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ON THE ORACLE PROPERTY OF THE ADAPTIVE LASSO IN STATIONARY
AND NONSTATIONARY AUTOREGRESSIONS

ANDERS BREDAHL KOCK
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ABSTRACT. We show that the Adaptive LASSO is oracle efficient in stationary and non-stationary
autoregressions. This means that it estimates parameters consistently, selects the correct sparsity
pattern, and estimates the coefficients belonging to the relevant variables at the same asymptotic
efficiency as if only these had been included in the model from the outset. In particular this
implies that it is able to discriminate between stationary and non-stationary autoregressions and
it thereby constitutes an addition to the set of unit root tests.

However, it is also shown that the Adaptive LASSO has no power against shrinking alternatives
of the form ¢/T where c is a constant and T the sample size if it is tuned to perform consistent
model selection. We show that if the Adaptive LASSO is tuned to performed conservative model
selection it has power even against shrinking alternatives of this form.

Monte Carlo experiments reveal that the Adaptive LASSO performs particularly well in the
presence of a unit root while being at par with its competitors in the stationary setting.

Keywords: Adaptive LASSO, Oracle efficiency, Consistent model selection, Conservative model
selection, autoregression, shrinkage.
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1. INTRODUCTION

Variable selection in high-dimensional systems has received a lot of attention in the statistics
literature in the recent 10-15 years or so and it is also becoming increasingly popular in econometrics.
As traditional computational methods are computationally infeasible if the number of covariates
is large, focus has been on penalized or shrinkage type of estimators of which the most famous is
probably the LASSO of Tibshirani (1996). This paper sparked a flurry of research in the theoretical
properties of LASSO-type estimators, the first of which were Knight and Fu (2000). Subsequently,
many other shrinkage estimators have been analyzed: the SCAD of Fan and Li (2001), the Bridge
and Marginal Bridge Estimator in Huang et al. (2008), the Dantzig selector of Candes and Tao
(2007) and the Sure Independence Screening of Fan and Lv (2008) to mention just a few. For
a recent review with particular emphasis on the LASSO see Bithlmann and Van De Geer (2011).
The focus of these papers is to establish the so-called oracle property for the proposed estimators.
This entails showing that the estimators are consistent, perform correct variable selection and
establishing that the limiting distribution of the non-zero coefficients is the same as if only the

Date: February 2, 2012.

Part of this research was carried out while I was visiting the Australian National University. I wish to thank Tue
Ggrgens and the Research School of Economics for inviting me and creating a pleasant environmnent. I am also
indebted to Svend Erik Graversen and Jgrgen Hoffmann Jgrgensen for help. I wish to thank CREATES, funded by
the Danish National Research Foundation, for providing financial support.

1



2 ANDERS BREDAHL KOCK AARHUS UNIVERSITY AND CREATES

relevant variables had been included in the model. Put differently, the inference is as efficient as
if an oracle had revealed the true model to us and estimation had been carried out using only the
relevant variables.

Most focus in the statistics literature has been on establishing the oracle property for cross
sectional data. An exception is Wang et al. (2007) who consider the LASSO for stationary autore-
gressions while Kock (2012) has shown that the oracle efficiency of the Bridge and Marginal Bridge
estimator carry over to linear random and fixed effects panel data settings.

In this paper we show that the Adaptive LASSO of Zou (2006) possesses the oracle property in
stationary as well as nonstationary autoregressions. We focus on the Adaptive LASSO since the
original LASSO is only oracle efficient under rather restrictive assumptions which exclude too high
dependence — an assumption which is unlikely to be satisfied in time series models.

We shall consider a model of the form

p
(1) Ayy = p yr—1 + Zﬁ;Ayt—j té

j=1

which is sometimes called a Dickey-Fuller regression. ¢; is the error term to be discussed further
in the next section. (1) is said to have a unit root if p* = 0. When testing for a unit root, one
usually first determines the number of lagged differences (p) to be included. This can be done
either by information criteria, or modifications hereof, Ng and Perron (2001). Having selected the
lags one tests whether p* = 0. The oracle efficient estimators create new possibilities of carrying
out such tests since testing for a unit root is basically a variable selection problem: Is y;_1 to be
left out of the model (p* = 0), or not? Hence, establishing the oracle property for the Adaptive
LASSO means that we can choose the number of lagged differences to be included (and leaving
out irrelevant intermediate lags) and test for a unit root at the same time. Knight and Fu (2011)
made this point and have used it to construct a unit root test based on the Bridge Estimator in
the setting we shall call conservative model selection.

We show: (i) The Adaptive LASSO possesses the oracle property in stationary and nonstationary
autoregressions. (ii) Carry out out detailed finite sample and local to unity analysis in the stationary,
nonstationary and local to unity setting. The local to unity setting reveals that the Adaptive LASSO
is not exempt from the critique by Leeb and Pétscher (2005, 2008) of consistent model selection
techniques. (iii) This problem, due to nonuniformity in the asymptotics, can be alleviated if one
is willing to use tune the Adaptive LASSO to perform conservative model selection instead of
consistent model selection!. The properties of conservative model selection are investigated in the
stationary as well as the nonstationary setting.

The plan of the paper is as follows. Section 2 introduces the Adaptive LASSO and some nota-
tion. Section 3 states the oracle theorems for the Adaptive LASSO for stationary and nonstationary
autoregressions while Section 4 carries out a detailed finite sample and local analysis under various
settings. Section 5 considers the properties of the Adaptive LASSO when tuned to perform con-
servative model selection, 6 contains some Monte Carlos and Section 7 concludes. All proofs are
deferred to the Appendix.

1We shall make mathematically precise definitions of consistent and conservative model selection in Section 2.
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2. SETUP AND NOTATION

The most famous shrinkage estimator is without doubt the LASSO — the Least Absolute Shrink-
age and Selection Operator. Its popularity is due to the fact that it carries out variable selection
and parameter estimation in one step. However, it has been shown that the LASSO is only Oracle
efficient under rather strict conditions, see Meinshausen and Biihlmann (2006), Zhao and Yu (2006)
and Zou (2006) which don’t allow too high correlations between covariates. This motivates using
other procedures for variable selection than the LASSO. In particular, the problem of the LASSO
is that it penalizes all parameters equally. Hence, Zou (2006) proposed the Adaptive LASSO which
applies more intelligent data-driven penalization and proves that it is oracle efficient in a fixed
regressor setting. In our context the Adaptive LASSO is defined as the minimizer of the following
objective function.

2
p p
(2) Ur(p,B) = | Avr—pyic1 — > Bidye—j |+ Arwit|p| + Ar > w32 |
t=1 j=1 j=1

Y1,72 >0

)

where wy = 1/ |pr| and wy; = 1/|Br;| for j = 1,....p and p; and Bl,j denote some initial
estimator of the parameters in (2). We shall use the least squares estimator in this paper but other
estimators can be used as well. Hence, the Adaptive LASSO minimizes the least squares objective
function plus a penalty term which penalizes parameters that are different from 0. Due to this
extra penalty term the minimizers of (2) are shrunk towards zero compared to the least squares
estimator — hence the name shrinkage estimator. The size of the shrinkage depends on the penalty
term, which in turn depends on the initial least squares estimates: the smaller the initial estimate,
the larger the penalty and the more likely it is that the Adaptive LASSO shrinks the parameter
exactly to zero. The size of the penalty also depends on the sequence Ay which must be chosen in
an appropriate manner in order to get the oracle efficiency. In particular, A7 must grow fast enough
to shrink the estimates of truly zero parameters to zero, but slow enough in order not to introduce
asymptotic bias in the estimators of the non-zero coefficients. The details are given in Section 3.

