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Abstract

The GARCH framework has been used for option pricing with quite some success. While
the initial work assumed conditional Gaussian innovations, recent contributions relax this as-
sumption and allow for more flexible parametric specifications of the underlying distribution.
However, until now the empirical applications have been limited to index options or options on
only a few stocks and this using only few potential distributions and variance specifications.
In this paper we test the GARCH framework on 30 stocks in the Dow Jones Industrial Av-
erage using two classical volatility specifications and 7 different underlying distributions. Our
results provide clear support for using an asymmetric volatility specification together with non-
Gaussian distribution, particularly of the Normal Inverse Gaussian type, and statistical tests
show that this model is most frequently among the set of best performing models.

JEL Classification: C22, C53, G13

Keywords: American options, GARCH models, Model Confidence Set, Simulation.

*The author thanks Asger Lunde and participants at the 5th CSDA International Conference on Computational
and Financial Econometrics for valuable comments. Financial support from CREATES (Center for Research in
Econometric Analysis og Time Series, funded by the Danish National Research Foundation) is gratefully appreciated.

TAddress correspondance to Lars Stentoft, HEC Montreal, 3000 chemin de la Cote-Sainte-Catherine, Montreal
(Quebec) Canada H3T 2A7, or e-mail: lars.stentoft@hec.ca. Phone: (+1) 514 340 6671. Fax: (4+1) 514 340 5632.



1 Introduction

Pricing options, especially those with early exercise features, in a realistic setting remains one of the
most important challenges in finance. In particular, models which can accommodate time varying
volatility and allow for non-Gaussian innovations are required and this complicates not only the
actual pricing of the options but also the estimation of the necessary parameters. A framework that
can accommodate these features while remaining simple to implement is that of the generalized
autoregressive conditional heteroskedasticity, or GARCH, models of Engle (1982) and Bollerslev
(1986). GARCH models offer a very flexible framework which constitutes an obvious extension
to the constant volatility framework of Black & Scholes (1973) and Merton (1973). In terms of
option pricing the added flexibility comes at a cost since with time varying volatility the market
is no longer complete. However, in Duan (1995) a GARCH option pricing model is derived under
the assumption of conditionally Gaussian innovations and under some familiar assumptions on
investor preferences. The theoretical foundation for option pricing in a more general framework is
provided in Duan (1999) which extends the Gaussian GARCH option pricing model to situations
with conditional leptokurtic distributions. See also Christoffersen, Elkamhi, Feunou & Jacobs
(2010) and Gourieroux & Monfort (2007) for alternative approaches to derive the appropriate
option pricing model.

When the Gaussian GARCH models are compared to e.g. the constant volatility model smaller
pricing errors are obtained empirically. In particular, this is found for European style options on the
Standard & Poor’s 500 Index in e.g. Bollerslev & Mikkelsen (1996), Bollerslev & Mikkelsen (1999),
Heston & Nandi (2000), Christoffersen & Jacobs (2004), and Hsieh & Ritchken (2005). Another
recent contribution is Christoffersen, Jacobs, Ornthanalai & Wang (2008) where the volatility
is allowed to have both short run and long run components. Empirical applications of the non-
Gaussian framework can be found in e.g. Christoffersen, Heston & Jacobs (2006) and Christoffersen,

Dorion, Jacobs & Wang (2010). Although Christoffersen, Dorion, Jacobs & Wang (2010) find little



improvement for the non-Gaussian models, Christoffersen et al. (2006) observe that allowing for non-
Gaussian innovations is important when pricing out of the money put options on the Standard &
Poor’s 500 Index. In Rombouts & Stentoft (2010) mixture models, which are very flexible, are used
for option pricing with very good results. In particular, the paper finds substantial improvements
compared to several benchmark models for the Standard & Poor’s 500 Index options. Finally, in
addition to models with non-Gaussian innovations, GARCH models with jumps have been applied
empirically by Christoffersen, Jacobs & Ornthanalai (2008) which shows that jumps are important
empirically when pricing Standard & Poor’s 500 Index options.!

However, while the GARCH framework has been used with success to price European style
options like those on the Standard & Poor’s 500 Index, most traded options are American style
options. Hence, for a large scale test of the GARCH framework methods that can accommodate the
potential early exercise are needed which further complicates the analysis as it entails determining
the optimal early exercise strategy. The first methods which were proposed were the extended
binomial model of Ritchken & Trevor (1999) and the Markov Chain approximation method of Duan
& Simonato (2001), both of which can be used with the Gaussian GARCH model. However, though
these models can accommodate the early exercise feature, the approaches are not very flexible. For
example, it is not immediately clear how these approaches should be implemented for the generalized
GARCH framework in which innovations are non-Gaussian. To provide a more flexible method,
Stentoft (2005) suggests to use simulation methods together with the Least Squares Monte Carlo
method Longstaff & Schwartz (2001) to price options in the Gaussian GARCH framework. The
simulation method is used with non-Gaussian innovations in Stentoft (2008) and applied to price
options on three individual stocks together with options on the Standard and Poor’s 100 index using
the generalized GARCH framework. The findings in the paper are encouraging although only four

underlying assets are considered together with a limited number of underlying distributions.

'In addition to the mentioned applications to the Standard & Poor’s 500 Index, GARCH models are found to
perform well for European style options on the German DAX index in Hérdle & Hafner (2000), on the Hang Seng
Index in Duan & Zhang (2001), and on the FTSE 100 Index in Lehar, Scheicher & Schittenkopf (2002).



In the current paper we correct the main shortcoming of the existing literature on pricing of
individual stock options; the fact that until now very few assets have been analyzed in a setting
with time varying volatility and with underlying distributions which are leptokurtic and skewed.
In fact, the paper offers what we believe to be the largest analysis ever conducted of individual
stock options. To be specific, using 30 stocks from the Dow Jones Industrial Average, or DJIA,
as our sample, we price a total of 139,879 option contracts over the 11 year period from 1996 to
2006. We compare the results for two classical GARCH models, the symmetric GARCH model
and the asymmetric NGARCH model, and we consider 7 different distributions, 3 of which are
leptokurtic and 3 of which are skewed and leptokurtic. These choices are first of all driven by the
observation that asymmetric models like the NGARCH model, which can accommodate the well
known leverage effect, has been shown to be important also for option pricing. Secondly, allowing
for skewness and leptokurtosis of the conditional distribution has also been shown to be important
for option pricing.

The contribution of the paper is twofold. The first contribution is to provide an empirical
application in which we compare the overall pricing performance for all 30 stocks across 15 models
using both dollar and implied standard deviation, or ISD, errors. We first provide maximum
likelihood estimation results for the 15 models using the available return data. The results provide
clear evidence in favor of the NGARCH specification and of the NIG distribution. In particular,
this model minimizes the Schwartz Information Criteria. Next, in terms of option pricing the
overall results also provide clear evidence in favor of the NGARCH specification and of the NIG
distribution. For example, when considering the ISD errors the NIG NGARCH model is the best
performing model for 25 of the 30 stocks. The NIG NGARCH model is also the best performing
model for the aggregate sample of options. When plotting the difference in ISD between the
observed prices and the estimated prices from this model the results also show that the NIG
NGARCH model significantly reduces the so-called smile effect found when applying option pricing

models to this type of data.



The second contribution is to use the theory of model confidence sets, or MCS, developed by
Hansen, Lunde & Nason (2011) to compare and statistically test the pricing performance across
the various models. The MCS approach is analogous to the confidence interval of a parameter and
is constructed such that it will contain the best forecasting model with a given level of confidence.
It does so taking the information available in the data into consideration and for very informative
data the MCS will contain only the best model. The MCS approach has primarily been used to
compare variance forecasts, however since our estimated prices are predicted prices the MCS can
be directly applied to test the performance of the option pricing models. The results show that the
model most often contained in the MCS is once again the NIG NGARCH model. For example, when
considering the ISD errors this model is in the MCS for 29 of the 30 stocks. Moreover, the results
provide strong support for the use of the NGARCH specification over the GARCH specification
and for the use of NIG innovations. In particular, a NGARCH model is in the MCS for all the
stocks and so is a model with NIG innovations. To support these conclusions, we conduct several
robustness checks confirming that this holds for both call and put options as well as across option
maturity and option moneyness.

Option pricing with our approach is straightforward first of all because we only use historical
data on the underlying asset and secondly because we use models in the GARCH framework which
can be estimated directly by maximum likelihood. However, historical option prices themselves
contain important information on the model parameters, and an alternative approach is to infer
these parameters either from historical option data alone or by using both returns and options
data. However, for this to be feasible option pricing models for which closed or semi-closed form
pricing formulas exist are needed and unfortunately this is not the case for American style op-
tions. Moreover, an alternative to the GARCH framework is to consider continuous time stochastic
volatility models. However, these models require the unobserved volatility as a state variable and
this complicates not only the estimation procedure but also the actual option pricing procedure.

For these reasons, the present paper focuses on the discrete time GARCH framework.



