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Abstract

The GARCH framework has been used for option pricing with quite some success. While

the initial work assumed conditional Gaussian innovations, recent contributions relax this as-

sumption and allow for more �exible parametric speci�cations of the underlying distribution.

However, until now the empirical applications have been limited to index options or options on

only a few stocks and this using only few potential distributions and variance speci�cations.

In this paper we test the GARCH framework on 30 stocks in the Dow Jones Industrial Av-

erage using two classical volatility speci�cations and 7 di¤erent underlying distributions. Our

results provide clear support for using an asymmetric volatility speci�cation together with non-

Gaussian distribution, particularly of the Normal Inverse Gaussian type, and statistical tests

show that this model is most frequently among the set of best performing models.
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1 Introduction

Pricing options, especially those with early exercise features, in a realistic setting remains one of the

most important challenges in �nance. In particular, models which can accommodate time varying

volatility and allow for non-Gaussian innovations are required and this complicates not only the

actual pricing of the options but also the estimation of the necessary parameters. A framework that

can accommodate these features while remaining simple to implement is that of the generalized

autoregressive conditional heteroskedasticity, or GARCH, models of Engle (1982) and Bollerslev

(1986). GARCH models o¤er a very �exible framework which constitutes an obvious extension

to the constant volatility framework of Black & Scholes (1973) and Merton (1973). In terms of

option pricing the added �exibility comes at a cost since with time varying volatility the market

is no longer complete. However, in Duan (1995) a GARCH option pricing model is derived under

the assumption of conditionally Gaussian innovations and under some familiar assumptions on

investor preferences. The theoretical foundation for option pricing in a more general framework is

provided in Duan (1999) which extends the Gaussian GARCH option pricing model to situations

with conditional leptokurtic distributions. See also Christo¤ersen, Elkamhi, Feunou & Jacobs

(2010) and Gourieroux & Monfort (2007) for alternative approaches to derive the appropriate

option pricing model.

When the Gaussian GARCH models are compared to e.g. the constant volatility model smaller

pricing errors are obtained empirically. In particular, this is found for European style options on the

Standard & Poor�s 500 Index in e.g. Bollerslev & Mikkelsen (1996), Bollerslev & Mikkelsen (1999),

Heston & Nandi (2000), Christo¤ersen & Jacobs (2004), and Hsieh & Ritchken (2005). Another

recent contribution is Christo¤ersen, Jacobs, Ornthanalai & Wang (2008) where the volatility

is allowed to have both short run and long run components. Empirical applications of the non-

Gaussian framework can be found in e.g. Christo¤ersen, Heston & Jacobs (2006) and Christo¤ersen,

Dorion, Jacobs & Wang (2010). Although Christo¤ersen, Dorion, Jacobs & Wang (2010) �nd little
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improvement for the non-Gaussian models, Christo¤ersen et al. (2006) observe that allowing for non-

Gaussian innovations is important when pricing out of the money put options on the Standard &

Poor�s 500 Index. In Rombouts & Stentoft (2010) mixture models, which are very �exible, are used

for option pricing with very good results. In particular, the paper �nds substantial improvements

compared to several benchmark models for the Standard & Poor�s 500 Index options. Finally, in

addition to models with non-Gaussian innovations, GARCH models with jumps have been applied

empirically by Christo¤ersen, Jacobs & Ornthanalai (2008) which shows that jumps are important

empirically when pricing Standard & Poor�s 500 Index options.1

However, while the GARCH framework has been used with success to price European style

options like those on the Standard & Poor�s 500 Index, most traded options are American style

options. Hence, for a large scale test of the GARCH framework methods that can accommodate the

potential early exercise are needed which further complicates the analysis as it entails determining

the optimal early exercise strategy. The �rst methods which were proposed were the extended

binomial model of Ritchken & Trevor (1999) and the Markov Chain approximation method of Duan

& Simonato (2001), both of which can be used with the Gaussian GARCH model. However, though

these models can accommodate the early exercise feature, the approaches are not very �exible. For

example, it is not immediately clear how these approaches should be implemented for the generalized

GARCH framework in which innovations are non-Gaussian. To provide a more �exible method,

Stentoft (2005) suggests to use simulation methods together with the Least Squares Monte Carlo

method Longsta¤ & Schwartz (2001) to price options in the Gaussian GARCH framework. The

simulation method is used with non-Gaussian innovations in Stentoft (2008) and applied to price

options on three individual stocks together with options on the Standard and Poor�s 100 index using

the generalized GARCH framework. The �ndings in the paper are encouraging although only four

underlying assets are considered together with a limited number of underlying distributions.

1 In addition to the mentioned applications to the Standard & Poor�s 500 Index, GARCH models are found to
perform well for European style options on the German DAX index in Härdle & Hafner (2000), on the Hang Seng
Index in Duan & Zhang (2001), and on the FTSE 100 Index in Lehar, Scheicher & Schittenkopf (2002).
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In the current paper we correct the main shortcoming of the existing literature on pricing of

individual stock options; the fact that until now very few assets have been analyzed in a setting

with time varying volatility and with underlying distributions which are leptokurtic and skewed.

In fact, the paper o¤ers what we believe to be the largest analysis ever conducted of individual

stock options. To be speci�c, using 30 stocks from the Dow Jones Industrial Average, or DJIA,

as our sample, we price a total of 139,879 option contracts over the 11 year period from 1996 to

2006. We compare the results for two classical GARCH models, the symmetric GARCH model

and the asymmetric NGARCH model, and we consider 7 di¤erent distributions, 3 of which are

leptokurtic and 3 of which are skewed and leptokurtic. These choices are �rst of all driven by the

observation that asymmetric models like the NGARCH model, which can accommodate the well

known leverage e¤ect, has been shown to be important also for option pricing. Secondly, allowing

for skewness and leptokurtosis of the conditional distribution has also been shown to be important

for option pricing.

The contribution of the paper is twofold. The �rst contribution is to provide an empirical

application in which we compare the overall pricing performance for all 30 stocks across 15 models

using both dollar and implied standard deviation, or ISD, errors. We �rst provide maximum

likelihood estimation results for the 15 models using the available return data. The results provide

clear evidence in favor of the NGARCH speci�cation and of the NIG distribution. In particular,

this model minimizes the Schwartz Information Criteria. Next, in terms of option pricing the

overall results also provide clear evidence in favor of the NGARCH speci�cation and of the NIG

distribution. For example, when considering the ISD errors the NIG NGARCH model is the best

performing model for 25 of the 30 stocks. The NIG NGARCH model is also the best performing

model for the aggregate sample of options. When plotting the di¤erence in ISD between the

observed prices and the estimated prices from this model the results also show that the NIG

NGARCH model signi�cantly reduces the so-called smile e¤ect found when applying option pricing

models to this type of data.
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The second contribution is to use the theory of model con�dence sets, or MCS, developed by

Hansen, Lunde & Nason (2011) to compare and statistically test the pricing performance across

the various models. The MCS approach is analogous to the con�dence interval of a parameter and

is constructed such that it will contain the best forecasting model with a given level of con�dence.

It does so taking the information available in the data into consideration and for very informative

data the MCS will contain only the best model. The MCS approach has primarily been used to

compare variance forecasts, however since our estimated prices are predicted prices the MCS can

be directly applied to test the performance of the option pricing models. The results show that the

model most often contained in the MCS is once again the NIG NGARCH model. For example, when

considering the ISD errors this model is in the MCS for 29 of the 30 stocks. Moreover, the results

provide strong support for the use of the NGARCH speci�cation over the GARCH speci�cation

and for the use of NIG innovations. In particular, a NGARCH model is in the MCS for all the

stocks and so is a model with NIG innovations. To support these conclusions, we conduct several

robustness checks con�rming that this holds for both call and put options as well as across option

maturity and option moneyness.

Option pricing with our approach is straightforward �rst of all because we only use historical

data on the underlying asset and secondly because we use models in the GARCH framework which

can be estimated directly by maximum likelihood. However, historical option prices themselves

contain important information on the model parameters, and an alternative approach is to infer

these parameters either from historical option data alone or by using both returns and options

data. However, for this to be feasible option pricing models for which closed or semi-closed form

pricing formulas exist are needed and unfortunately this is not the case for American style op-

tions. Moreover, an alternative to the GARCH framework is to consider continuous time stochastic

volatility models. However, these models require the unobserved volatility as a state variable and

this complicates not only the estimation procedure but also the actual option pricing procedure.

For these reasons, the present paper focuses on the discrete time GARCH framework.
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The rest of the paper is structured as follows: In Section 2 we review the generalized GARCH

framework which will be used. In Section 3 we present the historical return data and provide

estimation results for the various models. In Section 4 we present the option data and we provide

empirical results on the overall performance of the option pricing models. Section 5 then analyzes

the model performance using the model con�dence set approach. Finally, Section 6 concludes.

The appendix contains additional details on the constituents of the DJIA and the data screening

procedure used.