In this paper we don’t include deterministic components such as constants and trends to focus
on the main idea of consistent and conservative model selection in stationary and nonstationary
autoregressions. However, deterministics could be handled using standard detrending ideas, see e.g.
Hamilton (1994).

2.1. Notation. We shall consider T + p observations from a time series y; generated by (1). A =
{1 <j<p:B# 0} denotes the active set of lagged differences, i.e. those lagged differences with

non-zero coefficients. Let z, = (Ay;—_1, ..., Ay;—p)’ be the (p x 1) vector of lagged differences and let
x; = (ys—1,2))" denote the vector of all covariates. Let ¥ = E(z;2,) 2 and let ¥4 denote the matrix
that has picked out all elements in columns and rows indexed by A. So if p =5 and A = (1,3,4),
¥ 4 equals the (3 x 3) matrix that has picked out rows and columns 1,3 and 4 out of the (5 x 5)
matrix . Similarly, A indexes vectors by picking out the elements with index in A.

20f course the actual value of this expectations depends on whether y; is stationary or not. However, irrespective
of this z; is stationary.
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Let Ay = (Ayr, ..., Ay1)'s y—1 = (Yr—1, -, %0)" and Ay_; = (Ayr—j, ..., Ay1—;), j=1,...,p >
Let X7 = (y—1,Ay_1,...,Ay_p) be the T x (p + 1) matrix of covariates and ¢ = (er,...,€1)" the
vector of error terms.

Let Z be a p x 1 vector such that Z ~ N,(0,02%) where 02 = E(e7). Furthermore, (W,)}_,
denotes the standard Wiener process on [0, 1].

St = diag(T,\/T,...,/T) denotes a (p+ 1 x p+ 1) scaling matrix, = denotes weak convergence
(convergence in law) and 2 convergence in probability. Let (p, B) denote the minimizer of (2). Of
course (p, B) depends on T but to keep notation simple we suppress this in the sequel. Where no
confusion arises this is also done for other quantities.

For any = € R", ||z|[¢, = /D_;—, 27 denotes the standard Euclidean ¢ norm stemming from
the inner product < z,z >= 1 | z7.

Letting M denote the true model and M the estimated one, we shall say that a procedure is
consistent if for all (p*,5*), P(M = M) — 1. A procedure is said to be conservative if for all

(p*,B*), P(Mo € M) — 0, i.e. the probability of excluding relevant variables tends to zero.

3. ORACLE RESULTS

This section establishes and discusses the oracle property of the Adaptive LASSO for stationary
as well as nonstationary autoregressions. The results open the possibility to use the Adapative
LASSO to distinguish between these two and hence the Adaptive LASSO can also be seen as a new
way of testing for unit roots.

We begin with the nonstationary case:

Theorem 1 (Consistent model selection under nonstationarity). Assume that p* = 0 and that €
is i.i.d with E(e1) = 0 and E(e}) < oo. Then, if T{\Ll — 00, Tl/ﬁfmg — 00 and % -0

1. Consistency: HST {(ﬁ, B')/ — (O,B*')/} . € 0,(1)

2. Oracle (i): P(p=0) = 1 and P(Bac =0) = 1
3. Oracle (ii): VT(Ba—B4)>N (0,02[S4]7)

% — 00 enables us to set p = 0 with probability tending to one if p* = 0. Likewise,

ﬁ — o0 is needed to shrink the estimates of truly zero ;s to zero. Notice that both
conditions require Ay to grow sufficiently fast, i.e. the size of the penalty term must be sufficiently
large to shrink the estimates of the zero parameters to zero. % — 0 on the other hand tells us
that Ar can not grow too fast. For if Ay grows too fast even non-zero parameters will be shrunk to
zero. In order for all three conditions to be satisfied simultaneously we need v; > 1/2 and 72 > 0.
It is of interest that the requirements on ; and 5 are not the same. The reason for this difference
is that p; converges at a rate of 1/7 while Bj converges at a rate of 1/y/T.

Theorem 1 states that p and B are estimated consistently at rates 1/7 and 1/ VT, respectively.
Furthermore, the estimators of the zero coefficients don’t only converge to zero in probability — they
are set exactly equal to zero with probability tending to one. Hence, the Adaptive LASSO performs
variable selection and consistent estimation (the correct sparsity pattern is detected asymptotically).
Finally, the asymptotic distribution of the nonzero ;s is the same as if the true model had been
known and only the relevant variables (those with nonzero coefficients) had been included and least
squares applied to that model. In other words, the Adaptive LASSO possesses the oracle property:

3The dependence on T is suppressed for some of the quantities where no confusion arises.
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It sets all parameters that are zero exactly equal to zero and the asymptotic distribution of the
estimators of the non-zero coefficients is the same as if only the relevant variables had been included
in the model. So the Adaptive LASSO performs as well as if an oracle had revealed the correct
sparsity pattern prior to estimation. This sounds too good to be true — and in some sense it is as
we shall see in section 4.

The assumption that €, is i.i.d can be relaxed as long as S;lX’TXTS;1 and S;lX’Te converge
weakly. Of course the limits might change but since we establish that the Adaptive LASSO is
asymptotically equivalent to the least squares estimator only including the relevant variables we
would still conclude that it performs as well as if the true sparsity pattern had been known.

Next, we consider the Adaptive LASSO for stationary autoregressions.

Theorem 2 (Consistent model selection under stationarity). Assume that p* € (—2,0) and that €,
is i.i.d with E(e1) = 0 and E(e}) < oco. Then, if % — o0 and % -0
1. Consistency: H\/T {(/3, B')/ — (p*,ﬁ*’)l} ‘e € 0,(1)
2
2. Oracle (i): P(p=0) = 0 and P(Bac =0) = 1

VT(p—p*) '\ - -
VTR — %) ) SN (0,0%[Qu,ar1)] ")

where Q = E(x;x}) of dimension (p+1xp-+1)4

3. Oracle (ii): (

Since the assumptions on Ar are a subset of those made in Theorem 1, the resulting requirements
on 7; and vy, are a fortiori satisfied.

The i.i.d assumption on ¢; can be relaxed as in the nonstationary setting as long as %X}XT
converges in probability and ﬁXITG converges weakly.

As in Theorem 1 the Adaptive LASSO gives consistent parameter estimates and as usual for
stationary autoregressions the rate of convergence of p is slowed down to the standard 1/ VT rate
compared to 1/7 in the nonstationary case. The probability of falsely classifying p = 0 tends to 0.
As in Theorem 1 all irrelevant lagged differences will be classified as such with probability tending
to one.

