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Abstract

This article extends the analysis of local power of unit root tests in a nonlinear di-

rection by considering local nonlinear alternatives and tests built speci�cally against

stationary nonlinear models. In particular, we focus on the popular test proposed

by Kapetanios et al. (2003, Journal of Econometrics 112, 359-379) in comparison to

the linear Dickey-Fuller test. To this end, we consider di�erent adjustment schemes

for deterministic terms. We provide asymptotic results which imply that the error

variance has a severe impact on the behavior of the tests in the nonlinear case; the

reason for such behavior is the interplay of nonstationarity and nonlinearity. In

particular, we show that nonlinearity of the data generating process can be asymp-

totically negligible when the error variance is moderate or large (compared to the

�amount of nonlinearity�), rendering the linear test more powerful than the nonlinear

one. Should however the error variance be small, the nonlinear test has better power

against local alternatives. We illustrate this in an asymptotic framework of what we

call persistent nonlinearity. The theoretical �ndings of this article explain previous

results in the literature obtained by simulation. Furthermore, our own simulation

results suggest that the user-speci�ed adjustment scheme for deterministic compo-

nents (e.g. OLS, GLS, or recursive adjustment) has a much higher impact on the

power of unit root tests than accounting for nonlinearity, at least under local (linear

or nonlinear) alternatives.
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1 Introduction

Nonlinear stationary time series models such as threshold autoregressive [TAR] models

(Tong, 1990) or smooth transition autoregressive [STAR] models (Teräsvirta, 1994) have

become quite popular in applied time series econometrics. Smooth transition models are

particularly successful in this respect: they have been used with a variety of economic

time series ranging from real (e�ective) exchange rates (e.g. Taylor et al., 2001; Saran-

tis, 1999) real money balances (Sarno et al., 2003), business cycle data (e.g. Teräsvirta

and Anderson, 1992) and in�ation (e.g. Nobay et al., 2010) to price-dividend ratios, see

McMillan (2007). Such series often exhibit nonlinear regime-dependent dynamic behavior,

depending on whether they are close to, or away from, some (fundamental) equilibrium

value; in particular, their tendency to revert to equilibrium is weak when the series is in

the middle regime (i.e. close to equilibrium), but may gain strength in the outer regimes;

three-regime TAR and STAR models with a unit root regime in the middle are well-suited

to capture this type of nonlinear behavior.

The empirical question of relevance for such series is whether the outer regimes do

actually exhibit reversion to equilibrium. If not, the series under consideration, say yt,

is actually integrated; the inner and outer regimes exhibit the same unit root behavior.

In contrast, if the series is mean-reverting in the outer regimes, the nonlinear models

themselves are globally stationary in spite of the nonstationary of the middle regime, see

Kapetanios et al. (2003) and Kapetanios and Shin (2006). The degree of mean-reversion

depends (i) on the distance between yt−1 and its equilibrium value, and (ii) on the shape of

the transition function. The linear Dickey and Fuller (1979) [DF] test is consistent against

generic ergodic alternatives, so one might use the usual DF test in order to discriminate

between unit root processes and nonlinear processes with mean-reverting outer regimes.

Kapetanios et al. (2003) [KSS] and He and Sandberg (2006) suggest unit root tests against

speci�c nonlinear alternatives and show that the power of unit root tests can be improved.

Bec et al. (2004), Kapetanios and Shin (2006), Bec et al. (2008) develop tests against

threshold autoregressive models and �nd similar power gains.

The �rst focus of this paper is on the local power of unit root tests since the power

under sequences of local alternatives gives insight into the behavior of test procedures

when the alternative, although true, is close to the null. The DF test has nontrivial

power against (linear) alternatives in 1/T neighborhoods of the unit root (Phillips, 1987).

Thus, the question arises: How do tests designed against nonlinear stationary models

behave in the presence of such nearly integrated behavior? And, more importantly: how

do tests against linear and nonlinear models behave when the data generating process

[DGP] does indeed exhibit nonlinearities in addition to near integration?

The second focus is on the removal of deterministic components. In particular, the
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power depends largely on the chosen adjustment procedure, especially when the DGP is

close to the null of a unit root. Ordinary least squares [OLS] adjustment for instance

is known to be ine�cient in the linear case (Elliott et al., 1996); it also induces a large

bias in the estimator of the autoregressive parameter. The application of e�cient ad-

justment procedures is thus worth considering. Along these lines, Kapetanios and Shin

(2008) adopt local-to-unity generalized LS detrending procedures for unit root tests in

the nonlinear STAR and TAR frameworks. In the case of a linear DGP, Leybourne et al.

(2005) show recursive adjustment of the series (Shin and So, 2001; Taylor, 2002) and

forward-reverse application of DF tests (Leybourne, 1995) to be of e�ectiveness compara-

ble with local-to-unity GLS adjustment. Therefore, we additionally compare the e�ciency

of such alternative adjustment methods when considering local nonlinear alternatives and

possibly in�uential initial values.

In more detail, our contributions are as follows. We concentrate on the linear DF and

nonlinear KSS unit root tests; after describing in Section 2 the setup of the paper, we

analyze in Section 3 the local power of the DF and KSS tests against the benchmark of

linear nearly integrated alternatives. We �nd the KSS test to have nontrivial power in the

same 1/T -neighborhoods as the DF test; the DF test is, however, locally more powerful.

While this is not surprising given the linear nature of the considered alternatives, we �nd

the same to hold true for nonlinear models with nearly integrated outer regimes as well.

In other words, the nonlinearity of the DGP has negligible e�ect on both the DF and

the KSS test when the outer regimes are close to the null. The reason for this counter-

intuitive behavior of the tests is that near integration in the outer regimes leads to high

unconditional variances of the process and hence to vanishing probability of �hitting� the

middle regimes.

Thus, it might seem that unit root tests built against nonlinear alternatives have no

advantage over linear unit root tests when the alternative is near integration. This is a

fallacy, however, since the argument relies on �xed values of the parameters characterizing

the nonlinear behavior. We argue in Section 4 that such �xed-nonlinearity asymptotics

do not always describe the data well, as the error variance of nonlinear processes is often

found to be small compared to the sample size, see e.g. Taylor et al. (2001). The direct

e�ect of small innovations variance is that the (e�ective) width of the middle regime

is quite large, in fact large enough for the probability of the process to hit the middle

regime to be nonzero even in larger samples.1 Hence, we discuss in Section 4 persistently

nonlinear alternatives for which the variance of the process yt is comparable with the

width of the middle regime and a certain number of observations belong to this regime

with positive probability in the limit. We accomplish this by letting the width of the

1Small variances also lead to problems with identifying the middle regime even when the model is
stationary nonlinear; see Donauer et al. (2010).
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middle regime increase with the sample size at an appropriate rate so the error variance

is comparatively small; this type of asymptotics ensures that nonlinearity not negligible

any longer. Under near integration with persistent nonlinearity, we often con�rm the

superiority of the nonlinear KSS test compared to the DF test when the same detrending

procedure is applied. Most of the power gains, however, come from e�ciently removing

the deterministic component: e.g. the nonlinear KSS test with OLS detrending is clearly

dominated by the DF test with GLS detrending for zero initial values. Since the relative

behavior of the tests turns out to also depend on the magnitude of the initial value, we

conjecture that combining test statistics following Harvey et al. (2009, 2011) would be

the better strategy. Section 5 concludes by addressing some implications of our results

for applied work.

Before proceeding to the analysis, let us set some notation. Denote by W (s) the

standard Wiener process and by �⇒� weak convergence in a space of càdlàg functions

endowed with a suitable norm. Let C be a generic constant whose value may change

from equation to equation. Finally, the symbols �
d→� and �

p→� stand for convergence in

distribution and convergence in probability.