The rest of the paper is structured as follows: In Section 2 we review the generalized GARCH
framework which will be used. In Section 3 we present the historical return data and provide
estimation results for the various models. In Section 4 we present the option data and we provide
empirical results on the overall performance of the option pricing models. Section 5 then analyzes
the model performance using the model confidence set approach. Finally, Section 6 concludes.
The appendix contains additional details on the constituents of the DJIA and the data screening

procedure used.

2 Theoretical framework

In this paper a skewed and leptokurtic generalized GARCH framework similar to that of Stentoft

(2008) is used. To be specific, we assume that the log return process, Ry, can be modelled as

Ry =my (50m) + \/h:st and (1)
hi = g (hs,e5;—00 < s <t —1;0,) with (2)
5t‘ ftfl ~D (07 1; 9D) 5 (3)

where F;_1 is the information set containing all information up to and including time ¢ — 1. This
general framework can accommodate various different specifications for the variance. Moreover, it
allows for flexible specifications of the conditional distribution.

In (1) we use my (+;0,,) to denote the conditional mean, which is allowed to be governed by a
set of parameters 6, provided that the process is measurable with respect to the information set
Fi—1. Likewise, in (2) the parameter set 0, governs the variance process. This process is allowed
to depend on lagged values of the innovations to the return process, lagged values of the volatility
itself, and various transformations hereof. Finally, in (3) we use D (0,1;6p) to denote a zero mean
and unit variance distribution which is also allowed to depend on a set of parameters 0p. For

notational convenience if the following we let # denote the set of all parameters in 6,,, 05, and 0p.



2.1 The skewed and leptokurtic GARCH option pricing model

Using the Generalized Local Risk Neutral Valuation Relationship, or GLRNVR, of Duan (1999),

it can be shown that the risk neutralized dynamics of the system in (1) — (3) are given by

Ry=my(+;0m) + \/hitet and (4)
hi = g (hs,e5; —00 < 8 <t —1,0;,) with (5)
e ="Fp' [®(Z = M), (6)

where Z;, conditional on F;_1, is a standard Gaussian variable under the risk neutral measure
Q, F 51 denotes the inverse cumulative distribution function associated with the distribution
D (0,1;0p), ® denotes the standard Gaussian cumulative distribution function, and where \; is

the solution to

E° [exp (mt (10m) + Vi FR [® (2, — )\t)]) ‘ ft_l} — exp (1) . (7)

In the above equation r; denotes the one period risk free interest rate at time ¢, and although this
rate has to be deterministic it may in fact be time-varying.

Note that the same mean is used in the risk-neutral process as in (1) and instead risk-neutralization
is obtained through a change in the innovation term as specified in (6). For example, in the special
case when D (0,1;60p) corresponds to the Gaussian distribution it follows that Fp L@ (2)] = 2, for
any z, and in this situation the innovations in the risk neutral world remain Gaussian although with
non zero mean. When the underlying distribution departs from the Gaussian the transformation
in Fp 1 [® (2)] yields innovations under the risk neutral measure with the appropriate properties
to be used when pricing e.g. options. In particular, note that when A\ = 0 the innovations in (6)
correspond to random draws from the D (0, 1; 6 p) distribution irrespective of what distribution this

is.



2.2 Feasible option pricing

In principle the system above is completely self-contained. However, when it comes to implementing
it problems may occur due to the requirement that A; be the solution to (7). In particular, an
analytical expression for A\; may not be available in general. In the present paper we circumvent

this issue using the proposed solution of Stentoft (2008) and “imply” the mean directly as

me (30m) = 11— n B [exp (VAFR [@ (2 = M) )| Fia | (8)

Using this specification ensures that the restriction in (7) is always satisfied. A similar approach
is taken in Rombouts & Stentoft (2010) using the risk-neutralization method of Christoffersen,
Elkamhi, Feunou & Jacobs (2010) and in Rombouts & Stentoft (2011) using a multivariate gener-
alization hereof.

In the special case where returns are Gaussian the following restriction on the mean equation

obtains

1
my (+;0m) = T + /\t\/h>t — §ht, 9)

where the last factor is a correction for working with continuously compounded returns. Thus, in
this situation an analytical expression exists and the parameter A; is often interpreted as the unit
risk premium. In particular, if we were to specify Ay = A, that is as a constant, the implied mean
specification corresponds to assuming a unit risk premium proportional to the level of the standard
deviation. Alternatively, if \; = Ay/h¢, the unit risk premium becomes proportional to the level
of the variance and with \; = \/\/h; a constant unit risk premium is obtained. Thus, while it
may appear that we by implying the gross rate of return through (8) are constraining the potential
mean specification in an unreasonably way from an econometric point of view, this is in fact not
the case. Also note that A\; = 0 is permitted and which specification is the most appropriate one
can be tested by simple likelihood ratio type tests. In the general case a similar interpretation can

be given to A; as shown by Stentoft (2008), though there is no simple connection.



3 Return data and estimation results

We consider the 30 stocks in the Dow Jones Industrial Average, or DJIA, as of February 19,
2008. The 30 stocks are shown in Table 1 together with the ticker, OptionMetrics ID, CRSP
Permno, CUSIP, dates for which data is available, and the total number of observations.? The
table shows that the data availability varies somewhat from stock to stock. For example, the most
recent companies to be quoted were Microsoft, MSFT, which went public on March 13, 1986, and
Citigroup, C, for which data is available only from October 29, 1986, from CRSP. For consistency,
we therefore only use data from 1986 and onwards in this paper.

In Figures 1 and 2 the time series of the log returns, R;, are plotted for each of the stocks. The
figures show a familiar pattern of time varying volatility which has been documented for many other
financial data series. The GARCH framework has been shown to be able to accommodate such
features of the data, and in the following we describe in detail the models which will be considered.
Next, we discuss some issues related to the implementation of the models and we provide estimation

results for the 30 stocks.

3.1 Models considered

The generalized GARCH framework allows for different specifications of the variance process and
underlying distribution. In this section we provide details on the particular models considered.
3.1.1 Variance specifications

Though several specifications for the variance could be considered, in this paper we consider two
particular choices. The first of these is the well-known GARCH specification for which 6} consists

of the parameters {w, 8, @} and where the functional form in (2) is given by

hi = w+ Bhi_1 + ahi_167 ;. (10)

2The appendix provides further details on the data collection and on issues occuring for particular stocks.



Obviously, using more lags can be considered as simple extensions. Alternatively, we may wish
to consider specifications which can accommodate asymmetric responses to negative and positive
return innovations. Such models are generally said to allow for a leverage effect, which refers to
the tendency for changes in stock prices to be negatively correlated with volatility.

The particular asymmetric extension to the GARCH model we consider is the non-linear asym-
metric GARCH model, or NGARCH, of Engle & Ng (1993). The NGARCH specification of the

variance process is given by

he = w+ Bhi—1 + ahy_1 (e1—1 +7)?, (11)

and for this specification we have 0, = {w, «, 5,7}. In the NGARCH model the leverage effect is
modelled through the parameter v, and if v < 0 this effect is said to be found. It is clear that this
model nests the ordinary GARCH specification, which obtains when v = 0, and the model thus
allows us to compare the contribution of the leverage effect directly by comparison to the GARCH

specification.

3.1.2 Alternative distributions

In addition to the Gaussian distribution we use 6 alternative distributions. These fall within
3 families: the Generalized Error, or GED, distribution, the Normal Inverse Gaussian, or NIG,
distribution, and the Variance Gamma, or VG, distribution. We consider both symmetric and
skewed versions of these for which we now provide details. Note that the two latter distributions
are special cases of the Generalized Hyperbolic distributions and in principle other versions could
be considered also. However, in order to implement the generalized GARCH framework one needs
standardized, i.e. zero mean and unit variance, versions of the distributions. For the Generalized
Hyperbolic distributions in general this is difficult to obtain as the first two moments depend on

the scale and location parameters in a non-linear way.
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Generalized Error distribution The GED distribution was first used with the GARCH frame-

work in Nelson (1991). The density of a GED distributed variable is given by

faep (x,a) = ﬁ(l/a)exp (— |z’a ) , (12)

where T (-) is the gamma function and where L = /T (1/a) /T (3/a). The Gaussian distribution is
a special case of this when a = 2.

The GED distribution is symmetric by construction. However, using e.g. the method of Theo-
dossiou (2000) one may obtain skewed versions. The density of a standardized skewed GED dis-

tributed variable is given by

' _ a |z + S|*
fsaep (730,0) = 2LT (1/a) P <_ (1 — sign (x +S)b)" L“) ’ (13)

where L = B~1,/T (1/a) /T (3/a) and S = 2bAB~!, and where B = V1 + 3b2 — 442b2 and A =
I'2/a) //T(1/a)T' (3/a). In (13) b is the asymmetry parameter. In particular, when b = 0 the
symmetric GED distribution is obtained since B = 1 which means that S = 0. By construction the
GED distribution has mean zero and unit variance and hence no standardization is needed. We

refer to this distribution as the GED (a,b) distribution.

