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1 Introduction

The standard, arbitrage-free continuous time settingeiousties prices in financial economics shows that, inibidess
markets, return variation admits a general decomposititma continuous, diffusive volatility component and disiio-
uous jumps (e.g. Andersen, Bollerslev, Diebold, and LaB@83; Back, 1991; Delbaen and Schachermayer, 1994). In
the past few years, our ability to assess the relative sigmifie of these two fundamentally distinct sources of risk ha
taken a major step forward with the increasing availabgitg use of high-frequency data. This has opened the way for
non-parametric estimation of the quadratic return vamaand, for example, allows us to split this composite measur
of risk into the integrated variance and the sum of the sgupmaps. It follows a long-standing tradition within asset-
and derivatives pricing, portfolio allocation and risk ragement of using low-frequency data (e.g., daily or weeldyit
parametric stochastic volatility or jump-diffusion mosléé.g. Alizadeh, Brandt, and Diebold, 2002; Andersen, Beiz
and Lund, 2002; Bates, 1996, 2011; Chernov, Gallant, GByaald Tauchen, 2003; Heston, 1993; Hull and White, 1987,
Gallant, Hsu, and Tauchen, 1999).

A large body of work in the high-frequency space is based aaradwork called realised (return-based) multipower
variation, which relies on statistics constructed fromraday returns (e.g. Ait-Sahalia and Jacod, 2009a,b, 2841
dersen, Bollerslev, and Diebold, 2007; Barndorff-Nielserd Shephard, 2004, 2006; Barndorff-Nielsen, Shephant, an
Winkel, 2006; Corsi, Pirino, and Reno, 2010; Dobrev andr§zn, 2010; Huang and Tauchen, 2005; Mancini, 2004,
2009; Todorov, 2009). In practice, the presence of markpeifiections (such as price discreteness and bid-ask s)read
means that standard return-based multipower variatiomafgirs often use sparse sampling (e.g. Bollerslev andréego
2011; Corsi and Reno, 2010; Tauchen and Zhou, 2011). Tlehkdmg that at a moderate frequency, for example the
5-minute frequency, the impact of microstructure noisemslsenough to be ignored. Of course, for many liquid assets
the data are much more abundant, so this principle oftenlem@taignificant loss of information, and much recent re-
search has focused on developing estimators that are ngistard to the noise (e.g. Barndorff-Nielsen, Hansen, keund

and Shephard, 2008; Christensen, Oomen, and Podolsk); Zah and Wang, 2007; Jacod, Li, Mykland, Podolskij, and



Vetter, 2009; Large, 2010; Podolskij and Vetter, 2009a;nghalykland, and Ait-Sahalia, 2005, among others). A bnanc
of related work can be found in, e.g., Andersen, Dobrev, artth@mburg (2008); Lee and Mykland (2008a,b); Mykland,
Shephard, and Sheppard (2010).

In this paper, we formulate a complete realisadge-basednultipower variation theory, which builds directly on the
return-based multipower variation by simply replacingdbte returns with ranges, suitably scaled. We outline how i
allows us to estimate aggregate return variation and formpjuobust estimates of integrated variance using the range
The analysis shows that if high-frequency data are beingssfyasampled, using a realised range-statistic can psoduc
considerable efficiency gains relative to a standard rdbased estimator, even when the latter employs subsantpling
exhaust the entire database (e.g. Zhang, Mykland, an&&iglia, 2005; Zhou, 1996). Intuitively, the range pdstial
distills some of the information contained in intermedidtga not used by a sparsely sampled return-based estimator,
and this turns out to be a more effective way of doing it coragan subsampling of low-frequency returns. Another
appealing key feature of this theory is that realised rdmaged multipower variation estimators can be made inarglgsi
robust to jumps without losing asymptotic efficiency. We beéh simulations and empirical data to illustrate how these
findings manifest, for example in order to construct feasjomp-robust confidence intervals for the integrated vaga
Moreover, we show that this advantage largely prevails mltbe presence of a realistic level of market microstruetur
noise. At low-frequency sampling, the range thereforersfte parsimonious, yet highly efficient, framework, which
avoids the need for doing complicated corrections in ordeombat the noise.

Indeed, the main motivation for using the range is that sedlirange-based estimation of the integrated variance is
known to be very efficient in pure diffusion models (e.g. Gtensen and Podolskij, 2007; Martens and van Dijk, 2007;
Parkinson, 1980). Interestingly, however, the properiethe high-low remain unchartered territory in jump-dgion
models and, as we show here, the standard range-estiméfens §tom systematic biases, when jumps are added to the
price equation. We propose to rectify this bias using a liyfange-estimator, which has the form of a linear combimatio

of the original range-statistic and a jump-robust meastinetegrated variance.