2 Setup

2.1 Model and test statistics

The observed series yt is assumed to be generated according to the usual additive compo-

nent model. This allows one to deal with deterministic components in the same manner

under the null and under the alternative; see also Kapetanios and Shin (2008). We con-

sider here the empirically more relevant cases of a constant and of a linear trend. Since the

procedures used here to adjust for deterministic components lead to invariant (w.r.t. the

trend parameters) test statistics, we may proceed as if the trend coe�cients were zero.

Assumption 1 Let

∆yt = φyt−1G (yt−1; γ) + εt, t = 1, . . . , T,

with γ ∈ R+; the starting value satis�es y0 = 0 for φ = 0 and y0 = κ/
√

1−(1+φ)2 for φ < 0,

κ ∈ R.

The function G takes values between 0 and 1; in particular G(y, ·) → 1 as y →
±∞, as is speci�ed in the corresponding assumptions below. This allows for the well-

known interpretation of a transition function between regimes. Also, limγ→0G(·, γ) = 0.

Depending on the smoothness properties ofG, one obtains either threshold autoregressions

or STAR models. The initial condition is speci�ed in the manner familiar from the linear
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case. One reason to do so is the lack of a closed-form expression for the variance of

nonlinear STAR processes in the general case; another reason is given in Section 3.2. The

errors εt satisfy standard assumptions in the literature on nonlinear models.

Assumption 2 Let εt be an iid sequence such that E(εt) = 0, Var (εt) = σ2, and ∃δ > 0

with E |εt|4+δ < C <∞.

The derivations of this paper hold under more general data generating processes (in

particular linear processes with stationary martingale di�erence [m.d.] innovations and

1-summable coe�cients); but the aim of the paper is to give insight into the behavior of

unit root tests when nonlinearity interacts with near integration and not to have state-

of-the-art assumptions.

The DGP given by Assumptions 1 and 2 exhibits transitions between several regimes:

the middle regime (G = 0) is characterized by a unit root, while the process is driven a

stationary AR(1) process by in the two outer regimes (G = 1) as long as φ < 0.2 In this

sense, the process is, roughly speaking, �partially nonstationary� as one of the regimes

contains a unit root while the other regimes are stationary.

In the popular exponential STAR [ESTAR] case (where G is a smooth exponential

function), Kapetanios et al. (2003) establish stationarity of yt for �xed parameters φ and

γ by using the drift condition of Tweedie (1975); de Jong (2009) analyzes the stationarity

properties of such models under weaker assumptions about the innovations. Roughly

speaking, if the outer regimes are stationary, so is the process yt itself.

We are interested in modeling situations where the alternative, if true, is close to the

null. This takes us away from the �xed-φ and �xed-γ setup. So it is required for φ

throughout the paper that

Assumption 3 Let φ = − c
T
with c ≥ 0 �xed.

We shall write in fact φT to emphasize the local-to-unity character of the sequence

of alternatives examined. It is natural to consider such neighborhoods of the null: the

DF test has nontrivial power against this type of local alternatives, so we evaluate the

nonlinear KSS test in a similar fashion.

Since the alternative is characterized by both φ and γ, there are two dimensions of

the local-to-the-null interpretation of a nonlinear model. First, one can de�ne sequences

of local alternatives for which the autoregressive parameters in the outer regimes tend to

one, thereby implying a unit root in all regimes which are identical in the limiting case;

this is the classical approach captured in Assumption 3. Second, if the shape parameter

γ of the transition function tends to zero, the model becomes linear in the limit and the

2The considered model is symmetric, therefore the upper and the lower regime are characterized by
the same autoregressive parameter.
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nonstationary middle regime dominates. Such reasoning applies to a variety of nonlinear

models where one parameter is unidenti�ed under the null.

So we shall analyze three mutually exclusive cases resulting from the type of alternative

we consider for γ. In the case of a purely linear DGP (i.e. identical inner and outer

regimes), we have

Assumption 4 Let G (y; γ) = 1 ∀y ∈ R and ∀γ ∈ R+.

Assumption 4 can be seen as the limiting case γ → ∞. The second case we examine

is the usual nonlinear one requiring the following

Assumption 5 Let γ > 0 �xed. Let G (y; γ) 7→ [0; 1] be a piecewise Lipschitz function

such that y2 (1−G (y; γ))→ 0 as y → ±∞ ∀γ > 0.

The condition y2 (1−G (y; γ)) → 0 implies that G (y; γ) → 1 as y → ±∞ at a rate

higher than quadratic; it is purely technical and ful�lled by virtually all popular transition

functions in TAR or STAR models. The functionG is actually asymptotically homogenous

of order 0 in the sense of Park and Phillips (1999); see also Park and Phillips (2001) and

Chang et al. (2001). This type of behavior ultimately leads to asymptotic negligibility of

the nonlinear part of the DGP; cf. the proof of Proposition 2 in Section 3.

In the nonlinear case, the most common choice of a transition function is an exponen-

tial, which leads to the popular Exponential STAR model

G1 (yt−1; γ) = 1− e−γ(yt−1−m)2

for some �xed shape parameter γ > 0 and location parameter m ∈ R. The parameter γ

can be interpreted as speed of transition between the inner and outer regimes; an equally

relevant interpretation is provided by its proportionality to the width of the middle regime.

A more �exible choice is given by the 2nd order logistic function,

G2 (yt−1; γ) =
2

1 + e−γ(yt−1−m1)(yt−1−m2)
− 1

which has two location parameters m1 ∈ R and m2 ∈ R satisfying m1 ≤ m2. While

both transition functions ful�ll Assumption 5, they also ful�ll the low-level Assumption

6 below.

The third case we discuss is motivated by our �ndings in Section 3, which prompts

the use of alternatives for which the width of the middle regime grows with the sample

size. Since the e�ective width is inversely proportional to the transition speed γ, this is

equivalent to requiring γ to converge to 0 at an appropriate rate as T →∞ as described

by the following
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Assumption 6 Let γ = γT = g2/T . Let G (·) be a (uniformly) Lipschitz function with

G (0) = 0 and G (y)→ 1 as y → ±∞ such that, ∀γ > 0,

∣∣G (y; γ)− G
(
γy2
)∣∣ ≤ Cγ (1 + |y|) .

The condition for G from Assumption 6 enables us to characterize the weak limit of

the suitably normalized process yt; see the proof of Lemma 3. Unlike for Assumption 5,

threshold autoregressions are excluded because of their intrinsic discontinuous nature.

Note that the ESTAR transition function satis�es Assumption 6 with G = 1 −
exp {−z} , while for the 2nd order logistic function we have G = 2

1+exp{−z} − 1. Since

a nearly integrated process has at time t variance of magnitude O(t), a strong similarity

with the practice of standardizing the parameter γ by the standard deviation of the tran-

sition variable arises; see e.g. Teräsvirta (2004, p. 229). As the parameter γ enters the

model exponentially, the rate γT = O(1/T) may appear arbitrary; see Park and Phillips

(2001). But the derivations in the Appendix ultimately lead to the conclusion that a

lower rate recovers nearly-integrated linearity in the limit, whereas a higher rate recovers

the null hypothesis of integration. Thus, 1/T -neighborhoods of the origin are the relevant

ones for nonlinear behavior, at least in conjunction with the condition from Assumption

6.

2.2 Test procedures

Due to its popularity we focus on a speci�c unit root test in the ESTAR framework.

