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CONDITIONALLY-UNIFORM FEASIBLE GRID

SEARCH ALGORITHM

MATT P. DZIUBINSKI

Abstract. We present and evaluate a numerical optimization
method (together with an algorithm for choosing the starting val-
ues) pertinent to the constrained optimization problem arising in
the estimation of the GARCH models with inequality constraints,
in particular the Simpli�ed Component GARCHModel (SCGARCH),
together with algorithms for the objective function and analytical
gradient computation for SCGARCH.

JEL Classi�cation. C32, C51, C58, C61, C63, C88.

1. Introduction

In this paper we present a numerical optimization method applica-
ble to the estimation of the Simpli�ed Component GARCH Model
(SCGARCH) of Dziubinski (2011). The method, the Conditionally-
Uniform Feasible Grid Search (CUFGS), is essentially a particular kind
of a random grid search coupled with a constrained feasible Sequential
Quadratic Programming (SQP) algorithm.

One of the reasons for developing it are the problems encountered when
using non-specialized gradient-based algorithms � due to constrained
feasible space requirement and scaling. For example, in relation to the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, popular with
econometricians, Nocedal and Wright (2006) write:

(1) �BFGS updating is generally less e�ective for constrained prob-

lems than in the unconstrained case because of the requirement

of maintaining a positive de�nite approximation to an underly-

ing matrix that often does not have this property.�
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2 MATT P. DZIUBINSKI

(2) �SQP methods are most e�cient if the number of active con-

straints is nearly as large as the number of variables, that is,

if the number of free variables is relatively small. They require

few evaluations of the functions, in comparison with augmented

Lagrangian methods, and can be more robust on badly scaled

problems.�

We also provide the objective function and analytical gradient com-
putation algorithms, which are useful for the practical implementation
purposes.

The paper proceeds as follows. In Section 2 we present the SCGARCH
model. We discuss estimation in Section 3. In Sections 4 and 5 we
analyze the estimation algorithms and show the results. Section 6
contains our conclusions.

2. The Model

For reference we present the SCGARH model; for details see Dziubinski
(2011). The observed time-series (e.g., log return on the spot asset
price), r follows (over time steps of length ∆ ≡ 1) the following process
under the (physical) probability measure P ,

rt+1 ≡ log
St+1

St
= µt+1 +

√
vt+1wt+1 (2.1)

vt+1 = xt+1 + pv(vt − xt) + ivuv,t (2.2)

xt+1 = mx + px(xt −mx) + ixux,t (2.3)

with

µt+1 = rf + λvt+1 (2.4)

uv,t = (w2
t − 1)− 2gv

√
vtwt (2.5)

ux,t = (w2
t − 1) (2.6)

w
P∼ GWN(0, 1) (2.7)

where rf is the continuously compounded interest rate for the time
interval of length ∆, vt is the conditional variance of the log return
between t − 1 and t, with v ∈ P . The process w is a Gaussian white

noise with mean 0 and variance 1, i.e., wt
P∼ N (0, 1) ∀t ∈ T and w

P∼
WN(0, 1) (under probability measure P , w has mean 0 and covariance
function γ(s, t) = δ|t−s|, where δh := 1{0}(h) is the Kronecker delta).

This model is a simpli�ed speci�cation of the Christo�ersen et al.
(2008) model, solving the problem of ensuring non-negativity of the
conditional variance. The su�cient conditions for non-negativity of
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volatility components v and x are:

px ≤ 1, bv > 0, iv > 0, ix > 0 (2.8)

nx > ix + iv (2.9)

px > pv > ivg
2
v > 0 (2.10)

We denote our parameter vector by

θ := (rf , λ, nx, iv, ix, pv, px, gv)
T

and the restricted parameter space by

Θ̃ := {θ ⊆ Θ : (2.8)− (2.10)},

where Θ ⊆ Rp, p = 8.

3. Maximum Likelihood Estimation

A statistical method used for estimating the model is the Maximum
Likelihood Estimation (MLE), which involves maximizing an objective
function (called the (log)likelihood function) in order to obtain the
estimates.