2 Theoretical framework

In this paper a skewed and leptokurtic generalized GARCH framework similar to that of Stentoft

(2008) is used. To be speci�c, we assume that the log return process, Rt, can be modelled as

Rt = mt (�; �m) +
p
ht"t and (1)

ht = g (hs; "s;�1 < s � t� 1; �h) with (2)

"tj Ft�1 � D (0; 1; �D) ; (3)

where Ft�1 is the information set containing all information up to and including time t� 1. This

general framework can accommodate various di¤erent speci�cations for the variance. Moreover, it

allows for �exible speci�cations of the conditional distribution.

In (1) we use mt (�; �m) to denote the conditional mean, which is allowed to be governed by a

set of parameters �m provided that the process is measurable with respect to the information set

Ft�1. Likewise, in (2) the parameter set �h governs the variance process. This process is allowed

to depend on lagged values of the innovations to the return process, lagged values of the volatility

itself, and various transformations hereof. Finally, in (3) we use D (0; 1; �D) to denote a zero mean

and unit variance distribution which is also allowed to depend on a set of parameters �D. For

notational convenience if the following we let � denote the set of all parameters in �m, �h, and �D.
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2.1 The skewed and leptokurtic GARCH option pricing model

Using the Generalized Local Risk Neutral Valuation Relationship, or GLRNVR, of Duan (1999),

it can be shown that the risk neutralized dynamics of the system in (1)� (3) are given by

Rt = mt (�; �m) +
p
ht"t and (4)

ht = g (hs; "s;�1 < s � t� 1; �h) with (5)

"t = F
�1
D [� (Zt � �t)] ; (6)

where Zt, conditional on Ft�1, is a standard Gaussian variable under the risk neutral measure

Q, F�1D denotes the inverse cumulative distribution function associated with the distribution

D (0; 1; �D), � denotes the standard Gaussian cumulative distribution function, and where �t is

the solution to

EQ
h
exp

�
mt (�; �m) +

p
htF

�1
D [� (Zt � �t)]

����Ft�1i = exp (rt) : (7)

In the above equation rt denotes the one period risk free interest rate at time t, and although this

rate has to be deterministic it may in fact be time-varying.

Note that the same mean is used in the risk-neutral process as in (1) and instead risk-neutralization

is obtained through a change in the innovation term as speci�ed in (6). For example, in the special

case when D (0; 1; �D) corresponds to the Gaussian distribution it follows that F
�1
D [� (z)] = z, for

any z, and in this situation the innovations in the risk neutral world remain Gaussian although with

non zero mean. When the underlying distribution departs from the Gaussian the transformation

in F�1D [� (z)] yields innovations under the risk neutral measure with the appropriate properties

to be used when pricing e.g. options. In particular, note that when � = 0 the innovations in (6)

correspond to random draws from the D (0; 1; �D) distribution irrespective of what distribution this

is.
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2.2 Feasible option pricing

In principle the system above is completely self-contained. However, when it comes to implementing

it problems may occur due to the requirement that �t be the solution to (7). In particular, an

analytical expression for �t may not be available in general. In the present paper we circumvent

this issue using the proposed solution of Stentoft (2008) and �imply�the mean directly as

mt (�; �m) = rt � lnEQ
h
exp

�p
htF

�1
D [� (Zt � �t)]

����Ft�1i : (8)

Using this speci�cation ensures that the restriction in (7) is always satis�ed. A similar approach

is taken in Rombouts & Stentoft (2010) using the risk-neutralization method of Christo¤ersen,

Elkamhi, Feunou & Jacobs (2010) and in Rombouts & Stentoft (2011) using a multivariate gener-

alization hereof.

In the special case where returns are Gaussian the following restriction on the mean equation

obtains

mt (�; �m) = rt + �t
p
ht �

1

2
ht; (9)

where the last factor is a correction for working with continuously compounded returns. Thus, in

this situation an analytical expression exists and the parameter �t is often interpreted as the unit

risk premium. In particular, if we were to specify �t = �, that is as a constant, the implied mean

speci�cation corresponds to assuming a unit risk premium proportional to the level of the standard

deviation. Alternatively, if �t = �
p
ht, the unit risk premium becomes proportional to the level

of the variance and with �t = �=
p
ht a constant unit risk premium is obtained. Thus, while it

may appear that we by implying the gross rate of return through (8) are constraining the potential

mean speci�cation in an unreasonably way from an econometric point of view, this is in fact not

the case. Also note that �t = 0 is permitted and which speci�cation is the most appropriate one

can be tested by simple likelihood ratio type tests. In the general case a similar interpretation can

be given to �t as shown by Stentoft (2008), though there is no simple connection.

8



3 Return data and estimation results

We consider the 30 stocks in the Dow Jones Industrial Average, or DJIA, as of February 19,

2008. The 30 stocks are shown in Table 1 together with the ticker, OptionMetrics ID, CRSP

Permno, CUSIP, dates for which data is available, and the total number of observations.2 The

table shows that the data availability varies somewhat from stock to stock. For example, the most

recent companies to be quoted were Microsoft, MSFT, which went public on March 13, 1986, and

Citigroup, C, for which data is available only from October 29, 1986, from CRSP. For consistency,

we therefore only use data from 1986 and onwards in this paper.

In Figures 1 and 2 the time series of the log returns, Rt, are plotted for each of the stocks. The

�gures show a familiar pattern of time varying volatility which has been documented for many other

�nancial data series. The GARCH framework has been shown to be able to accommodate such

features of the data, and in the following we describe in detail the models which will be considered.

Next, we discuss some issues related to the implementation of the models and we provide estimation

results for the 30 stocks.

3.1 Models considered

The generalized GARCH framework allows for di¤erent speci�cations of the variance process and

underlying distribution. In this section we provide details on the particular models considered.

3.1.1 Variance speci�cations

Though several speci�cations for the variance could be considered, in this paper we consider two

particular choices. The �rst of these is the well-known GARCH speci�cation for which �h consists

of the parameters f!; �; �g and where the functional form in (2) is given by

ht = ! + �ht�1 + �ht�1"
2
t�1: (10)

2The appendix provides further details on the data collection and on issues occuring for particular stocks.
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Obviously, using more lags can be considered as simple extensions. Alternatively, we may wish

to consider speci�cations which can accommodate asymmetric responses to negative and positive

return innovations. Such models are generally said to allow for a leverage e¤ect, which refers to

the tendency for changes in stock prices to be negatively correlated with volatility.

The particular asymmetric extension to the GARCH model we consider is the non-linear asym-

metric GARCH model, or NGARCH, of Engle & Ng (1993). The NGARCH speci�cation of the

variance process is given by

ht = ! + �ht�1 + �ht�1 ("t�1 + 
)
2 ; (11)

and for this speci�cation we have �h = f!; �; �; 
g. In the NGARCH model the leverage e¤ect is

modelled through the parameter 
, and if 
 < 0 this e¤ect is said to be found. It is clear that this

model nests the ordinary GARCH speci�cation, which obtains when 
 = 0, and the model thus

allows us to compare the contribution of the leverage e¤ect directly by comparison to the GARCH

speci�cation.

3.1.2 Alternative distributions

In addition to the Gaussian distribution we use 6 alternative distributions. These fall within

3 families: the Generalized Error, or GED, distribution, the Normal Inverse Gaussian, or NIG,

distribution, and the Variance Gamma, or VG, distribution. We consider both symmetric and

skewed versions of these for which we now provide details. Note that the two latter distributions

are special cases of the Generalized Hyperbolic distributions and in principle other versions could

be considered also. However, in order to implement the generalized GARCH framework one needs

standardized, i.e. zero mean and unit variance, versions of the distributions. For the Generalized

Hyperbolic distributions in general this is di¢ cult to obtain as the �rst two moments depend on

the scale and location parameters in a non-linear way.
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Generalized Error distribution The GED distribution was �rst used with the GARCH frame-

work in Nelson (1991). The density of a GED distributed variable is given by

fGED (x; a) =
a

2L� (1=a)
exp

�
�jxj

a

La

�
; (12)

where � (�) is the gamma function and where L =
p
� (1=a) =� (3=a). The Gaussian distribution is

a special case of this when a = 2.

The GED distribution is symmetric by construction. However, using e.g. the method of Theo-

dossiou (2000) one may obtain skewed versions. The density of a standardized skewed GED dis-

tributed variable is given by

fsGED (x; a; b) =
a

2L� (1=a)
exp

�
� jx+ Sja

(1� sign (x+ S) b)a La

�
; (13)

where L = B�1
p
� (1=a) =� (3=a) and S = 2bAB�1, and where B =

p
1 + 3b2 � 4A2b2 and A =

� (2=a) =
p
� (1=a) � (3=a). In (13) b is the asymmetry parameter. In particular, when b = 0 the

symmetric GED distribution is obtained since B = 1 which means that S = 0. By construction the

GED distribution has mean zero and unit variance and hence no standardization is needed. We

refer to this distribution as the GED (a; b) distribution.

