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The dynamic dependencies in financial market volatility are generally well described by a
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volatilities to returns, we show that the equilibrium variance risk premium estimated with
the intraday data within the fractionally cointegrated system results in non-trivial return
predictability over longer interdaily and monthly horizons. These results in turn suggest
that much of the existing literature seeking to establish a risk-return tradeoff relationship
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1 Introduction

We develop a unified framework for jointly modeling the dynamic dependencies and interrelated-

ness in aggregate stock market returns, realized volatilities, and options implied volatilities. Our

estimation results rely on newly available high-frequency intraday data for the S&P 500 market

portfolio and the corresponding VIX volatility index, along with frequency domain inference pro-

cedures that allow us to focus on specific dependencies in the data. Our formal model setup is

based on the co-fractional VAR of Johansen (2008, 2009). We show that the longer-run depen-

dencies inherent in the high-frequency data are consistent with the implications from the stylized

equilibrium model in Bollerslev, Sizova, and Tauchen (2011) that directly links the dynamics of the

two volatility measures and the returns. Further corroborating the qualitative implications from

that same theoretical model, we show that the variance risk premium estimated as the long-run

equilibrium relationship within the fractionally cointegrated system results in non-trivial return

predictability over longer interdaily and monthly return horizons.

An enormous empirical literature has been devoted to characterizing the dynamic dependencies

in stock market volatility, and the linkages between volatilities and returns. The most striking

empirical regularities to emerge from this burgeon literature are: (i) volatility appears to be highly

persistent, with the longer-run dependencies well described by a fractionally integrated process

(see, e.g., Ding, Granger, and Engle, 1993; Baillie, Bollerslev, and Mikkelsen, 1996; Andersen and

Bollerslev, 1997a; Comte and Renault, 1998); (ii) volatilities implied from options prices typically

exceed the corresponding subsequent realized volatilities, implying that the reward for bearing

pure volatility risk is negative on average (see, e.g., Bakshi and Kapadia, 2003; Carr and Wu,

2009; Bollerslev, Gibson, and Zhou, 2011); (iii) the volatility risk premium, defined as the dif-

ference between options implied and realized volatilities, tends to be much less persistent than

the two individual volatility series, pointing to the existence of a fractional cointegration type

relationship (see, e.g., Christensen and Nielsen, 2006; Bandi and Perron, 2006); (iv) volatility re-

sponds asymmetrically to lagged negative and positive returns, typically referred to as a “leverage

effect” (see, e.g., Black, 1976; Nelson, 1991; Bollerslev, Litvinova, and Tauchen, 2006); (v) counter

to the implications from a traditional risk-return tradeoff, or “volatility feedback,” type relation-

ship, returns are at best weakly positively related, and sometimes even negatively related, to past
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volatilities (see, e.g., French, Schwert, and Stambaugh, 1987; Glosten, Jagannathan, and Runkle,

1993; Campbell and Hentschell, 1992).

The co-fractional VAR for the S&P 500 returns, realized volatilities, and VIX volatility index

developed here is generally consistent with all of these empirical regularities. In contrast to most

of the studies cited above, which are based on daily or coarser sampled data, our use of ultra

high-frequency 5-minute observations on returns and volatilities allows for much sharper empir-

ical inference concerning the second-order dynamic dependencies and frequency specific linkages

between the different variables. This in turn helps us to identify the periodicities in volatility and

risk premia that are likely more important economically.

Formally, the spectral density on [−π, π] (or on [−π, π]m in the m-dimensional case) of a

discretely sampled continuous time covariance stationary process is well known to be a folded up

version of the spectral density of the continuous time process.1 Aliasing effectively reallocates

the spectral mass above the Nyquist frequency to the spectrum at all lower frequencies, but not

uniformly so, thereby invariably creating some distortions. Therefore, if we think of 5-minutes as

very close to continuous time, such distortions are largely absent. In the same vein, the estimation

in the time domain of the co-fractional VAR captures nearly all dynamics with arguably minimal

distorting aliasing effects. Moreover, since the coefficients of the co-fractional VAR are defined by

second-order moments, which are known to be more precisely estimated the more finely sampled

the data so long as the number of parameters to be estimated remains small relative to the size

of the data, the efficiency of the inference is also generally enhanced by our use of high-frequency

data.

The plan for the rest of the paper is as follows. We begin in the next Section 2 with a description

of the high-frequency data underlying our empirical investigations. Section 3 characterizes the

long-run dynamic dependencies in the two variance series, including the variance risk premium and

the evidence for fractional cointegration. Section 4 details the risk-return relationships inherent

in the high-frequency data based on different variance proxies across different frequency bands.

These results in turn motivate our empirical implementation of the fractionally cointegrated VAR

system discussed in Section 5. Section 6 concludes.

1Technically, the spectral density of a discrete time scalar process may be thought of as identical copies over
(−∞,∞) on intervals [(2k − 1)π, (2k + 1)π], k = 0,±1,±2, . . ., with the obvious analogy in the vector case.
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2 Data

Our analysis is based on high-frequency tick-by-tick observations on the CME futures contract

for the S&P 500 aggregate market portfolio and the corresponding CBOE V IX volatility index.

The data were obtained from Tick Data Inc. and cover the period from September 22, 2003 to

December 31, 2008.

Following standard practice in the literature as a way to to guard against market-micro struc-

ture contaminants (see, e.g., Andersen, Bollerslev, Diebold, and Ebens, 2001), we transform the

original tick-by-tick data into equally spaced 5-minute observations using the last price within

each 5-minute interval. All-in-all, this leaves us with 78 observations for each of the two series for

every trading trading day in the sample.2

We denoted the corresponding geometric (log) returns by

rt+1 = log(Pt+1)− log(Pt), (1)

where the time subscript t refers to the 77 intraday return observations plus the one overnight

return per trading day. Following Andersen and Bollerslev (1998), we estimate the one-month (or

22 trading days) ex-post return variation in a model-free manner by summing all of the within

month squared returns,

RVt =
78×22∑
i=1

r2t+i. (2)

We define the corresponding risk-neutral return variation from the CBOE VIX volatility index as3

V IX2
t =

30

365
(V IXCBOE

t )2. (3)

To help stabilize the two variance measures and render them more amenable to time series mod-

eling, we transform both into logarithmic units,

rvt = log (RVt) , (4)

vix2
t = log

(
V IX2

t

)
. (5)

2Out of a total of more than 100,000 5-minute intervals only 447 are missing. We replace these by backfilling.
Further details concerning the data are available in Bollerslev, Sizova, and Tauchen (2011), where the same data
have been analyzed from a different perspective over a slightly shorter time-span.

3The scaling by 30/365 transforms the squared annualized observations on the CBOE index into monthly units.
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The overnight returns are purposely included in the definition of the raw return series and the

calculation of the realized variances in equations (1) and (2), respectively. The inclusion of the

overnight return obviously inflates the unconditional variance of the returns relative to that of an

equally spaced intraday 5-minute return series. To alleviate this problem we re-structure all three

data series into intraday units by deleting all of the observations corresponding to multiples of

t = 78. With the loss of one month at the end of the sample due to the calculation of rvt, our

final data set thus covers the period from September 22, 2003 to November 28, 2008, for a total

of T = 1307× 77 = 100, 639 intraday observations.