Dziubinski (2011) shows that we can state our optimization problem
as a constrained minimization problem:

θ̂ = arg min
θ∈Θ̃

Q̃N(θ) (3.1)

Q̃N(θ) =
N∑
t=0

lt(θ) (3.2)

lt(θ) = log(vt) + w2
t . (3.3)

3.1. Objective Function Computation. Here we provide an algo-
rithm to compute the objective function.1 We can compute the sum-
mands (3.3) of (3.2) using the speci�cation given in (2.1)�(2.7). The
following procedures implement the computation given in these equa-
tions:

Summand l0(θ, w, v, x, r)
Input: a parameter vector θ, observation r0, starting values v0, x0

Output: summand l0, value w0

1 w0 ← (r0 − rf − λv0)/v
1/2
0

2 l0 ← log(v0) + w2
0

3 return l0

1The conventions for pseudocode may be found on pp. 19�20 of Cormen et al.
(2001). In addition to those, the evaluation strategy for modi�ed w, v, x is pass-by-
reference (the modi�cations made to these variables are preserved across calls).
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Summand lt+1(θ, w, v, x, r)
Input: a parameter vector θ, observation rt+1, values wt, vt, xt
Output: summand lt+1, values wt+1, vt+1, xt+1

1 ux,t ← (w2
t − 1)

2 uv,t ← (w2
t − 1)− 2gvv

1/2
t wt

3 xt+1 ← nx + pxxt + ixux,t
4 vt+1 ← xt+1 + pv(vt − xt) + ivuv,t
5 wt+1 ← (rt+1 − rf − λvt+1)/v

1/2
t+1

6 lt+1 ← log(vt+1) + w2
t+1

7 return lt+1

Finally, the procedure Objective-Function implements the compu-
tation of the objective function (3.2):

Objective-Function l(N, θ, w, v, x, r)
Input: a parameter vector θ, starting values r0, v0, x0

Output: the objective function l ≡
∑N

t=0 lt(θ)
1 l ← Summand l0(θ, w, v, x, r)
2 for t← 0 to (N − 1) do
3 l← l + Summand lt+1(θ, w, v, x, r)
4 return l

3.2. Analytical Gradient. To implement MLE in practice it is use-
ful to have the analytical gradient. There are at least two reasons
for that. First, in case of GARCH models estimation using gradient-
based optimization the analytical gradient is more accurate than its
numerical approximation (see (Zivot, 2009, Section 5.1) and Brooks
et al. (2001)). Second, it may also be applied for computing the outer-
product gradient (OPG) estimate of the information matrix. Here is
the pseudocode for the procedures implementing the computation of
the analytical gradient for the objective function in our model:

Summand ∇l0(θ, w, v, x, r)
Input: a parameter vector θ, observation r0, values w0, v0, x0

Output: summand ∇l0
1 ∇x0 ← 0
2 ∇v0 ← 0
3 ∇w0 ← −1

2
· v−1

0 · w0 · ∇v0

4 ∂rfw0 ← ∂rfw0 − v−1/2
0

5 ∂λw0 ← ∂λw0 − v1/2
0

6 ∇w2
0 ← 2 · w0 · ∇w0

7 ∇l0 ← v−1
0 · ∇v0 +∇w2

0

8 return ∇l0
Summand ∇lt+1(θ, w, v, x, r)
Input: a parameter vector θ, observation rt+1, values wt, vt, xt
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Output: summand ∇lt+1, values wt+1, vt+1, xt+1

1 ∇ux,t ← ∇w2
t

2 ∇xt+1 ← px · ∇xt + ix · ∇ux,t
3 ∂nxxt+1 ← ∂nxxt+1 + 1
4 ∂ixxt+1 ← ∂ixxt+1 + ux,t
5 ∂pxxt+1 ← ∂pxxt+1 + xt
6 ∇uv,t ← ∇w2

t + gv · wt · v−1/2
t · ∇vt + 2 · gv · v1/2

t · ∇wt
7 ∂gvuv,t ← ∂gvuv,t + 2 · v1/2

t · wt
8 ∇vt+1 ← ∇xt+1 + pv · (∇vt −∇xt) + iv · ∇uv,t
9 ∂ivvt+1 ← ∂ivvt+1 + uv,t
10 ∂pvvt+1 ← ∂pvvt+1 + (vt − xt)
11 ∇wt+1 ← −1

