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Abstract

Non-standard distributional approximations have received considerable attention in recent

years. They often provide more accurate approximations in small samples, and theoretical im-

provements in some cases. This paper shows that the seemingly unrelated “many instruments

asymptotics”and “small bandwidth asymptotics”share a common structure, where the object

determining the limiting distribution is a V-statistic with a remainder that is an asymptotically

normal degenerate U-statistic. This general structure can be used to derive new results. We

employ it to obtain a new asymptotic distribution of a series estimator of the partially linear

model when the number of terms in the series approximation possibly grows as fast as the

sample size. This alternative asymptotic experiment implies a larger asymptotic variance than

usual. When the disturbance is homoskedastic, this larger variance is consistently estimated

by any of the usual homoskedastic-consistent estimators provided a “degrees-of-freedom cor-

rection” is used. Under heteroskedasticity of unknown form, however, none of the commonly

used heteroskedasticity-robust standard-error estimators are consistent under the “many re-

gressors asymptotics”. We characterize the source of this failure, and we also propose a new

standard-error estimator that is consistent under both heteroskedasticity and “many regres-

sors asymptotics”. A small simulation study shows that these new confidence intervals have

reasonably good empirical size in finite samples.
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1 Introduction

Many instrument asymptotics, where the number of instruments grows as fast as the sample size,

has proven useful for instrumental variables (IV) estimators. Kunitomo (1980) and Morimune

(1983) derived asymptotic variances that are larger than the usual formulae when the number

of instruments and sample size grow at the same rate, and Bekker (1994) and others provided

consistent estimators of these larger variances. Hansen, Hausman, and Newey (2008) showed that

using many instrument standard errors provides a theoretical improvement for a range of number

of instruments and a practical improvement for estimating the returns to schooling. Thus, many

instrument asymptotics and the associated standard errors have been demonstrated to be a useful

alternative to the usual asymptotics for instrumental variables.

Instrumental variable estimators implicitly depend on a nonparametric series estimator. Many

instrument asymptotics has the number of series terms growing so fast that the series estimator

is not consistent. Analogous asymptotics for kernel-density weighted average derivative estimators

has been considered by Cattaneo, Crump and Jansson (2010, 2011). They show that when the

bandwidth shrinks faster than needed for consistency of the kernel estimator the variance of the

estimator is larger than the usual formula. They also find that correcting the variance provides an

improvement over standard asymptotics for a range of bandwidths.

The purpose of this paper is to show that these results share a common structure and that this

structure can be used to derive new results. The common structure is that the object determining

the limiting distribution is a V-statistic, which can be decomposed into a bias term, a sample

average, and a “remainder” that is an asymptotically normal degenerate U-statistic. Asymptotic

normality of the remainder distinguishes this setting from other ones involving V-statistics. Here

the asymptotically normal remainder comes from the number of series terms going to infinity, or

bandwidth shrinking to zero, while the behavior of a degenerate U-statistic is more complicated in

other settings. When the number of terms grows as fast as the sample size (or the bandwidth shrinks

to zero at an appropriate rate) the remainder has the same magnitude as the leading term, resulting

in an asymptotic variance larger than just the variance of the leading term. The many instrument
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and small bandwidth results share this structure. In keeping with this common structure, we will

henceforth refer to such results under the general heading of “alternative asymptotics”.

Applying this common structure to a series estimator of the partially linear model leads to new

results. These results allow the number of terms in the series approximation to grow as fast as

the sample size. The asymptotic distribution of the estimator is derived and it is shown to have

a larger asymptotic variance than the usual formula. When the disturbance is homoskedastic this

larger variance is consistently estimated by using the usual homoskedasticity consistent estimator

with the proper degrees of freedom correction.1 This result provides a large sample justification for

the use of a degrees of freedom correction without normality of disturbances. It is also found that

the White (1980) variance estimator is inconsistent with many regressors, being too small when

the disturbance is homoskedastic. We propose a new variance estimator that is heteroskedasticity

consistent when the number of series terms grows as fast as the sample size. A small-scale simulation

study provides evidence supporting our theoretical findings and, in particular, shows that the new

heteroskedasticity consistent variance estimator performs well across a large range of number of

series terms in small samples. These results suggest that the new standard errors should be useful

for inference in the partially linear model with many regressors. These findings complement the

recent work of Stock and Watson (2007), who showed that the conventional heteroskedasticity-

robust variance matrix estimator is biased when employed in the context of a linear panel data

model with fixed-effects and gave a consistent estimator.

The rest of the paper is organized as follows. Section 2 describes the common structure of many

instrument and small bandwidth asymptotics, and also shows how the structure leads to new results

for the partially linear model. Section 3 formalizes the new distributional approximation for the

partially linear model, while Section 4 discusses the corresponding asymptotic variance estimation.

Section 5 concludes. The supplemental appendix reports the results from a small Monte Carlo

experiment, and contains the proofs of our theoretical results.

1Under the assumption of homoskedasticity, similar results are obtained in Calhoun (2011) for the F-test in a
linear model with the number of regressors growing as fast as the sample size, and in Kolesar, Chetty, Friedman,
Glaeser, and Imbens (2011) for a Gaussian IV model with many invalid instruments.
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2 A Common Structure

To describe the common structure of many instrument and small bandwidth asymptotics, let

W1, ...,Wn denote independent data observations. We consider an estimator µ̂ (of µ0, a generic

parameter of interest) satisfying:

√
n (µ̂− µ0) = Γ̂−1Sn, Sn =

∑
1≤i,j≤n

unij(Wi,Wj), (1)

where unij(wi, wj) is a function of a pair of observations that can depend on i, j, and n. We allow

u to depend on n to account for number of terms or bandwidths that change with the sample

size. Also, we allow u to vary with i and j to account for dependence on variables that are being

conditioned on in the asymptotics, and so treated as nonrandom.

We assume throughout this section that there exists a non-randommatrix Γn satisfying Γ−1n Γ̂→p

I for I the identity matrix of the appropriate dimension, and hence we focus on the V-statistic

Sn. (All limits are taken as n→∞ unless explicitly stated otherwise.) This V-statistic has a well

known (Hoeffding-type) decomposition that we describe here because it is an essential feature of

the common structure. For notational implicitly we will drop the Wi and Wj arguments and set

unij = unij(Wi,Wj) and ũnij = unij + unji − E[unij + unji]. Let ‖ · ‖ denote the Euclidean norm.

Proposition 1. If E[‖unij‖] <∞ for all i, j, n, then

Sn = Ψn + Un +Bn, (2)

where

Ψn =
∑
1≤i≤n

ψni (Wi), ψni (Wi) = unii − E[unii] +
∑

1≤j≤n,j 6=i
E[ũnij |Wi],

Un =
∑
2≤i≤n

Dn
i (Wi, ...,W1), Dn

i (Wi, ...,W1) =
∑

1≤j≤n,j<i

(
ũnij − E[ũnij |Wi]− E[ũnij |Wj ]

)
,

Bn = E[Sn], and E[ψni (Wi)] = 0, E[Dn
i (Wi, ...,W1)|Wi−1, ...,W1] = 0, E[ΨnUn] = 0.

This result shows that Sn can be decomposed into a sum of independent terms Ψn, a U-statistic
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remainder Un that is a martingale difference sum and uncorrelated with Ψn, and a pure bias term

Bn. This decomposition of a V-statistic is well known (e.g., van der Vaart (1998, Chapter 11)),

and is included here for exposition. It is important in many of the proofs of asymptotic normality

of semiparametric estimators, including Powell, Stock, and Stoker (1989), with the limiting distri-

bution being determined by Ψn, and Un being treated as a remainder that is of smaller order when

the bandwidth shrinks slowly enough.

An interesting feature of this decomposition in semiparametric settings is that Un is asymptot-

ically normal at some rate when the number of series terms grow or the bandwidth shrinks to zero.

In other settings the asymptotic behavior of Un is more complicated. It is a degenerate U-statistic,

that in general converges to a weighted sum of chi-squares (e.g., van der Vaart (1998, Chapter

12)). Apparently what occurs in semiparametric settings as the number of instruments grows or

the bandwidth shrinks is that the individual contributions Dn
i (Wi, ...,W1) to Un are small enough

to satisfy a Lindeberg-Feller condition. Combined with the martingale property of Un, this leads

to asymptotic normality of Un. This asymptotic normality property of Un has been shown for both

series and kernel estimators, as further explained below.

Alternative asymptotics occurs when the number of series terms grows or the bandwidth shrinks

fast enough that Ψn and Un have the same magnitude in the limit. Because of uncorrelatedness of

Ψn and Un the asymptotic variance will be larger than the usual formula which is limn→∞V[Ψn].

As a consequence, consistent variance estimation under alternative asymptotics requires accounting

for the presence of Un. Accounting for the presence of Un should also yield improvements when

numbers of series terms and bandwidths do not satisfy the knife-edge conditions of alternative

asymptotics. For instance, if the number of series terms grows just slightly slower than the sample

size then accounting for the presence of Un should still give a better large sample approximation.

Hansen, Hausman, and Newey (2008) show such an improvement for many instrument asymptotics.

It would be good to consider such improved approximations more generally, though it is beyond

the scope of this paper to do so.

We show next that both many instrument asymptotics and small bandwidth asymptotics have

the structure described above, and we also exploit this approach to derive new results in the case
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of a series estimator of the partially linear model, which we refer to as “many terms asymptotics”.

Details for the first two examples are given in the supplemental appendix.

The first example is concerned with the case of many instrument asymptotics. For simplicity

we focus on the jackknife IV estimator JIVE2 of Angrist, Imbens, and Krueger (1999), but the idea

applies to other IV estimators such as the limited information maximum likelihood estimator. See

Chao, Swanson, Hausman, Newey, and Woutersen (2012) for more details.