Theorem 1 and 2 show that the Adaptive LASSO can perform oracle efficient variable selection
and estimation in stationary and nonstationary autoregressions. The theorems also suggest that the
Adaptive LASSO can be used to discriminate between stationary and nonstationary autoregressions
and so opens the possibility to use the Adaptive LASSO for unit root testing. The practical
performance will be investigated in Section 6.

4. FINITE SAMPLE AND LOCAL ANALYSIS

In this section we analyze the finite sample behavior of the Adaptive LASSO. This is most
conveniently done in the setting of an AR(1) to keep the focus on the main points and the expressions
simple. The expressions we obtain for the finite sample selection probabilities also allow us to
describe the local behavior of the Adaptive LASSO easily. We give a complete description for all
possible limiting values of the regularization parameter Ar.

Since 1 = 1 is in accordance with Theorems 1 and 2, i.e. we obtain the oracle property in the
stationary as well as the nonstationary setting for this choice of 1, we shall focus on this value in

4n accordance with previous notation, (1, 4+1) is the matrix consisting of all rows and columns with indexes in
the set (1, A 4 1) where the addition is to be understood elementwise.
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the sequel. Similar calculations can be made for other admissible values of ;. Since there are no
lagged differences 77 is redundant in this setting.
To be precise, we will consider the model

(3) Ay = p*yi—1 + &

where ¢; can be quite general. In particular it just needs to allow for a central limit theorem to
apply in the stationary case (p* € (—2,0)) and a functional central limit theorem to apply in the
unit root as well as the local to unity setting. Appropriate assumptions can be found in Phillips
(1987a) and Phillips (1987b) who allows for quite general dependence structures in the sequence
{e;}. In the following we shall assume that {¢;} is i.i.d. but keep in mind that the results carry
over to much more general assumptions on {e;}. p* is estimated by minimizing

T
4) Lip) = 3 (Bys — pyr-1)? +2AT|""
t=1 PI

which is the AR(1) equivalent to (2) except for a factor of 2 in front of Ay whose only purpose
is to make expressions simpler. Without any confusion, we let p denote the minimizer of (4) and
pr the least squares estimate of p*.

The first theorem gives the exact finite sample probability of setting p equal to zero.

Theorem 3. Let Ay; = p*y;—1 + € and let p denote the minimizer of (4). Then

7 S >
P(hj=0)=P p*2+< t;1yt216t> + 2" 2it=1Yt—1€t Z V2 < Ar
D im1 Vi Zt 1yt 1 | t=1

Theorem 3 characterizes the ezact finite sample probability of setting p to zero. It is sensible
that this is an increasing function in the regularization/shrinkage parameter Az since the larger A
is, the larger is the shrinkage.

The following theorems quantify the asymptotic behavior of P(5 = 0) in case of 1) unit root, 2)
stationarity, and 3) local to unity behavior in (3).

The first theorem is concerned with the nonstationary case where p* = 0. Hence, we would like
to classify p = 0. This of course requires Ay to be sufficiently large.

Theorem 4. Let Ay = p*yi—1 + € with p* =0 and let p denote the minimizer of (4).
(1) If \r = 0 then P(p=0) =0
(2) If Ar — A € (0,00) then P(p=0) — p e (0,1)
(3) If \p = o0 then P(p=0) — 1

Theorem 4 reveals that in the presence of a unit root, Ay — oo yields consistent model selection,
ie. P(p=0)— 1. If Ar tends to a finite constant p has mass at 0 in the limit but the mass is
not one. If Ay — 0, p is asymptotically equivalent to the least squares estimator and in fact even
Tp is asymptotically equivalent to T' times the least squares estimator. Since this does not have
any mass at 0 in the limit it is sensible that P(p = 0) — 0 when Ar — 0. In particular, p equals
the least squares estimator if Ay = 0 for every T' < oo which can be seen from (4). Since p* =0,
Theorem 4 does not impose any restrictions on Ar in order to obtain conservative model selection
since there are no relevant variables to be excluded.
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The next theorem concerns the stationary case. In this case we do not want p to possess any
mass at zero asymptotically. This naturally restricts the rate at which Ap can increase as seen
below.

Theorem 5. Let Ay, = p*ye_1 + ¢ with p* € (—2,0) and let p denote the minimizer of (4)
(1) If Ar/T — 0 then P(p = 0) — 0

03 *2E 2 A

(2) If \p/T — X then P(p=0) — Zf 9*2 (th—l) >

Lif p"E(yf 1) <A

(3) If A\r/T — oo then P(p=0) — 1

Part 1 of Theorem 5 shows that in order for p not to possess any mass at 0 asymptotically,
it is sufficient that Ar € o(T). If A/T — oo, then p will be set to zero with probability tending
to one even though p* # 0 as can be seen from part 3 of the theorem. Part 2 of Theorem 5 is
markedly different from part 2 of Theorem 4. This is due to the fact that the random variable which
”decides” whether p is to be classified as zero or not converges to a point mass at p**F(y?_,) in the
stationary setting while it converges to a nondegenerate distribution in the nonstationary setting.
This constant is the knife edge on which P(p = 0) switches between 0 and 1. See the appendix
for details. Also notice, that no classification is possible when A = p*?E (y2_,) in the stationary
setting since p*?E(y? ;) is a discontinuity point of the limiting distribution of the variable that
”decides” whether p is to be classified as zero or not. We suspect that P(p = 0) depends not only
on A = p*2E(y2_,) but on the concrete fashion in which Ap converges to p*2E(y2 ;).

Taken together, theorems 4 and 5 show that for the Adaptive LASSO to act as a consistent
model selection procedure it is sufficient that Az — oo (by Theorem 4) and Ar/T — A for some
A < p*?E(y2_,) (by Theorem 5). Since p* # 0 in Theorem 5, A = 0 works in particular. Hence,
Ar = T'% is admissible for all 0 < a < 1.

In order to make the Adaptive LASSO work as a conservative models selection device, Theorem
4 does not pose any restrictions on Ar since p* = 0 in that theorem so there are no relevant variables
to be excluded. Hence, the only requirement is Ay/T — X for some A < p**E(y2_;) (by Theorem
5). Note that in particular Ay — a > 0 or Ay = 0 for all T work in this setting. Az = 0 amounts to
no shrinkage at all and hence a zero probability of excluding relevant variables. These two (limiting)
values of A are ruled out by consistent model selection and will play a crucial role in highlighting
the difference between consistent and conservative model selection in Theorem 6 below.

Next, compare the requirements on Ar from theorems 4 and 5 for consistent model selection
(Ar — oo and A\ /T — X < p*2E(y?_,)) to those resulting from Theorems 1 and 2 (with y; = 5 =
1). Note that Ay — oo in both groups of theorems. However, Theorems 1 and 2 are more restrictive
on the growth rate of A\p in that they require Ar/ VT — 0 while Theorems 4 and 5 only require
Ar/T — 0. This is not too surprising since Theorems 1 and 2 deliver more. They yield consistent
model selection, consistent parameter estimation as well as the oracle efficient distribution. It is not
hard to show that the requirements made in theorems 4 and 5 are also sufficient to yield consistent
parameter estimation. However, only requiring Ay/7" — oo is not enough to ensure that /7T'p is
asymptotically equivalent to /7" times the least squares estimator when p* # 0 since we penalize
and hence shrink too much. The result is that p no longer obtains the oracle efficient distribution
asymptotically. Ar/v/T is needed to obtain the oracle efficient distribution. Knight and Fu (2000)
made a similar observation in a deterministic cross sectional setting.

