

We assume that the process X defined in (2.1) is observed at time points ti = i∆n, i.e.
the high frequency observations

X0, X∆n , X2∆n , . . . , X∆n[1/∆n]

are given and ∆n → 0. For d ≥ 1, let σ2
1, . . . , σ

2
d : [0, 1]× R→ R be known functions that

satisfy the assumption (v) from section 2. We assume that the functions σ2
1, . . . , σ

2
d are

linearly independent on the sets of the form [0, 1] × [a, b], for all a < b, and denote by V
the vector space generated by σ2

1, . . . , σ
2
d, i.e.

V = span{σ2
1, . . . , σ

2
d}. (3.1)

Our main aim is to decide, on the basis of the underlying observations Xi∆n , whether the
unknown volatility function σ2 is a linear combination of the known functions σ2

1, . . . , σ
2
d.

More precisely, the null hypothesis is given by

H0 : σ2(t,Xt) =
d∑

k=1

λkσ
2
k(t,Xt) for some λk’s and a.s. all t ∈ [0, 1], (3.2)

while the alternative is defined as the complement hypothesis. We remark that any possi-
ble test procedure can only give pathwise conclusions. For instance, when H0 holds for the
observed path X(ω) it does not mean that it remains true for a different path X(ω′). Fur-
thermore, H0 does not imply the identity σ2(t, x) =

∑d
k=1 λkσ

2
k(t, x) for some (λ1, . . . , λd)

and a.s. all (t, x) ∈ [0, 1]× R.

Our test procedure will be based on the estimation of the L2-distance between the
vector space V and the volatility function σ2. For this purpose we introduce the following
random scalar product: for any functions f, g : [0, 1]× R→ R we define

〈f, g〉 :=

∫ 1

0
f(s,Xs)g(s,Xs)ds. (3.3)

We also set ‖f‖ :=
√
〈f, f〉 and denote by ‖V− f‖ the distance between the vector space

V and the function f , i.e.

‖V− f‖ := inf{‖v − f‖ : v ∈ V}.

Now, we can reformulate the null hypothesis and the alternative as

H0 : ‖V− σ2‖ = 0, H1 : ‖V− σ2‖ > 0, (3.4)

where the vector space V is defined in (3.1). The standard arguments from the Hilbert
space theory imply the identity

‖V− σ2‖2 = ‖σ2‖2 −
(
〈σ2

1, σ
2〉, . . . , 〈σ2

d, σ
2〉
)

Σ−1
(
〈σ2

1, σ
2〉, . . . , 〈σ2

d, σ
2〉
)?
, (3.5)

Σ =
(
〈σ2
k, σ

2
l 〉
)

1≤k,l≤d
, (3.6)
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where v? denotes the transpose of the vector v. In contrast to the work of [6], who followed
a similar approach for the goodness-of-fit testing for classical diffusions (that are driven by
a Brownian motion), the distance measure ‖V−σ2‖2 is not the right quantity to estimate
in the fractional diffusion case. The main reason lies in the fact that the objects ‖σ2‖ and
〈σ2
k, σ

2〉, 1 ≤ k ≤ d, can not be identified, because our assumptions are not sufficient to
fully identify the variance function R. In order to obtain a feasible estimator, we define a
self-scaling measure T ≥ 0 as

T =
‖V− σ2‖2

‖σ2‖2
, (3.7)

which turns out to be a crucial transformation of the original distance measure ‖V− σ2‖.
We will see that the random measure T can be consistently estimated without a precise
knowledge of the function R. We also have the appealing property

0 ≤ T ≤ 1,

which describes the deviation from the null hypothesis T = 0 in percent (in contrast, it is
not clear when the quantity ‖V− σ2‖ can be identified as small).

Remark 3.1 For the simple case d = 1, σ2
1 = 1, which corresponds to the homoscedas-

ticity testing, we obtain the identity

T = 1−

( ∫ 1
0 σ

2(s,Xs)ds
)2

∫ 1
0 σ

4(s,Xs)ds
.