Example 1: “Many Instrument Asymptotics”. Consider a linear structural equation yi =

x′iβ0 + εi with E[εi] = 0, i = 1, ..., n, where xi is a vector and yi and εi are scalar dependent

variable and disturbance respectively. Let zi be a K× 1 vector of instrumental variables that

we treat as constants. Let Q = Z(Z ′Z)−Z ′ denote the projection matrix on the column space

of Z = [z1, ..., zn]′, and Qij the (i, j)-th element of Q. For JIVE2,

√
n(β̂ − β0) = Γ̂−1

∑
1≤i,j≤n,i6=j

Qijxiεj/
√
n, Γ̂ =

∑
1≤i,j≤n,i 6=j

Qijxix
′
j/n,

which is a special case of equation (1). Proposition 1, and symmetry of Q, implies that

equation (2) is satisfied. In this case, Bn = 0 and

Ψn =
∑
1≤i≤n

Υi(1−Qii)εi/
√
n+

∑
1≤i≤n

Υi −
∑
1≤j≤n

QijΥj

 εi/
√
n

=
∑
1≤i≤n

Υi(1−Qii)εi/
√
n+ op(1),

where Υi = E[xi] and the second equality will generally follow because Υi −
∑n

j=1QijΥj is a

regression residual that converges to zero as K grows. Under standard asymptotics K/n→ 0,

and henceQii → 0, so limn→∞V[Ψn] coincides with the usual asymptotic IV variance. Finally,

the degenerate U-statistic term is

Un =
∑

1≤j<i≤n
Qij (viεj + vjεi) /

√
n, vi = xi −Υi,

which will also be asymptotically normal as K →∞ by the martingale central limit theorem
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under appropriate conditions, as shown by Chao, Swanson, Hausman, Newey, and Woutersen

(2012). Alternative asymptotics occurs when K grows as fast as n, resulting in Ψn and Un

having the same magnitude in the limit. �

The next example shows that small bandwidth asymptotics for kernel estimators also has the

structure outlined above. In this case we focus on the integrated squared density to keep the

exposition simple and because it shares the common structure with the density-weighted average

derivative estimator of Powell, Stock, and Stoker (1989) treated in Cattaneo, Crump, and Jansson

(2011). This idea applies more generally to estimands defined as density-weigthed averages and

ratios thereof (see, e.g., Newey, Hsieh, and Robins (2004, Section 2) and references therein).

Example 2: “Small Bandwidth Asymptotics”. Consider the parameter µ0 =
∫
f0(w)2dw =

E[f0(Wi)] with Wi a continuous random variable with p.d.f. f0. A leave-one-out estimator is

µ̂ =
∑

1≤i,j≤n,i 6=j
Kh(Wi −Wj)/n(n− 1),

where K(u) is a symmetric kernel and Kh(u) = h−dK(u/h). This estimator has the V-

statistic form of equation (1) with Γ̂ = 1. Proposition 1, and symmetry of K(u), implies that

equation (2) is satisfied. In this case, under appropriate smoothness and kernel assumptions,

fh(Wi) =
∫
K(u)f(Wi + hu)du will converge to f0(Wi) in mean square as h → 0, so that

Bn =
√
n(E[fh(Wi)]− µ0) will be negligible and

Ψn =
∑
1≤i≤n

2(fh(Wi)− E[fh(Wi)])/
√
n =

∑
1≤i≤n

2(f0(Wi)− µ0)/
√
n+ op(1).

This gives the well-known influence function 2(f0(Wi) − µ0) for estimators of µ0, implying

that limn→∞V[Ψn] does correspond to the usual asymptotic variance for estimators of µ0.

Finally, the degenerate U-statistic term is

Un = 2
∑

1≤i<j≤n
{Kh(Wi −Wj)− fh(Wi)− fh(Wj) + E[fh(Wi)]}/

√
n(n− 1),
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which will also be asymptotically normal by the martingale central limit theorem, under

appropriate conditions, with convergence rate nhd/2. In this example alternative asymptotics

occurs when hd shrinks as fast as 1/n, resulting in Ψn and Un having the same magnitude in

the limit. �

The previous two examples show how several estimators share the common structure outlined

above. We now show how this structure can be applied to derive new results. We study series

estimation in the context of the partially linear model, an important and widely used model in

empirical work (see, e.g., Imbens and Wooldridge (2009)). Our new results will shed light on the

asymptotic behavior of this estimator, and the associated inference procedures, when the number

of terms are allowed to grow as fast as the sample size.

Example 3: “Many Terms Asymptotics”. Let (yi, x
′
i, z
′
i)
′, i = 1, . . . , n, be a random sample

of the random vector (y, x′, z′)′, where y ∈ R is a dependent variable, and x ∈ Rdx×1 and

z ∈ Rdz×1 are explanatory variables. The partially linear model is given by

yi = x′iβ + g(zi) + εi, E[εi|xi, zi] = 0, σ2ε(xi, zi) = E[ε2i |xi, zi],

where vi = xi − h(zi) with h(zi) = E[xi|zi]. A series estimator of β is obtained by regress-

ing yi on xi and approximating functions of zi. To describe the estimator, let pK(z) =

(p1K(z), . . . , pKK(z))′ be a vector of approximating functions, such as polynomials or splines,

where K denotes the number of terms in the regression. Here the unknown function g(z) will

be approximated by a linear combination of pkK(z). Therefore, letting Y = [y1, · · · , yn]′ ∈

Rn×1, X = [x1, · · · , xn]′ ∈ Rn×dx and P = [pK(z1), . . . , p
K(zn)]′, a series estimator of β is

given by

β̂ = (X ′MX)−1X ′MY , M = I −Q, Q = P (P ′P )−P ′,

where A− denotes a generalized inverse of a matrix A (satisfying AA−A = A) and X ′MX will

be non-singular with probability approaching one under appropriate conditions. Donald and

Newey (1994) gave conditions for the asymptotic normality of this estimator using standard
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asymptotics, as discussed in more detail below. (See also, among others, Robinson (1988)

and Linton (1995) for standard asymptotics results when using kernel estimators.)

Conditional on Z = [z1, ..., zn]′ this estimator has the structure outlined earlier, and for this

reason we will condition on Z throughout the following discussion so that expectations are

implicitly conditional on Z. (Alternatively, we could assume that the regressors entering the

partially linear model are non-random.) To explain how β̂ fits within the common structure,

let hi = h(zi), gi = g(zi), G = [g1, · · · , gn]′, ε = [ε1, · · · , εn]′, H = [h1, · · · , hn]′, and V =

[v1, · · · , vn]′. By Y = Xβ +G+ ε we have

√
n(β̂ − β) = (X ′MX/n)−1X ′M(ε+G)/

√
n = Γ̂−1Sn (3)

with

Γ̂ =
∑

1≤i,j≤n
Mijxix

′
i/n, Sn =

∑
1≤i,j≤n

xiMij(gj + εj)/
√
n,

and where Mij represents the (i, j)-th element of the matrix M . This estimator has the

V-statistic form of equation (1) with Wi = (yi, x
′
i)
′ and µ0 = β, Γ̂ = X ′MX/n, and

unij(Wi,Wj) = xiMij(gj + εj)/
√
n. By E[εi|xi] = 0 we have E[xiεi] = 0. Therefore, let-

ting unij = unij(Wi,Wj) as we have done previously, we have E[unij ] = hiMijgj/
√
n, unij −

E[unij ] = Mij (vigj + xiεj) /
√
n, ũij = Mij (vjgi + vigj + xjεi + xiεj) /

√
n, and E[ũij |Wi] =

Mij (vigj + hjεi) /
√
n. As before, we obtain from Proposition 1 that equation (2) is satisfied.

In this case, the main bias term Bn = H ′MG/
√
n will also be negligible under appropriate

conditions, as shown in the next section. Moreover, by Mii = 1−Qii,

Ψn =
∑
1≤i≤n

Miiviεi/
√
n+

(
V ′MG+H ′Mε

)
/
√
n

=
∑
1≤i≤n

Miiviεi/
√
n+ op(1),

where the second equality will follow because the last term has mean zero and converges to

zero in mean square as K grows, as further discussed below. Under standard asymptotics Qii

will go to zero and hence the variance of Ψn corresponds to the usual asymptotic variance.
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Finally, noting that for j < i, Mij = −Qij , we find that the degenerate U-statistic term is

Un = −
∑

1≤i<j≤n
Qij (viεj + vjεi) /

√
n.

Remarkably this term is essentially the same as the degenerate U-statistic term for JIVE2

that was shown above. Consequently, the central limit theorem of Chao, Swanson, Hausman,

Newey, and Woutersen (2012) is applicable to this problem. We will employ it to show that

Un is asymptotically normal as K →∞, even when K/n does not converge to zero. �

This last example provides a new approach to studying the asymptotic distribution of semi-

linear regression under many regressor asymptotics. This alternative asymptotic approximation is

useful, for instance, when the number of covariates entering the nonparametric part is large relative

to the sample size, as it is usually the case in observational studies and related empirical problems.

3 Many Regressor Asymptotics

In this section we make precise the discussion given in Example 3. In the next section we will

present a consistent variance estimator and study the asymptotic properties of well-known variance

estimators under different assumptions. To avoid possible confusion, in the rest of the paper we

make explicit the conditioning set for all expectations.