Namely, the KSS test has been widely and successfully applied to a variety of variables

and may thus be viewed as a standard unit root test against stationary self-exciting

nonlinear models. Within the ESTAR framework, the null hypothesis of a unit root is

parameterized by φ = 0, and the alternative by φ < 0 together with γ > 0. Without

deterministic components, the DF test tDF is based on the t statistic of φ from the OLS

regression

∆yt = ϕ̂DF yt−1 + ε̂t, (1)

while the nonlinear KSS test tKSS relies on the t statistic of φ from the OLS regression

∆yt = ϕ̂KSS y
3
t−1 + ε̂t. (2)

In (2), the speci�c choice of y3
t−1 as regressor is due to employing a Taylor series expansion

to deal with the lack of identi�cation of γ under the null. The asymptotic null distribution
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of the nonlinear KSS test statistic was derived by Kapetanios et al. (2003),

tKSS
d→
´ 1

0
W 3 (s) dW (s)√´ 1

0
W 6 (s) ds

. (3)

(Correct) Lag augmentation in case of serial dependence does not a�ect the asymptotics

under the null; Rothe and Sibbertsen (2006) propose a nonparametric correction following

Phillips and Perron (1988).

Comparing regressions (2) and (1), one can observe that large values of yt−1 are more

pronounced, while small ones are reduced; this is useful inasmuch as the middle regime

(small |yt−1|) exhibits no mean reversion under a nonlinear alternative and there is little

evidence in favor of stationarity to be obtained there. The nonlinear KSS test is expected

to perform better than the DF test under (ESTAR) nonlinear alternatives; see Kapetanios

et al. (2003).

When deterministic terms are considered, the standard procedure is to apply OLS

demeaning and detrending procedures onto the series yt before computing the test statis-

tics. Denote the resulting test statistics by tµDF , t
µ
KSS, t

τ
DF and tτKSS. See Kapetanios et al.

(2003), Kapetanios and Shin (2006) or Kapetanios and Shin (2008).

But e�cient adjustment of deterministic terms when testing for unit roots is quite

relevant. Several adjustment schemes have proven to be useful in the purely linear case;

see Leybourne et al. (2005). Therefore, we employ the following adjustment schemes for

both the linear DF and the nonlinear KSS tests and aim at identifying the most powerful

technique.

1. Local-to-unity GLS demeaning and detrending as proposed by Elliott et al.

(1996) for the DF test and Kapetanios and Shin (2008) for the KSS test. For both

the linear and the nonlinear tests, the data are demeaned prior to application of the

test in the following way: yµ;c = [y1, y2−(1−c/T)y1, ..., yT−(1−c/T)yt−1]′ is regressed

on zµ;c = [1, 1 − (1 − c/T), . . . , 1 − (1 − c/T)]′ in order to obtain GLS residuals ỹµ;c
t ;

in the linear case c = 7, while c = 9 in the nonlinear case. The GLS unit root tests

are then based on ỹµ;c
t . GLS detrending is carried out in analogous way, with zτ ;c

being zµ;c
t with the additional column [1, 1 − c/T , 1 − 2c/T , . . . , 1 − c(T−1)/T ]′ (i.e. the

quasi-di�erenced trend); in the linear case c = 13.5, while c = 17.5 in the nonlinear

case. Denote the resulting local-to-unity GLS unit root test statistics by tµ;c
DF , t

µ;c
KSS,

tτ ;c
DF and tτ ;c

KSS.

2. Recursive demeaning and detrending. For recursive demeaning (So and Shin,
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1999), the levels are recursively demeaned, ỹµt−1 = yt−1 − 1
t

∑t
j=1 yj, leading to

t̃µKSS =

∑T
t=2

(
ỹµt−1

)3
∆yt

σ̂
√∑T

t=2

(
ỹµt−1

)6

For the test with recursive detrending, one uses recursive detrending, and the dif-

ferences are demeaned, cf. Taylor (2002) and Rodrigues (2006):

t̃τKSS =

∑T
t=2

(
ỹτt−1

)3 (
∆yt −∆y

)
σ̂
√∑T

t=2

(
ỹτt−1

)6

with ỹτt−1 = yt−1 + 2
t−1

∑t−1
j=1 yj −

6
t(t−1)

∑t−1
j=1 j yj. The DF tests are constructed

analogously and denoted by t̃µDF and t̃τDF ; see Shin and So (2001) and Taylor (2002).

The recursive adjustment schemes reduce the bias of the OLS estimator (when close

to the unit root) thereby enhancing power properties; see Shin and So (2001) and

Taylor (2002) again.

3. The maximum of the forward-computed and backward-computed (i.e. ap-

plied to y∗t = yT+1−t.) DF tests with usual demeaning and detrending, as well as the

corresponding nonlinear KSS tests. Denote the test statistics by tµ;max
DF , tµ;max

KSS , t
τ ;max
DF

and tτ ;max
KSS . Strictly speaking, it is not a di�erent adjustment scheme; but the max

test procedure has (apart from new critical values) power properties comparable to

the previous two modi�cations, at least in the linear case (Leybourne et al., 2005).

3 Nearly integrated STAR processes

Before discussing the nonlinear case, we review the benchmark of a linear local-to-unity

alternative.

3.1 Linear local-to-unity alternatives

We compare the local power of linear DF and nonlinear KSS tests under the sequence

of local linear alternatives from Assumption 3. Since the work of Phillips (1987) it is

known what the weak limit of the suitably normalized yt under such near integration

is; the following lemma summarizes it. To formulate the lemma, denote by Jc (s) the

standard Ornstein-Uhlenbeck [OU] process with �mean-reversion� parameter c, dJc (s) =

9



−cJc (s) ds+ dW (s) with Jc (0) = 0 a.s., and let

Jc,κ (s) =

W (s) c = 0

κ
σ
√

2c
e−cs + Jc (s) c > 0

.

This is nothing else than the standard OU process with starting value κ
σ
√

2c
.

Lemma 1 Under Assumptions 1, 2, 3 and 4 (linearity), it holds that 1

σ
√
T

[sT ]∑
j=1

εj;
1

σ
√
T
y[sT ]

⇒ (W (s) ; Jc,κ (s))

as T →∞.

Proof: omitted.

The limiting distribution of the DF test statistic under a sequence of local linear al-

ternatives has already been derived in the relevant literature for all examined methods of

removing deterministic components. Although this is not entirely the case for the KSS

test (where only OLS and GLS adjustment have been considered sofar), the following

proposition gives the asymptotic behavior of the linear DF and nonlinear KSS test statis-

tics only for the case without adjustment. The extensions for deterministic adjustment are

actually particular cases of the results we give in Section 4 so there is no loss of generality

in not mentioning them at this time.

Proposition 1 Under the assumptions of Lemma 1 (linearity), it holds as T →∞ that

tDF
d→
´ 1

0
Jc;κ (s) dW (s)√´ 1

0
J2
c;κ (s) ds

− c

√ˆ 1

0

J2
c;κ (s) ds;

the analogous result holds for the nonlinear KSS test,

tKSS
d→
´ 1

0
J3
c;κ (s) dW (s)√´ 1

0
J6
c;κ (s) ds

− c
´ 1

0
J4
c;κ (s) ds√´ 1

0
J6
c;κ (s) ds

.

Proof: omitted.

Inspection of the local power curves given in Figure 1 for T = 1000 and 20000 Monte

Carlo replications reveals that the DF test dominates the nonlinear KSS test for all c > 0.

This result was to be expected, since the nonlinear KSS test is after all misspeci�ed when

the DGP is linear, having replaced yt with y
3
t as a regressor. The nonlinear KSS test being
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Figure 1: Local Power of DF and KSS test against a linear alternative.

explicitly built to take nonlinearities into account, the same reasoning points toward the

nonlinear KSS dominating in terms of power when the DGP is nonlinear, say as speci�ed

by Assumption 5. This argument fails however in the near-integration setup, as shown in

the following subsection.