Normal Inverse Gaussian distribution Following Jensen & Lunde (2001) the NIG (a; b; �; �)

distribution can be de�ned in terms of the location and scale invariant parameters as

fNIG (x; a; b; �; �) =
a

��
exp

�p
a2 � b2 + b(x� �)

�

�
q

�
x� �
�

��1
K1

�
aq

�
x� �
�

��
; (14)

where q (z) =
p
1 + z2 and K1 (�) is the modi�ed Bessel function of third order and index 1. For

the distribution to be well de�ned we obviously need to ensure that 0 � jbj � a and 0 < �. We

can interpret a and b as shape parameters with a determining the degree of leptokurtosis and b
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the asymmetry. In particular, for b = 0 we have a symmetric distribution and with a tending to

in�nity the Gaussian distribution is obtained in the limit.

In (14), � is a location parameter and � is a scale parameter, and if we de�ne � = b=a the mean

and variance of a NIG (a; b; �; �) distributed variable are given as

E (X) = �+
��p
1� �2

and V ar (X) =
�2

a (1� �2)3=4
: (15)

Thus, a zero mean and unit variance NIG distributed variable can be obtained by restricting � and

� to have the following form:

� =
���p
1� �2

and � =
q
a (1� �2)3=4: (16)

In the following we will refer to this standardized distribution as the NIG(a; b) distribution. This

procedure was also used in Stentoft (2008).

Variance Gamma distribution The V G (a; b; �; �) distribution can be speci�ed as

fV G (x; a; b; �; �) =

�
a2 � b2

�� jx� �j��1=2K��1=2 (a jx� �j) exp (b (x� �))
p
�� (�) (2a)��1=2

; (17)

whereK��1=2 (�) is the modi�ed Bessel function of third order and index ��1=2. For the distribution

to be well de�ned we obviously need to ensure that 0 � jbj � a and 0 < �. We can again interpret

a and b as shape parameters with a determining the degree of leptokurtosis and b the asymmetry.

In particular, for b = 0 we have a symmetric distribution.

In (17), � is a location parameter and � is a scale parameter, and if we de�ne 
 =
p
a2 � b2 the

mean and variance of a V G (a; b; �; �) distributed variable are given as

E (X) = �+
2b�


2
and V ar (X) =

�
�
2 + 4b2=
2

�

2

: (18)
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Thus, a zero mean and unit variance VG distributed variable can be obtained by restricting � and

� to have the following form:

� = �2b�

2

and � =

2

(2 + 4b2=
2)
: (19)

In the following we will refer to this standardized distribution as the V G(a; b) distribution.

3.2 Implementation

One important property of the GLRNVR framework of Duan (1999) is that a close link is provided

between the observed asset return process and the process which has to be used for valuation of

the corresponding options. To be speci�c, note that by substituting (8) into the system in (1)� (3)

we obtain the following speci�cation for the return process to be used for estimation:

Rt = r � lnEQ
h
exp

�p
htF

�1
D [� (Zt � �)]

����Ft�1i+pht"t and (20)

ht = g (hs; "s;�1 < s � t� 1; �h) with (21)

"tj Ft�1 � D (0; 1; �D) ; (22)

where Zt is a standard Gaussian variable under the risk neutral measure Q, and where we have

assumed a constant interest rate as well as a constant value for �t = �. Comparing this system to

the one used for pricing in (4) � (6) it is immediately clear that it is in fact possible to estimate

all the necessary parameters from the historical returns. Thus, one of the major strengths of

the proposed generalized GARCH framework is that cumbersome calibration procedures involving

matching model option prices to observed prices to derive the model parameters may be avoided.

However, before we can actually implement the generalized GARCH option pricing model we

need to obtain procedures for evaluating the transformation of the random variables Zt through

F�1D [� (Zt � �)] as well as for evaluating the logarithm of the expectation of the scaled exponential

13



value of this, that is lnEQ
�
exp

�p
htF

�1
D [� (Zt � �)]

���Ft�1�. Note though that such procedures
would be needed even if we were to use a calibration based method. In this paper we follow the

procedure outlined in Stentoft (2008) for constructing these approximations. We note that though

Stentoft (2008) only considers the NIG distribution the method is applicable to all the distributions

considered here and it allows for estimation of all the models in a straightforward manner.

3.3 Estimation results

In the present setting with 30 stocks and 15 models, presenting detailed results for all models is

clearly too cumbersome. Instead we �rst summarize the results and then provide detailed estimation

results for the preferred model only. The detailed results for all other models are, however, available

from the author upon request. In all estimations we use variance targeting originally proposed

in Engle & Mezrich (1996), which ensures that the implied unconditional level of the variance

corresponds to the historical volatility actually observed. The procedure can be implemented in

our framework simply by setting ! = V ar (Rt)�
�
1� �

�
1 + 
2

�
� �

�
for the NGARCH model with


 = 0 in the GARCH model.

We start by reporting the Schwartz Information Criteria, or SIC, values in Table 2. This criteria

penalizes models with additional parameters compared to the raw likelihood values. It has been

shown that the SIC can be used to discriminate between alternative volatility models with good

results (see e.g. Bollerslev & Mikkelsen (1996)). Comparing the values across stocks it is seen that

the SIC is minimized by the NIG NGARCH speci�cation in all the cases. For PFE the symmetric

NIG NGARCH has the same value of the SIC. Moreover, the model ranked second is for 28 of the

30 stocks the symmetric NIG NGARCH. For the two exceptions, AA and MSFT, it is the skewed

NIG GARCH model which is ranked second. Thus, in terms of estimation the top ranked models

are in all cases models which uses the NIG distribution and in most of the cases models that use

the NGARCH speci�cation.
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3.3.1 Estimation results for the NIG NGARCH model

In Table 3 we report the estimation results for the preferred NIG NGARCH model. From the table

we see that all the ��s are signi�cantly di¤erent from zero, 29 of the ��s are signi�cantly di¤erent

from zero, and 28 of the 
�s are signi�cantly di¤erent from zero when using a 5% signi�cance level.

Moreover, the majority, 21 out of 30, of the estimated risk premiums, i.e. the ��s, are signi�cantly

di¤erent from zero. With respect to the distributional parameters the table shows that on average

a is estimated at a value of 2. This is quite small and indicates the importance of allowing for a

fat tailed distribution. The skewness parameter b, on the other hand, is only signi�cant for 3 of

the stocks and its average value is only 0.05. Also both positive and negative values are obtained

for this parameter. Finally, note that the test statistics for misspeci�cation show that overall the

NIG NGARCH model does a good job in explaining the features of the data. In particular, in the

majority of the cases no signi�cant correlation in the residuals or the squared residuals are observed

as indicated by the insigni�cant values of the Q (20) and Q2 (20) statistics. The same holds for the

ARCH5 test which is signi�cant at the 5% level only for 9 of the 30 stocks.

3.3.2 Risk premium, leverage e¤ects, and skewed distributions

In the framework above there are three potential ways to introduce asymmetries in the simulated

distributions: through the risk premium, �, through the leverage e¤ect, 
, and from skewness in

the distribution, b. Of these, only 
 is consistently estimated di¤erent from zero for nearly all the

30 stocks. The risk premium � is signi�cantly di¤erent from zero for roughly two thirds of the

stocks, whereas b is statistically signi�cant for only 3 of the stocks. Similar results are obtained

for the GED and VG distributions. Based on these results it thus appears that 
 will be most

important for generating asymmetries in the risk neutral distribution. However, of these three,

the risk premium � has a special status since this parameter drives a wedge between the physical

and risk neutral dynamics. In particular, as discussed in Section 2.1 without � the model used for

pricing is identical to that estimated on the historical returns. We return to this issue below.
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4 Option data and pricing results

Our option sample covers the 11 year period from 1996 through 2006 on a monthly basis and comes

from the IvyDB OptionMetrics �le.3 In total our sample contains 139,879 options on individual

stocks. To our knowledge this makes it the largest sample of individual stock options ever considered

for empirical study. In Table 4 we provide the number of options in our sample for di¤erent

categories of maturity and moneyness. The di¤erent categories of maturity, T , are labelled as

follows: short term (ST) has T � 21, middle term (MT) has 21 < T � 63. long term (LT) has

63 < T � 126, and very long term (VLT) has 126 � T . Moneyness, Mon, is calculated as the

ratio of the asset price to the strike price. The di¤erent categories of moneyness are labelled as

follows for call options: deep in the money, (DITM) has Mon > 1:1, in the money (ITM) has

1:1 � Mon > 1:025, at the money (ATM) has 1:025 � Mon > 0:975, out of the money (OTM)

has 0:975 � Mon > 0:9, and deep out of the money (DOTM) has 0:9 � Mon. For put options

the (D)ITM and (D)OTM categories are reversed. The table shows that the data considered

corresponds to a very diverse sample of options. In particular, the options are spread out across

the di¤erent categories in terms of maturity. For example, when considering the last row with the

aggregate data we see that of the approximately 140; 000 options a minimum of roughly 33; 000

and a maximum of 38; 000 options fall in each category. In terms of moneyness the options are also

spread out, though the number of DOTM options is somewhat larger than for the other categories.

However, there is still at least 20; 000 options in each of the categories.