The next theorem concerns the local to unity situation. So far all results have been for pointwise
asymptotics. The local to unity setting is a harder test for am estimator of p* in the sense that it
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must perform well on a sequence of shrinking alternatives instead of only at a single point in the
parameter space.

Theorem 6. Let Ay; = p*yi—1 + € with p* = ¢/T for some ¢ # 0 and let p denote the minimizer

of (4).
(1) If \p = 0 then P(p=0) =0
(2) If \p = X € (0,00) then P(p=0) = pe (0,1)
(3) If \p = o0 then P(p=0) — 1

Consistent model selection requires that Ay — oo (by Theorem 4). By part 3 in Theorem 6
this implies that P(p = 0) — 1. Hence, the Adaptive LASSO tuned to perform consistent model
selection has no power against deviations from 0 of the form ¢/T. This is a negative result since
¢/T # 0 for all T. This poor local performance is the flip side of shrinkage estimators (tuned to
perform consistent model selection) which is reminiscent of Hodge’s estimator, see e.g Lehmann and
Casella (1998). This phenomenon has already been observed by Leeb and Pd&tscher (2005, 2008);
Potscher and Leeb (2009) in a different context.

Recall however, that Ay — oo is required in Theorems 1, 2 and 4 in order to achieve enough
shrinkage to obtain consistent model selection. The price paid for a shrinkage of this size is that
even parameters that are local to zero at a rate of O(1/T) will be shrunk to zero with probability
tending to one. The Adaptive LASSO tuned to perform consistent model selection has no power
against such alternatives.

On the other hand, the Adaptive LASSO tuned to perform conservative model selection does
have power against deviations from 0 of this form. This becomes clear from parts 1 and 2 of
Theorem 6 since Ay — 0 and Ay — A € (0,00) are both in line with conservative model selection
(see the discussion between theorems 5 and 6).

If Ay = A € [0,00) then the probability of setting p exactly equal to zero no longer tends to
one for p* = ¢/T. However, by Theorem 4, the same is the case when p* = 0. If this tradeoff is
preferred to consistent model selection, the next section gives the properties in the of the Adaptive
LASSO in the AR(p) model (1) when tuned to perform conservative model selection.

5. CONSERVATIVE MODEL SELECTION

We continue to consider the case 73 = 2 = 1 since this keeps expressions simple. When tuned
to perform conservative model selection the properties of the Adaptive LASSO are as follows.

Theorem 7 (Conservative model selection under nonstationarity). Assume that p* = 0 and that
€ is i.i.d with E(e1) = 0 and E(€}) < 0co. Let 41 = 2 = 1°. Then, if A\r — X € [0,00)

St [(ﬁ, B')/ — (O,ﬁ*/)/} = arg min ¥ (u)

which implies

|sr (2.8 = (0.8)]

,, €01

where

Ar A
Ti=-71 T 1/2-72/2

5This assumption is not essential at all. It is only made to ensure = Ar — X such that we
A

T
Tl-7v2/2"

don’t have to deal with different cases for the size of Tf‘ L. and
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U(u) = u'Au — 2Bu + A&l 4 AP |ng|1{§*70}
-

with

A:<(1 257 5 f0W2dr o) B:<(1 2515 fOWdW>
0 ' A

by
ol
(1 - ?:1 Bj)fo WSdWs

Cqi ~
' fol W2ds

and Cy5 ~ N (0, 02(271)(3»04))

Theorem 7 reveals that (,6, B’ )/ converges at the same rate as the leas squares estimator — but
to the minimizer of ¥(u). Note that no shrinkage is applied to ug; for j € A which is a desirable
property.

For A = 0, Theorem 7 reveals that the asymptotic distribution of the Adaptive LASSO estimator
is identical to the minimizer of ' Au — 2Bwu. This in turn reveals that in this case the limit law of
the Adaptive LASSO estimator is identical to the one of the least squares estimator in the model
including all variables. This result is of course not surprising since A = 0 implies that asymptotically
there is no penalty on nonzero parameters and hence no shrinkage which implies that the objective
function of the Adaptive LASSO, (2), approaches the least squares objective function. The absence
of shrinkage also implies that no parameters will be set exactly equal to 0 (or, more precisely, the
probability of a parameter being set to 0 is 0).

If A € (0,00), the penalty terms do no longer vanish asymptotically (except for the nonzero 6]*)
Hence, with positive probability® the minimizer of ¥(u) has entries with value zero.

Next, consider conservative model selection in the stationary case

Theorem 8 (Conservative model selection under stationarity). Assume that p* € (—2,0) and that
€ is i.i.d with E(e;) = 0 and E(e}) < oo. Let v = vo = 17. Then, if A\r — X € [0, 00)
VT {(,6, B’)/ — (p*, B*/)] = arg min \if(u)

which implies
Ve [0 - 7.6, <0t

where

B = wQu—2Bu e AT B
with

B~ Np+1(0,0'2Q) and 02]‘ ~ INpi1 (0702(Q_1)(1+j,1+j)>

6Actually calculating this probability seems to be non-trivial.

7As in Theorem 7 this assumption is not essential at all. It is only made to ensure Tl)Lan = Tl/;‘fwz/2
Ar

Ti1-72/2"

:)\T—>>\

such that we don’t have to deal with different cases for the size of and

Tl 71
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As in the nonstationary case (ﬁ, B’)/ converges at the same rate as the least squares estimator —
but to the minimizer of \i/(u) Note that no shrinkage is applied to uy; for j € A. More importantly,
no shrinkage is applied to u; since now p* # 0.

Similar to the nonstationary case (/3, Jé )/ converges to the same limit as the least squares esti-
mator if A = 0. A particular instance of this is of course A\ = for all T" in which case the Adaptive
LASSO estimate is equal to the least squares estimate so their limiting laws are a fortiori identical.

6. MONTE CARLO

This section illustrates the above results by means of Monte Carlo experiments. The Adaptive
LASSO is implemented by means of the algorithm proposed in Zou (2006). Its performance is
compared to the LASSO implemented by the LARS algorithm of Efron et al. (2004) using the
publicly available package at cran.r-project.org. Furthermore, a comparison is made to the
BIC only selecting over the lagged differences, i.e. y;—1 is always included in the model. Using
the model chosen by BIC an Augmented Dickey-Fuller test is carried out for the presence of a unit
root at a 5% significance level. The results for this procedure are denoted BICDF. Finally, all
these procedures are compared to the ”OLS Oracle” (OLSO) which carries out least squares only
including the relevant variables.

The Adaptive LASSO is implemented with v =~ = 72 = 0.51,1,10. v = 0.51 is included since
it is in the lowest end of the values of v which are in accordance with theorems 1 and 2. We also
experimented with values of v larger than 10 but the performance of the Adaptive LASSO was not
improved by these. Finally, the Adaptive LASSO was also implemented by selecting v by BIC from
the above values.