2
· v−1

t+1 · wt+1 · ∇vt+1

12 ∂rfwt+1 ← ∂rfwt+1 − v−1/2
t+1

13 ∂λwt+1 ← ∂λwt+1 − v1/2
t+1

14 ∇w2
t+1 ← 2 · wt+1 · ∇wt+1

15 ∇lt+1 ← v−1
t+1 · ∇v0 +∇w2

t+1

16 return ∇lt+1

Finally:

Gradient ∇l(N, θ, w, v, x, r)
Input: a parameter vector θ, starting values r0, v0, x0

Output: the gradient g ≡ ∇l(θ)
1 l ← Summand l0(θ, w, v, x, r)
2 g ← Summand ∇l0(θ, w, v, x, r)
3 for t← 0 to (N − 1) do
4 l← l + Summand lt+1(θ, w, v, x, r)
5 g ← g + Summand ∇lt+1(θ, w, v, x, r)
6 return g

Note, that the calculation of the gradient still requires the computation
of w, v and x � this is done by Summand lt(θ, w, v, x, r), t ∈ T.

4. A Simulation Study of Estimation Method Choice

4.1. Overview. In this section we provide an overview of some of the
methods to estimate our model. We simulate the model using the
coe�cient values given in Table 1 (they are interesting in practice,
since they have the same magnitude as those in Table 1 of Dziubinski
(2011)) and estimate the parameters using the simulated data and the
following algorithms2:

2We use the implementations thereof provided by O2scl � an
object-oriented library for numerical programming in C++ � see:
http://o2scl.sourceforge.net/. The exception is FSQP, which uses CF-
SQP implementation � see Lawrence et al. (1997).
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(1) NM - Nelder-Mead
(2) FR - Fletcher-Reeves
(3) PR - Polak-Ribière
(4) BFGS - Broyden-Fletcher-Goldfarb-Shanno
(5) SA - Simulated Annealing
(6) PG - Projected Gradient
(7) SPG - Spectral Projected Gradient
(8) FSQP - Feasible Sequential Quadratic Programming

N = 1,000 Simulation Estimation Starting Values
rf 1.000× 10−1 9.000× 10−2

λ 2.000× 10+0 1.800× 10+0

nx 8.000× 10−6 7.200× 10−6

iv 1.000× 10−6 9.000× 10−7

ix 2.000× 10−6 1.800× 10−6

pv 6.000× 10−1 5.400× 10−1

px 9.000× 10−1 8.100× 10−1

gv 4.000× 10+2 3.600× 10+2

Q̃n −8.427097× 10+3 −6.228086× 10+3

Table 1. The coe�cient values used in the simulation study.

The maximum number of iterations is 1,000 in all of the cases3 The
sample size N = 1, 000.

The Nelder-Mead (also known as downhill simplex) algorithm is a
derivative-free optimization method, FR and PR are nonlinear con-
jugate gradient methods, BFGS is a quasi-Newton method. PG is an
extension of the steepest descent method for unconstrained minimiza-
tion, where a line search is performed over the direction of a projected
gradient. SPG is similar to PG, except accelerated convergence due to
the choice of the spectral step-length; see Birgin et al. (2000) for details.
SA is a probabilistic metaheuristic (convergence to an optimal solution
is not guaranteed) for the global derivative-free optimization. FSQP
is a quadratic programming method applicable to the constrained op-
timization problems. For the �rst four algorithms, see Nocedal and
Wright (2006), for SA see Henderson et al. (2003) or Dreo et al. (2005),
for PG see Kelley (1999) and for SPG see Birgin et al. (2000).

FSQP is based on Sequential Quadratic Programming (SQP), modi�ed
so as to generate feasible iterates. Sequential quadratic programming

3The reason for choosing this criterion as opposed to, say, maximum elapsed
time, is to ensure the reproducibility of the results, independent of the performance
of the computer hardware.
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(SQP) methods model the general constrained optimization problem
by a quadratic programming subproblem at each iterate and de�ne the
search direction to be the solution of this subproblem. It is important
to design the quadratic subproblem so that it yields a good step for
the nonlinear optimization problem, see Nocedal and Wright (2006).
A description of FSQP can be found in Lawrence et al. (1997). There
are two FSQP algorithms: FSQP-AL and FSQP-NL. In the FSQP-AL
(monotone line search), an Armijo type arc search is used with the
property that the step of unit length is eventually accepted, which is
a requirement for superlinear convergence. In the FSQP-NL algorithm
the same e�ect is achieved by means of a nonmonotone search along
a straight line. In other words, in the FSQP-AL algorithm the objec-
tive function decreases at each iteration, while in FSQP-NL we have a
decrease of the objective function within at most four iterations. For
details, see Lawrence et al. (1997).