2

4 The testing procedure

In this section we construct a consistent, asymptotically mixed normal, estimator Tn of
the random variable T defined in (3.7). Our plan is to construct empirical analogues
of the quantities ‖σ2‖2 , 〈σ2

k, σ
2〉, 〈σ2

k, σ
2
l 〉, 1 ≤ k, l ≤ d, prove their asymptotic mixed

normality and apply the delta-method. In the high frequency setting (weighted) power
variations based on increments of Xi∆n −X(i−1)∆n

are known to be consistent estimators
of integrated powers of volatility. However, in our framework of fractional diffusions, it
makes more sense to use higher order differences. We set

∆n
i,2X = Xi∆n − 2X(i−1)∆n

+X(i−2)∆n
, τ2

n = E[|∆n
i,2G|2].
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The empirical analogues of ‖σ2‖2 , 〈σ2
k, σ

2〉, 〈σ2
k, σ

2
l 〉, 1 ≤ k, l ≤ d, are defined as

‖σ2‖2n =
∆n

3τ4
n

[1/∆n]∑
i=2

|∆n
i,2X|4, (4.1)

〈σ2
k, σ

2〉n =
∆n

τ2
n

[1/∆n]∑
i=2

σ2
k,(i−2)∆n

|∆n
i,2X|2,

〈σ2
k, σ

2
l 〉n = ∆n

[1/∆n]∑
i=0

σ2
k,i∆n

σ2
l,i∆n

,

where we use a shorthand notation σ2
k,s = σ2

k(s,Xs). In our setting using second order
differences has the following crucial advantages: (a) The central limit theorem presented
below holds for all H ∈ (1/2, 1) while it would hold only for H ∈ (1/2, 3/4) if we would
use the standard increments of X; this effect of higher order differences is known in the
literature in the pure Gaussian framework (see e.g. [8]), (b) More importantly, the central
limit theorem is not influenced by the presence of the drift function a, which would not
be true in the case of the standard increments of X (this is a less known fact).

Finally, we define

Tn =
‖σ2‖2n −

(
〈σ2

1, σ
2〉n, . . . , 〈σ2

d, σ
2〉n
)

Σ−1
n

(
〈σ2

1, σ
2〉n, . . . , 〈σ2

d, σ
2〉n
)?

‖σ2‖2n
, (4.2)

Σn =
(
〈σ2
k, σ

2
l 〉n
)

1≤k,l≤d
. (4.3)

Remark 4.1 The statistics defined in (4.1) are not feasible, because the normalising
constant τn is unknown! However, it is easy to see that the test statistic Tn is feasible due
to the self-scaling property. For instance, when d = 1 and σ2

1 = 1 we obtain the identity

Tn = 1−
3
(

∆n
∑[1/∆n]

i=2 |∆n
i,2X|2

)2

∆n
∑[1/∆n]

i=2 |∆n
i,2X|4

,

which obviously does not depend on the unknown constant τn. 2

As it has been mentioned in e.g. [5], under the assumption (i) of section 2, it holds that

corr(∆n
1,2G,∆

n
1+j,2G)→ ρ(j) =

−(j + 2)2H + 4(j + 1)2H − 6j2H + 4|j − 1|2H − |j − 2|2H

2
(

4− 22H
) ,

as n → ∞, and ρ = ρH is the correlation function of the second order fractional noise
(∆n

i,2B
H)i≥1 with Hurst parameter H. Notice that |ρ(j)| ∼ j2H−4 as j → ∞, which

implies that
∑∞

j=1 |ρ(j)| <∞ for all H ∈ (1/2, 1).
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In the next theorem we demonstrate a multivariate stable central limit theorem. Recall
that a sequence of random variables Yn on (Ω,F ,P) converges stably in law towards Y

(Yn
st−→ Y ), which is defined on the extension (Ω′,F ′,P′) of the original probability space

(Ω,F ,P), iff
lim
n→∞

E[f(Yn)Z] = E′[f(Y )Z]

for all bounded random variables Z and all bounded, continuous functions f (see e.g. [2]
for more details). We call Y mixed normal with mean 0 and conditional covariance matrix
V (Y = MN(0, V )) when, conditionally on F , Y has a normal distribution with mean 0
and covariance matrix V . The next results mainly follow from the theory presented in [3],
[4] and [5].