Standard summary statistics for each of the three series are reported in Table 1. The high-

frequency returns are, of course, approximately serially uncorrelated, with a mean indistinguishable

from zero. Consist with the extant literature, the unconditional mean of the realized variance is

lower than the mean of the risk-neutral variance, indicative of an on average positive risk premium

for bearing volatility risk.4 At the same time, the risk-neutral variance appears slightly less volatile

than the realized variance. Of course, both of the variance series exhibit substantial persistence

with extremely slow decay in their autocorrelations. The next section further details these dynamic

dependencies in the two variance series.

3 Variance Dynamics

3.1 Long-Run Volatility Dependencies

The notion of fractional integration often provides a convenient statistical framework for captur-

ing long-run dependencies in economic time series (see, e.g., the discussion in Baillie, 1996). A

stationary time series yt is said to be fractionally integrated of order d ∈ (0, 0.5), written I(d), if

∆dyt = et, (6)

where et is an I(0) process, and ∆d = (1− L)d denotes the fractional difference operator,

∆d ≡ (1− L)d =
∞∑
i=0

(−1)i
(
d

i

)
Li. (7)

4If we split the sample into a pre-crisis and a post-crisis period, with the start of the crisis defined as February
27, 2007 following the official timeline of the Federal Reserve Bank of St. Louis, the sample means of rvt equal
2.210 and 3.593, respectively, compared to 2.718 and 3.824 for the vix2

t series. Hence, the unconditional variance
risk premium is even larger based on data over the pre-crisis period only.
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The spectral density of the process yt has a pole of the order ω−2d for frequency ω near the origin,

while the filtered series ∆dyt has finite spectral density at the origin.

There is ample empirical evidence that financial market volatilities are well described by co-

variance stationary I(d) processes with fractional integration parameter fairly close to, but less

than, 0.5. in a narrow range between 0.35 and 0.45. For instance, Andersen, Bollerslev, Diebold,

and Ebens (2001) report average fractional integration parameters for a set of realized equity re-

turn volatilities of approximately 0.35, while the results for foreign exchange rates in Andersen,

Bollerslev, Diebold, and Labys (2003) suggest that d is close to 0.4. Similarly, Christensen and

Nielsen (2006) find that daily realized and options implied equity index volatilities are fractionally

integrated with d around 0.4.5

Most of the existing literature, however, including the above-cited studies, have relied on

daily data or coarser sample data for determining d. By contrast, both of our volatility series

are recorded at a 5-minute sampling frequency. Hence, as a precursor to our more detailed joint

empirical analysis, we begin by double checking that the folding of the spectral densities associated

with the lower sampling frequency have not distorted the previously reported estimates for d.

To this end, Figure 1 shows the raw log-log periodogram of the 5-minute vix2
t and rvt series

at the harmonic frequencies ωj =
2π
T
j, j = 1, 2, . . . , T/2. The periodograms of the two variance

variables are quite similar, with most of the power concentrated at the low frequencies. At the

same time, there appears to be three distinct regions within the frequency domain: a relatively

short leftmost low-frequency region up until ω ≈ 0.0011, where the log-log periodograms are

linear and nearly flat; an intermediate region between ω and ω ≈ 0.0806, with more steeply sloped

periodograms; and a third rightmost region to the right of ω corresponding to the within-day

variation in the volatilities, where the periodograms are quite erratic.6

The approximate linearity of the log-log periodograms for the low frequencies close to zero

directly points to long-memory dependencies, or fractional integration. We estimate the fractional

integration parameter d using both the log-periodogram regression of Geweke and Porter-Hudak

(1983) and the local-Whittle likelihood procedure of Künsch (1987). For both estimators, we

5One notable exception is Bandi and Perron (2006), who argue that d is in excess of 0.5, and thus outside the
stationary region.

6This overall general shape mirrors that of the 5-minute Deutschemark-Dollar absolute returns previously de-
picted in Andersen and Bollerslev (1997a).
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set the required truncation parameter to jmax = 15, corresponding to ω and periodicities of 31
2

months and longer being used in the estimation.7 The resulting estimates for d, with asymptotic

standard errors in parentheses, for the vix2
t series are 0.376 (0.166) using the log-periodogram

and 0.375 (0.129) using the local Whittle approach. For the rvt series, the same two estimates

are 0.330 (0.166) and 0.338 (0.129), respectively. As such, our findings for the 5-minute volatility

series are entirely consistent with the typical estimates for d reported in the existing literature.

3.2 Fractional Cointegration in Variances

The preceding results strongly suggest that each of the two high-frequency variance series are

individually long-memory processes. At the same time, one might naturally expect that the two

variance series are tied together in the long-run in the form of fractionally cointegrated type

relationship.8

The simplest case of fractional cointegration occur when the two individual series share the

same order of fractional integration, but their difference is integrated of a lower order. In the

present context this case naturally corresponds to the ex-post logarithmic variance risk premium,

vpt = vix2
t − rvt. (8)

The fact that vpt exhibits less persistence than the two individual variance series, has previously

been documented with daily and lower frequency data by Christensen and Nielsen (2006), Bandi

and Perron (2006), and Chernov (2007), among others.

To establish a similar long-run relationship between our two high-frequency variance series, we

begin by testing for equality of the fractional difference parameters using the Wald test of Robinson

(1995). The asymptotically distributed χ2
1 test statistic equals 0.123 when the d’s are estimated

by the local Whittle procedure, and 0.054 for the d’s estimated by the log-periodogram estimator.

Either way, there seems to be little evidence against the hypothesis that the two variance series

are indeed fractionally integrated of the same order.

7Based on visual inspection of Figure 1 this seemingly covers the frequency range where the long-memory
behavior hold true; see, also the related discussion in Sowell (1992).

8Following Granger (1996), if a linear combination of two fractionally integrated variables is integrated of a
lower order than those of the individual series, then the variables are said to be fractionally cointegrated; see also
Robinson and Marinucci (2003).
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To further explore the possibility of fractional cointegration, we next consider the linear re-

gression,9

rvt = β0 + β1vix
2
t + νt. (9)

The residuals from this regression obviously reduces to the variance risk premium defined in

equation (8) above for β0 = 0 and β1 = 1. However, rather than restricting the relationship

between rvt and vixt to be the same across all frequencies, we estimate the regression using low-

pass frequency domain least squares (FDLS) (see, e.g., Robinson, 1994). As before, we truncate

the regression at jmax = 15, corresponding to periodicities of 31
2
months and longer. We rely on the

local-Whittle approach for estimating d, together with the techniques developed by Christensen

and Nielsen (2006) and Shimotsu and Phillips (2006) for estimating the asymptotic standard

errors.

The resulting FDLS estimate for the degree of fractional integration of the residuals equals

d̂(ν) = 0.101 (0.611). As such, the results clearly support the notion that the high-frequency vix2
t

and rvt series are indeed fractionally cointegrated. Moreover, the FDLS estimate of β1 equals

1.268 (0.150), slightly larger than unity but insignificantly so.

3.3 Dynamic Dependencies Across Frequencies

In addition to assessing the integration order of rvt and vix2
t , and the long-run relationship be-

tween the two variance measures, the joint distribution of the variance measures may be further

illuminated by decomposing each of the variables into their long-run, intermediate, and short-run

components. In order to do so, we rely on time-domain band-pass filters for extracting the specific

periodicities from the observed series.10

The aforementioned Figure 1 reveals a change in the slopes of the periodograms for the real-

ized and risk-neutral variances for frequencies around ω ≈ 0.0011, or periods around 31
2
months.