The estimator β̂ described in Example 3 may be intuitively interpreted as a two-step semipara-

metric estimator with tuning parameter K, because the unknown (regression) functions g(·) and

h (·) are nonparametrically estimated in a preliminary step by the series estimator. Donald and

Newey (1994) gave conditions for asymptotic normality of this estimator when K/n→ 0. Here we

allow K/n to be bounded away from zero under easy-to-interpret high-level assumptions.

It is important to control the bias from approximating unknown functions by a linear combina-

tion of pK (·). The following first condition does so.

Assumption 1.

(a) For some αh > 0, there is ηh such that
∑n

i=1 E[‖h(zi)− ηhpK(zi)‖2]/n = O(K−2αh).
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(b) For some αg > 0, there is ηg such that
∑n

i=1 E[(g(zi)− pK(zi)
′ηg)

2]/n = O(K−2αg).

These conditions are implied by conventional assumptions from approximation theory. When

the support of zi is compact commonly used basis of approximation, such as polynomials or splines,

will satisfy this assumption with αh = sh/dz and αg = sg/dz, where sh and sg denotes the number

of continuous derivatives of h and g, respectively.

We also assume that certain conditional moments are bounded.

Assumption 2. There is C <∞ such that E[‖vi‖4|zi] ≤ C and E[ε4i |zi] ≤ C.

From equation (3) and the discussion in the previous section we see that the asymptotic distri-

bution of β̂ will be determined by the behavior of Γ̂ = X ′MX/n and Sn = X ′M(ε + G)/
√
n. We

consider the properties of each of these objects in turn.

For Γ̂, it is shown in the supplementary appendix that, under Assumptions 1(a) and 2,

Γ̂ = Γn + op(K/n), Γn =
1

n

∑
1≤i≤n

MiiE[viv
′
i|zi],

which characterizes the stochastic behavior of the matrix Γ̂ without requiring that K/n → 0. It

follows from this result that as long as K/n is bounded Γ̂ will be close to Γn in probability. In

the homoskedastic vi case where E[viv
′
i|zi] = E[viv

′
i] and where rank(Q) = K we see that Γ̂ is close

to Γn = E[viv
′
i]trace(M)/n = (1−K/n)E[viv

′
i]. More generally, with heteroskedasticity, Γ̂ will be

close to the weighted average Γn.

This result includes standard asymptotics as a special case when K/n → 0, where the law of

large numbers, iterated expectations, and
∑n

i=1Qii/n = trace(Q)/n ≤ K/n→ 0 imply

Γn =
n∑
i=1

E[viv
′
i|zi]/n−

n∑
i=1

QiiE[viv
′
i|zi]/n+ op(1) = E[viv

′
i] + op(1).

Next we study Sn. Under Assumptions 1—2, it is shown in the supplementary appendix that

X ′M(ε+G)/
√
n = Ψn + Un +Bn

= V ′Mε/
√
n+Op(K

−αh +K−αg) +Op(
√
nK−(αh+αg)).
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This result places no restriction on the growth of K. Interestingly, the bias term Bn involves ap-

proximation of both unknown functions h and g, implying an implicit trade-off between smoothness

conditions for h and g. The bias condition
√
nK−(αh+αg) → 0 only requires that αh + αg be large

enough, but not necessarily αh and αg separately. It follows that if
√
nK−(αh+αg) → 0 (implying

K →∞) we have

Sn = X ′M(ε+G)/
√
n =

1√
n

∑
1≤i,j≤n

Mijviεj + op(1),

as discussed in Example 3 above. Furthermore, a simple variance calculation yields

Σn := V[V ′Mε/
√
n|Z] =

1

n

∑
1≤i≤n

M2
iiE[viv

′
iε
2
i |zi] +

1

n

∑
1≤i,j≤n,i 6=j

Q2ijE[viv
′
i|zi]E[ε2j |zj ].

Here the first term following the equality corresponds to the usual asymptotic approximation, while

the second term adds an additional term that accounts for large K.

It is interesting to consider what happens in some special cases. Under homoskedasticity of εi,

i.e. where E[ε2i |xi, zi] = σ2ε,

Σn =
σ2ε
n

∑
1≤i,j≤n

M2
ijE[viv

′
i|zi] =

σ2ε
n

∑
1≤i≤n

MiiE[viv
′
i|zi] = σ2εΓn,

because
∑n

j=1M
2
ij = Mii. If in addition E[viv

′
i|zi] = E[viv

′
i] and rank (Q) = K then Σn =

σ2ε (1−K/n)E[viv
′
i]. Also, if K/n→ 0 then by

∑
i,j Q

2
ij/n =

∑
iQii/n ≤ K/n→ 0 we have

Σn =
1

n

∑
1≤i≤n

M2
iiE[viv

′
iε
2
i |zi] + op (1) = E[viv

′
iε
2
i ] + op (1) ,

which corresponds to the standard asymptotics limiting variance.

Using the previous derivations, together with an appropriate central limit theorem for quadratic

forms, it can be established that V ′Mε/
√
n is asymptotically normal with Σn as its asymptotic

variance matrix. The following theorem collects and formalizes these results.

Theorem 1. Suppose Assumptions 1 and 2 are satisfied, and there is 0 < C < 1 such that Qii < C,
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λmin (Σn) ≥ 1/C. If
√
nK−αx−αg → 0 and K/n→ α ∈ [0, 1), then

Ω−1/2n

√
n(β̂ − β)

d→ N (0, Idx), Ωn = Γ−1n ΣnΓ−1n .

If, in addition, E
[
ε2i |xi, zi

]
= σ2ε > 0 then Ωn = σ2εΓ

−1
n .

Theorem 1 shows that β̂ is asymptotically normal when K/n need not converge to zero. This

asymptotic distributional result does not rely on asymptotic linearity, nor on the actual convergence

of the matrices Γn and Σn, and leads to a new (larger) asymptotic variance that captures terms

that are assumed away by the classical result. The asymptotic distribution result of Donald and

Newey (1994) is obtained as a special case where K/n → 0. More generally, when K/n does not

converge to zero, the asymptotic variance will be larger than the usual formula because it accounts

for the contribution of “remainder”Un in Proposition 1. For instance, when both εi and vi are

homoskedastic and P ′P is nonsingular, the asymptotic variance is

Γ−1n ΣnΓ−1n = σ2εΓ
−1
n =

n

n−Kσ2ε(E[viv
′
i])
−1,

which is larger than the usual asymptotic variance σ2ε (E[viv
′
i])
−1 by the degrees of freedom correc-

tion n/(n−K).

4 Asymptotic Variance Estimation

Consistent asymptotic variance estimation is useful for large sample inference. It is well known

that if
√
nΩ
−1/2
n (β̂ − β)

d→ N (0, I), Ωn is bounded with smallest eigenvalue bounded away from

zero, and Ω̂− Ωn
p→ 0, then for any matrix B with full row rank,

(BΩ̂B′)−1/2B
√
n(β̂ − β)

d→ N (0, I).

Thus, under these conditions, valid large sample confidence intervals and tests can be based on any

variance estimator Ω̂ that is consistent in the sense that Ω̂ − Ωn
p→ 0. We focus the theoretical
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discussion of this section on this consistency property.2

The asymptotic variance Ωn described above depends on two matrices Γn and Σn. Under the

conditions of Theorem 1, Γ̂ is a consistent estimator of Γn even when K/n is bounded away from

zero, so we focus on estimation of Σn. An estimate can be formed by removing expectations

and replacing disturbances by estimated residuals in the formula for Σn. For this approach to

work the estimation error in the residuals must not be too large. For this purpose we use a

potentially different choice of K in forming the residuals than is used in the estimator β or in the

Mij that appears in Σn. Let K̃ denote this choice and define accordingly P̃ = [pK̃(z1), ..., p
K̃(zn)]′,

Q̃ = P̃ (P̃ ′P̃ )−P̃ ′, M̃ = I − Q̃, ε̆ = M̃(y −Xβ̂), and X̃ = M̃X.

Therefore, for X̃ = [x̃1, ..., x̃n]′ the variance estimator is given by

Ω̂ = Γ̂−1Σ̂Γ̂−1, Σ̂ =
1

n

∑
1≤i,j≤n

M2
ij x̃ix̃

′
iε̆
2
j ,

where the K used in Mij is the same as used for β̂. The estimator Σ̂ will be consistent for Σn

under appropriate regularity conditions. Those conditions will require that K̃/n → 0, so that the

estimation error in x̃i and ε̆j is not too large. We do not yet have an estimator that is consistent

without K̃/n→ 0.

The idea behind the construction of the estimator Σ̂ parallels the intuitive discussion given

in Section 2, which exploits the V-statistic representation of the estimator obtained under the

generalized asymptotic experiment, and leads to a simple and “automatic” way of constructing

asymptotically valid standard-errors under alternative asymptotics. This approach has also been

implemented in other contexts, being implicitly based on the common structure of Section 3. For

instance, for small bandwidth asymptotics this approach corresponds to the result in Theorem 2(a)

of Cattaneo, Crump, and Jansson (2011) and for many instrument asymptotics to the result of

Hansen, Hausman, and Newey (2008).

Under homoskedasticity of εi the asymptotic variance simplifies and there is a corresponding

2Another approach to inference would be via the bootstrap. For small bandwidth asymptotics it has been shown
by Cattaneo, Crump, and Jansson (2012) that the standard nonparametric bootstrap does not provide a valid
distributional approximation in general. Similar results seem likely to hold for other alternative asymptotics, so we
conjecture that the standard nonparametric bootstrap will not provide valid inference with many regressors.
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relatively simple variance estimator. When E
[
ε2i |xi, zi

]
= σ2ε the asymptotic variance of β̂ is σ

2
εΓ
−1
n .