Normal Inverse Gaussian distribution Following Jensen & Lunde (2001) the NIG (a, b, , )

distribution can be defined in terms of the location and scale invariant parameters as

fnic (z5a,b,p1,0) = %GXP (\/erb(x;M)) q (96—#)_1[(1 <aq <m—u>> , o (14)

o o

where ¢ (z) = V1 + 22 and Kj (+) is the modified Bessel function of third order and index 1. For
the distribution to be well defined we obviously need to ensure that 0 < |b| < a and 0 < §. We

can interpret a and b as shape parameters with a determining the degree of leptokurtosis and b

11



the asymmetry. In particular, for b = 0 we have a symmetric distribution and with a tending to
infinity the Gaussian distribution is obtained in the limit.
In (14), p is a location parameter and ¢ is a scale parameter, and if we define p = b/a the mean

and variance of a NIG (a, b, i, ) distributed variable are given as

po 52

E(X)=p+ ——— and Var (X) = ————.
(X) = T (X) (L 2P

(15)

Thus, a zero mean and unit variance NIG distributed variable can be obtained by restricting u and

0 to have the following form:

—po 3/4
=——— and § =+\/a(l—p2)>". 16
gy Va(l—=p?) (16)

In the following we will refer to this standardized distribution as the NIG(a,b) distribution. This

procedure was also used in Stentoft (2008).

Variance Gamma distribution The VG (a,b, i, 0) distribution can be specified as

(a2 = 82)° |o — p° 2 Ky o (alz — pl) exp (b (z — i)
VAT (8) (2a)° 712

fVG (iL‘;a,b,,LL, 5) = ) (17)

where K;_1/5 (+) is the modified Bessel function of third order and index §—1/2. For the distribution
to be well defined we obviously need to ensure that 0 < |b| < a and 0 < §. We can again interpret
a and b as shape parameters with a determining the degree of leptokurtosis and b the asymmetry.
In particular, for b = 0 we have a symmetric distribution.

In (17), p is a location parameter and ¢ is a scale parameter, and if we define v = v/a2 — b2 the
mean and variance of a VG (a, b, i1, 0) distributed variable are given as

5 (2 + 4b2/2)

206
E(X):u+?andVar(X): .

(18)
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Thus, a zero mean and unit variance VG distributed variable can be obtained by restricting u and
0 to have the following form:

2b6 72

In the following we will refer to this standardized distribution as the VG(a,b) distribution.

3.2 Implementation

One important property of the GLRNVR framework of Duan (1999) is that a close link is provided
between the observed asset return process and the process which has to be used for valuation of
the corresponding options. To be specific, note that by substituting (8) into the system in (1) — (3)

we obtain the following specification for the return process to be used for estimation:

R, = r—InEQ [exp (\/hiFgl [®(Z, — )\)}) ) ft,l} + /ey and (20)
hi = g(hs,es;—00 <s<t—1,0) with (21)
Et‘ Fier ~ D (07 1; 9D) ) (22)

where Z; is a standard Gaussian variable under the risk neutral measure Q, and where we have
assumed a constant interest rate as well as a constant value for Ay = A\. Comparing this system to
the one used for pricing in (4) — (6) it is immediately clear that it is in fact possible to estimate
all the necessary parameters from the historical returns. Thus, one of the major strengths of
the proposed generalized GARCH framework is that cumbersome calibration procedures involving
matching model option prices to observed prices to derive the model parameters may be avoided.

However, before we can actually implement the generalized GARCH option pricing model we
need to obtain procedures for evaluating the transformation of the random variables Z; through

Fp L@ (Z; — \)] as well as for evaluating the logarithm of the expectation of the scaled exponential

13



value of this, that is In E< [exp (JEFBI [® (Z — N)])| Fi-1]. Note though that such procedures
would be needed even if we were to use a calibration based method. In this paper we follow the
procedure outlined in Stentoft (2008) for constructing these approximations. We note that though
Stentoft (2008) only considers the NIG distribution the method is applicable to all the distributions

considered here and it allows for estimation of all the models in a straightforward manner.

3.3 Estimation results

In the present setting with 30 stocks and 15 models, presenting detailed results for all models is
clearly too cumbersome. Instead we first summarize the results and then provide detailed estimation
results for the preferred model only. The detailed results for all other models are, however, available
from the author upon request. In all estimations we use variance targeting originally proposed
in Engle & Mezrich (1996), which ensures that the implied unconditional level of the variance
corresponds to the historical volatility actually observed. The procedure can be implemented in
our framework simply by setting w = Var (R;) * (1 -« (1 + 72) - B) for the NGARCH model with
v =0 in the GARCH model.

We start by reporting the Schwartz Information Criteria, or SIC, values in Table 2. This criteria
penalizes models with additional parameters compared to the raw likelihood values. It has been
shown that the SIC can be used to discriminate between alternative volatility models with good
results (see e.g. Bollerslev & Mikkelsen (1996)). Comparing the values across stocks it is seen that
the SIC is minimized by the NIG NGARCH specification in all the cases. For PFE the symmetric
NIG NGARCH has the same value of the SIC. Moreover, the model ranked second is for 28 of the
30 stocks the symmetric NIG NGARCH. For the two exceptions, AA and MSFT, it is the skewed
NIG GARCH model which is ranked second. Thus, in terms of estimation the top ranked models
are in all cases models which uses the NIG distribution and in most of the cases models that use

the NGARCH specification.
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3.3.1 Estimation results for the NIG NGARCH model

In Table 3 we report the estimation results for the preferred NIG NGARCH model. From the table
we see that all the §’s are significantly different from zero, 29 of the a’s are significantly different
from zero, and 28 of the 7’s are significantly different from zero when using a 5% significance level.
Moreover, the majority, 21 out of 30, of the estimated risk premiums, i.e. the \’s, are significantly
different from zero. With respect to the distributional parameters the table shows that on average
a is estimated at a value of 2. This is quite small and indicates the importance of allowing for a
fat tailed distribution. The skewness parameter b, on the other hand, is only significant for 3 of
the stocks and its average value is only 0.05. Also both positive and negative values are obtained
for this parameter. Finally, note that the test statistics for misspecification show that overall the
NIG NGARCH model does a good job in explaining the features of the data. In particular, in the
majority of the cases no significant correlation in the residuals or the squared residuals are observed
as indicated by the insignificant values of the Q (20) and Q? (20) statistics. The same holds for the

ARCHS5 test which is significant at the 5% level only for 9 of the 30 stocks.

3.3.2 Risk premium, leverage effects, and skewed distributions

In the framework above there are three potential ways to introduce asymmetries in the simulated
distributions: through the risk premium, A, through the leverage effect, v, and from skewness in
the distribution, b. Of these, only « is consistently estimated different from zero for nearly all the
30 stocks. The risk premium A is significantly different from zero for roughly two thirds of the
stocks, whereas b is statistically significant for only 3 of the stocks. Similar results are obtained
for the GED and VG distributions. Based on these results it thus appears that ~ will be most
important for generating asymmetries in the risk neutral distribution. However, of these three,
the risk premium A has a special status since this parameter drives a wedge between the physical
and risk neutral dynamics. In particular, as discussed in Section 2.1 without A the model used for

pricing is identical to that estimated on the historical returns. We return to this issue below.
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4 Option data and pricing results

Our option sample covers the 11 year period from 1996 through 2006 on a monthly basis and comes
from the IvyDB OptionMetrics file.? In total our sample contains 139,879 options on individual
stocks. To our knowledge this makes it the largest sample of individual stock options ever considered
for empirical study. In Table 4 we provide the number of options in our sample for different
categories of maturity and moneyness. The different categories of maturity, T, are labelled as
follows: short term (ST) has 7" < 21, middle term (MT) has 21 < T' < 63. long term (LT) has
63 < T < 126, and very long term (VLT) has 126 < T. Moneyness, Mon, is calculated as the
ratio of the asset price to the strike price. The different categories of moneyness are labelled as
follows for call options: deep in the money, (DITM) has Mon > 1.1, in the money (ITM) has
1.1 > Mon > 1.025, at the money (ATM) has 1.025 > Mon > 0.975, out of the money (OTM)
has 0.975 > Mon > 0.9, and deep out of the money (DOTM) has 0.9 > Mon. For put options
the (D)ITM and (D)OTM categories are reversed. The table shows that the data considered
corresponds to a very diverse sample of options. In particular, the options are spread out across
the different categories in terms of maturity. For example, when considering the last row with the
aggregate data we see that of the approximately 140,000 options a minimum of roughly 33,000
and a maximum of 38,000 options fall in each category. In terms of moneyness the options are also
spread out, though the number of DOTM options is somewhat larger than for the other categories.
However, there is still at least 20,000 options in each of the categories.

In Tables 5 and 6 we report the average prices and implied standard deviations, or ISDs, for
the sample of options. The ISDs are backed out from the binomial model with daily early exercise
and corrects for maturity and moneyness effects through the nonlinear transformation of the dollar
price.* Again we see that the sample of options is very diverse with overall price averages ranging

from around $1 dollar for the DOTM category to $14 for the DITM category. The highest priced

3The appendix provides further details on the data collection and on issues occuring for particular stocks.
+Of the 139, 879 options this method yields reasonable values for 136,144 options. The rest, amounting to 3,735
options or 2.7% of the sample, are not considered in the reported results.
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options are for technological companies such as IBM, INTC, and MSFT. When considering the
ISDs in Table 6 large differences are also found. For example, the average ISD of INTC is with
43% almost 20 percentage points larger than that of CVX for which the average ISD is 24%. The
table also shows that across categories the largest variation is found in terms of moneyness. In
particular, the table shows the well-known smile across moneyness categories. In Figure 3 we show
this graphically. The figure plots the difference between the ISD and the historical volatility for
each moneyness category. The top plot is for the first 10 assets, the middle plot for assets 11 to 20,
and the bottom plot is for the last 10 assets in alphabetical order of the ticker symbol.