Theorem 4.2 Assume that the conditions (i)-(v) from section 2 hold. Then we obtain
the convergence

‖σ2‖2n
P−→ ‖σ2‖2, 〈σ2

k, σ
2〉n

P−→ 〈σ2
k, σ

2〉, 〈σ2
k, σ

2
l 〉n

P−→ 〈σ2
k, σ

2
l 〉. (4.4)

Furthermore, we deduce the stable convergence

∆−1/2
n


‖σ2‖2n − ‖σ2‖2

〈σ2
1, σ

2〉n − 〈σ2
1, σ

2〉
...

〈σ2
d, σ

2〉n − 〈σ2
d, σ

2〉

 st−→MNd+1

(
0,

∫ 1

0
Vsds

)
, (4.5)

where Vs ∈ R(d+1)×(d+1) is a symmetric matrix defined as

V 11
s = αHσ

8
s ,

V 1,k+1
s = βHσ

2
k,sσ

6
s , 1 ≤ k ≤ d,

V k+1,l+1
s = γHσ

2
k,sσ

2
l,sσ

4
s , 1 ≤ k, l ≤ d,

and the constants αH , βH and γH are given by

αH =
1

9

(
96 +

∞∑
k=1

{48ρ4(k) + 144ρ2(k)}
)
,

βH =
1

3

(
12 + 24

∞∑
k=1

ρ2(k)
)
,

γH = 2 + 4

∞∑
k=1

ρ2(k).

Finally, it holds that

∆−1/2
n (Σn − Σ)

P−→ 0. (4.6)
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Now, we want to apply the delta-method. For an invertible matrix A ∈ Rd×d and x ∈ Rd+1,
we define the function

g(x;A) :=
x1 − (x2, . . . , xd+1)A−1(x2, . . . , xd+1)?

x1
.

Then the identity

Tn − T = g(‖σ2‖2n, 〈σ2
1, σ

2〉n, . . . , 〈σ2
d, σ

2〉n; Σn)

− g(‖σ2‖2, 〈σ2
1, σ

2〉, . . . , 〈σ2
d, σ

2〉; Σ)

holds. Notice that the matrices Σ and Σn are invertible a.s., because the functions
σ2

1, . . . , σ
2
d are linearly independent on the sets of the form [0, 1]×[a, b] for all a < b, and the

random vector (Xt1 , . . . , Xtk) has a Lebesgue density for all k ∈ N and all t1, . . . , tk > 0.
Using (4.6) we deduce that

Tn − T = g(‖σ2‖2n, 〈σ2
1, σ

2〉n, . . . , 〈σ2
d, σ

2〉n; Σ)

− g(‖σ2‖2, 〈σ2
1, σ

2〉, . . . , 〈σ2
d, σ

2〉; Σ) + oP(∆1/2
n ).

This decomposition will imply the mixed normality of ∆
−1/2
n (Tn−T ) by the delta-method

for stable convergence. However, to obtain a feasible test statistic we still need to estimate
the conditional covariance matrix V =

∫ 1
0 Vsds. This consists of two subproblems: (a)

Estimation of the parameter H ∈ (1/2, 1) and (b) Estimation of integrated products
of various volatility functions. The first estimation problem is solved via a change-of-
frequency method

Hn :=
1

2
log2

(∑[1/∆n]
i=4 |Xi∆n − 2X(i−2)∆n

+X(i−4)∆n
|2∑[1/∆n]

i=2 |Xi∆n − 2X(i−1)∆n
+X(i−2)∆n

|2

)
,

which compares one realised measure at two different frequencies (log2 denotes the loga-
rithm with basis 2). Indeed, section 4.3 from [5] shows that

Hn
P−→ H. (4.7)

Notice that the coefficients αH , βH and γH are continuous in H, which implies that

αHn

P−→ αH , βHn

P−→ βH , γHn

P−→ γH .

Now, we are able to construct an empirical (symmetric) analogue of the matrix V =∫ 1
0 Vsds:

V 11
n =

αHn∆n

105τ8
n

[1/∆n]∑
i=2

|∆n
i,2X|8,

V 1,k+1
n =

βHn∆n

15τ6
n

[1/∆n]∑
i=2

σ2
k,(i−2)∆n

|∆n
i,2X|6, 1 ≤ k ≤ d,

V k+1,l+1
n =

γHn∆n

3τ4
n

[1/∆n]∑
i=2

σ2
k,(i−2)∆n

σ2
l,(i−2)∆n

|∆n
i,2X|4, 1 ≤ k, l ≤ d.
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Before we present the next theorem, we introduce a shorthand notation

∇g = ∇g(‖σ2‖2, 〈σ2
1, σ

2〉, . . . , 〈σ2
d, σ

2〉; Σ),

∇gn = ∇g(‖σ2‖2n, 〈σ2
1, σ

2〉n, . . . , 〈σ2
d, σ

2〉n; Σn).