For reproducibility purposes, we use the default seed for the Simulated
Annealing. To minimize the warm-up period we use the unconditional
mean of v and x to initialize v0 and x0, that is, we set the starting
values to mx derived from the starting values of nx and px.

Note, that McCullough and Renfro (1999) and Brooks et al. (2001)
stress the importance of reporting the initial values provided to the
GARCH estimation software. Without them, any conditional het-
eroscedasticity model is only partially speci�ed, because the elements
on which the likelihood is conditioned are not speci�ed if the initial val-
ues are not given. McCullough and Renfro (1999) also report that the
initialization of the series, though often overlooked, can substantially
a�ect the �solution� produced by the software.

4.2. Constraints. In practice we may actually need a constrained
minimization algorithm in order to ensure that the non-negativity con-
ditions hold. Only the last three algorithms in our list are of this type
(note, that PG and SPG only allow for hypercubic constraints, while
FSQP allows for nonlinear functional constraints).

A solution commonly used in practice, see for example in Rouah and
Vainberg (2007), is to implement a penalty, so that violating non-
negativity conditions generates a large value of the objective function.
For the methods requiring this modi�cation, we adjust the algorithms
as follows:

Penalized-Objective-Function l(N, θ, w, v, x, r)
Input: a parameter vector θ, starting values r0, v0, x0

Output: the objective function l ≡
∑N

t=0 lt(θ)
1 if Positivity-Conditions(θ) 6= TRUE

2 then return Penalty
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3 l ← Summand l0(θ, w, v, x, r)
4 for t← 0 to (N − 1) do
5 l← l + Summand lt+1(θ, w, v, x, r)
6 return l

Penalized-Gradient ∇l(N, θ, w, v, x, r)
Input: a parameter vector θ, starting values r0, v0, x0

Output: the gradient g ≡ ∇l(θ)
1 if Positivity-Conditions(θ) 6= TRUE

2 then return Penalty

3 l ← Summand l0(θ, w, v, x, r)
4 g ← Summand ∇l0(θ, w, v, x, r)
5 for t← 0 to (N − 1) do
6 l← l + Summand lt+1(θ, w, v, x, r)
7 g ← g + Summand ∇lt+1(θ, w, v, x, r)
8 return g

The boolean expression Positivity-Conditions(θ) is TRUE ⇐⇒
θ ∈ Θ̃, and FALSE otherwise. Analogously to Rouah and Vainberg
(2007), Penalty is assumed constant and large enough to have the or-
der of magnitude larger than the objective function evaluated at start-
ing values.

4.3. Results.

NM FR PR
r̂f = 9.000× 10−2 = 9.000× 10−2 = 9.000× 10−2

λ̂ 2.800× 10+0 = 1.800× 10+0 = 1.800× 10+0

n̂x = 7.200× 10−6 7.673× 10−6 7.671× 10−6

îv = 9.000× 10−7 4.946× 10−13 3.834× 10−14

îx = 1.800× 10−6 2.786× 10−6 2.748× 10−6

p̂v = 5.400× 10−1 = 5.400× 10−1 = 5.400× 10−1

p̂x = 8.100× 10−1 = 8.100× 10−1 = 8.100× 10−1

ĝv = 3.600× 10+2 = 3.600× 10+2 = 3.600× 10+2

Time (s) 0.0× 10+0 1.3439× 10+2 1.34516× 10+2

Q̃n(θ̂) −6.244133× 10+3 −6.747140× 10+3 −6.741407× 10+3

Table 2. The estimated coe�cient values obtained in
the estimation study using NM, FR and PR. Penalty
set to 999, 999.999. Symbol = indicates that the values
are equal to the initial values.
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SA PG SPG
r̂f 9.008× 10−2 = 9.000× 10−2 9.003× 10−2