It should be noted that the way we retrieve jump-robust nregsof integrated multipower variation follows exactly
the procedure of the return-based framework, which dependsrms in the proximity of a jump to get small. As such,
it inherits some of the weaknesses associated with thisappr although our simulations do demonstrate that theerang
has superior finite sample robustness. In this respect, taresting route is adopted by Dobrev (2007), who extends
the standard range-statistic (used here) — based on tHe &ngest price move — into a generalized range theory, lwhic
maximizes the sum of multiple price moves. The generalize@je is also jump-robust (potentially to some forms of
infinite activity jump processes), but this feature deseenoim scaling constants, which may entail some advantamges i
finite samples. This topic is related to a multitude of recdtdérnative jump-robust estimators based on truncatian (e
Ait-Sahalia and Jacod, 2009a,b; Andersen, Dobrev, anduscburg, 2008; Christensen, Oomen, and Podolskij, 2010,
2011; Corsi, Pirino, and Reno, 2010; Mancini, 2004, 2009).

The paper proceeds as follows. In section 2, we set notatidnirsvoke a standard arbitrage-free continuous time
jump-diffusion semimartingale model. We also briefly revisome aspects of the theory of return-based multipower
variation, before we switch to studying realised rangesasultipower estimation. The key theoretical results aee p
sented in Theorem 2 and a novel combination estimator isggeapin Eq. (23). In section 3, we conduct a Monte
Carlo study to investigate the finite sample properties aofrmw range-based multipower variations. We also inspect
the asymptotic approximation of the jump-robust rangestiasipower variance. In section 4, we progress with some
empirical results using high-frequency data from the TA@adase. In section 5, we conclude and offer directions for

future research. An appendix contains the derivations pflfworetical results.

2 Theoretical framework

In this section, we derive new non-parametric theory, bagdtie price range, for consistently estimating returnatemn,

and we show how it can be applied to filter out the continuougtian part from the squared jumps.



2.1 The model

The theory is developed for a univariate log-price, pay: (pt)tzo, which is defined on a filtered probability space
(Q,F, (Ft)i>0 ,IP). p evolves in continuous time and is adapted to the filtrati®p) ., which holds all relevant infor-
mation released with the passing of time.

As standard in asset pricing theory, we assumejtig member of the class of jump-diffusion semimartingaes t

satisfy the generic representatibn:

t t Ny
Pt =po+ / Nudu + / Uuqu + Z Jia (1)
0 0 i=1

wheren = (ut), is a locally bounded and predictable drift term,= (o), is a cadlag volatility process}) =
(Wt),>0 @ standard Brownian motiody = (NV;),-, a finite activity simple counting process, ad= {J;},_; y, is
a sequence of non-zero random variaSlgdere, N represents the total number of jumpspitthat has occurred up to
and including timef, while J are the corresponding jump sizes. Note that the drift terof mrder d and is therefore
negligible over short intervals of time, as typically catesied in the high-frequency literature. As such, the mouiices
two main sources of risk, namely diffusive volatility anahjps.

The quadratic variation of the cumulative return proceskes given by

t Nt
[p]; = /0 o2du+ S 2, )
i=1

i.e. the integrated diffusive variance coefficient and the ©f the squared jumps. The quadratic variation plays a key

role in high-frequency volatility estimation due to thelfoling definition from stochastic integration theory:

[p]t - p_hm Z(pti - pti71)27 (3)

!Asset prices must be semimartingales under rather wealitmons(e.g. Back, 1991; Delbaen and Schachermayer, 1994).
2A simple counting processy, is of finite activity provided thafV; < oo for ¢ > 0, almost surely. In this paper, we do not explore infinite

activity jump processes, although these models have beeledtin the context of realised multipower variation (eAit-Sahalia and Jacod,

2009a,b; Barndorff-Nielsen, Shephard, and Winkel, 20@gtcfov and Tauchen, 2010; Woerner, 2005, 2006).
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for any sequence of partitiorts = ty < t; < ... < t, = t such thatmax;<;<, {t; —t;_1} — 0asn — oo (e.g.
Protter, 2004). This result is important, because it shtvaswe can infer the latent quadratic return variation fraghh
frequency observations pfand, in the limit, consistently estimate it as more and mata dre filled in the interval, ¢].
The practical relevance of the quadratic variation is s#dsn several papers (e.g. Andersen, Bollerslev, and Rigbo
2010; Andersen, Bollerslev, Diebold, and Labys, 2003; Barfi-Nielsen and Shephard, 2007). It is, for example,&lps
related to the conditional variance, which features premily in many pillars of financial economics.

In the special case where there are no jumps(ire. N = 0), it holds that

t t
Pt = po + / ﬂudu + / UudWm (4)
0 0

and the jump-diffusion process in Eq. (1) narrows down tealsstic volatility model with continuous sample paths, fo
which the quadratic variation equals the integrated vaggdm |, = fot o2du. We should note that some of our results are
derived under this assumption.