9This regression is analogous to the Mincer-Zarnowitz style regression commonly used for evaluating the quality
of macroeconomic time series forecasts. That is, it evaluates whether vix2

t is conditionally unbiased for the ex-post
realized variance rvt.

10Compared to frequency-domain filters (see, e.g., Hassler, Lundvik, Persson, and Soderlind, 1994) the time-
domain filters applied here have the advantage that the filtered series are time invariant and do not depend on
the length of the sample. Similar filters to the ones used here have previously been applied by Andersen and
Bollerslev (1997a) for decomposing high-frequency foreign exchange rates into interday and intradaily components.
For additional discussion of band-pass filtering see also Baxter and King (1999), where the same techniques have
been used for extracting business cycle components of macroeconomic times series.
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Motivated by this observation, we therefore extract a low-frequency, or long-run, component cor-

responding to dependencies in excess of 31
2
months. That is, for frequency ω we define a lowpass-

filtered series by,

y
(low)
t =

k∑
i=−k

aiL
iyt, (10)

where

ai =

{
sin(iω)

iπ
−
(

ω
π
+ 2

∑k
j=1

sin(jω)
jπ

− 1
)
/ (2k + 1) , ∀i = ±1,±2, . . . ,±k

1−
∑−1

h=−k ah −
∑k

h=1 ah ∀i = 0.
(11)

Intuitively, the y
(low)
t series essentially equates the part of the spectrum in Figure 1 to the right of

ω to zero.

Looking at the two sample periodograms in Figure 1, there is a distinct change in the general

patterns for frequencies in excess of the daily frequency ω ≈ 0.0806.11 To isolate the interdaily

component with periodicities of less than 31
2
months from the intraday dynamics, we therefore

compute an intermediate-frequency series. Specifically, for frequencies in the band ω < ω < ω, we

define the bandpass-filtered series by,

y
(band)
t =

k∑
i=−k

(bi − ai)L
iyt, (12)

where

bi =

{
sin(iω)

iπ
−
(

ω
π
+ 2

∑k
j=1

sin(jω)
jπ

− 1
)
/ (2k + 1) i = ±1,±2, . . . ,±k

1−
∑−1

h=−k bh −
∑k

h=1 bh i = 0.
(13)

Finally, the highpass-filtered series corresponding to periodicities of a day and shorter is simply

computed by,

y
(high)
t = yt −

k∑
i=−k

biL
iyt. (14)

Note that by definition yt ≡ y
(low)
t + y

(pass)
t + y

(high)
t .

The higher the value of the truncation parameter k, the closer the gains of the approximate

filters in equations (10), (12), and (14) are to the ideal gains of zero for the frequencies that are

11It is well known that the volatilities of high-frequency returns, or point-in-time volatilities, exhibit strong U-
shaped patterns across the trading day; see, e.g., Harris (1986) and Andersen and Bollerslev (1997b). By contrast,
the two volatility series analyzed here both measure the variation over a month, and as such even though they
behave differently intraday they do not show the same strong almost deterministic intraday patterns.
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filtered out and unity for the desired frequency bands. In the implementation reported on below,

we set k = 77 × 22 for all of the three filters, resulting in a loss of one month of observations at

the beginning and the end of the sample.

We first focus on the dynamics of the long-run components. Assuming that the effects of market

frictions and short-run fluctuations disappear in the long-run, the dynamics of the low-pass filtered

series should therefore more clearly reveal the underlying equilibrium relationships between the

variables. Figure 2 plots the two filtered variance measures rv
(low)
t and vix

2(low)
t defined by applying

the filter in equation (10). Consistent with the results in Section 3.2, the figure reveals strong co-

movements between the two low-frequency variance components. Indeed, the sample correlation

between the two low-pass filtered series equals Corr(rv
(low)
t , vix

2(low)
t ) = 0.920.

We further detail the relationship between vix2
t and rvt across all frequencies through measures

of their interrelatedness, or coherence.12 The coherence is analogous to the square of the correlation

between two series, taking values from zero (no relation) to one (perfect correlation). In contrast

to the standard correlation coefficient, however, the coherence is a function of frequency. The

coherence being close to zero for a certain frequency range thus indicates the absence of any

relation between the two series across those periodicities. As follows from the first panel in Figure

3 labeled “Total,” the coherence between vix2
t and rvt is close to one for the lowest frequencies, but

decreases to just around 0.2 for the higher frequencies. The almost perfect dynamic relationship

between the vix2
t and rvt series therefore only holds in the long-run.

To get a more nuanced picture of these dependencies, the remaining panels in Figure 3 show

the coherence for the high-pass, band-pass, and low-pass filtered variance series. The coherence

for the long-run components range between 0.8 and 0.95 across all frequencies. The coherence for

the band-pass filter variances is substantially lower and around 0.06, while the coherence for the

high-frequency components is practically zero.

In order to interpret these patterns, it is instructive to think about vix2
t as the sum of the

ex-post realized volatility rvt, a premium for bearing volatility risk, say ϱt, along with the corre-

sponding forecast error, say ξt,

vix2
t = rvt + ϱt + ξt. (15)

12Our estimates of the coherence measures are based on the classic Tukey-Hanning method; see, e.g., the discus-
sion in Granger and Hatanaka (1964).
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For low frequencies the coherence between vix2
t and rvt is close to one, implying that the influences

of ξt and ϱt are both fairly minor. This is also consistent with the findings that rvt is integrated

of a higher order than vpt = ξt + ϱt, and that most of the low frequency dynamics in vix2
t are

due to changes in the volatility. This close coherence is broken at the intermediate and ultra high

intraday frequencies, where most of the changes in vix2
t stem from changes in the risk premium

and/or expectational errors vis-a-vis the future realized volatility. These same arguments also

facilitate the interpretation of the empirical risk-return relationships, which we discuss next.

4 Risk-Return Relations

A large empirical literature has been devoted to the estimation of risk-return tradeoff relationships

in aggregate equity market returns (see, e.g., the discussion in Rossi and Timmermann, 2010, and

the many references therein). Much of this research is motivated by simple dynamic CAPM-type

reasoning along the lines of,

Et(rt+1) = γ σ2
t , (16)

where σ2
t represents the local return variance, and γ is interpreted as a risk aversion parameter.13

The actual estimation of this equation, of course, necessitates a proxy for σ2
t . By far the most com-

monly employed empirical approach relies on the (G)ARCH-M model (Engle, Lilien, and Robins,

1987) for jointly estimating the conditional mean of the returns together with the conditional

variance of the returns in place of σ2
t = V art(rt+1). Instead, by relying on the variance measures

analyzed above as directly observable proxies for risk, equation (16) may be estimated directly.