λ̂ 1.800× 10+0 = 1.800× 10+0 = 1.800× 10+0

n̂x 3.917× 10−5 7.666× 10−6 5.381× 10−5

îv 1.079× 10−6 7.248× 10−233 4.167× 10−6

îx 3.702× 10−6 2.670× 10−6 2.960× 10−7

p̂v 5.398× 10−1 = 5.400× 10−1 = 5.400× 10−1

p̂x 8.102× 10−1 = 8.100× 10−1 = 8.100× 10−1

ĝv 3.600× 10+2 = 3.600× 10+2 = 3.600× 10+2

Time (s) 1.72× 10−1 2.937× 100 2.75× 100

Q̃n(θ̂) −7.625983× 10+3 −6.729235× 10+3 −7.609727× 10+3

Table 3. The estimated coe�cient values obtained in
the estimation study using SA, PG and SPG. Penalty
set to 999, 999.999. Symbol = indicates that the values
are equal to the initial values.

FSQP-AL FSQP-NL
r̂f 9.908070× 10−2 1.084674× 10−1

λ̂ 1.557766× 10+1 −9.986293× 10+1

n̂x 3.017787× 10−5 3.007165× 10−5

îv 3.068260× 10−7 1.509107× 10−7

îx 2.191491× 10−6 2.295927× 10−6

p̂v 2.525282× 10−1 1.805605× 10−1

p̂x 6.252131× 10−1 6.280134× 10−1

ĝv 3.583449× 10+2 3.623615× 10+2

Time (s) 1.88× 10−1 7.66× 10−1

Q̃n(θ̂) −8.432699× 10+3 −8.435838× 10+3

Table 4. The estimated coe�cient values obtained in
the estimation study using FSQP.

We use the starting values reported in the third column (denoted �Esti-
mation Starting Values�) of Table 1. The results are reported in Tables
2 and 3. We notice that almost every unconstrained optimization al-
gorithm performs unsatisfactorily. This may be due to the di�culty
ensuring that the estimates remain in Θ̃. The Penalty encountered in
this case introduces non-smoothness of the objective function, whereas
many of the algorithms require smoothness for convergence. Similarly,
Zivot (2009) reports that the GARCH log-likelihood function is not
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always well behaved, which may cause di�culties for standard opti-
mization techniques, especially when one takes into account the need
to ensure that the positive variance and stationarity constraints hold.

Simulated annealing, as a local search algorithm (metaheuristic) ca-
pable of escaping local optima by allowing hill-climbing moves, fares
better in our benchmark. As it is not gradient-based, smoothness is
not an important requirement.

One may also notice that in some cases the only arguments changing
signi�cantly are nx, iv and ix. This may result from the disproportion-
ately high sensitivity of the objective function to those three arguments.
In particular, compare the value of Q̃n for Estimation Starting Values

in Table 1 to the one returned in case of the NM algorithm in Table 2
� a change in one variable (λ) is enough to signi�cantly alter the value
of the objective function. We suspect similar behavior in case of nx, iv
and ix for the FR, PR, PG, and SPG algorithms.

Below we present the summary of the estimation study results for the
�rst seven algorithms:

(1) NM: only the value of λ has changed,
(2) FR: the value of ix has improved compared to (1) (which proba-

bly led to an improvement in the objective function value), the
iv has worsened, long computation time,

(3) PR: very similar to FR, other than iv is an order of magnitude
further from the true value,

(4) BFGS: BFGS failed to produce results di�erent from the start-
ing values after 2.628280× 10+2 s,

(5) SA: better than all of the above,
(6) PG: exhibits a problem with iv, other than that mediocre per-

formance (on par with NM, FR, PR),
(7) SPG: nonmonotone line search combined with spectral choice

of step length lead to a signi�cant improvement compared to
PG; iv does not su�er problems as pronounced as in the case
of FR, PR or PG, nx is slightly better than in SA; still, the
objective function value is slightly worse than SA. A possible
reason: λ, pv, px, gv did not change at all.

Finally, we discuss the results in Table 4 for FSQP algorithm and con-
sider two variants of it.

What is striking is that the objective function values have improved
signi�cantly compared to those obtained by the previously discussed
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algorithms.4 This suggests that FSQP might be the best choice for the
estimation.