As discussed earlier, Γ̂ is an estimator of Γn, so we just need to estimate σ2ε consistently. This can be

done using the same K as is used for β̂ if a degrees of freedom correction is included. A consistent

estimator of σ2ε under many regressors is one with the degrees of freedom correction, leading to the

homoskedasticity consistent asymptotic variance estimator

Ω̂HO = s2Γ̂−1, s2 =
ε̂′ε̂

n− dx −K
, ε̂ = M(y −Xβ̂).

We will show that this estimator is consistent under homoskedasticity, providing a many regressor

justification for the degrees of freedom adjustment in s2.

We will also study the properties of several other variance estimators that are available in the

literature (for a review see, e.g., MacKinnon and White (1983), Chesher and Jewitt (1987), Cribari-

Neto and Lima (2008) and references therein). Here we consider the best known and commonly

used candidates. They belong to a class of variance estimators given by

Ω̂k = Γ̂−1Σ̂kΓ̂
−1, Σ̂k = X ′MΨ̂kMX/n, Ψ̂k =


ωk,1ε̂

2
1 0

. . .

0 ωk,nε̂
2
n

 ,

where ωk,i = ωk,i(Z), i = 1, ..., n, are some appropriate weights that define the class of estimators.

In particular, the choices ω1,i = 1, ω2,i = n/(n − K − dx), and ω3,i = M−δii for some δ ≥ 1 lead

to well-known competing heteroskedasticity robust variance estimators commonly employed in the

literature. We derive the properties of Ω̂k (k = 1, 2, 3) with many regressors, finding that they are

all inconsistent.

Turning now to the results, it is straightforward to show consistency of s2, leading to consistency

of Ω̂HO under homoskedasticity.

Theorem 2 If the hypotheses of Theorem 1 are satisfied, E
[
ε2i |xi, zi

]
= σ2ε > 0, and P ′P is

nonsingular a.s., then s2
p→ σ2ε and Ω̂HO − Ωn = s2Γ̂−1 − σ2εΓ−1n

p→ 0.

This result provides a distribution free, large sample justification for the degrees-of-freedom
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correction required for exact inference under homoskedastic Gaussian errors. Intuitively, accounting

for the correct degrees of freedom is important whenever the number of terms in the linear model

is “large”relative to the sample size.

Turning now to properties of the other estimators, we give a general result that includes con-

sistency of Ω̂ and the limits of Ω̂k, k = 1, 2, 3 and δ ≥ 1. Recall that the definitions of M and M̃

given previously. Let ωij denote a nonnegative weight for each i and j and

Υ̂ =
1

n

∑
1≤i,j≤n

ωij x̃ix̃
′
iε̆
2
j .

Note that for ωij = M2
ij we have Υ̂ = Ω̂, while for K̃ = K and ωij = 1(i = j)ωi,k, k = 1, 2, 3 and

some δ ≥ 1, we will have Υ̂ = Ω̂k. Thus, a general result on the limit of this object can be used to

find the limit of the estimators we have described.

Lemma 1. If the hypotheses of Theorem 1 are satisfied,
√
nK̃−αg−αh → 0, ωij = ωij(Z) is positive,

symmetric, bounded, and there is a constant C such that
∑n

j=1 ωij ≤ C (a.s.) for all n and i

with 1 ≤ i ≤ n, then,

Υ̂ = Ῡn + op(1), Ῡn =
1

n

∑
1≤i,j≤n

 ∑
1≤`1,`2≤n

ω`1`2M̃
2
i`1M̃

2
j`2

E[viv
′
iε
2
j |zi, zj ].

Consistency of Ω̂ in the general heteroskedastic case follows from this result.

Theorem 3. If the hypotheses of Lemma 1 are satisfied and K̃/n→ 0 then Ω̂− Ωn
p→ 0.

Lemma 1 can also be specialized to show that the Eicker-White heteroskedasticity robust vari-

ance estimator is consistent if K/n→ 0, under the Donald and Newey (1994) conditions. We report

this result here because it is apparently new, though our main focus is on cases where K/n does

not go to zero.

Theorem 4. If the hypotheses of Theorem 1 are satisfied and K/n → 0, then Σ̂k = Σn + op(1),

k = 1, 2.



Semiparametric Alternative Asymptotics 16

Under homoskedasticity we can make explicit comparisons between the standard heteroskedas-

ticity estimators and the asymptotic variance Σn.

Theorem 5. If the hypotheses of Theorem 1 are satisfied, K̃ = K, and E[ε2i |xi, zi] = σ2ε then

Σ̂1 = Σ̄1,n + op(1), Σ̄1,n = Σn −
σ2ε
n

∑
1≤i,j≤n

M2
ij (1−Mjj)E[viv

′
i|zi] < Σn.

Also, if Qii ≥ C > 0 then

Σ̂3 =

 Σn + op(1) if δ = 1

Σ̄n(δ) + op(1), Σ̄n(δ) > Σn if δ > 1
.

Thus we find that the Eicker-White variance estimator Ω̂1 is downward biased under ho-

moskedasticity when K/n does not go to zero. In contrast, for k = 3 with δ = 1 (i.e., ω3,i = M−1ii )

the resulting estimator Ω̂3, which is approximately unbiased under homoskedasticity, is consistent

even when K/n does not go to zero, provided that εi is in fact homoskedastic. This result provides

a large sample justification for the use of Ω̂3 when many regressors are employed in a homoskedastic

linear model. However, for k = 3 with δ > 1 (i.e., ω3,i = M−δii ) the resulting estimator Ω̂3 is upward

biased under homoskedasticity.

The previous discussion shows that when εi are homoskedastic all but one of the commonly

used heteroskedasticity-robust standard-error estimators will be inconsistent unless K/n→ 0. The

only estimator that remains consistent when K/n → α ∈ [0, 1) in the homoskedastic case is Ω̂3

with the specific choice δ = 1, which is specially designed to be (approximately) unbiased under

homoskedasticity. However, when εi are in fact heteroskedastic, it is possible to show by example

that Ω̂3 with δ = 1 will also be inconsistent in general. For instance, if dx = 1 and E[v2i ε
2
j |Z] =

E[v2i |Z]E[ε2j |Z] = cicj for all 1 ≤ i, j ≤ n, then it is not diffi cult to show that Σ̂3 = Σn+λ′Cnλ+op(1)

where λ ∈ Rdx++ and Cn is a non-zero matrix in general.

In summary, none of standard heteroskedasticity robust variance estimators are consistent

when K/n does not go to zero. Thus, there exists an important sense in which the classical



Semiparametric Alternative Asymptotics 17

heteroskedasticity-robust standard-error estimators typically employed in the literature are not ro-

bust, even in a simple linear model, provided that the number of regressors is large relative to the

sample size. The failure of these estimators is due to the fact that both x̃i and ε̂i are estimated

with too much variability when K is large relative to n. (Recall that consistency of nonparametric

series estimators requires K/n→ 0; see, e.g., Newey (1997).)

5 Small Simulation Study

We conducted an small-scale Monte Carlo experiment to explore the extent to which the asymptotic

theoretical results obtained in the previous sections are present in small samples. We consider the

following simple partially linear model:

yi = x′iβ + g(zi) + εi, εi = σε (xi, zi)u1i,

xi = h (zi) + vi, vi = σv (zi)u2i,

where dx = 1, dz = 10, β = 0, zi = (z1i, ..., zdzi)
′ with z`i ∼ U (−1, 1), ` = 1, ..., dz, u1i ∼ N (0, 1)

and u2i ∼ U (−1, 1). The simulation study is based on S = 10, 000 replications, each replication

taking a random sample of size n = 300 with all random variables generated independently. For

simplicity, the functional forms of the regression functions are chosen to be additive separable

and equal, g(zi) = 1 + g1(z1i) + ... + g10(z10i) and h(zi) = 1 + h1(z1i) + ... + h10(z10i), with

g`(z`i) = h` (z`i) = z`i(2 + z`i)
−1/2 for ` = 1, ..., dz. We consider two data generating processes

(DGP) depending on the form of heteroskedasticity imposed. Model 1 sets σ2ε (xi, zi) = σ2v (zi) = 1,

and therefore corresponds to a homoskedastic DGP, while Model 2 sets σ2ε (xi, zi) = (z′iι+xi)
6/104

and σ2v (zi) = (z′iι)
6/104, with ι = (1, 1, · · · , 1)′ ∈ Rdz , giving a heteroskedastic DGP.

The estimators considered in the Monte Carlo experiment exploit the known additive separable

structure of g(zi) and h(zi), and are based on power series. Specifically, we approximate g`(z`i) by

pK (z`i)
′ γ`, ` = 1, 2, · · · , dz, with pK (z`i) = (1, z`i, z

2
`i, · · · , zK`i )′. To explore the consequences of

introducing many regressors in the partially linear model, we focus on the empirical coverage rate

of the 8 competing confidence intervals introduced in Section 5 for a grid of K = 0, 1, ..., 10. (Note
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that K = 0 corresponds to including only a constant term, and then each increase in K corresponds

to including 10 more regressors.)

We focus on coverage probabilities for confidence intervals constructed from asymptotic t-ratios,

each taking the form T = (β̂ − β)/
√

Ω̃/n, where Ω̃ is one of six possible estimators. The interval

for TAL corresponds to the consistent variance estimator, Ω̃ = Ω̂, using K̃ = min{K,KCV }, where

KCV corresponds to the K chosen by standard cross-validation on the residuals of the partially

linear model. The intervals corresponding to THO,k (k = 1, 2) are obtained using the Ω̃ = Ω̂HO for

k = 2 and the variance estimator without a degrees of freedom correction Ω̃ = (n− 1−K)Ω̂HO/n

for k = 1. The intervals for THE,k correspond to Ω̂k, with k = 1, 2, 3 and δ = 1.