In Tables 5 and 6 we report the average prices and implied standard deviations, or ISDs, for

the sample of options. The ISDs are backed out from the binomial model with daily early exercise

and corrects for maturity and moneyness e¤ects through the nonlinear transformation of the dollar

price.4 Again we see that the sample of options is very diverse with overall price averages ranging

from around $1 dollar for the DOTM category to $14 for the DITM category. The highest priced

3The appendix provides further details on the data collection and on issues occuring for particular stocks.
4Of the 139; 879 options this method yields reasonable values for 136; 144 options. The rest, amounting to 3; 735

options or 2:7% of the sample, are not considered in the reported results.
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options are for technological companies such as IBM, INTC, and MSFT. When considering the

ISDs in Table 6 large di¤erences are also found. For example, the average ISD of INTC is with

43% almost 20 percentage points larger than that of CVX for which the average ISD is 24%. The

table also shows that across categories the largest variation is found in terms of moneyness. In

particular, the table shows the well-known smile across moneyness categories. In Figure 3 we show

this graphically. The �gure plots the di¤erence between the ISD and the historical volatility for

each moneyness category. The top plot is for the �rst 10 assets, the middle plot for assets 11 to 20,

and the bottom plot is for the last 10 assets in alphabetical order of the ticker symbol.

The GARCH framework has been shown to be able to accommodate the above features. In the

following we provide details on how the options can be priced in this framework using simulation.

Next, we evaluate the option pricing performance of the models considered using well-known metrics

from the literature. Finally, we examine the best performing model�s ability to explain the smile

which is present for the individual options considered as documented in Figure 3.

4.1 Pricing procedure

The �rst thing to note is that within a framework as general as the one above it is di¢ cult, if not

impossible, to obtain closed form, or even semi-closed form, solutions for the option price. Thus,

it is necessary to consider alternative numerical procedures. Moreover, although it is potentially

possible to customize e.g. lattice methods to the particular dynamics of one such model, this

approach would be speci�c to the assumed underlying dynamics and hence not a method which is

generally applicable. In this paper we choose to use simulation based methods which are, on the

other hand, �exible enough to accommodate all of the possible speci�cations of the dynamics for

the variance process and the assumed distributions considered here. In the following we describe

in detail how the simulation is performed and we explain how to accommodate the early exercise

feature.
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4.1.1 Pricing using simulation

By substituting (8) into the system in (4)� (6) it is possible to obtain the dynamics to be used for

pricing. These are given by

Rt = r � lnEQ
h
exp

�p
htF

�1
D [� (Zt � �)]

����Ft�1i+pht"t and (23)

ht = g (hs; "s;�1 < s � t� 1; �h) with (24)

"t = F
�1
D [� (Zt � �)] ; (25)

where Zt, conditional on Ft�1, is a standard Gaussian variable under the risk neutral measure Q.

Thus, it is immediately clear that these depend only on parameters which can be estimated using

historical returns, and given these a large number of paths of the risk-neutralized asset prices can be

generated. Moreover, although the simulation involves transforming the Gaussian innovations, the

Z�s, at every step along all paths it is in fact feasible to simulate e¢ ciently from this system when

the approximations from Stentoft (2008) are used. In particular, because the approximations need

only be calculated once at the beginning of the simulation the computational complexity remains

approximately linear in the number of paths and in the number of steps in the simulation.

For the actual simulation we useM = 20; 000 paths. This choice is primarily made to minimized

the computational work and together with using only monthly option data means that option pricing

can be done in reasonable time. As input to the simulation we use parameter estimates obtained

using the available historical information on the day of pricing only. Thus, as we move forward

in time, the sample used for estimation increases. Moreover, as a result of this procedure the

estimated prices can be considered as out of sample forecasts of the observed option prices. As the

interest rate we use the EURODOLLAR rate on the last day of the sample used for estimation.

Thus, although the same constant interest rate is used both in the estimation and in the simulation

at any given day, in fact the interest rate does vary from one month to the next month.

In the simulations, we make the following three assumptions about the e¤ect of dividend pay-
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ments: First of all, we assume that only cash dividend payments are important for our purpose.

This assumption is reasonable since exchange traded options, in general, are protected against other

forms of dividends like, say stock splits. Secondly, we assume that both the ex-dividend day and

the size of the dividends are known in advance. Though this is not strictly correct, dividends are

paid regularly with fairly stable amounts throughout the period we consider. Thirdly, we assume

that the e¤ect of a cash dividend payment fully spills over on the asset price. We note that these

assumptions are standard in the literature.

4.1.2 Accommodating the early exercise feature

The simulation method described above is immediately applicable to European options and has

been used at least since Boyle (1977). However, in our sample all the options are American style.

Hence, to price these options we need to take into consideration the possible early exercise. Though

it was for a long time believed that this would be impossible within a simulation framework this

is no longer the case. Speci�cally, in this paper we use the Least Squares Monte Carlo, or LSM,

method of Longsta¤ & Schwartz (2001) to price the individual options in a GARCH framework as

outlined in Stentoft (2005) and Stentoft (2008). This method approximates the value of holding

the option at a given point in time along a speci�c simulated path by the predicted value from a

cross-sectional regression using all the in the money paths.

The LSM method for pricing American style options proceeds as follows: First of all, given the

full sample of random paths, the pricing step is initiated at the maturity date of the option. At

this time, it is possible to decide along each path if the option should be exercised since the future

value trivially equals zero. Hence, the pathwise payo¤s may be easily determined at maturity.

Next, working backwards through time a cross-sectional regression is performed at the �rst point

in time where early exercise is to be considered. In the regression the discounted future payo¤s are

regressed on transformations of the current asset prices and volatility levels.5 The �tted values from

5 In our application we use powers of and cross products between the asset price and the level of the volatility of
order two or less in addition to a constant term in the cross-sectional regressions.

19



this regression are then used as estimates of the pathwise conditional expected values of holding the

option for one more period. The decision of whether to exercise or not along each path can now be

made by comparing the estimated conditional expected value of continuing to hold the option to

the value of immediate exercise. Once the decision has been recorded for each path, we can move

back through time to the previous early exercise point and perform a new cross-sectional regression

with the appropriate pathwise payo¤s based on the previously determined choices. Finally, with

the optimal early exercise strategies along each path an estimate of the American option value can

be obtained as a simple average of the discounted pathwise payo¤.

4.2 Overall pricing results

We now compare the pricing performance of the 15 di¤erent option pricing models considered here

for each of the 30 stocks in the sample. The natural benchmark model is the constant volatility

model with Gaussian distribution since this corresponds to the Black-Scholes-Merton model. We

consider two classical metrics for option pricing comparison using both the dollar errors and the

errors in implied standard deviations. Speci�cally, letting Pk and ~Pk denote the kth observed price

respectively the kth estimated price we use the bias, BIAS = K�1PK
k=1

�
Pk � ~Pk

�
and the root

mean squared error, RMSE =

r
K�1PK

k=1

�
Pk � ~Pk

�2
. For the ISD errors similar formulas are

used.

4.2.1 Comparison using dollar errors

In Table 7 we report the dollar BIAS for each stock using the 15 di¤erent models. We also report

the aggregate dollar BIAS in the last row. Moreover, in the last two columns we indicate which

model is the best performing and the worst performing model. The �rst thing to note from the

table is that there are very large di¤erences in terms of option pricing performance across the 30

stocks. For example, for the CV model the average errors vary between 1:6 cents for MCD and 43:1

cents for BAC. Moreover, when considered across the stocks which model is the best and which is
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the worst performing also di¤ers a lot. For example, the CV model is the worst performing model

for 16 stocks but the best performing for 3. Also the skewed VG NGARCH model is the best

performing model for one stock, MMM, and the worst performing model for one stock, BA. Thus,

using the BIAS metric for the dollar errors leads to somewhat mixed results. The model which has

the smallest errors for most stocks is the NIG GARCH model which is the best performing model

for 8 of the 30 stocks.

In Table 8 we report the corresponding errors using the RMSE metric. The �rst thing to note

from this table is that the results are somewhat clearer at least in terms of the worst performing

model, which for all 30 stocks is the CV model. However, there is still a large degree of variation in

terms of the best performing model, though for 23 of the 30 stocks the best performing model has

a NGARCH speci�cation. Moreover, when considering the aggregate numbers in the table support

is found in general for models with non-Gaussian innovations. In particular, the performance of

models 4 through 15 is very similar with an average error of 0:602. Compared to this value the

Gaussian CV error is 52% larger and the Gaussian GARCH and NGARCH errors are 12% and

10% larger, respectively. The models which have the smallest errors for most stocks are the NIG

NGARCH models which are the best performing models for 7 and 6 of the 30 stocks, respectively.

4.2.2 Comparison using ISD errors

As Table 5 shows, the dollar prices vary a lot between the stocks and comparing the pricing errors

based on these may be problematic. An alternative is to use the ISD which attempts to correct for

maturity and moneyness e¤ects through a nonlinear transformation of the dollar price. In Table 9

we report the ISD BIAS for each stock using the 15 di¤erent models. For all model prices the ISDs

are backed out from the binomial model with daily early exercise. We also report the aggregate

ISD BIAS in the last row, and in the last two columns we indicate the best performing and the

worst performing model. Again the table shows that when using the BIAS metric results di¤er a

lot across the stocks. For example, using the ISDs the CV model is the worst performing model
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for 18 stocks and the best performing for 4 stocks. However, the table does show that for 15 of the

stocks the best performing model has a NGARCH speci�cation. The model which has the smallest

errors for most stocks is the NIG NGARCH models which is the best performing model for 7 of

the 30 stocks.