The estimate that is worth of attention is λ̂. Estimation of this param-
eter appears di�cult, possibly less so in the FSQP-AL case. However,
the problem observed in all of the above algorithms, is that the es-
timates quite often remain equal to their initial values. This case is
common in the component GARCH models � estimation issues were
also reported by Christo�ersen et al. (2008). Furthermore, it is worth
noting that in the optimization settings we have used a very large in-
terval � (-100, 100) � for the allowed values of the λ estimate compared
to the true value. In practice, one would restrict it to an empirically
reasonable (and realistic) range, depending on the beliefs and the ex-
perience of the researcher. For example, limiting it to (1, 3), we obtain
an estimate of 1.72 by FSQP-AL and 1 by FSQP-NL (note the cor-
ner case). This seems to suggest that FSQP-AL deals better with this
problem than FSQP-NL. We have also chosen to report the more neg-
ative results so as to not create an impression of an unfair treatment
compared to the other algorithms.

As for the other results, the ones for rf , nx, ix and gv are comparable;
FSQP-AL fares slightly better than FSQP-NL for iv. Unfortunately,
the estimates of pv and px are not that close to the DGP ones (FSQP-
AL fares slightly better for pv). This might also be due to a small
sample N = 1, 000.

In order to �nd out whether rescaling the parameters to the same mag-
nitude would yield an improvement, we simulate the model with DGP
parameters set to rf = 1.0e-001, λ = 5.0e-001, nx = 4.0e-001, iv =
1.0e-001, ix = 2.0e-001, pv = 2.5e-001, px = 7.5e-001, gv = 1.0e+000.
However, we experience similar di�culties as in the original case. Fur-
thermore, one may argue that ex ante the researcher cannot always
know the appropriate scale without performing estimation in the �rst
place.

4.4. Choices. There are several directions one could investigate as far
as estimation is concerned:

• using smoothly changing constraint-violation penalty function
� for instance, as in cont_constraint in O2scl5,

4In fact, they are slightly �better� than those corresponding to the DGP � we
believe the reason is the �nite sample of our simulation study and the e�ects of
conditioning on the initial values not dying o�.

5See http://o2scl.sourceforge.net/o2scl/html/minimize_8h.html.
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• using constrained minimization algorithms allowing for con-
straints of type θ ∈ Θ̃ (which are not hypercubic), as in meth-
ods allowing for inequality constraints in Nocedal and Wright
(2006),
• using the augmented Lagrangian method, see Conn et al. (1991),
• using constrained NLP, as in Altay-Salih et al. (2003).

Our solution is in the spirit of the last one, since we use specialized
algorithms designed for optimization with inequality constraints, i.e.
FSQP-AL and FSQP-NL. In addition, we have also considered Simu-
lated Annealing, since it is reasonably fast and performs relatively well
in the class of the unconstrained optimization algorithms.

5. Starting Values Selection Algorithm

As our next step, we consider a practical problem in model estimation:
choosing the starting values. We consider an optimization method
which might be very useful in practice. It belongs to the class of grid
search methods, which means optimizing without choosing the initial
parameter values.

First, we consider the naive grid generation, using unconditionally uni-
formly distributed initial values and box constraints for the support:
rf ∈ R, λ ∈ R, nx > 0, iv > 0, pv ∈ (0, 1), px ∈ (0, 1), gv ∈ R. We �nd
that the naive grid search method performs very poorly in practice.
Generating feasible starting values this way takes a very signi�cant
amount of time (> 1.0e+3 s). Even though the FSQP algorithm we
use allows for non-feasible starting values and begins by searching for
feasible ones, it takes too much time to use this method in practice.
None of the algorithms was able to get close to the results obtained
with the starting values in Table 1.

Therefore, we introduce a grid search method which we shall refer to
as the Conditionally-Uniform Feasible (CUF) Grid Search (CUFGS).
The idea behind it is to solve the main weakness of the naive method:
the unacceptably long amount of time it takes to generate feasible ini-
tial values. The way to solve this problem is to generate the starting
values sequentially, starting by obtaining the parameters which are
not a�ected by inequality constraints by drawing their values from a
uniform distribution. Next, the constrained parameters are generated
conditioning on the ones associated with their constraints. The choice
of the conditional distributions ensures that the values of the gener-
ated parameters satisfy the inequality constraints by de�nition. The
algorithm is as follows:
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Generate-CUF-Parameters