The GARCH framework has been shown to be able to accommodate the above features. In the
following we provide details on how the options can be priced in this framework using simulation.
Next, we evaluate the option pricing performance of the models considered using well-known metrics
from the literature. Finally, we examine the best performing model’s ability to explain the smile

which is present for the individual options considered as documented in Figure 3.

4.1 Pricing procedure

The first thing to note is that within a framework as general as the one above it is difficult, if not
impossible, to obtain closed form, or even semi-closed form, solutions for the option price. Thus,
it is necessary to consider alternative numerical procedures. Moreover, although it is potentially
possible to customize e.g. lattice methods to the particular dynamics of one such model, this
approach would be specific to the assumed underlying dynamics and hence not a method which is
generally applicable. In this paper we choose to use simulation based methods which are, on the
other hand, flexible enough to accommodate all of the possible specifications of the dynamics for
the variance process and the assumed distributions considered here. In the following we describe
in detail how the simulation is performed and we explain how to accommodate the early exercise

feature.
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4.1.1 Pricing using simulation

By substituting (8) into the system in (4) — (6) it is possible to obtain the dynamics to be used for

pricing. These are given by

Ri=r—InE® {exp (mFgl [®(Z; — )\)]) } ft—l} + /her and (23)
ht = g (hs,es; —00 < s <t —1,60p) with (24)
e = Py [0(Z - ), (25)

where Z;, conditional on F;_1, is a standard Gaussian variable under the risk neutral measure Q.
Thus, it is immediately clear that these depend only on parameters which can be estimated using
historical returns, and given these a large number of paths of the risk-neutralized asset prices can be
generated. Moreover, although the simulation involves transforming the Gaussian innovations, the
Z’s, at every step along all paths it is in fact feasible to simulate efficiently from this system when
the approximations from Stentoft (2008) are used. In particular, because the approximations need
only be calculated once at the beginning of the simulation the computational complexity remains
approximately linear in the number of paths and in the number of steps in the simulation.

For the actual simulation we use M = 20, 000 paths. This choice is primarily made to minimized
the computational work and together with using only monthly option data means that option pricing
can be done in reasonable time. As input to the simulation we use parameter estimates obtained
using the available historical information on the day of pricing only. Thus, as we move forward
in time, the sample used for estimation increases. Moreover, as a result of this procedure the
estimated prices can be considered as out of sample forecasts of the observed option prices. As the
interest rate we use the EURODOLLAR rate on the last day of the sample used for estimation.
Thus, although the same constant interest rate is used both in the estimation and in the simulation
at any given day, in fact the interest rate does vary from one month to the next month.

In the simulations, we make the following three assumptions about the effect of dividend pay-
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ments: First of all, we assume that only cash dividend payments are important for our purpose.
This assumption is reasonable since exchange traded options, in general, are protected against other
forms of dividends like, say stock splits. Secondly, we assume that both the ex-dividend day and
the size of the dividends are known in advance. Though this is not strictly correct, dividends are
paid regularly with fairly stable amounts throughout the period we consider. Thirdly, we assume
that the effect of a cash dividend payment fully spills over on the asset price. We note that these

assumptions are standard in the literature.

4.1.2 Accommodating the early exercise feature

The simulation method described above is immediately applicable to European options and has
been used at least since Boyle (1977). However, in our sample all the options are American style.
Hence, to price these options we need to take into consideration the possible early exercise. Though
it was for a long time believed that this would be impossible within a simulation framework this
is no longer the case. Specifically, in this paper we use the Least Squares Monte Carlo, or LSM,
method of Longstaff & Schwartz (2001) to price the individual options in a GARCH framework as
outlined in Stentoft (2005) and Stentoft (2008). This method approximates the value of holding
the option at a given point in time along a specific simulated path by the predicted value from a
cross-sectional regression using all the in the money paths.

The LSM method for pricing American style options proceeds as follows: First of all, given the
full sample of random paths, the pricing step is initiated at the maturity date of the option. At
this time, it is possible to decide along each path if the option should be exercised since the future
value trivially equals zero. Hence, the pathwise payoffs may be easily determined at maturity.
Next, working backwards through time a cross-sectional regression is performed at the first point
in time where early exercise is to be considered. In the regression the discounted future payoffs are

regressed on transformations of the current asset prices and volatility levels.” The fitted values from

’In our application we use powers of and cross products between the asset price and the level of the volatility of
order two or less in addition to a constant term in the cross-sectional regressions.
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this regression are then used as estimates of the pathwise conditional expected values of holding the
option for one more period. The decision of whether to exercise or not along each path can now be
made by comparing the estimated conditional expected value of continuing to hold the option to
the value of immediate exercise. Once the decision has been recorded for each path, we can move
back through time to the previous early exercise point and perform a new cross-sectional regression
with the appropriate pathwise payoffs based on the previously determined choices. Finally, with
the optimal early exercise strategies along each path an estimate of the American option value can

be obtained as a simple average of the discounted pathwise payoff.

4.2 Overall pricing results

We now compare the pricing performance of the 15 different option pricing models considered here
for each of the 30 stocks in the sample. The natural benchmark model is the constant volatility
model with Gaussian distribution since this corresponds to the Black-Scholes-Merton model. We
consider two classical metrics for option pricing comparison using both the dollar errors and the
errors in implied standard deviations. Specifically, letting P, and Py denote the kth observed price

respectively the kth estimated price we use the bias, BIAS = K~} Zle (Pk — ]5k> and the root

~ N\ 2
mean squared error, RMSFE = \/ K1Y le (Pk — Pk) . For the ISD errors similar formulas are

used.

4.2.1 Comparison using dollar errors

In Table 7 we report the dollar BIAS for each stock using the 15 different models. We also report
the aggregate dollar BIAS in the last row. Moreover, in the last two columns we indicate which
model is the best performing and the worst performing model. The first thing to note from the
table is that there are very large differences in terms of option pricing performance across the 30
stocks. For example, for the CV model the average errors vary between 1.6 cents for MCD and 43.1

cents for BAC. Moreover, when considered across the stocks which model is the best and which is
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the worst performing also differs a lot. For example, the CV model is the worst performing model
for 16 stocks but the best performing for 3. Also the skewed VG NGARCH model is the best
performing model for one stock, MMM, and the worst performing model for one stock, BA. Thus,
using the BIAS metric for the dollar errors leads to somewhat mixed results. The model which has
the smallest errors for most stocks is the NIG GARCH model which is the best performing model
for 8 of the 30 stocks.

In Table 8 we report the corresponding errors using the RMSE metric. The first thing to note
from this table is that the results are somewhat clearer at least in terms of the worst performing
model, which for all 30 stocks is the CV model. However, there is still a large degree of variation in
terms of the best performing model, though for 23 of the 30 stocks the best performing model has
a NGARCH specification. Moreover, when considering the aggregate numbers in the table support
is found in general for models with non-Gaussian innovations. In particular, the performance of
models 4 through 15 is very similar with an average error of 0.602. Compared to this value the
Gaussian CV error is 52% larger and the Gaussian GARCH and NGARCH errors are 12% and
10% larger, respectively. The models which have the smallest errors for most stocks are the NIG

NGARCH models which are the best performing models for 7 and 6 of the 30 stocks, respectively.

4.2.2 Comparison using ISD errors

As Table 5 shows, the dollar prices vary a lot between the stocks and comparing the pricing errors
based on these may be problematic. An alternative is to use the ISD which attempts to correct for
maturity and moneyness effects through a nonlinear transformation of the dollar price. In Table 9
we report the ISD BIAS for each stock using the 15 different models. For all model prices the ISDs
are backed out from the binomial model with daily early exercise. We also report the aggregate
ISD BIAS in the last row, and in the last two columns we indicate the best performing and the
worst performing model. Again the table shows that when using the BIAS metric results differ a

lot across the stocks. For example, using the ISDs the CV model is the worst performing model
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for 18 stocks and the best performing for 4 stocks. However, the table does show that for 15 of the
stocks the best performing model has a NGARCH specification. The model which has the smallest
errors for most stocks is the NIG NGARCH models which is the best performing model for 7 of
the 30 stocks.

In Table 10 we report the corresponding errors using the RMSE metric. Again, the first thing
to note from this table is that the results are somewhat clearer. In particular, this is the case in
terms of the worst performing model, which for all 30 stocks is the CV model. The table also shows
that the best performing model is model 7, the symmetric NIG NGARCH model, for 11 stocks and
model 13, the skewed NIG NGARCH model, for 14 stocks. Thus, a NIG NGARCH model is the
best performing model for 25 of the 30 stocks. Note that the best performing model for the last 5
stocks also has a NGARCH specification. For each of the seven different distributions the GARCH
errors are between 9.5% and 12.8% larger than those obtained with the NGARCH specification.
Thus, using the ISD errors with the RMSE metric we find strong evidence in favor of using an

asymmetric specification for the variance process and for using a model with the NIG innovations.