The main findings from the Monte Carlo experiment are presented in Tables 1. We explored

many other specifications for the regression functions, heteroskedasticity form, distributional as-

sumptions, basis of approximation, etc., but we do not include these additional results because

they were qualitative similar to those reported here. In general, all the results are consistent with

the theoretical conclusions presented in the previous sections. First, we found that the results

for Gaussian and non-Gaussian errors are qualitatively similar. Second, in most cases a small

choice of K leads to important biases that affect the empirical size of all the confidence intervals.

Third, under homoskedasticity, as K becomes larger relative to the sample size confidence intervals

without degrees-of-freedom correction (THO,1 and THE,1) are under-sized, while the analogue confi-

dence intervals with degrees-of-freedom correction (THO,2 and THE,2) have close-to-correct empirical

size. In addition, THE,3 (approximately unbiased under homoskedasticity) has also good empirical

size properties. The new confidence intervals based on TAL perform well under homoskedasticity.

Fourth, under heteroskedasticity, we found that THO,1, THO,2, THE,1, THE,2 and THE,3 were all

under-sized as the number of regressors grows relative to the sample size. This result shows that

neither degrees-of-freedom correction nor employing the heteroskedasticity-robust standard-error

estimator which is approximately unbiased under homoskedasticity lead to close-to-correct empir-

ical size when K/n is “large”. In contrast, the new confidence intervals introduced in this paper

(TALT ) exhibited good empirical coverage for the full range of K/n considered in the simulation

study, once bias became small, under heteroskedasticity.
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Table 1: Empirical Coverage Rates of 95% Confidence Intervals

Model 1 (Homoskedasticity) Model 2 (Heteroskedasticity)
K/n THO,1 THO,2 THE,1 THE,2 THE,3 TAL THO,1 THO,2 THE,1 THE,2 THE,3 TAL

0.003 0.0 0.0 0.0 0.0 0.0 0.0 57.3 57.5 79.4 79.6 79.5 79.3
0.037 79.7 80.8 79.1 80.0 79.8 78.2 83.3 84.2 93.8 94.3 94.3 98.5
0.070 93.5 94.4 93.4 94.4 94.3 93.8 64.6 66.2 90.1 91.4 91.5 97.1
0.103 93.1 94.6 92.9 94.4 94.3 93.8 62.6 65.3 88.5 90.6 90.8 97.0
0.137 92.8 94.8 92.6 94.5 94.5 94.0 62.6 66.1 87.1 90.0 90.3 97.0
0.170 92.3 94.5 92.0 94.2 94.2 93.9 62.5 66.8 85.3 89.4 89.7 97.0
0.203 91.7 94.6 91.6 94.5 94.4 93.9 62.2 67.6 84.0 88.8 89.2 97.1
0.237 91.0 94.7 90.7 94.4 94.2 93.9 62.0 68.5 82.3 88.3 88.7 97.1
0.270 90.5 94.8 90.2 94.7 94.6 94.3 61.6 68.6 80.7 88.0 88.4 97.2
0.303 89.6 94.9 89.6 94.8 94.6 94.4 61.2 69.3 78.8 87.7 88.2 97.2
0.337 88.8 95.0 88.6 94.8 94.7 94.3 60.8 70.4 77.2 87.2 87.6 97.3

In conclusion, we found in our small-scale simulation study that TAL leads to confidence intervals

exhibiting good empirical coverage under both homoskedasticity and heteroskedasticity even when

K/n is “large”. None of the standard competing confidence intervals considered here appear to

have a similar property. These findings are consistent with the theoretical results obtained in the

paper.

6 Conclusion

This paper showed that the many instrument asymptotics and the small bandwidth asymptotics

shared a common structure based on a V-statistic, with a remainder term that is asymptotically

normal when the number of term diverges to infinity or the bandwidth shrinks to zero. This

feature is particularly useful to obtain new results for other semiparametric estimators. In this

paper we employ this common structure to derive a new alternative large-sample distributional

approximation for a series estimator of the partially linear model. This result not only implied

a new (larger) asymptotic variance formula, but also led to a detailed analysis of commonly used

standard-error estimators for linear models and the development of a new standard-error formula

that is consistent under both heteroskedasticity of unknown form and many terms asymptotics.
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1 Derivation of Examples

Example 1: “Many Instrument Asymptotics”. Consider a linear structural equation

yi = x′iβ0 + εi, E[εi] = 0, i = 1, ..., n,

where xi is a vector and yi and εi are scalar dependent variable and disturbance respectively.

Let zi be a K × 1 vector of instrumental variables that we treat as constants. It is also

equivalent to allow instrumental variables to be random but condition on the matrix of obser-

vations Z = [z1, ..., zn]′ and replace unconditional moment conditions with conditional ones.

To describe the estimator let Q = Z(Z ′Z)−Z ′ denote the projection matrix on the column

space of Z. After centering and scaling, the JIVE2 statistic takes the form

√
n(β̂ − β0) =

 ∑
1≤i,j≤n,i6=j

Qijxix
′
j/n

−1 ∑
1≤i,j≤n,i 6=j

Qijxiεj/
√
n,

where Qij represents the (i, j)-th element of the matrix Q. Therefore, JIVE2 is a special case

of equation (1) with

µ0 = β0, Γ̂ =
∑

1≤i,j≤n,i 6=j
Qijxix

′
j/n,
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unii(Wi,Wi) = 0, unij(Wi,Wj) = Qijxiεj/
√
n for i 6= j.

Note that E[unij(Wi,Wj)] = 0 and for Υi = E[xi],

E[unij(Wi,Wj)|Wi] = QijxiE[εj ] = 0, E[unij(Wi,Wj)|Wj ] = QijΥiεj/
√
n.

Here Υi can be interpreted as the reduced form for observation i. Let vi = xi−Υi. Applying

Proposition 1, and using symmetry of the matrix Q, we find that equation (2) is satisfied

with

ψni (Wi) =

 ∑
1≤i,j≤n,i6=j

QijΥj

 εi = Υi(1−Qii)εi/
√
n−

Υi −
∑
1≤i≤n

QijΥj

 εi/
√
n,

Dn
i (Wi, ...,W1) =

∑
1≤j≤n,j<i

Qij (viεj + vjεi) /
√
n, Bn = 0.

Note that Υi−
∑n

j=1QijΥj is the i-th residual from regressing the reduced form observations

on Z, so that by appropriate definition of the reduced form this can generally be assumed to

vanish as the sample size grows. In that case

Ψn =
∑
1≤i≤n

Υi(1−Qii)εi/
√
n+ op(1).

Furthermore, under standard asymptotics Qii will go to zero, so the variance of this does

indeed correspond to the usual asymptotic variance for IV.

The degenerate U-statistic term is

Un =
∑

1≤j<i≤n
Qij (viεj + vjεi) /

√
n.

Chao, Swanson, Hausman, Newey, and Woutersen (2012) apply the martingale central limit

theorem to show that this Un will be asymptotically normal when xi and εi have uniformly

bounded fourth moments, rank(Q) = dim(Z) = K → ∞, and Qii is bounded away from 1
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uniformly in i and n. The conditions of the martingale central limit theorem are verified by

showing that certain linear combinations with coeffi cients depending on the elements of Q go

to zero as K →∞. In the proof, this makes individual terms asymptotically negligible, with

a Lindeberg-Feller condition being satisfied. Alternative asymptotics occurs when K grows

as fast as n, resulting in Ψn and Un having the same magnitude in the limit. �

Example 2: “Small Bandwidth Asymptotics”. Consider the kernel estimation of the inte-

grated squared density given by µ0 =
∫
f0(w)2dw = E[f0(Wi)], where Wi denotes a continu-

ously distributed random variable with p.d.f. f0. A leave-one-out estimator is

µ̂ =
∑

1≤i,j≤n,i 6=j
Kh(Wi −Wj)/n(n− 1),

whereK(u) is a symmetric kernel andKh(u) = h−dK(u/h). This estimator has the V-statistic

form of equation (1) with µ0 =
∫
f0(w)2dw, Γ̂ = 1,

unii(Wi,Wi) = 0, unij(Wi,Wj) = Kh(Wi −Wj)/
√
n(n− 1) for i 6= j.

Define fh(w) =
∫
K(u)f(w + hu)du. Note that by symmetry of K(u),

E[unij(Wi,Wj)|Wi] = fh(Wi)/
√
n(n− 1), E[unij(Wi,Wj)|Wj ] = fh(Wj)/

√
n(n− 1),

E[unij(Wi,Wj)] = E[fh(Xi)]/
√
n(n− 1).

Applying Proposition 1, and using symmetry of K(u), we find that equation (2) is satisfied

with

ψni (Wi) = 2{fh(Wi)− E[fh(Wi)]}/
√
n,

Dn
i (Wi, ...,W1) = 2

∑
1≤j≤n,j<i

{Kh(Wi −Wj)− fh(Wi)− fh(Wj) + E[fh(Wi)]}/
√
n(n− 1),

Bn =
√
n{E[fh(Wi)]− µ0}.
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Note that 2{fh(Wi) − E[fh(Wi)]} is an approximation to the well known influence function

2[f0(Wi)−µ0] for estimators of the integrated squared density. As h→ 0 we will have fh(Wi)

converging to f0(Wi) in mean square, so that

Ψn =
∑
1≤i≤n

2[f0(Wi)− µ0]/
√
n+ op(1).

The asymptotic variance of this leading term does correspond to the usual asymptotic variance

for estimators of the integrated square density.