In Table 10 we report the corresponding errors using the RMSE metric. Again, the �rst thing

to note from this table is that the results are somewhat clearer. In particular, this is the case in

terms of the worst performing model, which for all 30 stocks is the CV model. The table also shows

that the best performing model is model 7, the symmetric NIG NGARCH model, for 11 stocks and

model 13, the skewed NIG NGARCH model, for 14 stocks. Thus, a NIG NGARCH model is the

best performing model for 25 of the 30 stocks. Note that the best performing model for the last 5

stocks also has a NGARCH speci�cation. For each of the seven di¤erent distributions the GARCH

errors are between 9:5% and 12:8% larger than those obtained with the NGARCH speci�cation.

Thus, using the ISD errors with the RMSE metric we �nd strong evidence in favor of using an

asymmetric speci�cation for the variance process and for using a model with the NIG innovations.

4.3 Fitting the smile in option ISDs

The overall pricing performance in terms of dollar errors or even in terms of ISDs is one possible

metric for comparison. However, when it comes to option pricing it is perhaps of more interest to

examine how the models �t across moneyness. In particular, option prices are often quoted in terms

of implied volatilities, and often such volatility quotes vary with moneyness. Thus, the ultimate

test of any option pricing model may well be to �t this pattern which is known as the volatility

smile, and which was documented graphically for our sample of options in Figure 3.

The previous analysis shows that overall the NGARCH model with NIG innovations is the best

performing model of the models considered here. Thus, we now analyze this model�s potential for

accommodating the smile found in our option data. In Figure 4 we plot the di¤erence between

the ISD from the observed price and the ISD of the estimated NIG NGARCH option price. In the
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�gure we have used the same scale as in Figure 3 to make the results directly comparable. The

�gure shows that the smile in ISDs is much less pronounced for this model. Though for some stocks

there remains some variation across moneyness the size is much smaller than for the CV model. For

example, for GM the ISD error for the DOTM category decreases from 19:53% for the CV model

to 10:96% for the NIG NGARCH model. In Figure 5 we plot the average ISDs across all stocks.

These results show that the NIG NGARCH model signi�cantly reduces the smile e¤ect often found

when applying option pricing models to this type of data.

When it comes to option pricing the � parameter plays a special role as it drives a wedge

between the physical dynamics and the risk free dynamics used for option pricing. In particular,

a positive value for � increases the long run volatility under the risk free measure. For the 30

stocks considered � is positive though only statistically so for roughly two thirds of the stocks when

using the NIG NGARCH model. Moreover, the point estimates are relatively small and hence the

overall e¤ect could be minimal. To examine this we also plot the average volatility smile for the

NIG NGARCH model with � = 0 in Figure 5. The �gure shows that, though the overall pattern

is similar, incorporating the risk premium does decrease the overall errors across moneyness. The

overall error is also somewhat smaller at 8:19% when the risk premium is included compared to a

value of 8:31% when � = 0.6

5 Model con�dence sets for option pricing models

Section 4 reported on the model performance using di¤erent types of pricing errors and di¤erent

metrics, and though this allowed us to point out which models perform best an actual test of model

performance is not possible. In particular, based on the point estimates of the reported errors, it is

impossible to decide if the best performing model is in fact signi�cantly better than the next best

performing model. Likewise, it is not immediately clear if the worst performing model or models

6 Incorporating a �xed value for � = 0:03, which is roughly the average across the 30 stocks, yields results that are
essentially identical to those obtained when � is estimated.
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are in fact signi�cantly worse than the best performing one.

In this section we apply the theory of Model Con�dence Sets which can be used to compare

the forecasting ability of multiple models, and which allows us to formally test if any model is

signi�cantly outperformed by others when it comes to its predictive ability. To our knowledge, this

is the �rst time the MCS approach has been used for comparing option pricing models. In the

following we explain the approach. Next, we provide the results for the option pricing models, and

�nally we analyze the robustness of the results.

5.1 The model con�dence set approach

The model con�dence set approach was developed in Hansen et al. (2011). The method is analogous

to the con�dence interval of a parameter and is constructed such that it will contain the best

forecasting model with a given level of con�dence. It does so taking the information available in

the data into consideration. Thus, for very informative data the MCS will contain only the best

model whereas for less informative data many models are contained in the MCS. This stands in

stark contrast to the procedure used above which selects one model as the best performing model

irrespective of the information content in the data. Another bene�t of the MCS procedure is that

it yields a p-value for each model which indicates how likely it is that the model belongs to the

MCS.

The MCS approach has primarily been used to compare variance forecasts from e.g. a large set

of GARCH models. However, since our model prices are forecasts the approach is equally applicable

here, and by comparing the price forecasts to the actual observed prices we may use the method to

examine the performance of the pricing models. Likewise, the forecasted ISDs can be compared. In

this paper we use the software provided by Hansen & Lunde (2010) to implement the MCS approach.

This software allows for di¤erent loss functions and for di¤erent test statistics. For the loss function

we choose the daily root mean squared error given by RMSE =

r
K�1
t

PKt
k=1

�
Pk � ~Pk

�2
, where

Kt is the total number of options at date t. Note that the daily bias would not be a proper loss
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function to use for the MCS approach. As the test statistic we use the MaxT statistic (see Hansen

& Lunde (2010) for details). Although alternative statistics are available, this particular statistic

generally resulted in the smallest MCSs.7 Finally, for all tests we set the con�dence level to � = 10%

and in the bootstrap we set the block length to 25 and the number of samples to 25; 000.

5.2 Model con�dence set results

We now apply the MCS approach to examine our option pricing models. We consider both of the

errors considered in Section 4: the dollar error in predicted price and the error in the predicted

ISD.

5.2.1 Comparison using dollar errors

In Table 11 we report the MCS for the predicted dollar price. The table �rst of all shows that

overall the MCS contains 271 models, that is approximately 9 models per stock. In fact, the MCS

contains all 15 models for 3 of the stocks and it contains 10 or more models for half the stocks. On

the other hand, for 5 of the stocks the MCS contains less than 5 models, and for 2 of these stocks

only 2 models are in the MCS. Next, when considering the individual models the table shows that

the CV model is only in the MCS for 3 of the 30 stocks. The Gaussian models, models 2 and 3,

also only rarely belong to the MCSs. The rest of the models on the other hand are in the MCS for

at least half of the stocks. The model which is most often in the MCS is model 7, the symmetric

NIG NGARCH model, which is in the MCS for 28 of the stocks. The NGARCH model with skewed

NIG innovations is the next best model and contained in the MCS for 27 of the stocks, and in fact

a model with NIG innovations is in the MCS for all 30 stocks. For the GED and VG distributions,

models with symmetric innovations are also most often found in the MCS. However, models with

these distributions are in the MCS for only 22 and 26 of the 30 stocks, respectively. Finally, the

table shows that in terms of the variance speci�cation models with the NGARCH speci�cation are

7Results for alternative test statistics are available from the author.
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found most often in the MCS irrespectively of the choice of underlying distribution. In fact, a

model with NGARCH speci�cation is in the MCS for 28 of the stocks, whereas for the GARCH

speci�cation this is the case for only 22 of the 30 stocks.

5.2.2 Comparison using ISD errors

In Table 12 we report the MCS for the predicted ISD. The table �rst of all shows that the MCS

contains about two thirds the number of models, 183 to be precise, when ISDs are used than when

dollar prices are used. In fact, the maximum number of models in the MCS is 14, which occurs

only for HD, and the MCS contains more than 10 models for only 5 of the 30 stocks. On the other

hand, the MCS contains only one model for the two stocks BA and GM, and for 11 of the stocks

less than 5 models are in the MCS. Thus, the results indicate that it may be more appropriate

to use the ISD errors than the dollar errors for model comparison. Next, when considering the

individual models the table shows that the CV model is never in the MCS. Moreover, the Gaussian

GARCH model is only found in the MCS for 1 of the stocks. The NGARCH model with skewed

NIG innovations, model 13, is on the other hand found in the MCS for 29 of the 30 stocks with

the exception being AXP. The model that is found next most often in the MCS is model 7, the

symmetric NIG NGARCH model, which is in the MCS for 28 stocks, and again a model with NIG

innovations is in the MCS for all 30 stocks. Models with GED and VG innovations are on the

other hand in the MCS for only 20 and 25 of the stocks, respectively. Finally, the table shows that

when considering the variance speci�cation models with NGARCH speci�cations are found much

more frequently in the MCS than those with GARCH speci�cations when using the ISD errors.

For example, for the symmetric GED distribution the model with a NGARCH speci�cation is in

the MCS for 21 stocks whereas this is the case for only 5 stocks for the model with a GARCH

speci�cation. In fact, a model with NGARCH speci�cation is in the MCS for all the stock whereas

for the GARCH speci�cation this is the case for only 11 of the 30 stocks.
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5.3 Robustness checks

To support the results reported above we now analyze the robustness of the results from the MCS

approach along three dimensions: option type, i.e. call and put, option maturity, and option

moneyness. The results are reported in Table 13.