The above procedures are compared along the following dimensions.

(1) Sparsity pattern: How often does the procedure detect the correct sparsity pattern, i.e.
how often does it include all relevant variables while not including any irrelevant ones?

(2) Unit root: How often does the procedure make the correct decision on inclusion/exclusion
of y;—17 Or put differently, how well do the procedures classify whether p* = 0 or not.

(3) Relevant included: How often does the procedure include all relevant variables in the model?
Even though the correct sparsity pattern is not detected it is of interest to know whether the
procedure at least does not exclude any relevant variables from the model. Or in the jargon
of the previous sections does the procedure at least perform conservative model selection.

(4) Loss: How accurate does the estimated model predict on a hold out sample? Here we
generate data from the same data generating process as used for the specification and
estimation and use the estimated parameters to make predictions on this hold out sample.

To gauge the performance along the above dimensions we carry out the following experiments
with sample sizes of T'= 100 and 1000. The number of Monte Carlo replications is 1000 in all cases.

e Experiment A: p* =0 and 5’ = (0.4,0.3,0.2,0,0,0,0,0,0,0). A unit root setting with three
relevant lagged differences.

e Experiment B: p* = —0.05 and 8’ = (0.4,0.3,0.2,0,0,0,0,0,0,0). A stationary, but close
to unit root setting with three relevant lagged differences. This should be a challenging
setting since the data generating process is stationary but still close to the unit root setting
which makes it harder to classify p* # 0.

e Experiment C: p* =0 and 8’ = (0.4,0.3,0.2,0,0,0,—0.2,0,0,0.2,0,0). This experiment is
carried out to investigate how well the methods fare when there is a gap in the lag structure.
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6.1. Results. The best performer in terms of choosing the correct sparsity pattern in Experiment
A when T = 100 is the Adaptive LASSO with v = 10 (see Table 1). It is also superior when it comes
to correctly classifying p* = 0 or p # 0 — it always makes the correct classification. This is better
than the BICDF which classifies p* correctly in 90% of the instances. The parameter estimates by
the Adaptive LASSO using v = 10 also yield the best out of sample predictive accuracy (lowest
Loss), outperforming all other procedures except for the infeasible OLS Oracle. It is seen that
classifying p* correctly plays an important role in obtaining a low Loss since procedures with low
success in classifying p* incur the biggest losses (BIC and LASSO) and vice versa. For the Adaptive
LASSO no choice of 7 retains all the relevant variables more than 50% of the time and interestingly
~ = 10 is the worst choice along this dimension. Among all procedures, the LASSO does by far the
best job at retaining relevant variables when 7" = 100.

For T' = 1000 the Adaptive LASSO performs as well as the OLS Oracle along all dimensions
underscoring its oracle property. It chooses the correct sparsity pattern almost every time (except
when v = 0.51) always classifies p* correctly.

Experiment A also underscores that the LASSO is not a consistent variable selection procedure
— as the sample size increases the fraction of correctly selected sparsity patterns remains constant.

Experiment A Adaptive LASSO
BIC BICDF LASSO ~=051 =1 =10 BIC OLSO
Sparsity Pattern 0.000  0.108 0.020 0.083 0.224 0.149 0.147 1.000

§ Unit Root 0.000  0.904 0.081 0.266 0.858  1.000 0.919 1.000
g Relevant Retained 0.158  0.158 0.798 0.439 0.353 0.214 0.222 1.000

Loss 1.203  1.142 1.249 1.202 1.103 1.045 1.096 1.018
= Sparsity Pattern 0.000  0.896 0.026 0.430 0.947 0.986 0.964 1.000
S Unit Root 0.000  0.947 0.062 0.449 0.990 1.000 0.991 1.000
g Relevant Retained 1.000  1.000 1.000 1.000 1.000 0.989 1.000 1.000

Loss 1.007 1.005 1.010 1.007 1.003 1.002 1.002 1.002
TaBLE 1. p* =0 and 8*' = (0.4,0.3,0.2,0,0,0,0,0,0,0)

The first thing one notices in Experiment B (Table 2) is that now v = .51 is the preferred value
of v for the Adaptive LASSO. This is in opposition to the nonstationary setting in Experiment A
where v = 10 yielded the best performance. It is also interesting that the LASSO is actually the
strongest performer when T=100. It selects the correct sparsity pattern most often, classifies p*
correctly, and retains all relevant variable in about 80% of the cases. However, its lack of variable
selection consistency is underscored by the fact that the fraction of times it selects the correct
sparsity pattern does not tend to one even as the sample size increases®. In this stationary setting
it seems less important to classify p* correctly in order to achieve a low Loss on the hold out sample
since all procedures incur roughly the same Loss. This is in opposition to Experiment A.

For the Adaptive LASSO as well as the BIC all quantities approach the ones of the OLS Oracle
as the sample size increases illustrating the oracle efficiency of these estimators. The two procedures
perform about equally well in this stationary setting. The poor performance of the Adaptive LASSO
for v = 10 may seem to be in opposition to Theorem 2 but for 7" = 10.000 (results not reported

8The estimations were also carried out for T = 10.000 (not reported here) and even then the LASSO only detected
the correct sparsity pattern in 47% of the instances.
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here) the Adaptive LASSO detects the correct sparsity pattern in 92% of the instances even with
this value of ~.

Experiment B Adaptive LASSO
BIC BICDF LASSO =051 =1 ~=10 BIC OLSO
Sparsity Pattern 0.214  0.214 0.478 0.340 0.269 0.001 0.281 1.000

% Unit Root 1.000  0.956 0.994 0.980 0.923 0.009 0.798 1.000
g Relevant Retained 0.265  0.257 0.814 0.518 0.436  0.008 0.382 1.000

Loss 1.047  1.048 1.048 1.050 1.054 1.105 1.056 1.024
= Sparsity Pattern 0.946  0.946 0.754 0.914 0.922  0.000 0.924 1.000
S Unit Root 1.000  1.000 1.000 1.000 1.000  0.000 1.000 1.000
g Relevant Retained 1.000  1.000 1.000 1.000 1.000  0.000 1.000 1.000

Loss 1.002  1.002 1.004 1.003 1.003 1.083 1.003 1.002

TABLE 2. p* = —0.05 and 8*' = (0.4,0.3,0.2,0,0,0,0,0,0,0)

As in Experiment A the data generating process possesses a unit root in Experiment C. Con-
sidering the results for T=100 in Table 3 the findings from Experiment A are roughly confirmed.
Choosing v = 10 for the Adaptive LASSO seems to be a wise choice in the unit root setting even
with gaps in the lag structure. The Adaptive LASSO always classifies p* correctly with this value
of v and outperforms its closest competitor (the adaptive LASSO using BIC to choose v by almost
10%). By considering the Loss on the hold out sample it is also seen that a correct classification of
p* results in a big gain in predictive power in the presence of a unit root confirming the finding in
Experiment A.