3.2 Nonlinear local-to-unity alternatives

Consider now a �xed nonlinear local alternative, i.e. some �xed transition function which,

according to Assumption 5, is not equal to 1 almost everywhere. Its shape is however

�xed and does not depend on the sample size T . In spite of the nonlinearity of this DGP,

Lemma 2 below shows that the limiting behavior of the suitably normalized yt is the same

as in the linear case (Lemma 1).

Lemma 2 Under Assumptions 1, 2, 3 and 5 (�xed nonlinearity), it holds that 1

σ
√
T

[sT ]∑
j=1

εj;
1

σ
√
T
y[sT ]

⇒ (W (s) ; Jc,κ (s))

as T →∞.

Proof: see the Appendix.
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The explanation for this counter-intuitive result is as follows. With yt being nearly

integrated in the outer regimes, the levels yt have a relatively large variance even in

small samples and they increasingly seldom reach the middle regime. The nonlinearity is

consequently rendered asymptotically irrelevant for the levels when keeping the shape of

the transition function �xed. Because of the negligibility of �xed nonlinearity in the near-

integrated case, the initial value is plausibly speci�ed in Assumption 1 as y0 = κ/
√

1−(1+φ)2

even in the nonlinear case.

But the worst is yet to come: although the nonlinearity still enters the DF and KSS

test statistics via ∆yt, the asymptotic distribution of neither of the two tests is a�ected

by the nonlinearity of the DGP either. In other words, the limiting behavior of the

test statistics under local-to-unity nonlinear alternatives is identical to that of the test

statistics under the usual nearly-integrated linear alternative (Proposition 1). Like for

the case of a linear DGP in Subsection 3.1, we prove the result for the case without

deterministic terms only: considering removal of deterministic components may change

the shape of the limiting distributions, but not the fact that the distributions are not

a�ected by the (�xed) nonlinearity.

Proposition 2 Under the assumptions of Lemma 2 (�xed nonlinearity), it holds as T →
∞ that

tDF
d→
´ 1

0
Jc;κ (s) dW (s)√´ 1

0
J2
c;κ (s) ds

− c

√ˆ 1

0

J2
c;κ (s) ds;

the analogous result holds for the nonlinear KSS test,

tKSS
d→
´ 1

0
J3
c;κ (s) dW (s)√´ 1

0
J6
c;κ (s) ds

− c
´ 1

0
J4
c;κ (s) ds√´ 1

0
J6
c;κ (s) ds

.

Proof: see the Appendix.

The results in Proposition 2 nicely con�rm the �ndings of Choi and Moh (2007), who

found by extensive Monte Carlo simulations that the power of unit root tests built against

nonlinear alternatives is mostly in�uenced by the distance to the null of integration, i.e. by

the parameter φ, and that the type of �xed nonlinearity does not matter too much. Our

work complements their �ndings by theoretical results.

The key insight is that nonlinearity as speci�ed by Assumption 5 is ultimately negligi-

ble compared to the variance of the (even nonlinear) nearly integrated process. This can

also be seen as an identi�cation problem as the middle regime is simply ignored asymp-

totically. See also Donauer et al. (2010). This problem stems from the DGP and not from

the KSS test itself, since lack of identi�cation of γ under the null is circumvented by using

a Taylor series approximation.
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Figure 2: Local Power of DF and KSS test against a nonlinear (left) and linear ESTAR
(right) alternative.

To illustrate the implications of the proposition we present a plot of the local power

curves under a DGP with �xed nonlinearity in Figure 2 (left-hand panel). Again, the DF

test dominates the nonlinear KSS test for all c > 0. Moreover, the curves are virtually

identical to those in the linear case (right-hand panel of Figure 2).

Note that the �ndings apply to the TAR model as well, since Assumption 5 only

requires a piecewise Lipschitz transition function. Also, several inner/middle regimes in

STAR or TAR models are permitted; see also Kapetanios and Shin (2006).

Should however the variance of the errors εt be small, the overall variability of yt is

itself reduced; hitting the middle regime becomes more likely in this case and nonlinear

dynamics will become relevant under the local alternative as well. Moreover, error vari-

ances estimated in empirical work are actually often rather small; see e.g. Taylor et al.

(2001). Hence, the type of quasi-linear asymptotics with �xed nonlinearity speci�ed by

Assumption 5 may not be appropriate to capture the salient data features.

For this reason we study in Section 4 asymptotics for which the middle regime is

not overlooked. We accomplish this by modeling the middle regime as having width

proportional to the variance of yt in order to mimic the e�ect of a small error variance.

We call processes implied by Assumptions 3 and 6 persistently nonlinear. The following

section deals with the local power of unit root tests under such a DGP.

13



4 Persistently nonlinear processes

4.1 Asymptotic results

We now examine the asymptotic behavior of the partial sums of ∆yt under the persis-

tent nonlinearity assumption. To characterize it, let X (s) be the di�usion given by the

stochastic di�erential equation

dX (s) = −cX (s)G
(
g2σ2X2 (s)

)
ds+ dW (s) (4)

with starting value X (0) = κ
σ
√

2c
. We then have the following lemma.

Lemma 3 Under Assumptions 1, 2, 3 and 6 (persistent nonlinearity), it holds that 1

σ
√
T

[sT ]∑
j=1

εj;
1

σ
√
T
y[sT ]

⇒ (W (s) ;X (s))

as T →∞.

Proof: see the Appendix.

Note that the limiting process X (s) depends on the variance σ2 even when the starting

value is y0 = 0; this is an important di�erence to the linear case.

The distributions of the linear DF and nonlinear KSS tests under the sequence of local

alternatives speci�ed by Assumption 6 is then as follows.

Proposition 3 Under the assumptions of Lemma 3 (persistent nonlinearity), it holds

that

tDF
d→
´ 1

0
X (s) dW (s)√´ 1

0
X2 (s) ds

− c
´ 1

0
X2 (s)G (g2σ2X2 (s)) ds√´ 1

0
X2 (s) ds

and

tKSS
d→
´ 1

0
X3 (s) dW (s)√´ 1

0
X6 (s) ds

− c
´ 1

0
X4 (s)G (g2σ2X2 (s)) ds√´ 1

0
X6 (s) ds

as T →∞.

Proof: see the Appendix.

The extension to usual demeaning or detrending is straightforward and involves de-

meaned or detrendend versions of W and X. But Proposition 3 allows one to compare

the behavior of the studied tests under the di�erent assumptions about the nonlinearity:

examining the results for linearity and �xed nonlinearity, we observe the DF and KSS

tests to have nontrivial local power in the same type of neighborhoods of the null.

14



Since the power functions are not available in closed form, Subsection 4.2 compares

the local power properties of the two tests via Monte Carlo simulation. The comparison

will take di�erent ways of adjusting for deterministic components into account. To this

end, the following proposition derives the asymptotic behavior of the KSS when the data

is adjusted for deterministic components as discussed in Subsection 2.2. The results for

the DF test can be obtained analogously. To state the proposition, de�ne the recursively

demeaned version of the di�usion X (s) ,

X̃µ (s) =

0 a.s. s = 0

X (s)− 1
s

´ s
0
X (r) dr s > 0

;

the recursively detrended version is

X̃τ (s) =

0 a.s. s = 0

X (s) + 2
s

´ s
0
X (r) dr − 6

s2

´ s
0
rX (r) dr s > 0

and let

M c =
(1 + c)X (1) + c2

´ 1

0
sX (s) ds

1 + c+ c2

3

.