4.3 Fitting the smile in option ISDs

The overall pricing performance in terms of dollar errors or even in terms of ISDs is one possible
metric for comparison. However, when it comes to option pricing it is perhaps of more interest to
examine how the models fit across moneyness. In particular, option prices are often quoted in terms
of implied volatilities, and often such volatility quotes vary with moneyness. Thus, the ultimate
test of any option pricing model may well be to fit this pattern which is known as the volatility
smile, and which was documented graphically for our sample of options in Figure 3.

The previous analysis shows that overall the NGARCH model with NIG innovations is the best
performing model of the models considered here. Thus, we now analyze this model’s potential for
accommodating the smile found in our option data. In Figure 4 we plot the difference between

the ISD from the observed price and the ISD of the estimated NIG NGARCH option price. In the
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figure we have used the same scale as in Figure 3 to make the results directly comparable. The
figure shows that the smile in ISDs is much less pronounced for this model. Though for some stocks
there remains some variation across moneyness the size is much smaller than for the CV model. For
example, for GM the ISD error for the DOTM category decreases from 19.53% for the CV model
to 10.96% for the NIG NGARCH model. In Figure 5 we plot the average ISDs across all stocks.
These results show that the NIG NGARCH model significantly reduces the smile effect often found
when applying option pricing models to this type of data.

When it comes to option pricing the A parameter plays a special role as it drives a wedge
between the physical dynamics and the risk free dynamics used for option pricing. In particular,
a positive value for A increases the long run volatility under the risk free measure. For the 30
stocks considered A is positive though only statistically so for roughly two thirds of the stocks when
using the NIG NGARCH model. Moreover, the point estimates are relatively small and hence the
overall effect could be minimal. To examine this we also plot the average volatility smile for the
NIG NGARCH model with A = 0 in Figure 5. The figure shows that, though the overall pattern
is similar, incorporating the risk premium does decrease the overall errors across moneyness. The
overall error is also somewhat smaller at 8.19% when the risk premium is included compared to a

value of 8.31% when \ = 0.

5 Model confidence sets for option pricing models

Section 4 reported on the model performance using different types of pricing errors and different
metrics, and though this allowed us to point out which models perform best an actual test of model
performance is not possible. In particular, based on the point estimates of the reported errors, it is
impossible to decide if the best performing model is in fact significantly better than the next best

performing model. Likewise, it is not immediately clear if the worst performing model or models

Tncorporating a fixed value for A = 0.03, which is roughly the average across the 30 stocks, yields results that are
essentially identical to those obtained when A is estimated.
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are in fact significantly worse than the best performing one.

In this section we apply the theory of Model Confidence Sets which can be used to compare
the forecasting ability of multiple models, and which allows us to formally test if any model is
significantly outperformed by others when it comes to its predictive ability. To our knowledge, this
is the first time the MCS approach has been used for comparing option pricing models. In the
following we explain the approach. Next, we provide the results for the option pricing models, and

finally we analyze the robustness of the results.

5.1 The model confidence set approach

The model confidence set approach was developed in Hansen et al. (2011). The method is analogous
to the confidence interval of a parameter and is constructed such that it will contain the best
forecasting model with a given level of confidence. It does so taking the information available in
the data into consideration. Thus, for very informative data the MCS will contain only the best
model whereas for less informative data many models are contained in the MCS. This stands in
stark contrast to the procedure used above which selects one model as the best performing model
irrespective of the information content in the data. Another benefit of the MCS procedure is that
it yields a p-value for each model which indicates how likely it is that the model belongs to the
MCS.

The MCS approach has primarily been used to compare variance forecasts from e.g. a large set
of GARCH models. However, since our model prices are forecasts the approach is equally applicable
here, and by comparing the price forecasts to the actual observed prices we may use the method to
examine the performance of the pricing models. Likewise, the forecasted ISDs can be compared. In
this paper we use the software provided by Hansen & Lunde (2010) to implement the MCS approach.

This software allows for different loss functions and for different test statistics. For the loss function

N2
we choose the daily root mean squared error given by RMSFE = \/ K ! Eé{:tl <Pk — Pk) , where

K, is the total number of options at date t. Note that the daily bias would not be a proper loss
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function to use for the MCS approach. As the test statistic we use the MaxT statistic (see Hansen
& Lunde (2010) for details). Although alternative statistics are available, this particular statistic
generally resulted in the smallest MCSs.” Finally, for all tests we set the confidence level to a = 10%

and in the bootstrap we set the block length to 25 and the number of samples to 25, 000.

5.2 Model confidence set results

We now apply the MCS approach to examine our option pricing models. We consider both of the
errors considered in Section 4: the dollar error in predicted price and the error in the predicted

ISD.

5.2.1 Comparison using dollar errors

In Table 11 we report the MCS for the predicted dollar price. The table first of all shows that
overall the MCS contains 271 models, that is approximately 9 models per stock. In fact, the MCS
contains all 15 models for 3 of the stocks and it contains 10 or more models for half the stocks. On
the other hand, for 5 of the stocks the MCS contains less than 5 models, and for 2 of these stocks
only 2 models are in the MCS. Next, when considering the individual models the table shows that
the CV model is only in the MCS for 3 of the 30 stocks. The Gaussian models, models 2 and 3,
also only rarely belong to the MCSs. The rest of the models on the other hand are in the MCS for
at least half of the stocks. The model which is most often in the MCS is model 7, the symmetric
NIG NGARCH model, which is in the MCS for 28 of the stocks. The NGARCH model with skewed
NIG innovations is the next best model and contained in the MCS for 27 of the stocks, and in fact
a model with NIG innovations is in the MCS for all 30 stocks. For the GED and VG distributions,
models with symmetric innovations are also most often found in the MCS. However, models with
these distributions are in the MCS for only 22 and 26 of the 30 stocks, respectively. Finally, the

table shows that in terms of the variance specification models with the NGARCH specification are

"Results for alternative test statistics are available from the author.
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found most often in the MCS irrespectively of the choice of underlying distribution. In fact, a
model with NGARCH specification is in the MCS for 28 of the stocks, whereas for the GARCH

specification this is the case for only 22 of the 30 stocks.

5.2.2 Comparison using ISD errors

In Table 12 we report the MCS for the predicted ISD. The table first of all shows that the MCS
contains about two thirds the number of models, 183 to be precise, when ISDs are used than when
dollar prices are used. In fact, the maximum number of models in the MCS is 14, which occurs
only for HD, and the MCS contains more than 10 models for only 5 of the 30 stocks. On the other
hand, the MCS contains only one model for the two stocks BA and GM, and for 11 of the stocks
less than 5 models are in the MCS. Thus, the results indicate that it may be more appropriate
to use the ISD errors than the dollar errors for model comparison. Next, when considering the
individual models the table shows that the CV model is never in the MCS. Moreover, the Gaussian
GARCH model is only found in the MCS for 1 of the stocks. The NGARCH model with skewed
NIG innovations, model 13, is on the other hand found in the MCS for 29 of the 30 stocks with
the exception being AXP. The model that is found next most often in the MCS is model 7, the
symmetric NIG NGARCH model, which is in the MCS for 28 stocks, and again a model with NIG
innovations is in the MCS for all 30 stocks. Models with GED and VG innovations are on the
other hand in the MCS for only 20 and 25 of the stocks, respectively. Finally, the table shows that
when considering the variance specification models with NGARCH specifications are found much
more frequently in the MCS than those with GARCH specifications when using the ISD errors.
For example, for the symmetric GED distribution the model with a NGARCH specification is in
the MCS for 21 stocks whereas this is the case for only 5 stocks for the model with a GARCH
specification. In fact, a model with NGARCH specification is in the MCS for all the stock whereas

for the GARCH specification this is the case for only 11 of the 30 stocks.
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5.3 Robustness checks

To support the results reported above we now analyze the robustness of the results from the MCS
approach along three dimensions: option type, i.e. call and put, option maturity, and option

moneyness. The results are reported in Table 13.

5.3.1 Across option type

Panel A reports the results for the two different option types, i.e. the call (75,966 options) and the
put (60,178 options) options. The first thing to note from this panel is that the number of models
belonging to the MCS is roughly 55% larger for put options than for call options. In particular,
when considering put options the various NGARCH specifications occur more frequently in the
MCS. For example, whereas model 5 is in the MCS for call options for only 13 stocks it is in the
MCS for put options for 25 stocks. Similar results are observed for models 3, 9, 11, and 15, though
the NIG NGARCH specifications continue to be the best performing models. Thus, the results
show that for the put options the choice of conditional distribution appears to be of second order
importance as long as the NGARCH volatility specification is used. For the call options on the
other hand NGARCH specifications with NIG innovations are by far the best performing models.
For example, the symmetric NIG NGARCH model belongs to the MCS almost twice as often as
the corresponding GED model and the differences are even more pronounced when considering the
skewed models. Thus, in spite of some differences the panel shows that the results are robust across

option type as the NIG NGARCH models perform the best for both option types.