The degenerate U-statistic term is

Un = 2
∑

1≤i<j≤n
{Kh(Wi −Wj)− fh(Wi)− fh(Wj) + E[fh(Wi)]}/

√
n(n− 1).

The martingale central limit theorem can be applied as in Cattaneo, Crump, and Jansson

(2011) to show that this Un will be asymptotically normal as h → 0 and n → ∞ growing,

provided that n2hd → ∞. It is easy to show that n2hdV[Un] → ∆ = µ0
∫
K(u)2du under

appropriate moment and smoothness conditions. Intuitively, the bandwidth shrinking leads

to Kh(Wi−Wj) being small except when Wi and Wj are close, so that tail of the distribution

of
√
nDn

i (Wi, ...,W1) becomes thin and a Lindeberg-Feller condition is satisfied. Alternative

asymptotics occurs when hd shrinks as fast as 1/n, resulting in Ψn and Un having the same

magnitude in the limit. �

2 Proofs of Results

All statements involving conditional expectations are understood to hold almost surely. Qualifiers

such as “a.s.”will be omitted to conserve space. Throughout the appendix, C will denote a generic

constant that may take different values in each case. Recall that M = I − Q is symmetric and

idempotent, and therefore |Mij | ≤Mii ≤ 1, n−K =
∑
1≤i≤nMii and Mij =

∑
1≤`≤nMi`M`j .

To prove the main results of the paper we will employ the following three preliminary lemmas.

The first lemma provides a formal justification for the asymptotic expansion of Γ̂.
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Lemma A-1. (Matrix Γ̂) If Assumptions 1(a) and 2 are satisfied then

Γ̂ = Γn + op(K/n), Γn =
1

n

∑
1≤i≤n

MiiE[viv
′
i|zi].

Proof of Lemma A-1. By Assumption 1(a), MP = 0, and the Markov inequality we have

trace(H ′MH/n) = (H−Pη′h)′M(H−Pη′h)/n ≤
∑
1≤i≤n ‖h(zi)−ηhpK(zi)‖2/n = Op(K

−2αh)
p→ 0.

Also, by Lemma A1 of Chao, Swanson, Hausman, Newey, and Woutersen (2012) and
√
K/n →

0 it follows that
∑
1≤i,j≤n,j 6=iQijviv

′
j/n

p→ 0. By independence, viv′i and vjv
′
j are uncorrelated

conditional on Z. By Mii ≤ 1 and Assumption 2 we also have E[M2
ii‖vi‖4|Z] ≤ E[‖vi‖4|Z] ≤ C.

Therefore, by Chebyshev inequality,

∑
1≤i≤n

Miiviv
′
i/n− E

 ∑
1≤i≤n

Miiviv
′
i/n

∣∣∣∣∣∣Z
 =

∑
1≤i≤n

Miiviv
′
i/n− Γn

p→ 0.

Also, V ′V/n = Op(1) by the Markov inequality, so by the Cauchy-Schwartz inequality and M

idempotent, ‖H ′MV/n‖ ≤ [trace(H ′MH/n)trace(V ′V/n)]1/2
p→ 0. By the triangle inequality we

then have X ′MX/n = (V +H)′M(V +H)/n = V ′MV/n+ op(1) with

V ′MV/n =
∑
1≤i≤n

Miiviv
′
i/n−

∑
1≤i,j≤n,j 6=i

Qijviv
′
j/n+ op(1) = Γn + op(1),

which gives the result. Q.E.D.

The next lemma establishes the order of the different “biases” present in the statistics Sn =

X ′M(ε+G).

Lemma A-2. (Approximation Bias)

(a) If Assumption 1 is satisfied then Bn = H ′MG/
√
n = Op(

√
nK−(αh+αg)).

(b) If Assumptions 1—2 are satisfied then (V ′MG+H ′Mε) /
√
n = Op(K

−αh +K−αg).

Proof of Lemma A-2. By the Cauchy-Schwartz inequality andM idempotent, ‖H ′MG/n‖ ≤

[trace(H ′MH/n)trace(G′MG/n)]1/2 = Op(K
−αh)Op(K

−αg), which gives part (a) of the lemma.
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For part (b), observe that E[‖H ′Mε/
√
n‖2|Z] = trace(H ′ME[εε′|Z]MH)/n ≤ Ctrace(H ′MH)/n =

Op(K
−2αh), and E[‖V ′MG/

√
n‖2|Z] = G′ME[V V ′|Z]MG/n ≤ CG′MG/n = Op(K

−2αg), which

gives the result by Markov inequality. Q.E.D.

Finally, the next lemma establishes a valid Gaussian distributional approximation for an ap-

propriately standardized statistic, even when K/n is bounded away from zero.

Lemma A-3. If Assumption 2 is satisfied, K → ∞, and there is 0 < C < 1 such that Qii < C,

λmin (Σn) ≥ 1/C then,

Σ−1/2n V ′Mε/
√
n

d→ N (0, Idx).

Proof of Lemma A-3. Follows by Lemma A2 of Chao, Swanson, Hausman, Newey, and

Woutersen (2012). Q.E.D.

Next, we turn to the proof of the results stated in the main text.

Proof of Theorem 1. The proof follows by straightforward algebra, together with the results

from Lemmas A1—A3 and applying the Slutsky Theorem. Q.E.D.

Proof of Theorem 2. First, it follows from G′MG/n = op (1) and the Cauchy-Schwarz

inequality that ε̂′ε̂/n = (Y −Xβ̂ −G)′M(Y −Xβ̂ −G)/n+ op(1), provided (Y −Xβ̂ −G)′M(Y −

Xβ̂−G)/n = Op (1). Next, note that Lemma A-1 and β̂−β = op(1) imply (β̂−β)′X ′MX(β̂−β)/n =

op (1), which together with the Cauchy-Schwarz inequality gives (Y −Xβ̂−G)′M(Y −Xβ̂−G)/n =

ε′Mε/n+(β̂−β)′X ′MX(β̂−β)/n−2(Y −X(β̂−β)−G)′MX(β̂−β)/n = ε′Mε/n+op(1). Finally,

it follows similarly to the proof of Lemma A-1 that

ε′Mε/n =
∑
1≤i≤n

Miiε
2
i /n−

∑
1≤i,j≤n,j 6=i

εiQijεj/n =
∑
1≤i≤n

MiiE[ε2i |Z]/n+ op (1) =
n−K
n

σ2ε + op(1).

The conclusion follows by the triangle inequality. Q.E.D.

Proof of Lemma 4. Note that ε̆ = Ỹ − X̃ ′β̂ = ε̃ − X̃ ′(β̂ − β) + G̃, for Ỹ = M̃Y, X̃ = M̃X,
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ε̃ = M̃ε, and G̃ = M̃G. Thus, Υ̂n = Υ̃n + ε1,n + ε2,n + ε3,n + ε4,n − 2ε5,n, where

Υ̃n =
∑

1≤i,j≤n
ωij ε̃

2
i ṽj ṽ

′
j/n, ε1,n =

∑
1≤i,j≤n

ωij ε̃
2
i ṽj (x̃j − ṽj)′ /n,

ε2,n =
∑

1≤i,j≤n
ωij ε̃

2
i (x̃j − ṽj) ṽ′j/n, ε3,n =

∑
1≤i,j≤n

ωij ε̃
2
i (x̃j − ṽj) (x̃j − ṽj)′ /n,

ε4,n =
∑

1≤i,j≤n
ωij(x̃

′
i(β̂ − β) + g̃i)

2x̃j x̃
′
j/n, ε5,n =

∑
1≤i,j≤n

ωij ε̃i(x̃
′
i(β̂ − β) + g̃i)x̃j x̃

′
j/n,

with X̃ = [x̃1, · · · , x̃n]′, Ṽ = M̃V = [ṽ1, · · · , ṽn]′, and G̃ = (g̃1, ..., g̃n)′. Note that that ε̃i =

εi −
∑
1≤j≤n Q̃ijεj and ṽi = vi −

∑
1≤j≤n Q̃ijvj . Since E[εi|zi] = 0 and E[vi|zi] = 0, E[ε̃4i |Z] ≤

C
∑
1≤j,k≤n M̃

2
ijM̃

2
ikE[ε2jε

2
k|zj , zk] ≤ C and E[‖ṽi‖4|Z] ≤ C by properties of the idempotent matrixes.

Also, for H̃ = [h̃1, ..., h̃n]′,

∑
1≤i≤n

g̃2i = G′M̃G ≤
∑
1≤i≤n

(g(zi)− pK̃(zi)
′ηg)

2 = Oas(nK̃
−2αg),

∑
1≤i≤n

‖h̃i‖2 = trace(H ′M̃H) ≤
∑
1≤i≤n

‖h(zi)− pK̃(zi)
′ηh‖2 = Oas(nK̃

−2αh)

Using x̃i − ṽi = h̃i, it follows that ε1,n = op(1) because the Cauchy-Schwarz inequality gives

E[‖ε1,n‖|Z] ≤ C
∑

1≤i,j≤n
ωijE[ε̃2i ‖ṽj‖|Z]‖h̃i‖/n

≤ C
∑
1≤i≤n

‖h̃i‖/n ≤ C
√ ∑
1≤j≤n

‖h̃i‖2/n = Oas(K̃
−αh),

and ε2,n = Oas(K̃
−αh) by the same argument. Similarly, ε3,n = Oas(K̃

−2αh) because

E[‖ε3,n‖|Z] ≤ C
∑

1≤i,j≤n
ωijE[ε̃2i |Z]

∥∥∥h̃i∥∥∥2 /n ≤ C ∑
1≤i,j≤n

∥∥∥h̃i∥∥∥2 /n = Oas(K̃
−2αh).
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Next, note that

∑
1≤i≤n

‖h̃i‖4 ≤

 ∑
1≤i≤n

‖h̃i‖2
2 = Oas(n

2K̃−4αh),

1

n

∑
1≤i,j≤n

ωij g̃
2
i E[‖ṽj‖2|Z] ≤ C

∑
1≤i≤n

g̃2i /n = Oas(K̃
−2αg),

1

n

∑
1≤i,j≤n

g̃2i ‖h̃j‖2 =
∑
1≤i≤n

g̃2i
∑
1≤j≤n

‖h̃i‖2/n = Op(nK̃
−2αhK̃−2αg).