We then have the following

Proposition 4 Under the assumptions of Lemma 3 (persistent nonlinearity), it holds as

T →∞ :

a) for local-to-unity GLS adjustment

tµ,cKSS
d→
´ 1

0
X3 (s) dW (s)√´ 1

0
X6 (s) ds

− c
´ 1

0
X4 (s)G (g2σ2X2 (s)) ds√´ 1

0
X6 (s) ds

and

tτ,cKSS
d→
´ 1

0

(
X (s)− sM c

)3
dW (s)−M c

´ 1

0

(
X (s)− sM c

)3
ds√´ 1

0

(
X (s)− sM c

)6
ds

−c
´ 1

0

(
X (s)− sM c

)3
X (s)G (g2σ2X2 (s))√´ 1

0

(
X (s)− sM c

)6
ds

;

b) for recursive adjustment

t̃µKSS
d→

´ 1

0

(
X̃µ (s)

)3

dW (s)√´ 1

0

(
X̃µ (s)

)6

ds

− c

´ 1

0

(
X̃µ (s)

)3

X (s)G (g2σ2X2 (s)) ds√´ 1

0

(
X̃µ (s)

)6

ds

15



and

t̃τKSS
d→

´ 1

0

(
X̃τ (s)

)3

dW (s)−W (1)
´ 1

0

(
X̃τ (s)

)3

ds√´ 1

0

(
X̃τ (s)

)6

ds

−c

´ 1

0

(
X̃τ (s)

)3

X (s)G (g2σ2X2 (s)) ds−
´ 1

0

(
X̃τ (s)

)3

ds
´ 1

0
X (s)G (g2σ2X2 (s)) ds√´ 1

0

(
X̃τ (s)

)6

ds

.

c) for the max test without adjustment

tmax
KSS

d→ max

tKSS;−tKSS − 3

´ 1

0
X2 (s) ds√´ 1

0
X6 (s) ds


with tKSS from Proposition 3 being expressed in terms of the same di�usion X (s) ; for the

max test with OLS adjustment, replace the process X(s) with its demeaned and detrended

versions.

Proof: see the Appendix.

The behavior of the KSS test under GLS demeaning is the same as in the case without

deterministics even in the nonlinear case, which is not true under detrending; see also

Kapetanios and Shin (2008). In contrast, the distributions of the nonlinear KSS test with

recursive adjustment and of the max KSS test change for both demeaning and detrending.

The following subsection compares the local power of the DF and the KSS unit root tests

from Proposition 4 and the respective e�ect of the employed adjustment procedures.

4.2 Local power curves

Since local power functions are not available in closed form in our case, we approximate

them by means of Monte Carlo simulation. This section provides a summary of the

�ndings. The following setup is considered for the analysis of local power. The sample

size equals T = 1, 000 and the data generating process is given by

∆yt = φyt−1(1− exp(−γy2
t−1)) + εt, t = 2, ..., T, y0 = ξσy,

with φ = −c/T , γ = g2/T , εt ∼ N(0, σ2) and ξ = {−4,−2, 0, 2, 4}. The initial condition

for y0 is generated as the product of a parameter ξ of our choice and the average sample

standard deviation σy of yt (averaged over 20, 000 samples of size T generated with zero

starting value). Values of ±4 stands for a large initial value and ±2 for moderate ones,
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Figure 3: Local Power against ESTAR, σ2 = 1, c = 5, ξ = 0.
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Figure 4: Local Power against ESTAR, σ2 = 1, c = 20, ξ = 0.
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Figure 5: Local Power against ESTAR, σ2 = 5, c = 5, ξ = 0.
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Figure 6: Local Power against ESTAR, σ2 = 5, c = 20, ξ = 0.
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while ξ = 0 reduces the initial value to 0. The sample standard deviation of yt does not

converge in probability in the near-integrated case, in fact we have the weak convergence

1√
T

√√√√ 1

T

T∑
t=1

(yt − y)2 ⇒

√
σ2

ˆ 1

0

(
X(s)−

ˆ 1

0

X(s)ds

)2

ds

as T →∞. Under regularity conditions (in particular the existence of the expectation of

the r.h.s.), however, the average sample deviation does converge,

σy√
T

p→ σ E

√ˆ 1

0

X2(s)ds−
(ˆ 1

0

X(s)ds

)2


so σy is proportional to
√
T for suitable choice of κ as required by Assumption 1.3

The size of the unit root tests is considered whenever g2 = 0, i.e. γ = 0, and the power

of tests is considered whenever g2 > 0 (γ > 0). Regarding local alternatives, we specify

c = {1, 2, ..., 50} and g2 = {0, 1, 2, ..., 20}. Figures 3-14 cover the whole range of g2 while

c is �xed and takes either the value 5 or 20.4 Regarding the variance of the errors, we

consider the following scenarios: σ2 = {0.1, 0.25, 0.5, 1, 2, 5}.
Following our asymptotic analysis, we compare the KSS and the DF test with four

di�erent adjustment schemes for deterministic components: OLS, GLS recursive (REC)

and the maximum-procedure (MAX).5 In the following, we only discuss results for the

case of de-meaning as they are similar to the ones obtained for de-trending which we do

not report here to save space. The number of replications is 5,000 for each parameter

con�guration.

Figures 3-14 highlight certain �ndings by selecting some speci�c parameter settings.

Each �gure shows four di�erent mean adjustment schemes for two di�erent tests, namely

the DF (straight line) and the KSS test (dashed line). In particular, Figures 3-6 summarize

the �ndings for a zero initial condition (ξ = 0). The remaining Figures cover the cases

where ξ equals either 2 or 4. The results for negative values are very similar and therefore

not reported.

In Figures 3 and 4, the error variance is �xed at σ2 = 1, while c takes values 5 and

20, respectively. A comparison between the linear DF and the nonlinear KSS test for

each single adjustment scheme reveals that there is no clear ranking. When di�erent

adjustment schemes are compared, it becomes evident that the GLS approach is most

3The simulation results for σy can be found in Table 1 located in the Appendix.
4The remaining �gures are available from the authors upon request.
5Critical values simulated for large T for the newly developed KSS-REC and KSS-MAX tests at the

nominal signi�cance level of �ve percent are (-2.15, -2.64) and (-1.97, -3.17) for the case of de-meaning
and de-trending, respectively.
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Figure 7: Local Power against ESTAR, σ2 = 1, c = 5, ξ = 2.
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Figure 8: Local Power against ESTAR, σ2 = 1, c = 5, ξ = 4.
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Figure 9: Local Power against ESTAR, σ2 = 1, c = 20, ξ = 2.
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Figure 10: Local Power against ESTAR, σ2 = 1, c = 20, ξ = 4.