5.3.1 Across option type

Panel A reports the results for the two di¤erent option types, i.e. the call (75,966 options) and the

put (60,178 options) options. The �rst thing to note from this panel is that the number of models

belonging to the MCS is roughly 55% larger for put options than for call options. In particular,

when considering put options the various NGARCH speci�cations occur more frequently in the

MCS. For example, whereas model 5 is in the MCS for call options for only 13 stocks it is in the

MCS for put options for 25 stocks. Similar results are observed for models 3, 9, 11, and 15, though

the NIG NGARCH speci�cations continue to be the best performing models. Thus, the results

show that for the put options the choice of conditional distribution appears to be of second order

importance as long as the NGARCH volatility speci�cation is used. For the call options on the

other hand NGARCH speci�cations with NIG innovations are by far the best performing models.

For example, the symmetric NIG NGARCH model belongs to the MCS almost twice as often as

the corresponding GED model and the di¤erences are even more pronounced when considering the

skewed models. Thus, in spite of some di¤erences the panel shows that the results are robust across

option type as the NIG NGARCH models perform the best for both option types.

5.3.2 Across maturity

Panel B reports the results across maturity (option numbers can be found in Table 4). The �rst

thing to note is that the number of models in the MCS increases with maturity. For example, there

are roughly 54% more models in the MCS for the VLT options than for the ST options. The main

reason for the increase in the number of models is that more models with GARCH speci�cations
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are found in the latter category. For example, model 6 which uses the GARCH speci�cation occurs

in the MCS 7 times for ST and MT options, 11 times for LT options, and 17 times for the VLT

options. Similar results are found for the other GARCH models. Note also that large increases

are found for models with VG innovations in general. For models 7 and 13 on the other hand, the

number of times only increases from 25 for the ST options to 29 and 28, respectively, for the VLT

options. Thus, the table shows that as the maturity increases option ISDs contains less information

and therefore the number of models in the MCSs increases. Intuitively this makes sense since in

the long run all the models have similar properties in terms of e.g. the level of volatility. However,

the panel does show that the results reported above are robust across maturity as a NIG NGARCH

model is the best performing for all maturities.

5.3.3 Across moneyness

Panel C reports the results across moneyness (option numbers can be found in Table 4). The �rst

thing to note is that across this dimension the number of models occurring in the MCS varies a

lot. For example, there are almost twice the number of models in the MCS for ITM and ATM

options than for DOTM options. Though for the DITM, ITM, ATM and OTM options the number

of models is relatively stable. The main reason that there are more models in the MCS for ITM

and ATM options is that for these options more models with GARCH speci�cations belong to the

MCS. For the DOTM options on the other hand the table clearly shows that the reason that a low

number of models are found in the MCS is that all but the NIG NGARCH models are found much

less frequently in the MCS when compared to e.g. the OTM options. For example, whereas model

7 belongs to the MCS for 28 and 29 stocks for the OTM and DOTM options, respectively, for model

5 the number of times decrease from 21 to 14. Likewise, the number of times model 6 is found in

the MCS decreases from 18 to only 8. The decrease for models with VG innovations are even more

dramatic. Nevertheless, in spite of the di¤erences the panel shows that the overall results are quite

robust across moneyness and NIG NGARCH models are consistently the best performing model.
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6 Conclusion

This paper o¤ers what we believe to be the largest analysis ever conducted of individual stock

options. Using 30 stocks from the Dow Jones Industrial Average, or DJIA, we price 139,879 option

contracts over a 11 year period from 1996 to 2006. We compare the results for two classical GARCH

models, the symmetric GARCH model and the asymmetric NGARCH model, and we consider 7

di¤erent distributions, 3 of which are leptokurtic and 3 of which are skewed and leptokurtic. The

contribution of the paper is twofold.

We �rst of all compare the overall pricing performance using dollar and implied standard de-

viation, or ISD, errors. The results provide clear evidence in favor of the asymmetric NGARCH

speci�cation and of the Normal Inverse Gaussian, or NIG, distribution. For example, when con-

sidering the RMSE of the ISDs this is the best performing model for 25 of the 30 stocks. The NIG

NGARCH model is also the best performing model for the aggregate sample of options. When

plotting the di¤erence in ISD between the observed prices and the estimated prices from this model

the results show that the NIG NGARCH model signi�cantly reduces the smile e¤ect found when

applying option pricing models to this type of data.

Next, we propose to conduct actual statistical tests of the option pricing models using the model

con�dence set, or MCS, approach. The MCS approach is analogous to the con�dence interval of

a parameter and is constructed such that it will contain the best forecasting model with a given

level of con�dence. The results show that the model most often contained in the MCS is once

again the NIG NGARCH model. For example, when considering the ISD errors this model is in the

MCS for 29 of the 30 stocks. Moreover, the results provide strong support for the use of NGARCH

speci�cations over the GARCH speci�cation and for the use of NIG innovations. In particular, a

NGARCH model is in the MCS for all the stocks and so is a model with NIG innovations. We

conduct several robustness checks con�rming that this holds for both call and put options as well

as across option maturity and option moneyness.
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The present paper clearly demonstrates that pricing American style options within the gener-

alized GARCH framework is possible and that asymmetries in the volatility speci�cations along

which non-Gaussian innovations are important. Interesting extensions are to consider even more

underlying assets, other types of distributions, and more extensive speci�cations of the GARCH

models. The MCS approach used here can easily be used to test the performance with these

extensions.
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A Data, data issues, and corrections

In this paper we work with the 30 constituent stocks of Dow Jones Industrial Average, or DJIA,

as of February 19, 2008, which at the time of writing was the last time changes were made to the

index. In this appendix we describe this data in more detail. Moreover, as is often the case when

working with empirical data errors occur and we explain how these issues were dealt with.

A.1 DJIA and constituents

Table 1 shows the constituents of the DJIA as of February 19, 2008. The table also reports the

ticker, the security ID used by Option Metrics, the Permno assigned by CRSP, and CUSIP for

these stocks. While tickers change the permno allows us to uniquely identify a company and the

security ID allows us to uniquely identify options on this company. We therefore use these numbers

to track the company through time. Lastly the table shows the sample for which data is available

and the total number of observations in this sample.

While most of the companies in the DJIA exist in the sample with no major changes this

happens to a few of the constituents. Speci�cally, this is the case for Bank of America Corporation,

J.P. Morgan Chase & Company, and AT&T Incorporated. We now describe the signi�cant changes

which occurred for these cases in detail:

� Bank of America Corporation, BAC, as it exists today is the successor of the North Carolina

National Bank since the merger in September 1998. Thus, the sample used for this ticker

contains returns on North Carolina National Bank with permno 59408 as well as options on

this company prior to the merger.

� J. P. Morgan Chase & Company, JPM, as it exists today was formed at the end of 2000

when Chase Manhattan Corporation acquired J.P. Morgan & Co. Thus, the sample used for

this ticker contains returns on Chase Manhattan Corporation with permno 47896 as well as

options on this company prior to the acquisition.
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� AT&T Incorporated, T, as it exists today was formed in November of 2005, when SBC

Communications Inc. purchased former AT&T Corporation. Thus, the sample used for this

ticker contains returns on SBC Communications with permno 66093 as well as options on this

company prior to the purchase.

A.2 Return data

The source of the return and distribution data is the CRSP �le which provides data from the time

of listing and onwards for each company as indicated in Table 1. At certain occasions data was

double checked with alternative data sources to verify very large movements in the asset prices. In

all cases though the original prices provided by CRSP were deemed to be correct.

A.2.1 Data used for estimation and for option pricing

Besides the actual date the following data series were used from the CRSP �le:

� DISTCD: Distribution Code. This code was used to decide if dividends should be considered

in the option pricing part as cash dividends.

� DIVAMT: Dividend Cash Amount. While the dividends are included by CRSP in the RET

series the DIVAMT was used in the option pricing part as the actual future dividends paid.

� FACPR: Factor to adjust price. This factor was also used in the option pricing part as options

are protected from stock splits etc.

� RET: Holding Period Return (per day). The log of this was used as the return series.

When using the CRSP �le special care has to be taken when it comes to dividend payments as

these may lead to multiple observations on a given day. For this reason all the �les were checked

for dividend payments and multiple observations were consolidated such that only one observation

was available per day. Moreover, in doing so it was veri�ed that only cash dividends occurred as

dividend payments.
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A.3 Option data

The source of the option data is the OptionMetrics data base provided by IvyDB which contains

data from 1996 and onwards. The data base contains an end of day observation for each traded

option contract. We screen the initial sample the following ways:

1. We eliminate options with more than a year to expiration which we in trading days take to

be 252.

2. We eliminate options with less than 5 trading day to expiration.

3. We eliminate options for which the traded volume during the day was less than 5 contracts.

4. We eliminate options with non standard settlement as indicated by OptionMetrics when the

variable �FLAG�equals 1.