As the sample size increases the the Adaptive LASSO and the BIC perform better while the
performance of the LASSO does not get better underscoring the oracle property of the first two
procedures and the lack of the same for the LASSO. Note that the BICDF can not be expected to
classify p* correctly more often than in 95% of the cases in the presence of a unit root since testing
is carried out at a 5% significance level. On the other hand, the correct classification probability of
the Adaptive LASSO tends to one. Furthermore, the BIC is considerably slower to implement since
the number of regressions to be run increases exponentially in the number of potential explanatory
variables.

7. CONCLUSION

This paper has shown that the Adaptive LASSO can be tuned to perform consistent model se-
lection in stationary and nonstationary autoregressions. The estimator of the parameters converges
at the oracle efficient rate, i.e. as fast as if an oracle had revealed the true model prior to estimation
and only the relevant variables had bee included in a least squares estimation. This enables us to
use the Adaptive LASSO to distinguish between stationary and nonstationary autoregressions.

However, the Adaptive LASSO has no power against alternatives in a shrinking neighborhood
around 0 when tuned to perform consistent variable selection. This problem can be alleviated by
tuning the Adaptive LASSO to perform conservative model selection. The price paid compared to
consistent model selection is that truly zero parameters are no longer set to zero with probability
tending to one (but still with positive probability).
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Experiment C Adaptive LASSO
BIC BICDF LASSO ~=051 =1 =10 BIC OLSO
Sparsity Pattern 0.000  0.039 0.000 0.007 0.033 0.057 0.052 1.000

§ Unit Root 0.000  0.904 0.069 0.246 0.851  1.000 0.932 1.000
&1 Relevant Retained 0.050  0.050 0.104 0.095 0.090 0.088 0.087 1.000

Loss 1.242  1.158 1.298 1.233 1.133 1.083 1.132 1.033
S Sparsity Pattern 0.000  0.903 0.007 0.189 0.853 0.968 0.952 1.000
S Unit Root 0.000  0.955 0.026 0.233 0.974 1.000 0.994 1.000
g Relevant Retained 0.998  0.998 0.997 1.000 1.000 0971 0.998 1.000

Loss 1.008 1.006 1.012 1.010 1.005 1.003 1.003 1.003
TABLE 3. p* = 0 and 8% = (0.4,0.3,0.2,0,0,0,—0.2,0,0,0.2,0,0)

Monte Carlo experiments confirm that the Adaptive LASSO performs well compared to standard
competitors. This is the case in particular for nonstationary data.

8. APPENDIX

Proof of Theorem 1. For the proof of this theorem we will need the following results which can be
found in e.g. Hamilton (1994).

072 1 2
(5) SIXIXpss [ TS do Wrdr 0 )
0 )
o LWL dw,
(6) Sle}e%< (l—Eflﬁj)Zfo rdWr ) — B

We shall also make use of the fact that the least squares estimator, (pr, 5}), of (p*, 8*') in (1)
satisfies that HST {(/31’3/1)/ — (p*,ﬂ*')l} Hz € 0,(1)
2
First, let uw = (u1,u5) where uq is a scalar and ug a p x 1 vector. Set p = uq/T and §; =
B; + ua;/ VT which implies that (2) as a function of u can be written as

2

P
Uy U2

Ur(u) =||Ay — y-1 — Z (51* + j) Ay_;
T = VT ]
T = VT

Let & = (@1, @5)" = arg min ¥ (u) and notice that 4, = Tp and d9; = \/T(Bj—ﬁ;) forj=1,...,p.
Define
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VT (u) = \IJT(U) — \IfT (0)

W25

VT

= 'S X XSy u — 20/ St Xe + Apw]?

B+ B

) |

P
Ui Y
e (
J=

Consider the first two terms in the above display. It follows from (5) and (6) that

(7) u' S X Xp Syt — 20/ St X e/ Au — 20/ B.
Furthermore,
5 | U1 1 |y AT 1 oo in probability if u; # 0
(8) ATw | | = AT | :|u1|17_71ﬁ . e _
T o™ | T T |Tpr| 0 in probability if u; =0

since T'py is tight. Also, if BJ* #0

% U4 % 1 72 U4 % U4 % U4
)\Tw;;‘ (ﬂjJF/% 5j>)\TB[' 7,% (ﬂjJr,% 6])/(/%)
5]
)\T 1 72 U245 U2;j
T2 |5, | ( 7Ty <ﬁ)
(9) — 0 in probability

since (i): A\p/TV? — 0, (ii): yl/ﬁj,jpz — |1/¢6’;‘|72 < 00 in probability and
)/ (2) = wssion(s;).

Y25

(111) U2 ﬁ; + VT
Finally, if 87 = 0,

2
)\T’ng <

since (i): ﬁ — oo and (ii): \/TBAIJ- is tight.
Putting together (7)-(10) one concludes:

2

1
Juzi |

_Ar | 1
ToT1/2 Bl,j

oo in probability if ug; # 0
0 in probability if us; =0

V2 >\T

1
‘u2j| = T1/27’Y2/2

VB,

x , U2j
BJ \/T

55

(10)

W Au —2u'B if u; = 0 and uy; = 0 for all j € A°
oo if uy # 0 or ug; # 0 for some j € A°

Vr(u)>¥(u) = {

Since Vr(u) is convex and ¥(u) has a unique minimum it follows from Knight (1999) that
arg min Vr (u)=> argmin ¥(u). Hence,
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(11) i1 =60
(12) fip e =Y
(13) oA > N(0,0%[X 4] )

where Jp is the Dirac measure at 0 and |.A°| is the cardinality of A¢ (hence, 6454 s the |A°-
dimensional Dirac measure at 0). Notice that (11) and (12) imply that 4; — 0 in probability and
Gig 4 — 0 in probability. An equivalent formulation of (11)-(13) is

(14) Tp=80
(15) VT (Bac — B )8!
(16) VT(Ba— B)>N(0,0%[S4] )

(14)-(16) yield the consistency part of the theorem at the rate of T' for j and /T for 3. Notice
that this also implies that no §;, j € A will be set equal to 0 since for all j € A, 8; converges in
probability to 87 # 0. (16) also yields the oracle efficient asymptotic distribution, i.e. part (3) of

the theorem. It remains to show part (2) of the theorem; P(pp = 0) — 1 and P(Bp 4c = 0) — 1.
Both proofs are by contradiction.
First, assume p # 0. Then the first order conditions for a minimum read:

2/ (Ay ~ Xz (p, B’)’) +Arwsign(p) = 0

which is equivalent to

2y’ (Ay — Xr(p, 3’)') . Apw]*sign(p)

=0
T T
Consider first the second term:
Arwi'sign(p) Ar ) -
T = Tiom Thi" — 00 in probability

since T'py is tight. For the first term one has:

2y (By = Xo(p.BY) 290, (e = XoS7'Srlp, B~ B7))
T B T
g6 2y X787 Srlp, B — B*)
T T

’ ’ -1 2
By (6), %%% fol W,.dW,.. Furthermore, y‘leTST = ((1Z§1 ﬁ_;) fol W2dr,0, ..., 0>

’

’ —1 ~
by (5). Hence, y’Tle and % are tight. We also know that St[pr, B — 3*']" converges weakly
2y’ (Ay—Xr(pr.B7)")
T

by (14)-(16) which implies it is tight as well. Taken together, is tight and so
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29" 1 (Ay — Xo(pr, By) T gion( s
P(ﬁT#0)<P< 1t — T)+ATwls;,gn(pT):o 0