21



●

●

● ● ● ● ●

OLS

g2

Lo
ca

l p
ow

er
●

●
● ● ●

●
●

0 1 5 9 13 17 21

0.
00

0.
05

0.
10

0.
15

0.
20

DF
KSS

●
●

● ● ● ● ●

GLS

g2

Lo
ca

l p
ow

er

●
●

● ● ● ● ●

0 1 5 9 13 17 21

0.
00

0.
05

0.
10

0.
15

0.
20 DF

KSS

●

● ● ● ● ● ●

REC

g2

Lo
ca

l p
ow

er

●

●
● ● ● ● ●

0 1 5 9 13 17 21

0.
00

0.
05

0.
10

0.
15

0.
20

DF
KSS

●

● ● ● ● ● ●

MAX

g2

Lo
ca

l p
ow

er
●

● ● ●
● ● ●

0 1 5 9 13 17 21

0.
00

0.
05

0.
10

0.
15

0.
20

DF
KSS

Figure 11: Local Power against ESTAR, σ2 = 5, c = 5, ξ = 2.
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Figure 12: Local Power against ESTAR, σ2 = 5, c = 5, ξ = 4.
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Figure 13: Local Power against ESTAR, σ2 = 5, c = 20, ξ = 2.
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Figure 14: Local Power against ESTAR, σ2 = 5, c = 20, ξ = 4.
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promising. Recursive adjustment and the MAX procedure are performing very similar

and both are better in terms of local power than their OLS counterparts. The OLS

adjustment leads to the lowest local power overall. These �ndings imply, amongst other

things, that a KSS test with OLS adjustment is dominated by a DF test with any other

adjustment scheme than OLS. Hence, the results suggest that it may be more important to

carefully treat the deterministic part of the model than to account for nonlinearity when

it comes to unit root testing. This conclusion is further supported by the circumstance

that, for a given adjustment scheme, the local power curve of the two tests are often quite

close to each other. This means that even if the KSS test is performing better than the

DF test in some situations (e.g. Figure 4 upper left cell, OLS adjustment), the gains in

terms of local power coming from taking nonlinearity into account are small. The relative

importance of e�cient demeaning/detrending was also highlighted by Westerlund (2011)

in a di�erent setup.

Figures 5 and 6 are similar to the previous two, the di�erence is an error variance of 5

instead of 1. The simulation results support our theoretical �ndings and further indicate

that for a �xed value of c, the degree of nonlinearity (measured by g2) does not have

a large impact on the local power. In fact, after a certain small threshold the curves

become �at. In addition, the results suggest that the DF test dominates the KSS test

in nearly all cases. One exception is found in Figure 5 (upper left cell, OLS adjustment)

where both tests perform similar. In line with the previous setup with σ2 = 1, the GLS

approach turns out to be most e�cient. Recursive adjustment and the MAX procedure

are ranked second, while the OLS adjustment performs rather poorly in these settings

as well. Moreover, it is evident from the results that the local power is, after a certain

increase, hardly in�uenced by a change in the shape parameter of the transition function.

A change in the autoregressive parameter appears to be more important. These �ndings

nicely corroborate the results of Choi and Moh (2007), illustrating that the local power

depends rather on c than on g2.

We now turn to the case of a non-zero initial condition. Figures 7-10 cover the case

of σ2 = 1, while Figures 11-14 present the results for σ2 = 5. In Figures 7 and 8 the

speci�cations σ2 = 1, c = 5 and ξ = {2, 4} are considered. The results indicate that OLS
adjustment performs best which comes along with monotonically increasing local power

curves. For all other adjustment schemes we �nd either �at (see Figure 7 with ξ = 2) or

decreasing (see Figure 8 with ξ = 4) local power curves. Only for the case of a large initial

condition we �nd a clear ranking of the two competing tests: the linear DF test dominates

the KSS test when OLS adjustment is applied. Figures 9 and 10 present results when c

equals 20. For a moderate non-zero initial condition (see Figure 9 with ξ = 2) we �nd

a similar performance of OLS, REC and MAX adjustment schemes while GLS is ranked

last. Moreover, there is no clear distinction between the KSS and DF tests. Things are
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di�erent for ξ = 4 (Figure 10), though, where a similar picture to that of Figure 8 emerges

(similar speci�cation, but c = 5 instead of c = 20).

Finally, we summarize the �ndings for the case of σ2 = 5 when the initial condition

is non-zero. The results in Figure 11 (c = 5, ξ = 2) are very similar to the ones in

Figure 3 (c = 5, ξ = 0) with the following important di�erences: the local power is

lower in general and the OLS adjustment scheme provides the best performance followed

by REC, MAX and GLS adjustment. We only �nd the KSS test to be slightly more

powerful than the DF test for all considered values of g2 if GLS adjustment is applied.

The results in Figure 12 (ξ = 4) indicate once more the clear superiority of the DF test

with OLS adjustment. By considering the results shown in Figure 13 it becomes clear

that OLS, REC and MAX adjustment are performing pretty well and similar. For all

three adjustment schemes, the DF test appears to be more powerful than the KSS test.

This conclusion is reversed for the case of GLS adjustment. But still, the KSS test with

GLS adjustment is performing worse than all of its competitors, i.e. KSS with either

OLS, REC or MAX adjustment. In the last Figure 14, we �nd a clear ranking which we

observe in other situations where the initial condition is large as well: the DF test with

OLS adjustment is locally most powerful, followed by the KSS test with OLS demeaning.

Notably, the recursive adjustment procedure (with a similar ranking of tests) is performing

clearly better than its two remaining competitors, namely MAX and GLS adjustment.

We �nd that the initial condition has a strong impact on the ranking of adjustment

schemes. See Müller and Elliott (2003) for the explanation in the linear case. While the

GLS approach is most promising in the case of a zero initial condition, OLS adjustment is

recommended for non-zero initial conditions. When OLS adjustment is considered under

non-zero initial conditions, we observe that the DF test performs better than the KSS

test in nearly all situations. In contrast, the ranking is less clear when GLS adjustment

is applied under a zero initial condition. As a general conclusion, taking into account the

outcomes of the studied tests and several di�erent adjustment schemes is worthwhile to

consider. Such a combination, as proposed in the linear case by Harvey et al. (2009, 2011)

would ensure robustness against an unknown value of y0.

5 Concluding remarks

This paper examines the local power of linear and nonlinear unit root tests under sequences

of nearly integrated alternatives. They are either linear, nonlinear, or persistently nonlin-

ear. The need to investigate persistently nonlinear alternatives arises from the interplay

of near integration and nonlinearity: under �xed nonlinearity, the near-integrated behav-

ior of the outer regimes dominates asymptotically unless the variance of the process is

comparable to the width of the middle (unit root) regime.

25



We derive asymptotic distributions of various unit root test statistics and study their

corresponding local power curves. Under linear and �xed nonlinear nearly-integrated

alternatives, the linear DF test dominates the nonlinear KSS test in terms of local power.

In contrast, under persistent nonlinearity, capturing e.g. small variance of the errors, the

nonlinear KSS test can be more powerful. Furthermore, we �nd that the e�cient removal

of deterministic components is typically more important (in terms of local power) than

using a speci�cally nonlinear test. The answer to the question which adjustment procedure

is better depends to a large extent on the magnitude of the initial value; for instance, local-

to-unity GLS should be preferred for negligible initial values while OLS appears to work

better provided that the initial value is signi�cant. These �ndings are in line with the

knowledge of the linear case. But irrespective of the speci�c initial condition, we �nd that

a DF test with the best available detrending procedure typically dominates a standard

KSS test. Considering our results, it would be a more successful strategy to combine

linear and nonlinear tests and several methods of detrending, following the suggestion of

Harvey et al. (2009, 2011), rather than to set exclusively on the DF or the KSS test. We

leave this to further work.

While the paper focuses on nonlinear models where the transition between regimes

depends on lagged values of the process itself (SETAR/STAR), it is likely that our �ndings

hold for other nonlinear DGPs exhibiting near integration. The �ndings of Choi and Moh

(2007) support this conjecture to hold for other nonlinear DGPs as well. Furthermore,

Balke and Fomby (1997) and Kapetanios et al. (2006) among others address the issue of

nonlinear cointegration. The �ndings of this paper are expected to extend to nonlinear

cointegration tests as well, as long as nonlinearity enters the system trough the error

correction mechanism and not via the cointegrating relations only.
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Appendix

Auxiliary results

Lemma 4 Under Assumptions 1, 2, 3 and 6, it holds as T →∞ that

1.
1

T

T∑
t=2

(∆yt)
4 p→ µ4 = E

(
ε4
t

)
.