A.3.1 Dates used for option pricing

With a sample spanning 11 years and 30 stocks it is infeasible to price all existing options. For this

reason we chose to work only with one day per month for a total of 132 days. This also minimizes

the number of estimations which are needed. The actual dates chosen are Wednesdays for which a

one month option, which we take to be 18 trading days, is available. If Wednesday is a no trade day

the Tuesday immediately before was used. This happens in December of 1996 and in December of

2002.

A.3.2 Option data errors

While the data available from OptionMetrics is generally of very high quality, a few errors were

encountered. The errors relate to two options on AT&T, T, which on June 25, 2003, mistakenly

were recorded with at strike price of 2530 instead of 30. This error was manually corrected in the

original option data �le.
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B Figures and Tables
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Figure 1: Timeseries of Rt, the log returns, for the �rst 15 stocks in alphabetical order.
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Figure 2: Time series of Rt, the log returns, for the last 15 stocks in alphabetical order.
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Figure 3: This �gure plots the di¤erence between the ISDs implied from the actual prices and the
historical volatility for each moneyness category. The top plot is for the �rst 10 assets, middle plot
for asset 11 to 20, and the bottom plot is for the last 10 assets in alphabetical order.
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Figure 4: This �gure plots the di¤erence between the ISDs implied from the actual prices and from
the price estimates from the skewed NIG NGARCH model for each moneyness category. The top
plot is for the �rst 10 assets, middle plot for asset 11 to 20, and the bottom plot is for the last 10
assets in alphabetical order.
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Figure 5: This �gure plots the overall, across the 30 stocks, di¤erence between the ISDs implied
from the actual prices and from the price estimates from the CV model, the NIG NGARCH model,
and the NIG NGARCH model with � = 0 for each moneyness category.
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Table 4: Number of options across maturity and moneyness

Stock All ST MT LT VLT DITM ITM ATM OTM DOTM
AA 2693 754 696 674 569 415 409 430 657 782
AIG 3412 869 770 920 853 476 529 555 835 1017
AXP 3763 1125 946 934 758 502 627 658 980 996
BA 4711 1084 1065 1329 1233 842 739 667 1038 1425
BAC 4448 1010 1034 1248 1156 650 694 820 1040 1244
C 5694 1308 1346 1621 1419 1165 854 840 1140 1695

CAT 3628 937 865 1004 822 574 623 565 871 995
CVX 3374 845 777 938 814 461 587 604 1002 720
DD 3170 820 819 799 732 389 554 582 881 764
DIS 3710 935 911 1005 859 652 610 559 811 1078
GE 6701 1479 1501 1912 1809 1515 1071 816 1365 1934
GM 5391 1240 1301 1528 1322 1097 738 647 1009 1900
HD 4919 1118 1135 1360 1306 930 732 737 1014 1506
HPQ 5016 1272 1183 1411 1150 1062 665 606 906 1777
IBM 8949 2178 2229 2381 2161 1866 1336 1040 1648 3059
INTC 8884 2045 2081 2312 2446 2548 1018 752 1175 3391
JNJ 4092 952 978 1068 1094 694 705 694 996 1003
JPM 4957 1186 1112 1450 1209 922 783 676 1087 1489
KO 4212 942 949 1210 1111 614 756 741 1062 1039

MCD 3248 776 789 909 774 509 551 527 857 804
MMM 3603 1059 968 874 702 497 623 688 1008 787
MRK 5133 1199 1248 1370 1316 929 850 769 1165 1420
MSFT 8900 2074 2074 2314 2438 2473 1147 851 1355 3074
PFE 6113 1310 1351 1760 1692 1291 932 814 1215 1861
PG 3893 987 937 1052 917 556 675 747 1031 884
T 2481 613 564 641 663 383 460 343 568 727

UTX 2479 742 624 610 503 300 425 520 680 554
VZ 3047 732 731 803 781 460 493 538 730 826

WMT 4930 1123 1144 1404 1259 853 835 709 1096 1437
XOM 4328 1045 1041 1139 1103 642 789 775 1115 1007

All 139879 33759 33169 37980 34971 26267 21810 20270 30337 41195

Notes: This table reports the number of options in the di¤erent maturity and moneyness categories. The
di¤erent categories of maturity, T , are labelled as follows: short term (ST) has T � 21, middle term (MT)
has 21 < T � 63. long term (LT) has 63 < T � 126, and very long term (VLT) has 126 � T . Moneyness,
Mon, is calculated as the ratio of the asset price to the strike price. The di¤erent categories of moneyness
are labelled as follows for call options: deep in the money, (DITM) has Mon > 1:1, in the money (ITM)
has 1:1 � Mon > 1:025, at the money (ATM) has 1:025 � Mon > 0:975, out of the money (OTM) has
0:975 � Mon > 0:9, and deep out of the money (DOTM) has 0:9 � Mon. For put options the (D)ITM and
(D)OTM categories are reversed.
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Table 5: Average price of options across maturity and moneyness

Stock All ST MT LT VLT DITM ITM ATM OTM DOTM
AA 2.519 2.167 2.388 2.584 3.068 7.164 3.392 2.127 1.454 0.707
AIG 4.519 3.831 4.058 4.848 5.280 14.900 6.416 3.728 2.197 1.011
AXP 4.307 3.428 3.810 4.788 5.637 12.565 6.161 3.828 2.339 1.229
BA 4.110 3.260 3.409 4.267 5.294 12.009 5.209 3.252 1.905 0.880
BAC 3.819 3.196 3.302 3.851 4.792 12.066 5.228 3.020 1.738 0.991
C 3.989 3.306 3.636 4.094 4.833 11.286 4.446 2.807 1.642 0.907

CAT 4.470 3.589 3.799 4.549 6.084 14.242 5.635 3.451 1.904 0.928
CVX 4.116 3.578 3.500 4.280 5.072 13.583 5.659 3.295 1.702 0.845
DD 3.017 2.374 2.621 3.099 4.090 10.020 4.331 2.389 1.445 0.789
DIS 2.737 2.135 2.366 2.861 3.642 7.453 3.526 2.301 1.394 0.675
GE 4.940 4.381 4.342 4.870 5.966 12.915 5.400 3.750 2.200 0.873
GM 3.949 3.356 3.471 3.864 5.075 10.921 4.825 3.101 2.021 0.897
HD 3.651 3.246 3.229 3.665 4.349 10.522 4.321 2.800 1.669 0.833
HPQ 4.880 4.275 4.005 5.067 6.220 12.117 5.978 3.847 3.102 1.403
IBM 9.274 7.454 8.038 9.916 11.677 27.336 10.236 6.596 3.908 1.637
INTC 7.374 5.887 5.899 7.522 9.733 17.421 7.493 5.756 3.736 1.409
JNJ 4.647 3.707 4.142 4.600 5.961 14.344 5.800 3.211 1.842 0.904
JPM 3.940 3.437 3.146 4.020 5.067 10.539 4.996 3.427 2.017 0.935
KO 3.499 2.860 3.079 3.492 4.407 11.423 4.537 2.563 1.491 0.780

MCD 2.481 2.000 2.049 2.580 3.287 7.462 3.259 1.852 1.194 0.578
MMM 5.643 4.727 5.040 5.918 7.512 19.091 7.656 4.184 2.194 1.247
MRK 5.015 3.843 4.310 5.378 6.372 14.756 5.944 3.832 2.293 0.959
MSFT 8.032 6.688 6.416 8.537 10.072 19.853 7.562 5.625 3.457 1.382
PFE 4.481 3.509 3.507 4.562 5.925 11.856 5.138 3.665 2.089 0.954
PG 4.863 4.460 3.979 5.074 5.956 16.108 6.301 3.769 1.980 0.977
T 2.459 2.369 2.021 2.422 2.950 7.614 3.052 1.874 1.140 0.674

UTX 4.440 3.930 4.070 4.400 5.700 15.215 6.333 3.522 1.939 1.085
VZ 2.930 2.406 2.143 3.244 3.836 9.288 3.871 2.179 1.340 0.722

WMT 3.685 2.981 3.103 3.787 4.726 10.710 4.641 2.802 1.637 0.955
XOM 3.704 3.332 3.361 3.589 4.499 12.095 4.981 2.684 1.431 0.657

All 4.848 4.014 4.121 4.984 6.194 14.313 5.670 3.518 2.109 1.047

Notes: This table reports the average price of options in the di¤erent maturity and moneyness categories.
See the notes to Table 4 for the de�nition of the categories.
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Table 6: Average ISD of options across maturity and moneyness

Stock All ST MT LT VLT DITM ITM ATM OTM DOTM
AA 33.04 35.15 33.11 32.21 31.23 36.48 30.61 30.76 31.55 35.13
AIG 28.34 30.88 29.00 27.57 26.10 33.99 25.76 24.53 25.80 31.54
AXP 32.70 34.50 32.26 32.80 30.51 36.35 30.15 29.45 30.32 37.11
BA 31.21 33.27 31.47 30.97 29.51 34.93 28.44 29.11 28.44 33.65
BAC 28.85 31.74 29.78 28.44 26.03 35.04 25.53 24.20 25.57 33.74
C 33.01 36.97 33.42 31.68 30.63 40.90 27.93 27.81 27.91 36.79