Next, assume Bj # 0 for j € A°. From the first order conditions

Ay’ (Ay — X1(p, B)') + Arwizsign(B;) = 0

or equivalently,

2Ay’_j (Ay — XT(ﬁ,ﬁ/)/) N )\ngjsign(,éj)

T1/2 T1/2 =0
First, consider the second term
Arwsy3 sign(3;) Arwsy3 A\
1/2 = 12 T _ e X
T T TV/2=7/2|T1/23; |

since VT3 1,; is tight. Regarding the first term,

28y, (By—Xr(p.8)) 28y (e = XpS7'Selor. B — 5V

T1/2 T1/2
_2Ay e 20y XSy Srlp, 8 — 87)
ToT1)2 T1/2
By (6) AZ,ZJI‘/f%N(O,UQEj) where in accordance with previous notation X; is the jth diagonal
’ —1 ’ ’ —1
element of 3. M’%#ST%(O, B(j1)s - S(jp)) by (5). Hence, ATyf/z'e and Ay’%ﬁZST are tight.

The same is the case for Sr[p, B — B*'] since it converges weakly by (14)-(16). Taken together,
28y’ (Ay—X7(5,8"))
T1/2

is tight and so

2Ay/_] (Ay - ‘XT(/3 Bl)/) /\Twwﬁsi (A )
A ) 25 5180 AT
PB;#0) <P ( T1/2 + %1/2 = 0) —0

O

Proof of Theorem 2. The proof runs along the same lines as the proof of Theorem 1. For the proof
we will need (17) and (18) below which can be found in e.g. Hamilton (1994), Chapter 8. Notice
that by definition of x; = (yt—1, 1)’ the lower right hand (p x p) block of @Q is X.

We shall make use of the following limit results:
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1
TX%XT 5Q

1 .
(18) ﬁX’Te%NpH(O, 0?Q):=B

where the definition of B means that B is a random vector distributed as Np41(0,0%Q) We shall
also make use of the fact that the least squares estimator is v/7' consistent under stationarity, i.e.

A !
VT (5.8 = (m.87)] |, € 0n1)
2
First, let uw = (u1,u)” where u; is a scalar and uz a p x 1 vector. Set p = p* + ul/\/T and

Bj = B; +uz;/VT and

(17)

2

(75} U245
U (u) = Ay(p*+) y—1§:<ﬂ}‘+J> Ay_;
\/T = VT .
p
U1 U2;j
+Arw p* + —= |+ Ar Y w (B + —=
TWy P JT Tj:l 27 |55 VT

Let @ = (@1, @h)" = arg min Ur(u) and notice that @, = VT(j — p*) and G2, = VT(B; — f37) for
j=1,...,p. Define

Vr(u) = Up(u) — Up(0)

1 Iyl 1 Iy Uy u U4
= —u' X Xpru — 2—=u' Xe + Apw? e —| =" | + )\ E w? R R
T T \/T T T P \/T ‘p‘ Tj:l 2 /BJ \/T

Consider the first two terms in the above display. It follows from (17) and (18) that

Bi

N———

1 1 -
Tu’X’TXTu —2—u' Xpe>u'Qu — 2u'B

(19) T

Furthermore, since p* #£ 0

11" g Uy U1
At *+£_* = Ap|— 41 *+‘_* Y1
T1<p T 1p* ol T\ T |p|/<ﬁ)
- /\T 1 m « Ul % uy
= 2] [ (2] 1) ()
(20) — 0 in probability

since (i): Ap/TY% = 0, (ii): [1/p1]"" —]1/p*|"" < oo in probability and

(iii): uy (

o 3| 11) 1 (3) = wsien).
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Similarly, if 87 # 0

o U4 % 1 72 U4 U4 % U4
AT“@;’(; \/%‘j)z)‘TBI_ ﬁ(g \/%—@‘)/(\/%)
J
:)\iéw uzJ _Bﬂf /(&)
T2 By VTl 1 VT
(21) — 0 in probability

since (i): Ap/TY? =0, (ii): [1/61,|" — |1/B7|™ < oo in probability and

(iii): ug; (ﬂ* “23 > / (U2J) — ug;sign(57).
Finally, if 57 = 0,
Y2
« Ugj % o )\T 1 72 >\T 1
Arws; (ﬁj Jrﬁ =15 ) T1/2 ﬂ ‘ 2J| T1/2=72/2 \/TBIJ‘ |u2j|

(22) {oo in probability if ua; # 0

0 in probability if us; =0

since (i): ﬁ — oo and (i) VT fBr; is tight.
Putting (19)-(22) together one concludes:

Vr(uw)>¥(u) =

~ W' Qu — 2u'B if ug; = 0 for all j € A°
oo if ug; # 0 for some j € A°

Since Vo (u) is convex and ¥(u) has a unique minimum it follows from Knight (1999) that
arg min Vr(u)=> arg min ¥(u). Hence,

(23) (ﬁ17al2A)/L>N (07 o’ [Q(LA—H)}_I)
(24) fig e 0"
where dg is the Dirac measure at 0 and |A°| is the cardinality of A° (hence, 6464 “is the |A°|-

dimensional Dirac measure at 0). Notice that (24) implies that tds4c — 0 in probability. An
equivalent formulation of (23) and (24) is

VT(p—p*) ) - -
(25) ( ﬁ(BA —8%) ) =N (0702[Q(1,A+1)] 1)
(26) VI(Bae = Bae) =05

(25) and (26) establish the consistency part of the theorem at the oracle rate of vT. Note
that this also implies that for no j € A will Bj be set equal to 0 since for each j € A, Bj
converges in probability to 57 # 0. The same is true for p. (25) also yields the oracle efficient
asymptotic distribution, i.e. part (3) of the theorem. It remains to show part (2) of the theorem;
P(BAC = 0) — 1. The proof is by contradiction.
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Assume Bj # 0 for j € A°. From the first order conditions

20y’ (Ay — X1 (p, B')') + Adrw32sign(B;) = 0

or equivalently,

28y, (Ay = Xr(p, 7)) , Arugisign(d)

T1/2 T1/2 =0
First, consider the second term
Arwy? sign(3;) Arwy? Ar
= = —~ o) — 0
T1/2 T1/2 T1/2—72/2 |T1/2ﬁ1j\

since \/TBI,jis tight. Regarding the first term,

2Ay/_j (Ay - X7 (p, B/)/) _ QAyI_j (6 — Xr[p— p*’B/ . ﬁ*l]/>

T1/2 T1/2
28y e 28y XoVTp—pt, B - BY)
T2 T
By (18), %%N(O, 02Q(j+1)) where in accordance with previous notation Q1) is the (j +
1)th diagonal element of Q). % RN (Q(+1,1)s -+ Qi+1,p+1)) by (17). Hence, A;{’/f and Ay/’T"XT

are tight. The same is the case for v/T[p—p*, 3’ — B*'] since it converges weakly by (25)-(26). Hence,

2Ay" (Ay - Xr(pr, Bér)/> Apws3sign(pr) B
T + Ti/z 0] —0

P(@#O)SP<

Before proving Theorem 3 we prove the following lemma. Let (x); = max(z,0).