2.
1

T 4

T∑
t=2

y6
t−1

d→ σ6

ˆ 1

0

X6 (s) ds

3.
1

T 2

T∑
t=2

y3
t−1εt

d→ σ4

ˆ 1

0

X3 (s) dW (s)

4.

1

T 2

T∑
t=2

y2
t−1 (∆yt)

2 d→ σ4

ˆ 1

0

X2 (s) ds

5.
1

T 2

T∑
t=2

yt−1 (∆yt)
3 p→ 0.

Note that, under a �xed nonlinear alternative, the results hold with X (s) replaced by

Jc;κ (s) .

Proof of Lemma 4

1. The item follows with yt = Op

(√
T
)
(cf. Lemma 3), the sequence of equalities

1

T

T∑
t=2

(∆yt)
4 =

1

T

T∑
t=2

(εt + φTyt−1G (yt−1; γT ))4 =
1

T

T∑
t=2

ε4
t + op (1) ,

and the Law of Large Numbers.

2. Follows from Lemma 3 with an application of the continuous mapping theorem

[CMT].

3. Follows with Theorem 2.2 from Kurtz and Protter (1991), whose conditions (in

particular the martingale di�erence property of yt−1εt) are easily checked to hold

given Lemma 3.
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4. Write

1

T 2

T∑
t=2

y2
t−1 (∆yt)

2 =
1

T 2

T∑
t=2

y2
t−1

(
(∆yt)

2 − σ2
)

+ σ2 1

T 2

T∑
t=2

y2
t−1.

Should the �rst term on the r.h.s. vanish as T → ∞, the result follows with the

CMT and Lemma 3. Now,

1

T 2

T∑
t=2

y2
t−1

(
(∆yt)

2 − σ2
)

=
1

T 2

T∑
t=2

y2
t−1

(
(εt + φTyt−1G (yt−1; γT ))2 − σ2

)
=

1

T 2

T∑
t=2

y2
t−1

(
ε2
t − σ2

)
+

2φT
T 2

T∑
t=2

y3
t−1G (yt−1; γT ) εt +

φ2
T

T 2

T∑
t=2

y4
t−1G

2 (yt−1; γT ) ;

note that y2
t−1 (ε2

t − σ2) is an m.d. sequence with variance t (µ4 − σ4) under the iid

assumption, so the �rst summand on the r.h.s. vanishes as T → ∞, as the second

and the third summands do thanks to the fact that G is bounded; the result follows.

(If εt is a m.d. sequence with conditional heteroskedasticity, cumulant summability

conditions are required to establish that E

((
1
T 2

∑T
t=2 y

2
t−1 (ε2

t − σ2)
)2
)
→ 0; see

e.g. Demetrescu, 2010.)

5. Note that

1

T 2

T∑
t=2

yt−1 (∆yt)
3 =

1

T 2

T∑
t=2

yt−1

(
ε3
t − E

(
ε3
t

))
+ E

(
ε3
t

) 1

T 2

T∑
t=2

yt−1;

the second term on the r.h.s. vanishes in probability. The result follows with the iid

property of the errors implying E |yt−1 (ε3
t − E (ε3

t ))| = E |yt−1|E |ε3
t − E (ε3

t )| where
E |yt−1| < C

√
T ∀1 ≤ t ≤ T because E

(
y2
t−1

)
≤ Ct ∀t, as can easily be checked by

induction.

Proofs

Proof of Lemma 2

The case of c = 0 is trivial. For c > 0, de�ne the auxiliary process ỹt by

∆ỹt = φT ỹt−1 + εt
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with ỹ0 = y0 and note that the weak limit of ỹ[sT ]/
√
σ2T is precisely Jc,κ (s) since

ỹt =
t∑

j=1

(1 + φT )t−j εj + ỹ0 (1 + φT )t

and thus

1

σ
√
T
ỹt =

1

σ
√
T

t∑
j=1

(1 + φT )t−j εj +
κ

σ
√

2c

(
(1 + φT )

1
φT

)−c t
T

+ o (1) .

It then su�ces to show that

yt = ỹt +Op (1)

uniformly in t to establish the desired result. Begin by writing

|yt − ỹt| ≤ |yt−1 − ỹt−1|+ |∆yt −∆ỹt| ;

and note that

∆yt = φT ỹt−1 + φT (yt−1 − ỹt−1)− φTyt−1 (1−G (yt−1; γ)) + εt

or

|∆yt −∆ỹt| ≤ |φT | |yt−1 − ỹt−1|+ |φTyt−1 (1−G (yt−1; γ))| ,

hence

|yt − ỹt| ≤ (1 + |φT |) |yt−1 − ỹt−1|+ |φTyt−1 (1−G (yt−1; γ))| .

Considering the assumption on the tail behavior of 1−G, it follows that

sup
1≤t≤T

|φTyt−1 (1−G (yt−1; γ))| ≤
c supγ∈R+,y∈R |y (1−G (y; γ))|

T
=
C

T

uniformly in t for a suitable constant C. With y0 = ỹ0, we then have for all t that

|yt − ỹt| ≤
t∑

j=1

(1 + |φT |)j
C

T

or

|yt − ỹt| ≤
t∑

j=1

(
(1 + |φT |)

1

|φT |
)j|φT | C

T
.
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Now, (1 + |φT |)
1

|φT | → e for |φT | → 0 so (1 + |φT |)
1

|φT | is bounded; considering that

j |φT | ≤ c, we �nally obtain

|yt − ỹt| ≤
t∑

j=1

C

T
,

as required for the result.

Proof of Lemma 3

Weak convergence of standardized partial sums of εt to Wiener process is a standard

result in the literature under this paper's assumptions.

To prove the remaining results, note that the function G (·) is (uniformly) Lipschitz

so the solution X(s) of the stochastic di�erential equation (4) exists uniquely.

Then,

∆yt = φTyt−1G
(
g2σ2 y

2
t−1

σ2T

)
+ εt + φTyt−1 (G− G) ;

since |G− G| ≤ C
T

(1 + |yt−1|) , we have that

∆yt = φTyt−1G
(
g2σ2 y

2
t−1

σ2T

)
+ εt +Op

(
T−1

)
where the Op term is uniform in t. Hence yt−1 will have the same weak limit as ỹt given

by
∆ỹt

σ
√
T

= c
ỹt−1

σ
√
T
G
(
g2σ2 ỹ

2
t−1

σ2T

)
1

T
+

εt

σ
√
T

with ỹ0 = y0.

Weak convergence of standardized ỹ[sT ] to X(s) (jointly with T−0.5
∑[sT ]

j=1 εj) follows

from the work of Gikhman and Skorokhod (1969); see Kushner (1974) for the same con-

vergence under similar conditions for G (·) or, more recently, Kurtz and Protter (1991).

Proof of Proposition 2

Under �xed nonlinearity, we have for the DF test that

tDF =

∑T
t=2 yt−1

(
εt − c

T
yt−1G (yt−1; γ)

)
σ̂
√∑T

t=2 y
2
t−1

;
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since σ̂ is consistent (the proof is straightforward, cf. the proof of Proposition 3), it follows

that

tDF =
1

σ2T

∑T
t=2 yt−1εt√

1
σ2T 2

∑T
t=2 y

2
t−1

− c

√√√√ 1

σ2T 2

T∑
t=2

y2
t−1 − c

1
σ2T 2

∑T
t=2 y

2
t−1 (1−G (yt−1; γ))√
1

σ2T 2

∑T
t=2 y

2
t−1

+ op (1) .