5.3.2 Across maturity

Panel B reports the results across maturity (option numbers can be found in Table 4). The first
thing to note is that the number of models in the MCS increases with maturity. For example, there
are roughly 54% more models in the MCS for the VLT options than for the ST options. The main

reason for the increase in the number of models is that more models with GARCH specifications
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are found in the latter category. For example, model 6 which uses the GARCH specification occurs
in the MCS 7 times for ST and MT options, 11 times for LT options, and 17 times for the VLT
options. Similar results are found for the other GARCH models. Note also that large increases
are found for models with VG innovations in general. For models 7 and 13 on the other hand, the
number of times only increases from 25 for the ST options to 29 and 28, respectively, for the VLT
options. Thus, the table shows that as the maturity increases option ISDs contains less information
and therefore the number of models in the MCSs increases. Intuitively this makes sense since in
the long run all the models have similar properties in terms of e.g. the level of volatility. However,
the panel does show that the results reported above are robust across maturity as a NIG NGARCH

model is the best performing for all maturities.

5.3.3 Across moneyness

Panel C reports the results across moneyness (option numbers can be found in Table 4). The first
thing to note is that across this dimension the number of models occurring in the MCS varies a
lot. For example, there are almost twice the number of models in the MCS for ITM and ATM
options than for DOTM options. Though for the DITM, ITM, ATM and OTM options the number
of models is relatively stable. The main reason that there are more models in the MCS for I'TM
and ATM options is that for these options more models with GARCH specifications belong to the
MCS. For the DOTM options on the other hand the table clearly shows that the reason that a low
number of models are found in the MCS is that all but the NIG NGARCH models are found much
less frequently in the MCS when compared to e.g. the OTM options. For example, whereas model
7 belongs to the MCS for 28 and 29 stocks for the OTM and DOTM options, respectively, for model
5 the number of times decrease from 21 to 14. Likewise, the number of times model 6 is found in
the MCS decreases from 18 to only 8. The decrease for models with VG innovations are even more
dramatic. Nevertheless, in spite of the differences the panel shows that the overall results are quite

robust across moneyness and NIG NGARCH models are consistently the best performing model.
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6 Conclusion

This paper offers what we believe to be the largest analysis ever conducted of individual stock
options. Using 30 stocks from the Dow Jones Industrial Average, or DJIA, we price 139,879 option
contracts over a 11 year period from 1996 to 2006. We compare the results for two classical GARCH
models, the symmetric GARCH model and the asymmetric NGARCH model, and we consider 7
different distributions, 3 of which are leptokurtic and 3 of which are skewed and leptokurtic. The
contribution of the paper is twofold.

We first of all compare the overall pricing performance using dollar and implied standard de-
viation, or ISD, errors. The results provide clear evidence in favor of the asymmetric NGARCH
specification and of the Normal Inverse Gaussian, or NIG, distribution. For example, when con-
sidering the RMSE of the ISDs this is the best performing model for 25 of the 30 stocks. The NIG
NGARCH model is also the best performing model for the aggregate sample of options. When
plotting the difference in ISD between the observed prices and the estimated prices from this model
the results show that the NIG NGARCH model significantly reduces the smile effect found when
applying option pricing models to this type of data.

Next, we propose to conduct actual statistical tests of the option pricing models using the model
confidence set, or MCS, approach. The MCS approach is analogous to the confidence interval of
a parameter and is constructed such that it will contain the best forecasting model with a given
level of confidence. The results show that the model most often contained in the MCS is once
again the NIG NGARCH model. For example, when considering the ISD errors this model is in the
MCS for 29 of the 30 stocks. Moreover, the results provide strong support for the use of NGARCH
specifications over the GARCH specification and for the use of NIG innovations. In particular, a
NGARCH model is in the MCS for all the stocks and so is a model with NIG innovations. We
conduct several robustness checks confirming that this holds for both call and put options as well

as across option maturity and option moneyness.
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The present paper clearly demonstrates that pricing American style options within the gener-
alized GARCH framework is possible and that asymmetries in the volatility specifications along
which non-Gaussian innovations are important. Interesting extensions are to consider even more
underlying assets, other types of distributions, and more extensive specifications of the GARCH
models. The MCS approach used here can easily be used to test the performance with these

extensions.
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A Data, data issues, and corrections

In this paper we work with the 30 constituent stocks of Dow Jones Industrial Average, or DJIA,
as of February 19, 2008, which at the time of writing was the last time changes were made to the
index. In this appendix we describe this data in more detail. Moreover, as is often the case when

working with empirical data errors occur and we explain how these issues were dealt with.

A.1 DJIA and constituents

Table 1 shows the constituents of the DJIA as of February 19, 2008. The table also reports the
ticker, the security ID used by Option Metrics, the Permno assigned by CRSP, and CUSIP for
these stocks. While tickers change the permno allows us to uniquely identify a company and the
security ID allows us to uniquely identify options on this company. We therefore use these numbers
to track the company through time. Lastly the table shows the sample for which data is available
and the total number of observations in this sample.

While most of the companies in the DJIA exist in the sample with no major changes this
happens to a few of the constituents. Specifically, this is the case for Bank of America Corporation,
J.P. Morgan Chase & Company, and AT&T Incorporated. We now describe the significant changes

which occurred for these cases in detail:

e Bank of America Corporation, BAC, as it exists today is the successor of the North Carolina
National Bank since the merger in September 1998. Thus, the sample used for this ticker
contains returns on North Carolina National Bank with permno 59408 as well as options on

this company prior to the merger.

e J. P. Morgan Chase & Company, JPM, as it exists today was formed at the end of 2000
when Chase Manhattan Corporation acquired J.P. Morgan & Co. Thus, the sample used for
this ticker contains returns on Chase Manhattan Corporation with permno 47896 as well as

options on this company prior to the acquisition.
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o AT&T Incorporated, T, as it exists today was formed in November of 2005, when SBC
Communications Inc. purchased former AT&T Corporation. Thus, the sample used for this
ticker contains returns on SBC Communications with permno 66093 as well as options on this

company prior to the purchase.

A.2 Return data

The source of the return and distribution data is the CRSP file which provides data from the time
of listing and onwards for each company as indicated in Table 1. At certain occasions data was
double checked with alternative data sources to verify very large movements in the asset prices. In

all cases though the original prices provided by CRSP were deemed to be correct.

A.2.1 Data used for estimation and for option pricing

Besides the actual date the following data series were used from the CRSP file:

DISTCD: Distribution Code. This code was used to decide if dividends should be considered

in the option pricing part as cash dividends.

e DIVAMT: Dividend Cash Amount. While the dividends are included by CRSP in the RET

series the DIVAMT was used in the option pricing part as the actual future dividends paid.

e FACPR: Factor to adjust price. This factor was also used in the option pricing part as options

are protected from stock splits etc.

RET: Holding Period Return (per day). The log of this was used as the return series.

When using the CRSP file special care has to be taken when it comes to dividend payments as
these may lead to multiple observations on a given day. For this reason all the files were checked
for dividend payments and multiple observations were consolidated such that only one observation
was available per day. Moreover, in doing so it was verified that only cash dividends occurred as

dividend payments.
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A.3 Option data

The source of the option data is the OptionMetrics data base provided by IvyDB which contains
data from 1996 and onwards. The data base contains an end of day observation for each traded

option contract. We screen the initial sample the following ways:

1. We eliminate options with more than a year to expiration which we in trading days take to

be 252.

2. We eliminate options with less than 5 trading day to expiration.

3. We eliminate options for which the traded volume during the day was less than 5 contracts.

4. We eliminate options with non standard settlement as indicated by OptionMetrics when the

variable “FLAG” equals 1.

A.3.1 Dates used for option pricing

With a sample spanning 11 years and 30 stocks it is infeasible to price all existing options. For this
reason we chose to work only with one day per month for a total of 132 days. This also minimizes
the number of estimations which are needed. The actual dates chosen are Wednesdays for which a
one month option, which we take to be 18 trading days, is available. If Wednesday is a no trade day
the Tuesday immediately before was used. This happens in December of 1996 and in December of

2002.

A.3.2 Option data errors

While the data available from OptionMetrics is generally of very high quality, a few errors were
encountered. The errors relate to two options on AT&T, T, which on June 25, 2003, mistakenly
were recorded with at strike price of 2530 instead of 30. This error was manually corrected in the

original option data file.