The next result follows directly from Theorem 4.2 and the delta-method for stable con-
vergence (see e.g. Proposition 2.5 in [10]).

Theorem 4.3 Assume that the conditions (i)-(v) from section 2 hold. Then we obtain
the following results:

(a) It holds that ∆
−1/2
n (Tn − T )

st−→MN
(

0,∇gV∇g?
)

with V =
∫ 1

0 Vsds.

(b) We obtain the convergence in probability Vn
P−→ V and

∆
−1/2
n (Tn − T )√
∇gnVn∇g?n

d−→ N (0, 1). (4.8)

As we have already mentioned, part (a) of Theorem 4.3 follows from Theorem 4.2 and the
delta-method for stable convergence. The standard central limit theorem in (4.8) follows

again from the properties of stable convergence, part (a) of Theorem 4.3 and Vn
P−→ V ,

∇gn
P−→ ∇g.

Remark 4.4 The statistic ∇gnVn∇g?n is indeed feasible, i.e. it does not depend on the
normalising constant τn. For instance, when d = 1 and σ2

1 = 1 we deduce the identities

Σn = 1, ∇gn =


(

∆n
τ2n

∑[1/∆n]
i=2 |∆n

i,2X|2
)2

(
∆n
3τ4n

∑[1/∆n]
i=2 |∆n

i,2X|4
)2 ,−

2∆n
τ2n

∑[1/∆n]
i=2 |∆n

i,2X|2

∆n
3τ4n

∑[1/∆n]
i=2 |∆n

i,2X|4

 ,

Vn =

 αHn∆n

105τ8n

∑[1/∆n]
i=2 |∆n

i,2X|8
βHn∆n

15τ6n

∑[1/∆n]
i=2 |∆n

i,2X|6

βHn∆n

15τ6n

∑[1/∆n]
i=2 |∆n

i,2X|6
γHn∆n

3τ4n

∑[1/∆n]
i=2 |∆n

i,2X|4

 ,

which implies that

∇gnVn∇g?n =

9
(∑[1/∆n]

i=2 |∆n
i,2X|2

)2

(∑[1/∆n]
i=2 |∆n

i,2X|4
)2 ,−

6
∑[1/∆n]

i=2 |∆n
i,2X|2∑[1/∆n]

i=2 |∆n
i,2X|4



×

 αHn∆n

105

∑[1/∆n]
i=2 |∆n

i,2X|8
βHn∆n

15

∑[1/∆n]
i=2 |∆n

i,2X|6

βHn∆n

15

∑[1/∆n]
i=2 |∆n

i,2X|6
γHn∆n

3

∑[1/∆n]
i=2 |∆n

i,2X|4



×

9
(∑[1/∆n]

i=2 |∆n
i,2X|2

)2

(∑[1/∆n]
i=2 |∆n

i,2X|4
)2 ,−

6
∑[1/∆n]

i=2 |∆n
i,2X|2∑[1/∆n]

i=2 |∆n
i,2X|4


?
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2

Finally, we define our test statistic as

Sn =
∆
−1/2
n Tn√
∇gnVn∇g?n

. (4.9)

The next proposition follows directly from part (b) of Theorem 4.3.

Proposition 4.5 Assume that the conditions (i)-(v) from section 2 hold. We reject the
null hypothesis H0 : ‖V− σ2‖ = 0 if

Sn > u1−α,

where u1−α denotes the (1− α) quantile of N (0, 1). Then it holds that

PH0(Sn > u1−α) → α,

PH1(Sn > u1−α) → 1.

In other words, the test statistic Sn has asymptotic level α and it is consistent against any
fixed alternative.