Since y2 (1−G (y; ·)) is bounded at ±∞, the Lipschitz assumption implies that it is

bounded over R. The third term on the r.h.s. hence vanishes as T → ∞. The proof is

analogous for the nonlinear KSS test.

Proof of Proposition 3

Begin with the DF test and show ϕ̂DF ,

ϕ̂DF =

∑T
t=2 yt−1∆yt∑T
t=2 y

2
t−1

, (5)

to be superconsistent. For γT = g2/T , we have along the lines of the proof of Lemma 3

that

T∑
t=2

yt−1∆yt =
T∑
t=2

yt−1εt − c
1

T

T∑
t=2

y2
t−1G

(
g2

T
y2
t−1

)
+Op

(
1

T 2

∑
y3
t−1

)
;

furthermore, G is bounded, yt = Op

(√
T
)
and yt−1εt is a m.d. sequence, so the numerator

of the r.h.s. of (5) is Op(T ). The denominator in (5) is of exact order Op (T 2), establishing

superconsistency of ϕ̂DF and consistency of σ̂2 = T−1
∑T

t=2(∆yt − ϕ̂DFyt−1)2. Then,

tDF =

∑T
t=2 yt−1∆yt

σ̂
√∑T

t=2 y
2
t−1

=
1

σ2T

∑T
t=2 yt−1εt√

1
σ2T 2

∑T
t=2 y

2
t−1

− c
1

σ2T 2

∑T
t=2 y

2
t−1G

(
g2σ2 y

2
t−1

σ2T

)
√

1
σ2T 2

∑T
t=2 y

2
t−1

+ op (1) .

Convergence follows with the CMT and Lemma 4 item 4. For the nonlinear KSS test, the

result follows similarly.

Proof of Proposition 4

a) local-to-unity GLS We have from Elliott et al. (1996) that

ỹµt = yt − µ̂
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with µ̂ the GLS estimator of µ under an assumed linear local alternative ρ = 1− c
T
. This

leads to

ỹµt = yt −
y1 + c

T
(yT − y1) + c2

T 2

∑T
t=2 yt−1

1 + c2

T 2 (T − 1)
= yt +Op

(
T−0.5

)
.

Moreover, ∆ỹµt = ∆yt, so the asymptotics of the GLS-demeaned KSS test are the same

as that of the KSS test without deterministics.

In the case of detrending, we obtain on the one hand

ỹτt = yt −
t

T
(

1 + c+ c2

3

) (yT − y1 +
c

T

T∑
t=2

(t− 1) ∆yt +
c

T

T∑
t=2

yt−1 +
c2

T 2

T∑
t=2

(t− 1) yt−1

)
+Op

(
T−0.5

)
leading with

∑T
t=2 (t− 1) ∆yt = (T − 1) (yT − y1)−

∑T
t=2 yt−1 and the CMT to

1

σ
√
T
ỹτt ⇒ X (s)− s

(1 + c)X (1) + c2
´ 1

0
sX (s) ds

1 + c+ c2

3

= X (s)− sM c.

On the other hand we have that

∆ỹτt = ∆yt −
(1 + c) (yT − y1) + c2

T 2

∑T
t=2 (t− 1) yt−1

T
(

1 + c+ c2

3

) + op
(
T 0.5

)

The result follows again with the CMT, since ∆yt = φyt−1G
(
γy2

t−1

)
+Op (T−1) .

b) recursive detrending Like in the proof of Proposition 3, it follows from Assumption

6 that

t̃µNL =

∑T
t=2

(
ỹµt−1

)3
εt

σ̂
√∑T

t=2

(
ỹµt−1

)6
− c

T

∑T
t=2

(
ỹµt−1

)3
yt−1G

(
γTy

2
t−1

)
σ̂
√∑T

t=2

(
ỹµt−1

)6
+ op (1) .

Using Proposition 2 in Born and Demetrescu (2011) together with Lemma 3, we have

that
1

σ
√
T
ỹµ[sT ] ⇒ X̃µ (s)

jointly with weak convergence of the normalized partial sums of εt. Proposition 2.2 in

Kurtz and Protter (1991) and the CMT lead to the desired result.

For the test with recursive detrending, we have

t̃τNL =

∑T
t=2

(
ỹτt−1

)3
(εt − ε)

σ̂
√∑T

t=2

(
ỹτt−1

)6
− c

T

∑T
t=2

(
ỹτt−1

)3
(
yt−1G

(
γTy

2
t−1

)
− y G (γTy2)

)
σ̂
√∑T

t=2

(
ỹτt−1

)6
+ op (1) ;
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the arguments used for the demeaning case apply analogously to complete the proof.

c) max test The reverse nonlinear KSS test is given by

trKSS =

∑1
t=T−1 y

3
t+1 (yt − yt+1)

σ̂
√∑1

t=T−1 y
6
t+1

with σ̂2 = T−1
∑1

t=T−1

(
−∆yt+1 − ϕ̂rDFy3

t+1

)2
and ϕ̂rDF =

∑1
t=T−1 y

3
t+1(yt−yt+1)∑1

t=T−1 y
6
t+1

.

Now,
1∑

t=T−1

y3
t+1 (yt − yt+1) = −

T∑
t=2

y3
t∆yt = −

T∑
t=2

(yt−1 + ∆yt)
3 ∆yt

so

1∑
t=T−1

y3
t+1 (yt − yt+1) = −

T∑
t=2

(
y3
t−1∆yt + 3y2

t−1 (∆yt)
2 + 3yt−1 (∆yt)

3 + (∆yt)
4) .

Then, by making use of Lemma 4 items 1 and 5, we obtain that

ϕ̂rDF = −
∑T

t=2 y
3
t εt∑T

t=2 y
6
t

+
c

T

∑T
t=2 y

4
tG
(
γTy

2
t−1

)∑T
t=2 y

6
t

−
∑T

t=2 3y2
t−1 (∆yt)

2∑T
t=2 y

6
t

+ op (1) ;

note that the 2nd term on the r.h.s. vanishes since hence, by using Lemma 4 again, we

obtain

T 2ϕ̂rDF
d→
−
´ 1

0
X3 (s) dW (s) + c

´ 1

0
X4 (s)G (g2σ2X2 (s)) ds− 3

´ 1

0
X2 (s) ds

σ2
´ 1

0
X6 (s) ds

.

As a direct consequence of this convergence rate, the residuals and the residual variance

estimator are consistent. Moving on to the t statistic, we obtain

trKSS = −
1

σ4T 2

∑T
t=2 y

3
t∆yt

σ̂
σ

√
1

σ6T 4

∑T
t=2 y

6
t

and correspondingly

trKSS
d→
−
´ 1

0
X3 (s) dW (s) + c

´ 1

0
X4 (s)G (g2σ2X2 (s)) ds− 3

´ 1

0
X2 (s) ds√´ 1

0
X6 (s) ds

.

For the max test with OLS adjustment, simply replace the processes with their demeaned

and detrended versions to complete the result.
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Table

Table 1: Simulated values for σ2
y

(σ2, c)

g2 (1, 5) (1, 20) (5, 5) (5, 20)
1 9.35 7.96 39.01 26.40
5 8.38 6.47 38.39 23.92
9 8.07 5.96 38.12 23.59
13 7.97 5.69 38.24 23.52
17 7.89 5.51 38.22 23.48
21 7.83 5.37 38.18 23.41

Nonlinear data generating process is given by: ∆yt = φyt−1(1 −
exp(−γy2t−1)) + εt, with φ = −c/T , γ = g2/T , εt ∼ N(0, σ2). Reported

values are Monte Carlo averages of the sample variance of yt taken over

20,000 replications. The sample size T equals 1,000.
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