36



B Figures and Tables
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Figure 1: Timeseries of Ry, the log returns, for the first 15 stocks in alphabetical order.
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Figure 2: Time series of Ry, the log returns, for the last 15 stocks in alphabetical order.
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Figure 3: This figure plots the difference between the ISDs implied from the actual prices and the
historical volatility for each moneyness category. The top plot is for the first 10 assets, middle plot
for asset 11 to 20, and the bottom plot is for the last 10 assets in alphabetical order.
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Figure 4: This figure plots the difference between the ISDs implied from the actual prices and from
the price estimates from the skewed NIG NGARCH model for each moneyness category. The top
plot is for the first 10 assets, middle plot for asset 11 to 20, and the bottom plot is for the last 10
assets in alphabetical order.
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from the actual prices and from the price estimates from the CV model, the NIG NGARCH model,
and the NIG NGARCH model with A = 0 for each moneyness category.
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Table 4: Number of options across maturity and moneyness

Stock All ST MT LT VLT DITM ITM ATM OTM DOTM
AA 2693 754 696 674 569 415 409 430 657 782
AIG 3412 869 770 920 853 476 529 555 835 1017
AXP 3763 1125 946 934 758 502 627 658 980 996
BA 4711 1084 1065 1329 1233 842 739 667 1038 1425
BAC 4448 1010 1034 1248 1156 650 694 820 1040 1244
C 5694 1308 1346 1621 1419 1165 854 840 1140 1695
CAT 3628 937 865 1004 822 574 623 565 871 995
CVX 3374 845 T 938 814 461 587 604 1002 720
DD 3170 820 819 799 732 389 554 582 881 764
DIS 3710 935 911 1005 859 652 610 559 811 1078
GE 6701 1479 1501 1912 1809 1515 1071 816 1365 1934
GM 5391 1240 1301 1528 1322 1097 738 647 1009 1900
HD 4919 1118 1135 1360 1306 930 732 737 1014 1506
HPQ 5016 1272 1183 1411 1150 1062 665 606 906 1777
IBM 8949 2178 2229 2381 2161 1866 1336 1040 1648 3059
INTC 8884 2045 2081 2312 2446 2548 1018 752 1175 3391
JNJ 4092 952 978 1068 1094 694 705 694 996 1003
JPM 4957 1186 1112 1450 1209 922 783 676 1087 1489
KO 4212 942 949 1210 1111 614 756 741 1062 1039
MCD 3248 776 789 909 774 509 551 527 857 804
MMM 3603 1059 968 874 702 497 623 688 1008 787
MRK 5133 1199 1248 1370 1316 929 850 769 1165 1420
MSFT 8900 2074 2074 2314 2438 2473 1147 851 1355 3074
PFE 6113 1310 1351 1760 1692 1291 932 814 1215 1861
PG 3893 987 937 1052 917 556 675 747 1031 884

T 2481 613 564 641 663 383 460 343 568 27
UTxX 2479 742 624 610 503 300 425 520 680 554
VZ 3047 732 731 803 781 460 493 538 730 826
WMT 4930 1123 1144 1404 1259 853 835 709 1096 1437
XOM 4328 1045 1041 1139 1103 642 789 775 1115 1007
All 139879 33759 33169 37980 34971 26267 21810 20270 30337 41195

Notes: This table reports the number of options in the different maturity and moneyness categories. The
different categories of maturity, T, are labelled as follows: short term (ST) has 7' < 21, middle term (MT)
has 21 < T < 63. long term (LT) has 63 < T' < 126, and very long term (VLT) has 126 < T. Moneyness,
Mon, is calculated as the ratio of the asset price to the strike price. The different categories of moneyness
are labelled as follows for call options: deep in the money, (DITM) has Mon > 1.1, in the money (ITM)
has 1.1 > Mon > 1.025, at the money (ATM) has 1.025 > Mon > 0.975, out of the money (OTM) has
0.975 > Mon > 0.9, and deep out of the money (DOTM) has 0.9 > Mon. For put options the (D)ITM and
(D)OTM categories are reversed.
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Table 5: Average price of options across maturity and moneyness

Stock All ST MT LT VLT DITM ITM ATM OTM DOTM
AA 2.519 2.167 2.388 2.584 3.068 7.164 3.392 2127 1.454 0.707
AIG 4.519 3.831 4.058 4.848 5.280 14.900 6.416 3.728  2.197 1.011

AXP 4.307 3.428 3.810 4.788 5.637 12.565 6.161 3.828  2.339 1.229
BA 4.110 3.260 3.409 4.267 5.294 12.009 5.209  3.252  1.905 0.880

BAC 3.819 3.196  3.302 3.851 4.792 12.066 5.228 3.020 1.738 0.991
C 3.989 3.306 3.636 4.094 4.833 11.286 4.446  2.807 1.642 0.907
CAT 4.470 3.589  3.799 4.549 6.084 14.242 5.635 3.451 1.904 0.928
CVX 4.116 3.578  3.500 4.280 5.072 13.583 5.659  3.295 1.702 0.845
DD 3.017 2374  2.621 3.099 4.090 10.020 4.331 2389 1.445 0.789
DIS 2.737 2.135 2.366 2.861 3.642 7.453 3.526  2.301  1.394 0.675
GE 4.940 4.381 4.342  4.870 5.966 12.915 5.400 3.750  2.200 0.873
GM 3.949 3.356  3.471 3.864 5.075 10.921 4.825 3.101 2.021 0.897
HD 3.651 3.246  3.229  3.665 4.349 10.522 4.321  2.800 1.669 0.833
HPQ 4.880 4.275 4.005 5.067 6.220 12.117 5.978  3.847  3.102 1.403
IBM 9.274 7.454 8.038 9916 11.677 27.336  10.236 6.596  3.908 1.637
INTC 7.374 5.887 5.899 7.522 9.733 17.421 7493 5.756  3.736 1.409
JNJ 4.647 3.707  4.142  4.600 5.961 14.344 5.800 3.211  1.842 0.904

JPM 3.940 3.437  3.146  4.020 5.067 10.539 4.996 3.427  2.017 0.935
KO 3.499 2.860 3.079 3.492 4.407 11.423 4.537 2563 1.491 0.780

MCD 2.481 2.000 2.049 2.580 3.287 7.462 3.259  1.852 1.194 0.578
MMM 5.643 4.727  5.040 5.918 7.512 19.091 7.656 4.184 2.194 1.247
MRK 5.015 3.843 4.310 5.378 6.372 14.756 5.944 3.832  2.293 0.959
MSFT 8.032 6.688 6.416 8.537 10.072 19.853 7.562  5.625  3.457 1.382
PFE 4.481 3.509  3.507 4.562 5.925 11.856 5.138 3.665  2.089 0.954
PG 4.863 4.460 3.979 5.074 5.956 16.108 6.301  3.769  1.980 0.977

T 2.459 2.369 2.021  2.422 2.950 7.614 3.062  1.874 1.140 0.674
UTX 4.440 3.930 4.070 4.400 5.700 15.215 6.333 3.522 1.939 1.085
VZ 2.930 2,406 2.143 3.244 3.836 9.288 3.871  2.179  1.340 0.722
WMT 3.685 2,981 3.103 3.787 4.726 10.710 4.641 2.802 1.637 0.955
XOM 3.704 3.332  3.361 3.589 4.499 12.095 4.981 2.684 1.431 0.657
All 4.848 4.014 4121 4.984 6.194 14.313 5.670  3.518  2.109 1.047

Notes: This table reports the average price of options in the different maturity and moneyness categories.
See the notes to Table 4 for the definition of the categories.
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Table 6: Average ISD of options across maturity and moneyness

Stock All ST MT LT VLT DITM ITM ATM OTM DOTM
AA 33.04 35.15 33.11 32.21 31.23 36.48 30.61 30.76  31.55 35.13
AIG 28.34 30.88 29.00 27.57 26.10 33.99 2576 24.53 25.80 31.54
AXP 32.70 34.50 32.26 32.80 30.51 36.35 30.15 29.45 30.32 37.11
BA 31.21 33.27 3147 3097 29.51 3493 2844 29.11 28.44 33.65
BAC 28.85 31.74 29.78 28.44 26.03 35.04 25.53 24.20 25.57 33.74
C 33.01 36.97 33.42 31.68 30.63 40.90 2793 27.81 2791 36.79
CAT 29.85 31.00 29.84 29.54 28.97 33.03 2798 28.25 28.30 31.67
CvX 23.83 25.15 23.85 23.77 22.58 28.57 2242 2229 2242 25.76
DD 27.25 2831 27.27 26.77  26.60 32.42  25.60 24.04 25.34 30.70
DIS 32.90 35.36 3258 32.02 31.68 37.67 30.09 28.76 29.65 36.42
GE 31.34 35.59  31.37  30.38  29.09 38.56 26.76 26.44 26.46 34.55
GM 40.88 40.74 41.82 40.64 40.34 46.14 34.01 31.09 33.24 48.13
HD 33.24 36.22  33.90 32.68 30.85 38.66 29.81 29.28 29.21 36.55
HPQ 41.17 44.72 41.92 40.38 37.59 45.13 3732 36.10 37.86 43.86
IBM 33.70 37.11  33.96 32.98 30.96 38.93  29.58 29.04 29.41 36.66
INTC 43.19 48.26  42.30 42.47  40.60 46.81 38.45 37.27  38.32 45.19
JNJ 25.68 27.62 25.57 25.50 24.36 30.34 23.80 22.08 23.56 28.94
JPM 33.71 36.74 33.58 33.48 31.28 38.73  29.60 28.33 29.42 38.64
KO 26.04 28.01 26.47 25.62 24.55 31.12  24.08 22.08 23.84 30.04
MCD 28.84 30.50 28.98 28.58 27.41 33.76  27.03 25.33 27.06 31.54
MMM 25.58 27.05 25.20 25.08 24.60 30.74 23.15 23.35 23.78 29.24
MRK 28.83 30.66 28.95 28.40 27.57 32.61 26.63 25.84 26.67 31.42
MSFT 38.16 43.91 38.05 36.78 34.93 43.55 3191 32.05 32.10 41.05
PFE 31.60 34.30 3212 31.15 29.64 35.37 2896 28.97 28.92 33.50
PG 25.81 28.57 25.15 25.35 24.18 34.28 2294 2276 23.10 29.30