The following section explores this idea in our high-frequency data setting, keeping in mind the

preceding characterization of the underlying volatility dynamics.14

13The Merton (1980) model sometimes used as additional justification for this relationship formally involves the
excess return on the market. The requisite Jensen’s correction term for the logarithmic returns analyzed here
simple adds 1

2 to the value of γ. Also, the risk-free rate is essentially zero at the 5-minute level.
14The use of high-frequency based realized volatility measures in the estimation of a daily risk-return tradeoff

relationship has previously been explored by Bali and Peng (2006).
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4.1 Return-Variance Regressions

The basic risk-return relation in equation (16) may be conveniently expressed in regression form

as,

rt+1 = α+ βvt + ut+1, (17)

where vt denotes the specific variance proxy used in place of σ2
t . The first two rows of Table 2

labeled “Raw” show the results of this regression fitted with our our high-frequency data using

either rvt or vix
2
t in place of vt. The results are very weak. This is perhaps not surprising, in view

of the difficulty to detect a significant relationship in daily and coarser frequency data reported

in the extant literature.

But these raw regressions are also unbalanced and likely not very informative. They involve

an essentially white noise I(0) variable on the left-hand side (the return) and a strongly persistent

I(d) variable on the right-hand side (the realized or risk-neutral variance).15 Several means to cope

with such unbalanced regressions have been suggested in the literature. Maynard, Smallwood, and

Wohar (2012), in particular, focus explicitly on the case where the predictor variable is fractionally

integrated, and propose an approach to re-balance the regression. A similar approach has also

been applied by Christensen and Nielsen (2007), who consider a VAR framework in which the

level of returns is predicted by the fractionally filtered variance series.

A simplified version of the return equation in Christensen and Nielsen (2007) is given by,

rt+1 = α+ β∆dvt + ut+1, (18)

where ∆d ≡ (1 − L)d denotes the fractional difference filter.16 Based on the results reported in

the previous section we fix d ≡ 0.37. The resulting “Long-Memory Adjusted” regressions using

∆0.37rvt or ∆0.37vix2
t as risk proxies are reported in the next two rows of Table 2.17 Compared

to the “Raw” regressions considered above, both of the R2s are somewhat higher. The estimated

15This same statistical problem has also previously been discussed in the context of regression-based tests for
unbiasedness in the forward foreign exchange market by Baillie and Bollerslev (2000).

16More precisely, Christensen and Nielsen (2007) consider a modified version of equation (18), where both rt+1

and vt are detrended by their unconditional means and α ≡ 0. In addition, their VAR structure also allows past
returns to affect current returns.

17In implementing the fractional filters, we truncate the series expansion for (1− L)dvt at the beginning of the
sample, discarding the first week of filtered observations. All of the regressions reported in the table are based on
the identical sample period from September 30, 2003 to November 28, 2008.
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coefficient for the realized variance is now also statistically significant, but signal a negative risk-

return trade-off. By contrast, the fractionally differenced risk-neutral variance results in a positive

β̂ estimate, albeit statistically insignificant at the usual five-percent level. These mixed results are

perhaps again not surprising in view of the existing literature.

As highlighted in Section 3.2 above, another way to render the two variance series stationary,

and in turn balance the regression, is to consider their difference, i.e., the variance risk premium

vpt, as the proxy for risk. The last row in Table 2 labeled “Variance Risk Premium” reports the

results from this regression,

rt+1 = α+ βvpt + ut+1. (19)

The estimate of β is now positive and statistically significant. The regression R2 is also much

larger than for any of the other regressions reported in the table. Thus, the difference between

the two variance variables appears far more informative for the returns than each of the two

variance variables in isolation, whether in their raw or fractionally-filtered form. To help further

gauge these simple regression-based results, it is informative to decompose the variables into their

periodic components.

4.2 Risk-Return Relationships Across Frequencies

Following the analysis in Section 3.3, the return rt and the variance variables rvt, vix2
t , and

vpt, are naturally decomposed via band-pass filtering into their short-, intermediate-, and long-

run components. Table 3 summarizes the correlations between the resulting components for the

different variance variables with the same components of the return. Evidently, there is not much

of a relationship at the high and intermediate frequencies. Again, this is not surprising as one

might expect the association between risk and return to be more of a long-run than a short-run

phenomenon.

Indeed, the low-frequency correlations reported in the rightmost column in the table are all

much higher in magnitude. Somewhat paradoxically, however, the correlations are negative for

both of the individual variance variables, but positive and larger in magnitude for the variance

risk premium.18 In order to visualize this relationship, Figure 4 shows the low-pass filtered vp
(low)
t

18These results are also consistent with the monthly return regressions in Bollerslev, Tauchen, and Zhou (2009),
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and r
(low)
t series. The co-movement between the two series is apparent.

In a sum, neither of the two variance series, rvt and vix2
t , exhibit dynamic co-movements with

the returns over any of the three frequency bands that would support the notion of a positive

risk-return trade-off relationship. If instead the difference, i.e., the variance risk premium vpt, is

employed as a proxy for risk, the results are more in line with intuitive expectations regarding a

positive low-frequency risk-return tradeoff relationship.

The continuous time model developed by Bollerslev, Sizova, and Tauchen (2011) is useful for

interpreting of these results. In the first place, the volatility σ2
t in the basic dynamic CAPM

and equation (16) does not have the actual role of a volatility risk premium per se, but can

rather be viewed as a time-varying price on endowment (consumption) risk. The only variable

in that simplistic framework that carries a risk premium is consumption, so, despite the intuitive

appeal of (16), there really is no reason to expect raw variance variables to relate to returns in

any manner, except, perhaps, through some indirect mechanism that could be of either sign.19

On the other hand, in a generalized long run-risk model with uncertainty about the variability

of economic prospects (vol-of-vol), the difference in the variance variables, i.e., the variance risk

premium corresponding to ϱt in equation (15), is the key factor connecting returns and variability.

The difference is most highly associated with the vol-of-vol and overall economic uncertainty, and

that factor commands a substantial risk premium by investors with recursive utility and a strong

preference for early resolution of uncertainty. Consequently, the regression in (18) is entirely

consistent with more sophisticated versions of the dynamic CAPM.

To fully explore these relations between the return and the two variance measures, and the

implications thereof for return predictability, we next turn to the estimation of a joint model for

rt, rvt, and vix2
t , explicitly designed to accommodate the intricate dynamic and cross-variable

dependencies highlighted so far.

which suggest that the return predictability of the variance risk premium is maximized at a four months horizon.
Four months lie within the frequency-band classified as low-frequency here.

19The sign of the relationship between returns and variances have also previously been called into question on
theoretical grounds by Backus and Gregory (1993), among others.
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5 Co-Fractional System

The co-fractional VARmodel of Johansen (2008, 2009) affords a convenient statistical framework to

distinguish long-run and short-run effects in a system setting involving fractionally integrated I(d)

variables. Specifically, let zt ≡ (rvt , vix
2
t , rt)

′
denote the 5-minute 3 × 1 vector process. Guided

by the empirical findings in the previous sections, the simplified versions of the co-fractional VAR

model for zt estimated here, say CFVARd(p), takes the form,

∆dzt = γ(δ′
(
1−∆d

)
zt + ρ′) +

p∑
i=1

Γi

(
1−∆d

)i
∆dzt + ϵt, (20)

where ϵt denotes a vector white noise process with unconditional covariance matrix Ω.20

This dynamic CFVAR representation directly parallels the classical error-correction type rep-

resentation with cointegrated I(1) variables. The process zt contains the fractionally integrated

I(d) variables, analogous to the I(1) level variables in standard cointegration. The fractional dif-

ference operator ∆d = (1− L)d thus reduces the left-hand-side of equation (20) from an I(d) to an

I(0) process, just like the first difference operator for standard cointegrated systems reduces the

I(1) variables to I(0).21 The right-hand side of the equation therefore must also be I(0). The first

term
(
1−∆d

)
zt is what remains after applying the fractional difference operator, and thereby

must be I(d). The matrix γδ′ therefore has to be of reduced rank for this to be an I(0) process. In

this situation δ′
(
1−∆d

)
zt has the interpretation of a (fractional) error-correction matrix, with γ

the conformable matrix of impact coefficients. The second term on the right-hand side, involving

the matrix fractional distributed lag and powers of
(
1−∆d

)
applied to ∆dzt, directly mirrors the

matrix distributed lag in standard error-correction models, where powers of L are applied to first

differences of the underlying variables. The corresponding Γi matrices are essentially nuisance

parameters, with p taken sufficiently large to render the disturbance term ϵt serially uncorrelated.