Therefore, by |ab| ≤ Ca2 + Cb2, x̃i − ṽi = h̃i, β̂ − β = Op
(
n−1/2

)
, and E[‖ṽi‖4|Z] ≤ C,

‖ε4,n‖ ≤ C
∑

1≤i,j≤n
ωij‖β̂ − β‖2‖x̃i‖2‖x̃j‖2/n+ C

∑
1≤i,j≤n

ωij |g̃i|2‖x̃j‖2/n

≤ C‖β̂ − β‖2
∑
1≤i≤n

‖ṽi‖4/n+ C‖β̂ − β‖2
∑
1≤i≤n

‖h̃i‖4/n

+C
∑

1≤i,j≤n
ωij g̃

2
i ‖ṽj‖2/n+ C

∑
1≤i,j≤n

g̃2i ‖h̃i‖2/n

= Op(n
−1 + K̃−4αh + K̃−2αg + nK̃−2αgK̃−2αh) = op(1),

Finally, ε5,n = op (1) by the Cauchy-Schwarz inequality. Therefore, Υ̂n = Υ̃n + op (1).

Next, note that Υ̃n = ϑ1,n + ϑ2,n + ϑ3,n, where

ϑ1,n =
1

n

∑
1≤i,j≤n

ωij

 ∑
1≤`≤n

M̃2
i`ε
2
`

 ∑
1≤`1≤n

M̃2
j`1v`1v

′
`1

 ,

ϑ2,n =
1

n

∑
1≤i,j≤n

ωij

 ∑
1≤`≤n

M̃2
i`ε
2
`

 ∑
1≤`1,`2≤n,`2 6=`1

M̃j`1M̃j`2v`1v
′
`2

 ,
ϑ3,n =

1

n

∑
1≤i,j≤n

ωij

 ∑
1≤`3,`4≤n,`3 6=`4

M̃i`3M̃i`4ε`3ε`4

 ∑
1≤`1,`2≤n

M̃j`1M̃j`2v`1v
′
`2

 ,
with E [ϑ2,n|Z] = 0 = E [ϑ3,n|Z]. First, we show that ϑ1,n = E[ϑ1,n|Z] +op (1) with E[ϑ1,n|Z] = Ῡn.

Specifically, set a1,ij =
∑
1≤`1,`2≤n ω`1`2M̃

2
`1i
M̃2
`2j

to save notation, and note after expanding the
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sums, using the mean-zero property and collecting terms,

V[ϑ1,n|Z] =
1

n2
E

∥∥∥∥∥∥
∑

1≤i,j≤n
a1,ij

(
ε2i vjv

′
j − E[ε2i vjv

′
j |Z]

)∥∥∥∥∥∥
2∣∣∣∣∣∣Z


≤ C

n2

∑
1≤i,j,k≤n

[a1,ija1,ik + a1,ika1,ji + a1,ija1,jk + a1,ika1,jk] ≤ Cn−1,

because, using properties of the idempotent matrices,

∑
1≤i,j,k≤n

a1,ija1,ik =
∑

1≤`1,`2≤n
ω`1`2

∑
1≤`3,`4≤n

ω`3`4

n∑
i=1

M̃2
`1iM̃

2
`3iM̃`2`2M̃`4`4

≤ C
∑

1≤`1≤n

∑
1≤`3≤n

n∑
i=1

M̃2
`1iM̃

2
`3i ≤ Cn,

and similarly for the other terms. Thus, V[‖ϑ1,n‖2 |Z] ≤ Cn−1.

Next, ϑ2,n = op (1) because E [ϑ2,n|Z] = 0 and E[‖ϑ2,n‖2 |Z] ≤ Cn−1/2. In particular, let

a2,ijk =
∑
1≤`1,`2≤n ω`1`2M̃

2
`1i
M̃`2jM̃`2k, and observe that a2,ijk = a2,ikj . Expanding the sums, using

the mean-zero properties of ε2i vjv
′
k, and collecting terms gives E[‖ϑ2,n‖2 |Z] ≤ CE[‖ϑ21,n‖2 |Z]/n2+

CE[‖ϑ22,n‖2 |Z]/n2, where

E[‖ϑ21,n‖2 |Z] = E

∥∥∥∥∥∥
∑

1≤i,j≤n,j 6=i
a2,ijiε

2
i viv

′
j

∥∥∥∥∥∥
2∣∣∣∣∣∣Z

 ,

E[‖ϑ22,n‖2 |Z] = E

∥∥∥∥∥∥
∑

1≤i,j,k≤n,j 6=i,k 6=i,k 6=j
a2,ijkε

2
i vjv

′
k

∥∥∥∥∥∥
2∣∣∣∣∣∣Z

 .
For the first term (ϑ21,n), expanding the sums and collecting non-zero terms,

E[‖ϑ21,n‖2 |Z]/n2 ≤ C
∑

1≤i,j≤n,j 6=i
[a22,iji + a2,ijia2,jij ]/n

2 + C
∑

1≤i,j,k≤n,j 6=i,k 6=i,k 6=j
a2,ikia2,jkj/n

2

≤ Cn−1 + Cn−1/2,
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where the second inequality uses |a2,ijia2,jij | ≤ Ca22,iji + Ca22,jij and

∑
1≤i,j≤n

a22,iji ≤
∑
1≤i≤n

∑
1≤`1,`2≤n

ω`1`2M̃
2
`1i

∣∣∣M̃`2i

∣∣∣ ∑
1≤`3,`4≤n

ω`3`4M̃
2
`3i

∣∣∣M̃`4i

∣∣∣
∣∣∣∣∣∣
∑
1≤j≤n

M̃`2jM̃`4j

∣∣∣∣∣∣
≤

∑
1≤i≤n

 ∑
1≤`1,`2≤n

ω`1`2M̃
2
`1i

∣∣∣M̃`2i

∣∣∣
2 ≤ C ∑

1≤i≤n
M̃2
ii ≤ Cn

for the first term, and also uses

∑
1≤i,j,k≤n,j 6=i,k 6=i,k 6=j

a2,ikia2,jkj

=
∑

1≤i,j≤n

∑
1≤`1,`2≤n

ω`1`2M̃
2
`1iM̃`2i

∑
1≤`3,`4≤n

ω`3`4M̃
2
`3jM̃`4j

 ∑
1≤k≤n,k 6=i,k 6=j

M̃`2kM̃`4k

 ,
n∑

k=1,k 6=i,k 6=j
M̃`2kM̃`4k = M̃`2`4 − M̃`2iM̃`4i − M̃`2jM̃`4j ,

∑
1≤i,j≤n

∑
1≤`1,`2≤n

ω`1`2M̃
2
`1i

∣∣∣M̃`2i

∣∣∣ ∑
1≤`3,`4≤n

ω`3`4M̃
2
`3j

∣∣∣M̃`4j

∣∣∣ ∣∣∣M̃`2`4

∣∣∣
≤

∑
1≤`1,`2≤n

ω`1`2
∑

1≤`3,`4≤n
ω`3`4

∣∣∣M̃`2`4

∣∣∣
≤ C

∑
1≤`2,`4≤n

∣∣∣M̃`2`4

∣∣∣ ≤ C√n ∑
1≤`2≤n

√ ∑
1≤`4≤n

M̃2
`2`4
≤ Cn3/2,

∑
1≤i,j≤n

∑
1≤`1,`2≤n

ω`1`2M̃
2
`1i

∣∣∣M̃`2i

∣∣∣ ∑
1≤`3,`4≤n

ω`3`4M̃
2
`3j

∣∣∣M̃`4j

∣∣∣ ∣∣∣M̃`2iM̃`4i

∣∣∣
≤

∑
1≤i,j≤n

∑
1≤`1,`2≤n

ω`1`2M̃
2
`1i

∑
1≤`3,`4≤n

ω`3`4M̃
2
`3j

∣∣∣M̃`4i

∣∣∣ ≤ Cn3/2,
for the second term.
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Similarly, expanding the sums and collecting non-zero terms, we also obtain