5 Proofs

We concentrate on the proof of Theorem 4.2 as all other theorems follow from this result.
The justification of Theorem 4.2 relies on a combination of various methods presented in
[3], [4] and [5], which we sketch below. Let us define

Xt = X0 +

∫ t

0
σsdGs, (5.1)

which corresponds to the process X with a ≡ 0 (recall the notation σs = σ(s,Xs)).

(a) We start by considering the process X instead of the original process X. The theory
presented in [3] and [5] implies that the approximation

∆n
i,2X ≈ σ(i−2)∆n

∆n
i,2G

does not influence the limit behavior. The paper [3] only deals with power variations of
the first order differences of the process X, while [5] considers higher order differences
of Brownian semi-stationary processes, which do not have the form (5.1). However, the
second order differences of both processes are well approximated by the same expression
σ(i−2)∆n

∆n
i,2G (we refer to (5.5) and (5.10) in [5] for more details). For this reason we can

rely on the methods of [3], [4] and [5] from now on, even though the papers [4] and [5] do
not deal with the process X directly. 2
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(b) Using part (a) it can be deduced that

∆n

τpn

[1/∆n]∑
i=2

|∆n
i,2X|p

P−→ mp

∫ 1

0
|σs|pds, p > 0,

with mp = E[|N (0, 1)|p]. This result was shown in [3] for the first order differences (see
Theorem 2 therein), but the proof remains true for higher order differences (cf. Theorem
3.1 in [5]). Observing the approximation of part (a) and following the lines of the proof
in [3] and [4], we see that the above convergence in probability (and also the associated
central limit theorem) remains valid if we introduce weight processes σ2

k as long as they
are Lebesgue integrable. Thus, the convergence in probability stated in (4.4) and the

convergence Vn
P−→ V from part (b) of Theorem 4.3 are valid for the process X. 2

(c) It remains to justify the central limit theorem presented in (4.5). Here we will rely on
the multivariate central limit theorem for second order differences presented in [5] (see The-
orem 3.3 therein). First of all, we need to show that the volatility process σs = σ(s,Xs) is
Hölder continuous of order > 1/2 to apply the aforementioned result. But this is obviously
true as

|σs − σt| ≤ |σ(s,Xs)− σ(t,Xs)|+ |σ(t,Xs)− σ(t,Xt)| ≤ C1|t− s|β + C2|t− s|1−δ,

for some C1, C2 > 0, due to assumption (v) in section 2 and (2.3). Since β > 1/2 and
δ can be chosen to satisfy 1 − δ > 1/2 (because H > 1/2), we deduce that (σs)s∈[0,1] is
Hölder continuous of order > 1/2.

Now we are able to apply Theorem 3.3 from [5] for the processX. For simplicity we only

present a joint central limit theorem for the vector ∆
−1/2
n (〈σ2

k, σ
2〉n − 〈σ2

k, σ
2〉, 〈σ2

l , σ
2〉n −

〈σ2
l , σ

2〉)? with 1 ≤ k, l ≤ d. Theorem 3.3 in [5] (applied to X) states that

∆−1/2
n (〈σ2

k, σ
2〉n − 〈σ2

k, σ
2〉, 〈σ2

l , σ
2〉n − 〈σ2

l , σ
2〉)? st−→MN2

(
0,

∫ 1

0
Vsds

)
with

V 11
s = µσ4

k,sσ
4
s , V 12

s = µσ2
k,sσ

2
l,sσ

4
s , V 22

s = µσ4
l,sσ

4
s ,

and

µ = lim
n→∞

∆−1
n Var

∆n

[1/∆n]∑
i=2

|∆n
i,2B

H |2

Var(|∆n
i,2B

H |2)

 ,

where BH denotes a fractional Brownian motion with Hurst parameter H. A straightfor-
ward calculation shows that µ = γH . Hence, we obtain (4.5) for the process X. 2

(d) Finally, we need to prove that Theorem 4.2 holds for the original process X (rather
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than only for X). For simplicity, let us only consider the first estimator 〈σ2, σ2〉n. Since
Theorem 4.2 is valid for the process X, it suffices to show that

∆
1/2
n

3τ4
n

( [1/∆n]∑
i=2

|∆n
i,2X|4 −

[1/∆n]∑
i=2

|∆n
i,2X|4

)
P−→ 0.