The empirical evidence presented in Section 3 suggests that rvt and vix2
t are both I(d), but

that they fractionally cointegrate to an I(0) process, while rt is I(0). Consequently, the column

20Formal regularity conditions for the ϵt white noise process are spelled out in Johansen (2008, 2009).
21The application of the fractional difference operator ∆d to the returns might seemingly result in over-

differencing. However, as shown in Appendix A.1 for the specific representation of the CFVAR model adopted
here, the resulting return series is still I(0).
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rank of γδ′ should be equal to two, with the the natural normalization

δ′ =

(
−δ̃ 1 0

0 0 1

)
, (21)

and the corresponding matrix of impact coefficients

γ =

 γ11 γ12

γ21 γ22

γ31 γ32

 , (22)

left unrestricted. The parameter δ̃ naturally governs the long-run tie between rvt and vix2
t , which

in turn defines the variance error correction term as a linear combination of multiple lags of

(1−∆d)(vix2
t − δ̃ rvt ).

22

The parameters γ11 and γ21 capture any internal long-run relationships between the variance

error-correction term and the variance variables themselves, while γ31 captures the relationship

between the variance error-correction term and the returns, or the long-run dynamic “volatility

feedback” effect implied by the model. The corresponding short-run counterparts are determined

by the Γ
(31)
i and Γ

(32)
i parameters. Similarly, the long-run dynamic “leverage effect” depends on

the values of γ12 and γ22, with the corresponding short-run effects determined by Γ
(12)
i and Γ

(22)
i .

The overall degree of return predictability implied by the model is jointly determined by the γ3j

and Γ
(3j)
i parameters.

In sum, by estimating the CFVARd(p) model we draw on a richer information set than we did

in the previous sections. Importantly, by separately parameterizing the long-run and the short-run

dynamics of returns and the variance series, the model is able to accommodate empirically realistic

I(d) long-memory in the realized and the risk-neutral variances and their fractional cointegration,

while maintaining that the returns are I(0).

5.1 Estimation Results

To facilitate the estimation of the CFVARd(p) model we begin by fixing the value of the fractional

integration parameter d. The estimation then proceeds in two stages. In the first step, we use the

preset fractional differencing parameter d to construct the vector time series ∆dzt of filtered realized

22Note, the operator
(
1−∆d

)
only involves lags Lj , j ≥ 1, with no L0 term.
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variances, risk-neutral variances, and returns.23 In the second stage, we obtain parameter estimates

for the co-fractional model by iterated seemingly unrelated regression (SUR). We separately select

the number of lags for each of the three equations, allowing for different number of lags of rvt,

vix2
t , and rt in each of the equations as determined by Schwarz’ Bayesian Information Criterion

(BIC). Finally, we select the value of d that maximizes the Gaussian likelihood function subject

to the BIC chosen lag specifications.

Turning to the actual CFVAR estimation results reported in Table 4, we find that the likeli-

hood function is maximized at d = 0.37. This value of d is directly in line with the semiparametric

estimates discussed in Section 3.3. According to the BIC criteria the short-run dynamics of the re-

alized variance depends on four lags of the differenced rvt series and one lag of the differenced vix2
t

series, while the short-run dynamics of the implied variance depends on two lags of the differenced

rvt series, three lags of the differenced vix2
t series, and five lags of the differenced rt series. Mean-

while, the short-run dynamics of the returns depends on two lags of the differenced vix2
t series and

seven lags of the differenced rt. We will refer to this particular specification as the CFVAR0.37(7)

model below. The corresponding standard errors for the parameter estimates reported in the right

column of the table are based on 3,000 replications of a moving block bootstrap.24

In order to gauge the model fit, Figure 6 compares the spectra of the estimated CFVAR0.37(7)

model with the sample periodograms for rvt, vix
2
t , and rt, as well as the variance risk premium

vpt = vix2
t − rvt. The match between the model-implied and empircal spectra are exemplary.

Particularly noteworthy, the CFVAR model correctly matches the slopes of the spectra near the

origin that define the long-run behavior of the two variance series and the less persistent variance

risk premium.

The cointegrating vector associated with the realized and risk-neutral variances is estimated

to (−1.010, 1, 0). This fully parametric CFVAR-based estimate for δ̃ is even closer to unity (nu-

merically) than the FDLS estimate discussed in Section 3.2. Of course, a simple t-test does not

23We again truncate the fractional filter at the beginning of the sample, discarding the first weeks worth of
observation, so that the estimation is based on the identical September 30, 2003 to November 28, 2008 sample
period underlying the previously reported results in Tables 2 and 3.

24Specifically, using the semiparametric estimates for d we first fractionally filter the two variance series. We
then jointly resample blocks of the trivariate I(0) vector (∆drvt,∆

dvix2
t , rt)

′, with the length of the blocks set to
3 1
2 months. We then apply the inverse fractional filter to the resampled variance series and finally reestimate the

CFVAR model using the same SUR approach discussed in the text. With the exception of the semiparametric
first-step estimation of d, this bootstrap approach closely mimics that of Davidson (2002).
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reject the hypothesis that δ̃ = −1, while the absence of fractional cointegration, or δ̃ = 0, is

strongly rejected by the data. As such, our results are fully supportive of the notion of long-run

unbiasedness in variances.25

To more clearly illuminate the dynamic dependencies implied by the the CFVAR0.37(7) model

it is instructive to consider Impulse-Response Functions (IRF) associated with the shocks to the

“permanent” and two “transitory” components defined within the model. By definition, the

effect of the permanent shock decays hyperbolically and therefore persist over relatively long time

periods. The two transitory shocks, on the other hand, both decay at a fast exponential rate.

The identification of these shocks does not depend a priori on any known relations between the

volatility and return series.26 However, given the estimates of γ and δ in Table 4, the three

shocks have clear meanings. The first transitory shock, in particular, drives the wedge between

vix2
t and rvt, and has the interpretation of a shock to the ex-post variance premium. The second

transitory shock only affects the returns. The permanent shock is effectively a shock to rvt that is

unrelated to changes in the variance risk premium. This shock naturally also affects vix2
t through

expectations of future variances.

The first panel in Figure 7 shows the effect of the permanent shock on vix2
t and rvt. Initially,

both variances are driven up by almost the same amount, so that the permanent shock does not

initially affect the size of the variance risk premium. There is some discrepancy in the effect of the

shock over the intermediate daily to 31
2
months horizon, but the overlapping nature of the rvt series

complicates the interpretation of the difference. After 31
2
months the IRFs seem to merge and

decay at a common hyperbolical rate. Even at the one-year horizon, however, the “permanent”

shock still exercises a non-negligible effect on the rvt and vix2
t series.