CAT 29.85 31.00 29.84 29.54 28.97 33.03 27.98 28.25 28.30 31.67
CVX 23.83 25.15 23.85 23.77 22.58 28.57 22.42 22.29 22.42 25.76
DD 27.25 28.31 27.27 26.77 26.60 32.42 25.60 24.04 25.34 30.70
DIS 32.90 35.36 32.58 32.02 31.68 37.67 30.09 28.76 29.65 36.42
GE 31.34 35.59 31.37 30.38 29.09 38.56 26.76 26.44 26.46 34.55
GM 40.88 40.74 41.82 40.64 40.34 46.14 34.01 31.09 33.24 48.13
HD 33.24 36.22 33.90 32.68 30.85 38.66 29.81 29.28 29.21 36.55
HPQ 41.17 44.72 41.92 40.38 37.59 45.13 37.32 36.10 37.86 43.86
IBM 33.70 37.11 33.96 32.98 30.96 38.93 29.58 29.04 29.41 36.66
INTC 43.19 48.26 42.30 42.47 40.60 46.81 38.45 37.27 38.32 45.19
JNJ 25.68 27.62 25.57 25.50 24.36 30.34 23.80 22.08 23.56 28.94
JPM 33.71 36.74 33.58 33.48 31.28 38.73 29.60 28.33 29.42 38.64
KO 26.04 28.01 26.47 25.62 24.55 31.12 24.08 22.08 23.84 30.04

MCD 28.84 30.50 28.98 28.58 27.41 33.76 27.03 25.33 27.06 31.54
MMM 25.58 27.05 25.20 25.08 24.60 30.74 23.15 23.35 23.78 29.24
MRK 28.83 30.66 28.95 28.40 27.57 32.61 26.63 25.84 26.67 31.42
MSFT 38.16 43.91 38.05 36.78 34.93 43.55 31.91 32.05 32.10 41.05
PFE 31.60 34.30 32.12 31.15 29.64 35.37 28.96 28.97 28.92 33.50
PG 25.81 28.57 25.15 25.35 24.18 34.28 22.94 22.76 23.10 29.30
T 31.68 36.46 30.42 30.58 29.66 40.07 26.91 26.60 26.83 37.01

UTX 28.03 29.68 28.33 27.34 26.16 34.70 25.39 25.18 25.84 32.46
VZ 28.92 31.56 28.09 29.19 27.03 35.08 25.90 24.06 25.63 33.95

WMT 30.12 32.58 30.70 29.49 28.18 34.38 26.81 27.00 27.11 33.56
XOM 24.02 25.86 24.02 23.52 22.92 28.99 22.51 21.87 22.51 26.02

All 32.12 34.82 32.18 31.53 30.20 38.35 28.22 27.18 27.96 36.19

Notes: This table reports the average ISD, implied standard deviation, in percentage terms of options
in the di¤erent maturity and moneyness categories. See the notes to Table 4 for the de�nition of the
categories.
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Table 11: MCS using dollar errors

Stock 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 #
AA * * * 3
AIG * * * * * * * * * * * * * 13
AXP * * * * 4
BA * * * * * * * 7
BAC * * * * * * * * * * * * 12
C * * * * * * * * * * * * 12

CAT * * * * * * 6
CVX * * * * * * 6
DD * * * * * * * * * * * * 12
DIS * * * * * * * 7
GE * * * * * * * * * * * * * * 14
GM * * * * 4
HD * * * * * 5
HPQ * * * * * * 6
IBM * * * * * * * * * * * * * 13
INTC * * * * * * * * * * * * * * * 15
JNJ * * * * * * * * * * * * * * * 15
JPM * * * * * * 6
KO * * * * * * * * * * * * * 13

MCD * * * * * * * * * * * * 12
MMM * * * * * * * * * * * * 12
MRK * * * * * * * * * * * * * * 14
MSFT * * * * * * 6
PFE * * * * * * * * 8
PG * * * * * * * * * * * * * * * 15
T * * * * * * * * * * 10

UTX * * 2
VZ * * * 3

WMT * * * * * * * * * * * * * * 14
XOM * * 2

# 3 8 10 15 20 22 28 19 24 16 19 20 27 18 22 271

Notes: This table reports the MCS using dollar errors. The MCS was constructed using daily
RMSE as the loss function, the MaxT test statistic, and using a signi�cance level of 10%. The
15 models are respectively: (1) CV, (2) GARCH, and (3) NGARCH with normal errors, (4)
GARCH and (5) NGARCH with symmetric GED errors, (6) GARCH and (7) NGARCH with
symmetric NIG errors, (8) GARCH and (9) NGARCH with symmetric VG errors, (10) GARCH
and (11) NGARCH with skewed GED errors, (12) GARCH and (13) NGARCH with skewed
NIG errors, (14) GARCH and (15) NGARCH with skewed VG errors. The last row reports the
number of times a model is in a MCS and the last column reports the number of models in the
MCS for each stock.
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Table 12: MCS using ISD errors

Stock 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 #
AA * * * * * 5
AIG * * * * * * 6
AXP * * 2
BA * 1
BAC * * * * * * 6
C * * * * * * 6

CAT * * * * 4
CVX * * * * * * * 7
DD * * * * * * * * * * * * 12
DIS * * * * 4
GE * * * * * * * 7
GM * 1
HD * * * * * * * * * * * * * * 14
HPQ * * 2
IBM * * 2
INTC * * * * * * * * * * * * 12
JNJ * * * * * * * 7
JPM * * * * * * * 7
KO * * * * * * * * * * * * 12

MCD * * * * * * * 7
MMM * * * * * 5
MRK * * * * * * * * * 9
MSFT * * * 3
PFE * * * * * * 6
PG * * * * * * * * 8
T * * * * * * * * * * * 11

UTX * * * * 4
VZ * * * * 4

WMT * * * 3
XOM * * * * * * 6

# 0 1 7 6 18 9 28 5 21 6 17 9 29 6 21 183

Notes: This table reports the MCS using ISD errors. The MCS was constructed using daily
RMSE as the loss function, the MaxT test statistic, and using a signi�cance level of 10%.
The 15 models are respectively: (1) CV, (2) GARCH, and (3) NGARCH with normal errors,
(4) GARCH and (5) NGARCH with symmetric GED errors, (6) GARCH and (7) NGARCH
with symmetric NIG errors, (8) GARCH and (9) NGARCH with symmetric VG errors, (10)
GARCH and (11) NGARCH with skewed GED errors, (12) GARCH and (13) NGARCH
with skewed NIG errors, (14) GARCH and (15) NGARCH with skewed VG errors. The
last row reports the number of times a model is in a MCS and the last column reports the
number of models in the MCS for each stock.
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Table 13: Overall statistics for the MCS�s using ISD errors across various dimensions

Panel A: Across option type
Subset 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 # Best Worst

All 0 1 7 6 18 9 28 5 21 6 17 9 29 6 21 183 13 1
Call 0 2 4 3 13 8 26 5 18 4 13 8 29 5 16 154 13 1
Put 0 5 15 11 25 13 30 10 26 7 24 12 26 10 24 238 7 1

Panel B: Across maturity
Subset 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 # Best Worst

ST 1 2 10 6 18 7 25 4 18 5 17 9 25 7 20 174 7,13 1
MT 0 2 16 4 22 7 28 5 25 5 19 7 24 5 21 190 7 1
LT 1 3 13 8 19 11 28 10 26 6 19 11 24 9 21 209 7 1

VLT 2 7 16 12 22 17 29 15 28 11 22 17 28 14 27 267 7 1

Panel C: Across moneyness
Subset 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 # Best Worst
DITM 0 8 18 10 21 10 25 7 23 10 23 12 30 10 24 231 13 1
ITM 1 8 13 15 24 21 28 17 26 16 22 21 28 19 23 282 7,13 1
ATM 1 10 13 18 19 23 24 19 23 18 18 23 24 21 21 275 7,13 1
OTM 1 6 11 11 21 18 28 16 26 10 15 16 24 14 21 238 7 1

DOTM 1 3 5 4 14 8 29 5 17 4 11 7 23 5 11 147 7 1

Notes: This table reports overall statistics for the MCS using ISD errors across option type (call or put),
maturity, and moneyness. The individual MCS�s were constructed using daily RMSE as the loss function, the
MaxT test statistic, and using a signi�cance level of 10%. The 15 models are respectively: (1) CV, (2) GARCH,
and (3) NGARCH with normal innovations, (4) GARCH and (5) NGARCH with symmetric GED innovations, (6)
GARCH and (7) NGARCH with symmetric NIG innovations, (8) GARCH and (9) NGARCH with symmetric VG
innovations, (10) GARCH and (11) NGARCH with skewed GED innovations, (12) GARCH and (13) NGARCH
with skewed NIG innovations, (14) GARCH and (15) NGARCH with skewed VG innovations. The last three
columns report the total number of models in the MCS and the modess which are most frequently and least
frequently in the MCS.
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