Input: lower (bl) and upper (bu) box bounds, inequality constraints
Output: the set of CUF parameters satisfying positivity conditions
θ ∈ Θ̃
0 Generate rf ∼ U(blrf , burf ), λ ∼ U(blλ, buλ)
1 do

2 Generate iv ∼ U(bliv , buiv), ix ∼ U(blix , buix), gv ∼ U(blgv , bugv)
3 blpv ← ivg

2
v (feasible lower bound for pv)

4 blnx ← iv + ix (feasible lower bound for nx)
5 while blpv > bupv OR blnx > bunx

6 Generate nx ∼ U(blnx , bunx), pv ∼ U(blpv , bupv), px ∼ U(pv, bupx)
7 return θ := (rf , λ, nx, iv, ix, pv, px, gv)

T

This procedure ensures that the generated initial values satisfy (2.8)-
(2.10). It is also much faster than searching for the feasible region by
optimization, as it only relies on the very fast (conditionally-)uniform
pseudo-random number generator.

Next, we perform a CUF Grid Search a given number of times. Each
time we obtain the starting values by usingGenerate-CUF-Parameters
and passing them to the optimization algorithm. We keep track of the
best objective function value achieved in each iteration. Finally, we
return the overall best result. This allows us to optimize by only speci-
fying (very rough) lower and upper bounds for the parameters, instead
of manually choosing the starting values.

Table 5 contains a summary of the CUFGS estimation study results.
The best objective function value achieved and the number of iterations
as well as the computation time in seconds are reported.6

Algorithm Q̃n Iterations Time (s)
NM −4, 477.69 3, 370 56.829
FR 4, 283.83 19 167.422
PR 4, 283.83 19 167.016
BFGS −366.88 20 327.047
SA −3, 505.79 2, 531 776.531
PG −4, 336.41 203 305.953
SPG −3, 089.56 17 553.422
FSQP-AL −8, 433.92 1, 740 47.218
FSQP-NL −8, 434.50 503 20.250

Table 5. The estimated coe�cient values obtained in
the estimation study using CUFGS. Penalty set to
999, 999.999.

6To make the comparison practically interesting, we have imposed an upper limit
of 1,000 s for the grid search.
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It is seen from the table that the di�erence between the specialized and
non-specialized algorithms is quite pronounced. Only the FSQP man-
ages to achieve the results comparable to those obtained when the opti-
mization process is started from manually-chosen starting values close
to the DGP ones. It is also interesting to note the trade-o� between the
convergence properties (number of iterations) and the computational
cost of each iteration. It is not always the case that the algorithms with
faster convergence properties (a lower number of necessary iterations)
perform best, since each iteration may be su�ciently costly to o�set
any gains in accuracy.

The results for the FSQP CUFGS optimization are shown in more
detail in Table 6. We note that rf estimates are comparable for both
FSQP-AL and FSQP-NL, nx and iv are estimated slightly better by
FSQP-AL, in the case of ix FSQP-AL is much closer to DGP than
FSQP-NL, for pv FSQP-AL gets very close to DGP, whereas in the
case of px FSQP-NL is quite close to DGP. Finally, the estimates of
λ and gv are not as good as the ones resulting from manually chosen
starting values that were close to the DGP. Our conclusion is that it
is worth to try both FSQP-AL and FSQP-NL and to experiment with
the choice of lower and upper bounds for λ and gv. Prior experience
with the estimation of those two parameters might lead to a choice of
the narrower bounds containing only "reasonable" values, which then
leads to good parameter estimates. In our case we have allowed the λ
to vary from -10 to 10 and gv to from -1,000 to 1,000.

We also note that some of the �nal iterations in both cases (AL and NL)
lead to numerically close objective function values (indicating possible
�atness of the objective function), so looking at several sets of the
estimates (instead of only the best ones) might also be advisable if the
values are su�ciently close to being numerically indistinguishable.

6. Estimation Results

As a practical example, we use estimation of the SCGARCH model
of Dziubinski (2011). Due to results in the previous section we have
chosen FSQP and SA to estimate the model parameters. In this section
we provide a brief summary of the methodology and the results from
the numerical perspective and refer the reader to Dziubinski (2011) for
further details.