The second panel in Figure 7 shows the IRFs for the first orthogonalized transitory shock

associated with the ex-post variance risk premium. This shock fully dissipates after approximately

31
2
months. It essentially reflects the difference between a shock to the ex-ante variance risk

premium and an unpredictable shock to the realized variance, or ϱt and −ξt, respectively, in the

25Comparable results based on coarser sampled monthly realized and options implied variances and semipara-
metric estimates for δ̃ ≈ 1 have previously been reported by Bandi and Perron (2006), among others.

26Following Gonzalo and Granger (1995), the permanent and transitory shocks may be constructed mechanically
from the ϵt’s by multiplication with the matrix G = [γ⊥ δ]

′
. The shocks may further be orthogonalized using the

method in Gonzalo and Ng (2001).
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notation of equation (15) above. The first effect naturally increases vix2
t , while the second effect

decreases rvt. The first effect is by far the largest over within day horizons, where the overlap in

rvt invariably temper the effect of any shock.

The third and final panel in the figure shows the effects of the second transitory return shock,

from which the simultaneous correlations with the variance and variance risk premium shocks

have been removed. This shock has no initial effect on either variance series. However, there is

a negative within day impact on the vix2 akin to a multi-period dynamic “leverage effect,” as

previously discussed by Bollerslev, Litvinova, and Tauchen (2006).

Turning to Figure 8, we show the IRFs for the returns and the two variance shocks. The initial

effect both shocks is to decrease the returns. This is entirely consistent with the widely documented

“leverage effect” and negative contemporaneous correlations between returns and volatilities. Both

of the shocks in turn result in an increase in future returns, as would be expected by a “volatility

feedback” type effect, with the variance risk premium shock exercising the slightly larger influence.

Taken as a whole, the IRFs discussed above suggest the potential for non-trivial return pre-

dictability through the joint CFVAR modeling of the returns and the two variance measures. The

next section explores this idea.

5.2 Return Predictability

Until now we have relied on the “forward-looking” monthly rvt, or the realized variance over the

subsequent month relative to time t. This ensures that rvt is properly aligned with the future

expected variance underlying the definition of vix2
t . This also ties in more directly with the

theoretical model in Bollerslev, Sizova, and Tauchen (2011) and the forward looking (expected)

variance risk premium defined therein.

The “structural” CFVAR0.37(7) model for zt = (rvt , vix
2
t , rt)

′
estimated above does not easily

lend itself to out-of-sample forecasting, however, as rvt is not known at time t. To circumvent this

problem, we replace rvt with r̃vt ≡ rvt−77×22 in the estimation of a CFVAR model for the z̃t ≡

(r̃vt , vix
2
t , rt)

′
vector process. The CFVAR0.37(7) model for zt formally implies a CFVAR0.37(p)

model for z̃t. We therefore fix d = 0.37. We then rely on the same BIC criterion used above for

determining the number of lags in each of the three equations in this new CFVAR0.37(7) model
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for z̃t.
27

In order to convert the dynamic relations implied by the CFVAR model for z̃t into forecasts for

the returns and corresponding predictive R2s, it is convenient to represent the model in moving

average form. In particular, let e3′ ≡ (0, 0, 1) so that rt = e3′z̃t. The implied infinite moving

average representation for the returns may then be expressed as,

rt = e3′
∞∑
j=0

Φjϵt−j, (23)

where the impulse responses matrices Φj follow the recursion,

Φ0 = I

Φj =

j−1∑
i=0

Ξj−iΦi, (24)

for,

Ξi = −Iθ
(0)
i (d)− (γδ′) θ

(0)
i (d) +

i∑
j=1

(−1)jΓjθ
(j)
i (d),

and the previously defined parameters of the fractional filter given by θ
(0)
i (d) = (−1)i

(
d
i

)
and

θ
(j)
i (d) =

∑i−1
l=j−1 θ

(0)
i−l(d)θ

(j−1)
l (d), j ≥ 1, respectively. These expressions readily allow for the

calculation of h-step ahead return forecasts by simply equating all of the values of ϵt+h−j for

h− j > 0 to zero in the corresponding expression for rt+h in equation (23).

In practice, of course, we are typically interested in the cumulative forecasts of the high-

frequency returns over longer time-intervals, as opposed to the multi-period forecasts of the high-

frequency returns themselves. For illustration, consider the case of one-day returns. With 77

5-minute returns per trading day, the continuously compounded daily return may be written as,

r
(day)
t =

77−1∑
j=0

rt+j = e3′
77−1∑
j=0

∞∑
i=0

Φiϵt+j−i. (25)

Going one step further, this expression for the daily return is naturally decomposed into an

expected and an unexpected part,

r
(day)
t = e3′

77−1∑
j=0

∞∑
i=j+1

Φiϵt+j−i + e3′
77−1∑
j=0

j∑
i=0

Φiϵt+j−i, (26)

27The BIC criterion implies that the short-run dynamics of the backward-looking realized variance depends on
five lags of the differenced r̃vt series and one lag of the differenced vix2

t series, while the short-run dynamics of
the implied variance depends on three lags of the differenced vix2

t series, and six lags of the differenced returns.
The short-run dynamics of the returns depends on two lags of the differenced vix2

t series and seven lags of the
differenced returns. Additional details concerning these estimation results are available upon request.
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with the first term on the right-hand side corresponding to the former and the second term the

latter. Consequently, theR2 for the daily return implied by the CFVARmodel may be conveniently

expressed as,

R2

day =

∑∞
k=1 e3

′
(∑77−1

j=0 Φk+j

)
Ω
(∑77−1

j=0 Φk+j

)′
e3∑∞

k=−(77−1) e3
′
(∑77−1

j=max(0,−k)Φk+j

)
Ω
(∑77−1

j=max(0,−k)Φk+j

)′
e3

. (27)

Similar expressions for the R2s associated with forecasting 5-minute, hourly, weekly, and monthly

returns are readily available by replacing 77 in the equation above with 1, 12, 385, and 1, 694,

respectively.

The results obtained from evaluating the comparable expression in equation (27) for the 5-

minute, hourly, weekly, and monthly forecast horizons at the CFVAR0.37(7) model estimates for z̃t

are reported in the first row in Table 5.28 As seen from the table, the CFVAR model for z̃t implies

quite substantial R2s of 1.987% and 7.091% at the daily and monthly horizons, respectively. As

such, these results further corroborate the empirical evidence pertaining to return predictability

and a significant risk-return tradeoff relationship discussed above.

To help gauge where this predictability is coming from, we calculate the implied R2s for three

restricted versions of the CFVAR0.37(7) model. In the first two models, we restrict the returns

to depend on a single lag of r̃vt and vix2
t , respectively, leaving the other dynamic dependencies

in the CFVAR0.37(7) model intact. The third restricted CFVAR model rules out any “volatility

feedback” effects, so that the returns simply follow an autoregressive model. In each case we

reestimate the CFVAR model with the relevant restrictions imposed on the return equation, and

compute the corresponding VAR representation and implied R2s.29

The resulting R2s are reported in rows two through four in Table 5. The models that only

include the lagged r̃vt and vix2
t in the return equation result in almost no predictability at the

daily horizon, but the R2s increase to 4.705% and 4.496%, respectively, at the monthly level. By

contrast, a simple autoregressive model for the returns, which does not include any of the variances

in the return equation, performs comparatively well in predicting daily and within day returns, but

it has essentially no forecasting power at the longer monthly horizon. The general CFVAR0.37(7)

28In carrying out the numerical calculations, we truncated the infinite sum in (27) at 100,000. Additional
robustness checks using longer truncation lags and longer return horizons revealed the same basic conclusions.