Below, in the CLTs only, we are also going to impose some gggylconditions orv:

Assumption (V): o does not vanisiiV,) and it satisfies the equation:

t t t
S / 1+ / o I, + / o dB., fort >0, (Va)
0 0 0

wherey' = (p1);50, 0 = (1) @ndv’ = (vt) 5, are @dlag, with ' also being locally bounded and predictable, and

B' = (B});>, is a Brownian motion independent f.

Assumption Y1) is a weak regularity condition, which is fulfilled for manynéincial models. AssumptiorVg)
amounts to saying that is of continuous semimartingale forfnlt appears restrictive, because it rules out jumps,in
which is at odds with empirical evidence (e.g. Eraker, Jakanand Polson, 2003; Todorov, 2010). But, it should be

pointed out that the assumption is not a necessary conditidnhence, it is not required for our results to go through. |

3Note the appearance f in o, which allows for leverage effects (e.g. Christie, 1982).



can be dispensed with in favor of a more flexible specificatédiowing o to jump, at the cost of substantial extra rigor
in the proofs (along the lines of Barndorff-Nielsen, Graesr, Jacod, Podolskij, and Shephard, 2006). Here, we rtile ou

such technical details to preserve a leaner and more aléa@xposition.

2.2 The data

Throughout the remainder of the text, we will work on the umiierval,¢ € [0, 1]. We think of this as representing the part
of the day, for which high-frequency data are at our disposabur empirical application, where we are going to apply
the estimators introduced in this section on a day-by-d&ysha high-frequency data from NYSE- and NASDAQ-listed
stocks, it is thus natural to let the unit interval be the k@panned by the regular trading session.

The foundation for our econometric analysis is a high-feeay record o), supposed to be available at equidistant
timest; = i/N,i=0,1,..., N.* Throughout, we assum®& = nm, for n,m € N. Here,n is the number of subintervals
of the form|[(i — 1)/n,i/n], fori = 1,...,n, on which we shall compute various statistics, whilds the number of
price changes within such a time intervalNote that in the asymptotics we let— oo, while, for simplicity, we keepn
fixed throughout.

Thus, the challenge is to infer the quadratic variation, igdplit into the continuous and discontinuous part, from a
set of discrete high-frequency data.

We define intraday returns at sampling frequen@s follows

TihA = Difn — P(i-1)/n> TOri=1,...,n, 5)

whereA = 1/n is the time distance between price observations.

“In practice, high-frequency data are irregularly spacetiexquidistant prices are imputed from the observed ones.a@ppooaches are linear
interpolation (e.g. Andersen and Bollerslev, 1997) or trevipus-tick method suggested by Wasserfallen and Zimmem(1985). The former

method has an unfortunate property in connection with egtirg quadratic return variation, see Hansen and Lunde5(268mma 1).
5This way of blocking high-frequency data into smaller petnatural in our setup, see, for example, Mykland (2010).



Note that forn < NV, the sequence;a a is not exhausting all the available high-frequency dataeffact, we are
assuming that returns are constructed at a coarser sanfiingencyn, relative to the total amount @¥ “ultra” high-
frequency returns that can potentially be made. In pradticgn-frequency data are polluted with measurement ewer d
to market microstructure frictions, such as price diseress, bid-ask spreads etc. (e.g. Hansen and Lunde, 2006). Th
presence of such noise can be detrimental to standard &stintd return variation, in particular at very high samglin
frequencies. Although our ability to cope with and accounmtthe impact of noise in the estimation of return variation
has significantly improved in recent ye&ri still remains common in applied work to use low-frequetick data, for
example 5-minute data are often used (e.g. Bollerslev anidrdw, 2011; Corsi and Reno, 2010; Tauchen and Zhou,
2011). It is precisely this type of sparse sampling, whichivates us to suggest using the range-statistic below.

In this paper, we do not explicitly control for the noiSénstead, we are going to assume that the econometrician has

selectedh low enough such that potential biases from the noise canrtuzed.

2.3 Return-based estimation of quadratic variation

With the setup in place, we can proceed by estimating quadratiation and its two components using standard model-
free return-based measures. The realised variance, popoAndersen and Bollerslev (1998) and Barndorff-Nielsen

and Shephard (2002), is defined as a sum of squared intraags@nd is at sampling frequenaygiven by:

n 1 Ny
RV" = rian 5 / oodu+ > J7. (6)
i=1 0 i=1

The consistency oRV™ for the quadratic return variation is immediate in light af.E3). However, use of the realised
variance by itself is not sufficient to learn about the conifims of quadratic variation, so in order to isolate the greged

variance and squared jumps, we are going to require moreialate

®A representative, but necessarily incomplete, list of pmie this field, include Barndorff-Nielsen, Hansen, Lundad Shephard (2008);
Christensen, Oomen, and Podolskij (2010); Jacod, Li, Mydl&odolskij, and Vetter (2009); Podolskij and Vetter (28®); Zhang, Mykland, and

Ait-Sahalia (2005); Zhang (2006).
"Christensen, Podolskij, and Vetter (2009) analyze the @npfnoise on the range-statistic and propose a bias-¢mneo it.