T 31.68 36.46 30.42 30.58 29.66 40.07  26.91 26.60 26.83 37.01
UTX 28.03 29.68 28.33 27.34 26.16 34.70 2539 25.18 25.84 32.46
VZ 28.92 31.56  28.09 29.19 27.03 35.08 2590 24.06 25.63 33.95
WMT 30.12 32.58 30.70 29.49 28.18 34.38 26.81 27.00 27.11 33.56
XOM 24.02 25.86 24.02 23.52 22.92 28.99 22,51 21.87 22,51 26.02
All 32.12 34.82 3218 31.53 30.20 38.35 28.22 27.18  27.96 36.19

Notes: This table reports the average ISD, implied standard deviation, in percentage terms of options
in the different maturity and moneyness categories. See the notes to Table 4 for the definition of the
categories.
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Table 11: MCS using dollar errors

Stock 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 #
AA ® * ® 3
AIG * * * * * * * * * * * * 13
AXP * * * 4
BAC * * * * * * * * 12
CAT * * * * 6
CVX * * * * * * 6
DD * * * * * * * * * * 12
GE * * * * * * * * * * * * * 14
HPQ * * * * * * 6
INJ * * * * * * * * * * * * * * * 15
JPM * * * * * * 6
MCD * * * * * * * * * * * 12
UTx * * 2
XOM * * 2

# 3 8 10 15 20 22 28 19 24 16 19 20 27 18 22 271

Notes: This table reports the MCS using dollar errors. The MCS was constructed using daily
RMSE as the loss function, the MaxT test statistic, and using a significance level of 10%. The
15 models are respectively: (1) CV, (2) GARCH, and (3) NGARCH with normal errors, (4)
GARCH and (5) NGARCH with symmetric GED errors, (6) GARCH and (7) NGARCH with
symmetric NIG errors, (8) GARCH and (9) NGARCH with symmetric VG errors, (10) GARCH
and (11) NGARCH with skewed GED errors, (12) GARCH and (13) NGARCH with skewed
NIG errors, (14) GARCH and (15) NGARCH with skewed VG errors. The last row reports the
number of times a model is in a MCS and the last column reports the number of models in the
MCS for each stock.
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Table 12: MCS using ISD errors

Stock 1 2 3 4 5 6
AA *
AIG *
AXP
BA
BAC *

8 10 11 12 13 14 15

* *

Ik

*

E O N |
* X ¥ ©
*
*

* %

CAT
CVvX *

* ¥ ¥ X ¥
*

—_

[
S WHER AR P OODDWOUNIN T TITNDNDNERFRENEREDNTERODSD NSO O

DIS
GE *
GM
HD * * * * *
HPQ
IBM
INTC *
INJ *
JPM *
KO *
MCD *
MMM
MRK *
MSFT
PFE *
PG

*

*
ESE S S

*
S I S O G
* ¥ ¥ *

* ¥ X X ¥

EE S
*
*
—_

* % X X X X ¥
*
*

* X K X X X ¥
—

*
S SRS S

UTX

* % ¥ ¥ ¥
—

WMT
XOM *

KK KK KK KK K K K KK KKK KK KK KKK KK KX

*
¥ KK KK K K K KK K X K K K KX

# 0 1 7 6 18 9 28 5 21 6 17 9 29 6 21 183

Notes: This table reports the MCS using ISD errors. The MCS was constructed using daily
RMSE as the loss function, the MaxT test statistic, and using a significance level of 10%.
The 15 models are respectively: (1) CV, (2) GARCH, and (3) NGARCH with normal errors,
(4) GARCH and (5) NGARCH with symmetric GED errors, (6) GARCH and (7) NGARCH
with symmetric NIG errors, (8) GARCH and (9) NGARCH with symmetric VG errors, (10)
GARCH and (11) NGARCH with skewed GED errors, (12) GARCH and (13) NGARCH
with skewed NIG errors, (14) GARCH and (15) NGARCH with skewed VG errors. The
last row reports the number of times a model is in a MCS and the last column reports the
number of models in the MCS for each stock.
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Table 13: Overall statistics for the MCS’s using ISD errors across various dimensions

Panel A: Across option type

Subset 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 # Best Worst
All 0 1 7 6 18 9 28 5 21 6 17 9 29 6 21 183 13 1
Call 0 2 4 3 13 8 26 5 18 4 13 8 29 5 16 154 13 1
Put 0 5 15 11 25 13 30 10 26 7T 24 12 26 10 24 238 7 1
Panel B: Across maturity
Subset 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 # Best Worst
ST 1 2 10 6 18 7 25 4 18 5 17 9 25 7 20 174 7,13 1
MT O 2 16 4 22 7 28 5 25 5 19 7T 24 5 21 190 7 1
LT 1 3 13 8§ 19 11 28 10 26 6 19 11 24 9 21 209 7 1
VLT 2 T 16 12 22 17 29 15 28 11 22 17 28 14 27 267 7 1
Panel C: Across moneyness
Subset 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 # Best Worst
DITM 0 8 18 10 21 10 25 7T 23 10 23 12 30 10 24 231 13 1
ITM 1 8 13 15 24 21 28 17 26 16 22 21 28 19 23 282 7,13 1
ATM 1 10 13 18 19 23 24 19 23 18 18 23 24 21 21 275 7,13 1
OT™M 1 6 11 11 21 18 28 16 26 10 15 16 24 14 21 238 7 1
DOTM 1 3 5 4 14 8 29 5 17 4 11 7T 23 5 11 147 7 1
Notes:  This table reports overall statistics for the MCS using ISD errors across option type (call or put),

maturity, and moneyness. The individual MCS’s were constructed using daily RMSE as the loss function, the
MaxT test statistic, and using a significance level of 10%. The 15 models are respectively: (1) CV, (2) GARCH,
and (3) NGARCH with normal innovations, (4) GARCH and (5) NGARCH with symmetric GED innovations, (6)
GARCH and (7) NGARCH with symmetric NIG innovations, (8) GARCH and (9) NGARCH with symmetric VG
innovations, (10) GARCH and (11) NGARCH with skewed GED innovations, (12) GARCH and (13) NGARCH
with skewed NIG innovations, (14) GARCH and (15) NGARCH with skewed VG innovations. The last three
columns report the total number of models in the MCS and the modess which are most frequently and least
frequently in the MCS.

54



Research Papers

| CREATES

2011 Center for Research in Econometric Analysis of Time Series

2011-37: Torben G. Andersen, Tim Bollerslev, Peter F. Christoffersen and
Francis X. Diebold: Financial Risk Measurement for Financial Risk
Management

2011-38: Malene Kallestrup-Lamb: The Role of the Spouse in Early Retirement
Decisions for Older Workers

2011-39: Torben Schmith, Sgren Johansen and Peter Thejll: Statistical analysis
of global surface air temperature and sea level using cointegration
methods

2011-40: Sgren Johansen and Bent Nielsen: Asymptotic theory for iterated
one-step Huber-skip estimators

2011-41: Luc Bauwens, Arnaud Dufays and Jeroen V.K. Rombouts: Marginal
Likelihood for Markov-switching and Change-point Garch Models

2011-42: Manuel Lukas: Utility-based Forecast Evaluation with Multiple
Decision Rules and a New Maxmin Rule

2011-43: Peter Christoffersen, Ruslan Goyenko, Kris Jacobs, Mehdi Karoui:
[lliquidity Premia in the Equity Options Market

2011-44: Diego Amaya, Peter Christoffersen, Kris Jacobs and Aurelio
Vasquez: Do Realized Skewness and Kurtosis Predict the Cross-
Section of Equity Returns?

2011-45: Peter Christoffersen and Hugues Langlois: The Joint Dynamics of
Equity Market Factors

2011-46: Peter Christoffersen, Kris Jacobs and Bo Young Chang: Forecasting
with Option Implied Information

2011-47: Kim Christensen and Mark Podolskij: Asymptotic theory of range-

based multipower variation

2011-48: Christian M. Dahl, Daniel le Maire and Jakob R. Munch: Wage
Dispersion and Decentralization of Wage Bargaining

2011-49: Torben G. Andersen, Oleg Bondarenko and Maria T. Gonzalez-Perez:
Coherent Model-Free Implied Volatility: A Corridor Fix for High-
Frequency VIX

2011-50: Torben G. Andersen and Oleg Bondarenko: VPIN and the Flash Crash

2011-51: Tim Bollerslev, Daniela Osterrieder, Natalia Sizova and George
Tauchen: Risk and Return: Long-Run Relationships, Fractional
Cointegration, and Return Predictability

2011-52: Lars Stentoft: What we can learn from pricing 139,879 Individual
Stock Options