29Further details concerning the calculation of the R2s for the restricted CFVAR models are given in Appendix
A.2.
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model effectively combines the good forecasting performance of the autoregressive model at high

frequencies with that of the risk-based models at lower frequencies, by accounting for the joint

dynamic dependencies in the returns and the two variance series and the predictability inherent

in the variance risk premium.

To further underscore the gains afforded by jointly modeling the three series, the last three rows

in Table 5 report the results from a set of simple univariate “balanced” predictive regressions, in

which we regress the 5-minute, hourly, daily, weekly and monthly future returns on ∆dr̃vt, ∆
dvix2

t ,

and ṽpt = vix2
t − r̃vt.

30 As expected, the regressions involving the variance risk premium tend

to give rise to the largest R2s. However, all of the R2s are noticeably lower than those for the

CFVAR0.37(7) model reported in the first row of the table.

6 Conclusion

We provide a detailed characterization of the dynamic dependencies and interrelatedness in ag-

gregate stock market returns and volatilities using newly available high-frequency intraday data

on both. The time series of actual realized volatilities and the market’s risk-neutralized expecta-

tion thereof are both well described by long-memory fractional integrated processes. At the same

time, the two volatility processes appear to be fractionally cointegrated and move in a one-to-one

relationship with one another in the long-run. Using frequency domain inference procedures that

allow us to focus on specific components of the spectra, we also uncover strong evidence for an

otherwise elusive positive risk-return tradeoff relationship in the high-frequency data. Rather than

a tradeoff between returns and variances, however, the data clearly point to a tradeoff between

returns and the variance risk premium, as defined by the cointegrating relationship between the

two variance series. Moreover, we show that the strength of this relationship vary importantly

across frequencies, and as a result simple risk-return regressions, as estimated in much of the

existing literature, can easily give rise to misleading conclusions. Combining these results, we

formulate and estimate a fractionally cointegrated VAR model for the high-frequency returns and

two variance series that is able to accommodate all of these dependencies within a coherent joint

modeling framework. Going one step further, we show how this high-frequency based multivariate

30These regressions mirror the non-predictive regressions of the contemporaneous returns on the same three
predictor variables previously reported in Table 2.
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model implies non-trivial return predictability over longer monthly horizons.

The new class of stochastic volatility models proposed by Barndorff-Nielsen and Veraart (2011)

provides a direct link between the variance risk premium highlighted here and time-varying

volatility-of-volatility. Our quantitative findings are also consistent with the qualitative impli-

cations from the stylized equilibrium model in Bollerslev, Sizova, and Tauchen (2011), in which

the variance risk premium defined by the long-run cointegrating type relationship deduced from

the high-frequency data, is linked to notions of aggregate economic uncertainty and time-varying

equity risk premia. It would be interesting to further expand on these models to allow for a more

“structural” explanation of the intricate cross-frequency empirical relationships and dynamic de-

pendencies in returns and risk-neutral and realized variances documented here.

A Appendix

A.1 CFVAR Model Solution for Returns

Let e1′ ≡ (1, 0, 0), e2′ ≡ (0, 1, 0), and e3′ ≡ (0, 0, 1), respectively. The preliminary univariate

estimates for the two variance series in Section 3 suggest that the first and the second equations

of the CFVARd(p), e1
′∆dzt ≡ ∆drvt and e2′∆dzt ≡ ∆dvix2

t , respectively, are both I(0). But the

fractional filter ∆d is also applied to the third equation e3′∆dzt and the returns. This seemingly

may result in over-differencing. However, following Theorem 8 of Johansen (2008), if the conditions

for inversion of the CFVARd(p) are satisfied and d < 1
2
, then (20) has the solution

zt = D
∞∑
i=0

θ
(0)
i (−d)Liϵt + Yt + µt, (A.1)

where θ
(0)
i (−d) = (−1)i

(−d
i

)
are the coefficients of the inverse fractional filter, µt is a function of

the restricted constant ρ, Yt is a stationary I(0) series, and the parameter matrix D is defined by,

D = δ⊥

(
γ′
⊥

[
I −

p∑
i=1

Γi

]
δ⊥

)−1

γ′
⊥, (A.2)

where γ⊥ and δ⊥ are (3 × 1) vectors such that γ′γ⊥ = 0 and δ′δ⊥ = 0, respectively. With γ

and δ defined by equations (22) and (21), the last row of D therefore has only zero elements.
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Consequently, the solution of the CFVAR model for the third equation and the return process

reduces to

rt = e3′Yt + e3′µt, (A.3)

that is an I(0) process, plus the initial contribution associated with ρ.

A.2 CFVAR Restricted R2s

For illustration, consider a daily forecast horizon. Let

zt =
∞∑
j=0

Φ̃j ϵ̃t−j (A.4)

denote the moving average representation of the CFVAR model for zt with the appropriate restric-

tions on the return equation imposed on the coefficients. Moving average coefficients are calculated

using the recursions in equation (24). Define the polynomial

Ψ1 +Ψ2L+Ψ3L
2 + ... = (

∞∑
j=1

77−1∑
i=0

Φ̃j+iL
j)(

∞∑
j=0

Φ̃jL
j)−1(

∞∑
j=0

ΦjL
j). (A.5)

The daily return forecast implied by the restricted CFVAR model is then given by e3′
∑∞

j=1 Ψjϵt−j.

The fraction of the cumulative daily returns that can be explained by the restricted model may

therefore be computed as follows,

R̃2

day =

∑∞
k=1 e3

′ΨkΩ
(∑77−1

j=0 Φk+j

)′
e3√∑∞

k=1 e3
′ΨkΩΨ′

ke3×
∑∞

k=−(77−1) e3
′
(∑77−1

j=max(0,−k) Φk+j

)
Ω
(∑77−1

j=max(0,−k)Φk+j

)′
e3

.

(A.6)

Again, similar expressions for the 5-minute, hourly, weekly and monthly returns are readily avail-

able by replacing 77 in the formula above by the integer value corresponding to the relevant

forecast horizon.
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Table 1: Summary Statistics

Autocorrelations

Mean St.Dev. 1 2 3 10 78 78× 22

rt -0.000 0.142 -0.039 -0.031 -0.005 0.001 -0.030 0.007

rvt 2.704 0.982 0.999 0.999 0.999 0.999 0.996 0.755

vix2t 3.119 0.785 0.999 0.999 0.999 0.998 0.986 0.787

Note: The table reports standard summary statistics for the returns, rt, monthly realized variances, rvt, and risk-

neutral variances, vix2
t . All of the statistics are based on 5-minute observations from September 22, 2003 through

November 28, 2008, for a total of 100,639 observations.