CONDITIONALLY-UNIFORM FEASIBLE GRID SEARCH ALGORITHM 15

FSQP-AL FSQP-NL
r̂f 1.012× 10−1 1.012× 10−1

λ̂ −1.000× 10+1 −1.000× 10+1

n̂x 2.718× 10−5 8.294× 10−8

îv 2.189× 10−6 5.399× 10−8

îx 8.009× 10−7 4.307× 10−37

p̂v 6.594× 10−1 9.921× 10−1

p̂x 6.625× 10−1 9.990× 10−1

ĝv −3.523× 10+0 −9.986× 10+2

Time (s) 4.7218× 10+1 2.025× 10+1

Q̃n(θ̂) −8.43392× 10+3 −8.4345× 10+3

Table 6. The estimated coe�cient values obtained in
the estimation study using FSQP CUFGS.

For the purposes of research reproducibility, we report the starting val-
ues in column �Estimation Starting Values� in Table 1.7 We restart the
optimization using 100, 1,000, 10,000 and 50,000 iterations, consecu-
tively � we �nd the lowest values of Q̃n with 10,000 iterations in case
of both the daily and the 5-minute data.

The estimates obtained using the SA optimization algorithm are quite
stable over the sampling frequency. One of the issues, however, is that
some of the coe�cients are statistically insigni�cant as their standard
errors are large. Because of that, we do not put trust in those results �
also since there are several scaling issues when using the SA algorithm
for optimization; we note, that the objective function values are inferior
to those obtained using FSQP.

Next, we consider the estimates obtained using FSQP-AL CUFGS op-
timization algorithm. The objective function values improve and large
standard errors (indicating insigni�cance) are practically not encoun-
tered in FSQP optimization. This strengthens our belief that the choice
of the optimization algorithm matters a great deal in this regard.

The results for the FSQP-NL CUFGS optimization algorithm are mostly
similar to those discussed above, except that in this case the estimate
of gv is better.

In order to examine the scaling issues with the SA algorithm, we also
perform the optimization with rescaling. The procedure is as follows:

7Note, that as Zivot (2009) reports, poor choice of starting values can lead to an
ill-behaved log-likelihood and cause convergence problems � this is why we use the
starting values that satisfy the non-negativity conditions.
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(1) rescale the θ in objective function computations, using the or-
ders of magnitude from the FSQP CUFGS results (note that
this requires prior estimation using FSQP CUFGS),

(2) use starting values equal to 1.0 for all coe�cients,
(3) perform SA CUFGS optimization (grid search is necessary, since

we �nd that rescaled non-grid optimization fails to converge
with given starting values),

(4) store the results of the SA CUFGS optimization,
(5) use the stored results in non-scaled non-grid SA optimization

to obtain �nal results.

We note the improvements in the objective function value in case of
low-frequency data. However, we would generally advise against this
estimation method compared to FSQP CUFGS, since:

(1) prior estimation using di�erent algorithm (such as FSQP CUFGS)
is still necessary for this method � we �nd SA to be very sensi-
tive to scaling,

(2) it is impractically slow � not only due to prior estimation re-
quirements, but also because SA CUFGS takes a considerable
amount of time to �nd feasible solutions (> 5 min for low-
frequency data, > 20 min for high-frequency data) and then
to improve upon them in the �nal step (> 2.5 min, > 10 min,
respectively). In comparison, FSQP-AL needed < 4 min to
converge for high-frequency data.

7. Conclusions

In this paper we consider a collection of numerical methods pertinent
to the estimation of the SCGARCH model of Dziubinski (2011). We
discuss and provide a benchmark of several optimization routines ap-
plied to this estimation problem. We �nd that the FSQP algorithms
(FSQP-AL and FSQP-NL) have the best performance of the algorithms
we consider.

We also provide an algorithm that can be pro�tably used in the se-
lection of starting values for the estimation. We �nd that the FSQP
algorithms coupled with CUFGS perform reasonably well and signi�-
cantly better than the non-specialized optimization algorithms.

We believe that our algorithm is applicable to a wide-range of non-
linearly constrained optimization problems, where there is a sequential
functional dependence among the constraints on the variables. The
algorithm is especially useful in practical econometric modeling, where
the choice of starting values is often not an obvious one, especially for
the end-users unfamiliar with the given modeling framework, or where
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the model is new and there is no well-known range of parameters'
bounds.
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