Let us set At =
∫ t

0 a(s,Xs)ds. The mean value theorem implies that

||∆n
i,2X|4 − |∆n

i,2X|4| ≤ C|∆n
i,2A|(|∆n

i,2X|3 + |∆n
i,2X|3)

for some C > 0. Now, due to assumptions (i), (iv), (v) from section 2 and (2.3), we obtain
for some ε > 0 small enough and K > 0:

τ−4
n ≤ K∆−4H−ε

n , |∆n
i,2A| ≤ K∆1+H−ε

n , |∆n
i,2X| ≤ K∆H−ε

n , |∆n
i,2X| ≤ K∆H−ε

n .

Thus,

∆
1/2
n

3τ4
n

( [1/∆n]∑
i=2

|∆n
i,2X|4 −

[1/∆n]∑
i=2

|∆n
i,2X|4

)
≤ K∆1/2−5ε

n .

Choosing ε > 0 small enough we deduce the desired result. 2

(e) We are left to proving the convergence

∆−1/2
n (Σn − Σ)

P−→ 0

from (4.6). Since the processes (σk,s)s∈[0,1], k = 1, . . . , d, are Hölder continuous of order
η > 1/2 (see step (c)), we readily deduce that

∆−1/2
n |Σn − Σ| ≤ ∆−1/2

n

∫ 1

0

∣∣∣σ2
k,sσ

2
l,s − σ2

k,[s/∆n]∆n
σ2
l,[s/∆n]∆n

∣∣∣ds P−→ 0

for all 1 ≤ k, l ≤ d. 2
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33(4), 407-436.

[9] Nualart, D. and A. Rascanu (2002): Differential equations driven by fractional Brow-
nian motion. Collect. Math. 53(1), 55–81.

[10] Podolskij, M. and M. Vetter (2010): Understanding limit theorems for semimartin-
gales: a short survey. Statistica Nederlandica 64(3), 329-351.



Research Papers 
2012 

 
 

 
2011-50: Torben G. Andersen and Oleg Bondarenko: VPIN and the Flash Crash 

2011-51: Tim Bollerslev, Daniela Osterrieder, Natalia Sizova and George 
Tauchen: Risk and Return: Long-Run Relationships, Fractional 
Cointegration, and Return Predictability 

2011-52: Lars Stentoft: What we can learn from pricing 139,879 Individual 
Stock Options 

2011-53: Kim Christensen, Mark Podolskij and Mathias Vetter: On covariation 
estimation for multivariate continuous Itô semimartingales with noise 
in non-synchronous observation schemes 

2012-01: Matei Demetrescu and Robinson Kruse: The Power of Unit Root Tests 
Against Nonlinear Local Alternatives 

2012-02: Matias D. Cattaneo, Michael Jansson and Whitney K. Newey: 
Alternative Asymptotics and the Partially Linear Model with Many 
Regressors 

2012-03: Matt P. Dziubinski: Conditionally-Uniform Feasible Grid Search 
Algorithm 

2012-04: Jeroen V.K. Rombouts, Lars Stentoft and Francesco Violante: The 
Value of Multivariate Model Sophistication: An Application to pricing 
Dow Jones Industrial Average options 

2012-05: Anders Bredahl Kock: On the Oracle Property of the Adaptive LASSO 
in Stationary and Nonstationary Autoregressions 

2012-06: Christian Bach and Matt P. Dziubinski: Commodity derivatives pricing 
with inventory effects 

2012-07: Cristina Amado and Timo Teräsvirta: Modelling Changes in the 
Unconditional Variance of Long Stock Return Series 

2012-08: Anne Opschoor, Michel van der Wel, Dick van Dijk and Nick Taylor: 
On the Effects of Private Information on Volatility 

2012-09: Annastiina Silvennoinen and Timo Teräsvirta: Modelling conditional 
correlations of asset returns: A smooth transition approach 

2012-10: Peter Exterkate: Model Selection in Kernel Ridge Regression 

2012-11: Torben G. Andersen, Nicola Fusari and Viktor Todorov: Parametric 
Inference and Dynamic State Recovery from Option Panels 

2012-12: Mark Podolskij and Katrin Wasmuth: Goodness-of-fit testing for 
fractional diffusions 

 

  

 

 
 