Table 2: Univariate Return Regressions

Risk Proxy (vt) β SE R2

Raw

rvt -0.00128 0.00092 0.0116%

vix2t 0.00001 0.00142 0.0000%

Long-Memory Adjusted

∆drvt -0.0373 0.0128 0.0191%

∆dvix2t 0.0345 0.0190 0.0173%

Variance Risk Premium

vpt = vix2t − rvt 0.00445 0.00093 0.0406%

Note: The table reports 5-minute return regressions, rt = α+ βvt−1 + ut, based on data from September 30, 2003

to November 28, 2008. The first two columns report the OLS estimates for β and the corresponding Newey-West

standard errors (SE). The last column reports the regression R2’s. The fractional difference parameter is fixed at

d = 0.37.
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Table 3: Risk-Return Relations Across Frequencies

rhight+1 rbandt+1 rlowt+1

rvhight -0.005

rvbandt -0.072

rvlowt -0.644

vixhight 0.176

vixbandt -0.016

vixlowt -0.494

vphight 0.168

vpbandt 0.040

vplowt 0.666

Note: The table reports the correlations between the short-, medium-, and long-run components of the returns rt,

the realized variance rvt, the risk-neutral variance vix2
t , and the variance risk premium vpt. All of the correlations

are based on 5-minute observations from September 30, 2003 to November 28, 2008, along with the band-pass

filtering procedures discussed in the main text for decomposing the series into the different components.
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Table 4: CFVAR Model Estimates

Estimates SE

ρ′
(

−0.000 −0.0000
) (

0.161 0.0002
)

γ′

(
0.000269 −0.00198 0.00507

0.0000 0.0310 −1.953

) (
0.000087 0.00049 0.00166

0.0006 0.0182 0.231

)

δ′

(
−1.010 1 0

0 0 1

) (
0.308 − −

− − −

)

Γ1

 1.749 −0.00646 0

0.050 1.579 −0.058

0 0.511 0.904


 0.014 0.00096 −

0.045 0.025 0.018

− 0.119 0.230


Γ2

 −0.606 0 0

−0.072 −0.311 −0.068

0 −0.549 0.990


 0.022 − −

0.051 0.046 0.017

− 0.128 0.239


Γ3

 0.002 0 0

0 −0.258 −0.059

0 0 1.013


 0.046 − −

− 0.027 0.021

− − 0.243


Γ4

 −0.139 0 0

0 0 −0.056

0 0 0.328


 0.028 − −

− − 0.048

− − 0.368


Γ5

 0 0 0

0 0 −0.252

0 0 6.909


 − − −

− − 0.074

− − 0.950


Γ6

 0 0 0

0 0 0

0 0 −10.38


 − − −

− − −
− − 1.78


Γ7

 0 0 0

0 0 0

0 0 10.64


 − − −

− − −
− − 2.08


Note: The table reports Seemingly Unrelated Regression (SUR) estimates of the CFVAR0.37(7) model,

∆dzt = γ
(
δ′
(
1−∆d

)
zt + ρ

)
+

7∑
i=1

Γi∆
d
(
1−∆d

)i
zt + ϵt,

based on 5-minute observations from September 30, 2003 to November 28, 2008. The fractional difference parameter

is fixed at d = 0.37. The reported standard errors (SE) for the parameter estimates are calculated from the bootstrap

procedure discussed in the main text.
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Table 5: Multi-Period Return Predictions

r
(5-min)
t r

(hour)
t r

(day)
t r

(week)
t r

(month)
t

CFVAR0.37(7) 0.256% 0.631% 1.987% 3.786% 7.091%

CFVAR with r̃vt only 0.002% 0.020% 0.126% 0.853% 4.705%

CFVAR with vix2t only 0.001% 0.013% 0.090% 0.781% 4.496%

CFVAR with no vol. feedback 0.197% 0.439% 1.345% 1.275% 0.009%

Regression with ∆dr̃vt 0.000% 0.001% 0.007% 0.143% 0.203%

Regression with ∆dvix2t 0.015% 0.017% 0.070% 0.065% 0.007%

Regression with ṽpt = vix2t − r̃vt 0.004% 0.032% 0.214% 0.695% 0.021%

Note: The first row reports the predictive R2s for 5-minute, hourly, daily, weekly and monthly returns implied by

the predictive CFVAR0.37(7) model discussed in the main text. Rows two through four gives the predictive R2s

for the restrictive CFVAR models in which the return equation only includes lagged values of r̃vt, vix
2
t , and the

returns, respectively. The final three rows give the R2s from simple univariate predictive return regressions. All of

the estimates are based on 5-minute observations from September 30, 2003 to November 28, 2008.
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Figure 1: Periodograms for Realized and Risk-Neutral Variances
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(a) Realized variance
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(b) Risk-neutral variance

Note: The figure plots the sample periodograms of the realized variance rvt (top panel) and the risk-

neutral variance vix2t (bottom panle). The periodograms are plotted on a double logarithmic scale. The

estimates are based on 5-minute observations from September 30, 2003 to November 28, 2008.
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Figure 2: Low-Pass Filtered Realized and Risk-Neutral Variances
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Note: The figure plots the low-pass filtered realized variance rvt (solid line) and risk-neutral variance

vix2t (dashed line) over the September 30, 2003 to November 28, 2008 sample period.

33



Figure 3: Coherence between Realized and Risk-Neutral Variances
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Note: The figure plots the coherence between the realized variance rvt and the risk-neutral variance vix2t ,

as well as their high-pass (less than one day), band-pass (one day to 31
2 months), and low-pass (longer

than 31
2 months) filtered counterparts. All of the estimates are based on 5-minute observations from

September 30, 2003 to November 28, 2008.
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Figure 4: Low-Pass Filtered Variance Risk Premium and Returns
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Note: The figure plots the low-pass filtered variance risk premium vpt (dashed line) and the returns r2t
(solid line) for the September 30, 2003 to November 28, 2008 sample period.
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Figure 5: Coherence between Returns and Variance Risk Premium
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Note: The figure plots the coherence between the returns rt and the variance risk premium vpt, as well

as their high-pass (less than one day), band-pass (one day to 31
2 months), and low-pass (longer than 31

2

months) filtered counterparts. All of the estimates are based on 5-minute observations from September

30, 2003 to November 28, 2008.
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Figure 6: CFVAR Model Implied Spectra
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Note: The figure plots the CFVAR model implied spectra (solid lines) for the realized variance rvt, the

risk-neutral variance vix2t , the variance risk premium vpt, and the returns rt, along with their corre-

sponding sample periodograms (grey lines). All of the estimates are based on 5-minute observations from

September 30, 2003 to November 28, 2008.
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Figure 7: Impulse Response Functions for Realized and Risk-Neutral Variances
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Note: The figure plots the CFVAR model implied impulse response functions for the realized variance rvt
(solid line) and the risk-neutral variance vix2t (dashed line) with respect to the permanent variance shock

(top panel), the transitory shock to the variance risk premium (middle panel), and the transitory shock

to the returns (bottom panel). All of the estimates are based on 5-minute observations from September

30, 2003 to November 28, 2008.
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Figure 8: Impulse Response Functions for Returns
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Note: The figure plots the CFVAR model implied impulse response functions for the return rt with

respect to the permanent variance shock (dashed line) and the transitory shock to the variance risk

premium (solid line). All of the estimates are based on 5-minute observations from September 30, 2003

to November 28, 2008.
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