E[‖ϑ22,n‖2 |Z]/n2 ≤ C
∑

1≤i,j,k≤n,j 6=i,k 6=i,k 6=j
[a22,ijk + a2,ijka2,jik]/n

2

+C
∑

1≤i,j,k,l≤n,j 6=i,k 6=i,k 6=j,l 6=i,l 6=j,l 6=k
a2,ikla2,jkl/n

2

≤ Cn−1 + Cn−1,

where the second inequality uses |a2,ijka2,jik| ≤ Ca22,ijk + a22,jik and

∑
1≤i,j,k≤n

a22,ijk =
∑

1≤i,j,k≤n

 ∑
1≤`1,`2≤n

ω`1`2M̃
2
`1iM̃`2jM̃`2k

2

=
∑
1≤i≤n

∑
1≤`1,`2≤n

ω`1`2M̃
2
`1i

∑
1≤`3,`4≤n

ω`3`4M̃
2
`3iM̃

2
`2`4

≤ C
∑
1≤i≤n

∑
1≤`1,`2≤n

ω`1`2M̃
2
`1iM̃iiM̃`2`2 ≤ C

∑
1≤i≤n

M̃ii ≤ Cn

for the first term, and also uses

∑
1≤i,j,k,l≤n

j 6=i,k 6=i,k 6=j,l 6=i,l 6=j,l 6=k

a2,ikla2,jkl

=
∑

1≤i,j≤n
j 6=i

∑
1≤`1,`2≤n

ω`1`2M̃
2
`2i

∑
1≤`3,`4≤n

ω`3`4M̃
2
`4j

∑
1≤k≤n
k 6=i,k 6=j

M̃`1kM̃`3k

∑
1≤l≤n

l 6=i,l 6=j,l 6=k

M̃`1lM̃`3l,

∑
1≤k≤n,k 6=i,k 6=j

M̃`1kM̃`3k

∑
1≤l≤n,l 6=i,l 6=j,l 6=k

M̃`1lM̃`3l

= (M̃`1`3 − M̃`1iM̃`3i − M̃`1jM̃`3j)
2 −

∑
1≤k≤n,k 6=i,k 6=j

M̃2
`1kM̃

2
`3k,
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∑
1≤i,j≤n

∑
1≤`1,`2≤n

ω`1`2M̃
2
`2i

∑
1≤`3,`4≤n

ω`3`4M̃
2
`4jM̃

2
`1`3

=
∑

1≤`1,`2≤n
ω`1`2M̃`2`2

∑
1≤`3,`4≤n

ω`3`4M̃`4`4M̃
2
`1`3 ≤ C

∑
1≤`1,`3≤n

M̃2
`1`3 ≤ Cn,

∑
1≤i,j≤n

∑
1≤`1,`2≤n

ω`1`2M̃
2
`2i

∑
1≤`3,`4≤n

ω`3`4M̃
2
`4jM̃

2
`1iM̃

2
`3i

=
∑
1≤i≤n

∑
1≤`1,`2≤n

ω`1`2M̃
2
`2i

∑
1≤`3,`4≤n

ω`3`4M̃`4`4M̃
2
`1iM̃

2
`3i

≤ C
∑
1≤i≤n

M̃ii

∑
1≤`3,`4≤n

ω`3`4M̃`4`4M̃
2
`3i ≤ C

∑
1≤`3,`4≤n

ω`3`4M̃`3`3 ≤ Cn,

∑
1≤i,j≤n

∑
1≤`1,`2≤n

ω`1`2M̃
2
`2i

∑
1≤`3,`4≤n

ω`3`4M̃
2
`4j

∑
1≤k≤n

M̃2
`1kM̃

2
`3k

≤ C
∑
1≤k≤n

∑
1≤`1,`2≤n

ω`1`2M̃`2`2

∑
1≤`3,`4≤n

ω`3`4M̃`4`4M̃
2
`1kM̃

2
`3k

≤ C
∑
1≤k≤n

∑
1≤`1,`3≤n

M̃2
`1kM̃

2
`3k =

∑
1≤k≤n

M̃2
kk ≤ Cn,

for the second term. Therefore, E[‖ϑ2,n‖2 |Z] ≤ Cn−1/2, which implies ϑ2,n = op(1).

Finally, ϑ3,n = op (1) because E [ϑ3,n|Z] = 0 and E[ ‖ϑ3,n‖2 |Z] ≤ Cn−1. To see the last

conclusion, first let

a3,ij =
∑

1≤`1,`2≤n
ω`1`2M̃`1iM̃`1j

 ∑
1≤k1,k2≤n

M̃`2k1M̃`2k2vk1v
′
k2

 ,
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and observe that expanding the sums and collecting non-zero terms,

E[‖ϑ3,n‖2 |Z] = E

∥∥∥∥∥∥
∑

1≤i,j≤n,i 6=j
a3,ijεiεj/n

∥∥∥∥∥∥
2∣∣∣∣∣∣Z

 = C
∑

1≤i,j≤n,i6=j
E[‖a3,ijε2i ε2j‖2|Z]/n2

≤ C

n2

∑
1≤i,j≤n,j 6=i

E

∥∥∥∥∥∥
∑

1≤k1,k2,`1,`2≤n
ω`1`2M̃`1iM̃`1jM̃`2k1M̃`2k2vk1v

′
k2

∥∥∥∥∥∥
2∣∣∣∣∣∣Z

 .
Next, for each (i, j) let

b3,ij,kl =
∑

1≤`1,`2≤n
ω`1`2M̃`1iM̃`1jM̃`2kM̃`2l,

and note that b3,ij,kl = b3,ij,lk. Thus, expanding the sums and collecting non-mean-zero terms,

E[‖ϑ3,n‖2 |Z] ≤ C

n2

∑
1≤i,j≤n,j 6=i

E

∥∥∥∥∥∥
∑
1≤k≤n

b3,ij,kkvkv
′
k

∥∥∥∥∥∥
2∣∣∣∣∣∣Z


+
C

n2

∑
1≤i,j≤n,j 6=i

E

∥∥∥∥∥∥
∑

1≤k,l≤n,l 6=k
b3,ij,klvkv

′
l

∥∥∥∥∥∥
2∣∣∣∣∣∣Z


≤ C

n2

∑
1≤i,j,k≤n,j 6=i

b23,ij,kk +
C

n2

∑
1≤i,j,k,l≤n,j 6=i,l 6=k

b23,ij,kl ≤ Cn−1,

because

∑
1≤i,j,k,l≤n

b23,ij,kl =
∑

1≤`1,`2,`3,`4≤n
ω`1`2ω`3`4M̃

2
`1`3M̃

2
`2`4

≤ C
∑

1≤`1≤n

∑
1≤`2≤n

ω`1`2M̃`1`1M̃`2`2 ≤ Cn.

This concludes the proof. Q.E.D.

Proof of Theorem 3. Note that M̃2
i`1
M̃2
j`2

= (1(i = `1) − Q̃i`1)
2(1(j = `2) − Q̃j`2)

2 =

1 (i = `1)1 (j = `2) (1−2Q̃ii)(1−2Q̃jj)+1(i = `1)(1−2Q̃ii)Q̃
2
j`2

+1 (j = `2) (1−2Q̃jj)Q̃
2
i`1

+Q̃2i`1Q̃
2
j`2
.
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Next, E[viv
′
iε
2
j |zi, zj ] is bounded, so that by Q̃ii ≤ 1 and Mij = Mji,

∥∥∥∥∥∥ 1

n

∑
1≤i,j≤n

M2
ij{(1− 2Q̃ii)(1− 2Q̃jj)− 1}E[viv

′
iε
2
j |zi, zj ]

∥∥∥∥∥∥
≤ C

n

∑
1≤i,j≤n

M2
ij(Q̃ii + Q̃jj) ≤

C

n

∑
1≤j≤n

MjjQ̃jj ≤
C

n

∑
1≤j≤n

Q̃jj ≤ CK̃/n→ 0,

and, similarly, we also have

∥∥∥∥∥∥ 1

n

∑
1≤i,j≤n

 ∑
1≤`1,`2≤n

M2
`1`21(i = `1)(1− 2Q̃ii)Q̃

2
j`2

E[viv
′
iε
2
j |zi, zj ]

∥∥∥∥∥∥
≤ C

n

∑
1≤i,j,`≤n

M2
i`Q̃

2
j` =

C

n

∑
1≤`≤n

M``Q̃`` → 0,

∥∥∥∥∥∥ 1

n

∑
1≤i,j≤n

 ∑
1≤`1,`2≤n

M2
`1`2Q̃

2
i`1Q̃

2
j`2

E[viv
′
iε
2
j |zi, zj ]

∥∥∥∥∥∥
≤ C

n

∑
1≤i,j≤n

∑
1≤`1,`2≤n

M2
`1`2Q̃

2
i`1Q̃

2
j`2 =

C

n

∑
1≤`1,`2≤n

M2
`1`2Q̃`1`1Q̃`2`2 ≤

C

n

 ∑
1≤`1,`2≤n

M2
`1`2Q̃`2`2


=

C

n

∑
1≤`2≤n

M`2`2Q̃`2`2 → 0.

Therefore it follows that Ῡn = Σn + op(1), so the conclusion follows by Lemma 4. Q.E.D.

Proof of Theorem 4. Follows by similar arguments to those given in the proof of Theorem

3. Q.E.D.

Proof of Theorem 5: Note first that when K̃ = K and ωi,k = ωij1(i = j) we have Υ̂ = Σ̂k.

Then by the conclusion of Lemma 4

Σ̂k = Ῡn + op(1), Ῡn =
1

n

∑
1≤i,j≤n

 ∑
1≤`≤n

ω`,kM
2
i`M

2
j`

E[viv
′
iε
2
j |zi, zj ].
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Under homoskedasticity we have

Ῡn =
σ2ε
n

∑
1≤i,j≤n

 ∑
1≤`≤n

ω`,kM
2
i`M

2
j`

E[viv
′
i|zi] =

σ2ε
n

∑
1≤i,j≤n

ωj,kMjjM
2
jiE[viv

′
i|zi],

Σn =
σ2ε
n

∑
1≤i,j≤n

M2
ijE[viv

′
i|zi].

Substituting ωj,k = 1 and subtracting gives the first result. Substituting ωj,k = M−1jj gives the

second conclusion for the case δ = 1. Next, note that M−1ii > 1, and hence

M2
jiE[viv

′
i|zi] < M−1jj M

2
jiE[viv

′
i|zi] = M−δ+1jj MjjM

2
jiE[viv

′
i|zi], δ > 1.

Summing up gives the conclusion. Q.E.D.
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