Lemma 1. Let g: R — R be given by g(u) = u? — 2au+ 2A|u|, A >0, a # 0. Then argming = 0
if and only if X >|a|. More precisely, argmin g = sign(a) (|a| — )\)+.
Proof. Assume a > 0. Since ¢’'(u) = 2u — 2a + 2Xsign(u) is strictly negative for u < 0 argming €
[0,00). @ > 01is alocal minimum (and hence a global minimum since g is strictly convex) if and only
if it is a stationary point, i.e. ¢'(%) = 24— 2a+2X = 0 which is equivalent to 0 < @ = a— A = |a| — .
This contradicts A > |a| and so argming = 0 when A > |a|. In total, the above shows that
argming = (a— \), = sign(a) (|a| — /\)+ for a > 0. Similar arguments establish the result for
a < 0.

|



20 ANDERS BREDAHL KOCK AARHUS UNIVERSITY AND CREATES

Proof of Theorem 8. p minimizes
T

T T T
Lip) = Z(Ayt = pyi-1)* £ 2 ‘|pp1|| ZA%Q +p? Z%Q—l - 2psztyt—1 + 2/\T’|Ap|
t=1 t=1 t=1

t=1

which is equvalent to minimizing
Zt LAYy 1d 1
Zt 1Y

It follows from Lemma 1 that p = 0 if and only if

P> —2p

+ 2\ — = p" —2ppr + 2Ap —

T
.2 2
PI —— o =PI E Y A
’ | |I|Zt 1Z/t1 o

t=1

Hence, recalling that p; = thl Ayyr—1/ Zt:l y?_, (the least squares estimator)

D lyt2 1 t=1

€
ot Et 1 Yt—1 t] Zyt 1§)\T>

Ztlytl t=1

2
Zt 1 Yt—1€¢
Zt 1yt 1

P(p=0) :P<ﬁ%§ij31 <AT> =P<

e
(s

Proof of Theorem 4. From Phillips (1987a) one has

ZT Aytyt 1 '
] S <

T
+ 20" Zt 1 Yt—1€¢ Z
Zt 1yt 1| t=1

T T 1 1
1 1 i
(27) (T E Yt—1€¢, 7T2 E thfl) — (0—2‘/0 I/I/YSdI/I/S7 0'2/0 Wszds)
t=1 t=1

Using Theorem 3 with p* = 0 yields

T T1yt 1€¢ ’ 1 &

N o T t= -

p<p_0)_p<12T 2 ]QZ <AT>
T2Zt:1yt71 =1

From (27) and the continuous mapping theorem it follows that

2
15T 2 T
—1 Yt—1€t 1 f WsdW,
(28) Gr = lTltle] D / W2ds =
T2 Zt:l Y1 =1 fo W2ds

S WodW,

where the last definition means that G is a random variable distributed as [ Tw2ds
0 s

PI|

|p1| Z?:l y15271

)
=)

2
} o? fol W2ds.
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Case 1: Ar — 0. Since the right hand side in (28) is absolutely continuous with respect to the
Lebesgue measure it has no mass points and so

P(ﬁ:()) P(GT §>\T) :FGT(/\T) —)FG(O) =0

Case 2:Ap — X € (0,00). By the same reasoning as in case 1 it follows that

P(,ﬁ = 0) =P (GT < )\T) = FGT()\T) — Fg()\) =pec (0,1)
since G is supported on all of R,..

Case 3: A\p — oco. Since G converges weakly it is tight and the result follows. O

Proof of Theorem 5. By standard results (see e.g. Hamilton (1994))
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is tight it follows that
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Case 1: Ap/T — 0. Since Hr converges in probability to L it follows that
P(p=0)=PHr <A/T) < P(Hr <L-L/2) =0
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where the estimate holds for T sufficiently large since Ap/T — 0.
Case 2: Ap/T — X € (0,00).
. <PHpr <A+ (L-MN/2)<PHr<L—-(L-X)/4) =0, A<L
P(p=0) = P (1 < rg) d S PR SAH(L=X)/2) < Pz S L— (L= /4
>PHr<A—(A—-L)/2)>PHr<L+(MN-L)/4)—1, A\>L

where the first estimate in each of the cases holds from a certain step and onwards.
Case 3: A\p/T — oo. Since Hp converges in probability it is tight and the result follows.

Proof of Theorem 6. By Phillips (1987b)

o () o fom [ o)

where J, is the Ornstein-Uhlenbeck process with parameter c. Notice how the only difference to
(27) is that the integrand process now is J.(r) instead of W(r). For ¢ = 0 they are identical as the
Ornstein-Uhlenbeck process collapses to the Wiener process.

From Theorem 3 with p* = ¢/T it follows

T
Zt:1 Yt—1€¢
T
it Y

2

P(h=0)=P < (¢/T)? +

T

2
+2c/TZt 1 Yt—1€¢ Z )

Ztlytl t=1

1 T T
_ o | | T 2im1 Y€t T L > Vi1
—p (| [ERGe| ad T L5y o
77 2at—1 Vi1 7 Zt Y1 =1
By the continuous mapping theorem
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where the last definition means that K is a random variable distributed as the weak limit of K.
Case 1: Apr — 0. Since K is absolutely continuous with respect to the Lebesgue measure it has
no mass points and so

P(ﬁZO):P(KTSAT):FKT()\T)—)FK(O):O

Case 2: Ay — X € (0,00). By the same reasoning as in Case 1 it follows that

P(ﬁZO) :P(KT S)\T) ZFKT(AT)%FK()\) S (0,1)

since K is supported on all of R;..
Case 3: A\ — 0. Since Kp converges weakly it is tight and the result follows.
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Proof of Theorem 7. The setting is the same as in the proof of Theorem 1. Follow the proof of that
theorem, with identical notation, until (7) with v; = 792 = 1. Next, notice that
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Furthermore, if 37 # 0
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since (i): Ap/T"? — 0, (ii): |1/, — |1/8;| < oo in probability and (iii):
Y <5j* uzg —|p > / (%) — ug;sign(B;).

Finally, if ﬁj =0,
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by (5) and (6) since (i): Ay — X and (ii): ng is 0 with probability 0 such that « — |1/z] is
continuous almost everywhere with respect to the limiting measure.
Putting together (7) and(30)-(32) one concludes
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Hence, since Vp(u) is convex and ¥(u) has a unique minimum it follows from Knight (1999) that
arg min Vr(u)= arg min ¥ (u)
]

Proof of Theorem 8. The setting is the same as in the proof of Theorem 2. Follow the proof of that
theorem, with identical notation, until (21) with 71 = 72 = 1. For the case of 3} = 0 one has
UQJ

Ar
\/T T1/2
by (17) and (18) since (i): Ay — A, (ii): Cq; is 0 with probability 0 such that x |1/x| is
continuous almost everywhere with respect to the limiting measure.
Putting together (19)-(21) and (33) one concludes
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Hence, since Vr(u) is convex and U (u) has a unique minimum it follows from Knight (1999) that
arg min Vr(u)= arg min ¥ (u)
O
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