To accomplish this, consider the bipower and tripower venga

BV — I Z H ‘T(H-] A A" @)
n =1 j5=1
|T(Z+] 1A A| 2/3
V" = , (8)
n — ;]1_[1 H2/3

whereu, = E(|Z]") andZ ~ N(0,1). The theoretical underpinnings of these estimators wereedkin previous work
by Barndorff-Nielsen and Shephard (2004) and Barndoréiéin, Shephard, and Winkel (2006), see also Barndorff-
Nielsen, Graversen, Jacod, Podolskij, and Shephard (2006)

In particular, they are consistent estimators of the irttegt variance under both the jump-diffusion and pure difus

model given by Eq. (1) and (4), i.e. as— o
1 1
By 4 / oldu and TV / oldu. (9)
0 0

The intuition for the jump-robustness is that, with only atémumber of jumps in the log-price, all “jump” returns are
eventually (i.e., fom large enough) paired with a “continuous” return. The lalizs ordelOp(\/Z), and this way jumps
get knocked out of the probability limft.

We can subsequently retrieve the sum of the squared jungp)\eusingl’ V™"
RV —TV" BN g2 (10)

Note that, in absence of price jumps, all the above thremasirs are targeting the integrated variance. A naturalofray

comparing them in this special case is then done via theitifighdistributions.

8There are a number of alternative ways of estimating thgiated variance robustly in the presence of jumps. Aita$aland Jacod (2009a,b)
and Mancini (2004, 2009), for example, use threshold elatiam of “large” returns before computing the realised aace, while Andersen,
Dobrev, and Schaumburg (2008) and Christensen, Oomen, @omlgRij (2010) propose to infer diffusive volatility frotme quantiles of high-
frequency returns. A couple of recent papers also show hampcove finite sample jump robustness of the bipower vagaarad how to make it

more efficient, see Corsi, Pirino, and Rend (2010) and Mykl&hephard, and Sheppard (2010).



As an example, ip follows the diffusion process defined by Eq. (4), the CLTRIf™ has the form
1 d 1
vn <RV" — / agdu> K MN <0,2 / af;du>, (12)
0 0

where M N (0, V') stands for a centered mixed normal distribution with caodél varianceV’, and fol oitdu is the inte-
grated quarticity. The only way this result is altered for thigl’™ andT'V™ is that the factor multiplying the integrated
guarticity increases to 2.6 and 3.1.

The key insight to draw from this discussion is that, in gaheRV " estimates the quadratic return variation and,
in the absence of jumps, it is most efficiéAt.But RV™ is not jump-robust, whereas boffV™ andTV" are robust
in the probability limit. Moreover, only the CLT of the tripaer variance also holds true in the presence of jumps (e.g.
Barndorff-Nielsen, Shephard, and Winkel, 2066)Hence, using products of lagged returns (while keeping tine of
their powers equal to two) produces jump-robust estimatéstegrated variance. The degree of robustness increases
with the addition of extra lags, but we pay a price for this bgihg some efficiency, if in fact there are no jumps. Itis

interesting to note this trade-off for later comparisorgaiese the properties of the range-statistic turn out to fiereint.

2.3.1 Subsampling

In the above, the sparsely sampled return-based estinfatteatially ignore a lot of information about the true retur
variation, because a large portion of the total amount ofl@se high-frequency data is effectively discarded upfro

But, even if we do not want push the sampling frequency beyaqritis easy to soak up more efficiency by subsampling

w

9Throughout the paper, the symbé’li is used to denote convergence in law stably. We refer toyRE®63) for a formal definition of stable
convergence in law. Moreover, the motivation for using tiijge of convergence in the high-frequency volatility sejtis explained in great detalil

by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008).
In theory, the realised variance at the highest samplingufsacy N has the efficiency of the ML estimator in parametric versiohshis

problem. This shows that, in principle, we should constihet realised variance based on all data, but of course thidtrignores problems

associated with microstructure noise.
"This means that we can use the asymptotic distributidfi6f’ to construct confidence intervals for the integrated vasan both the jump

and no-jump scenario, something we consider below.



the data, as suggested by Zhou (1996) and Zhang, MyklandAi&®hhalia (2005). This can be accomplished by simply
shifting the starting point from which low-frequency retarare computed.

Let
TiAAj = Di/n+j/N — P(i—1)/n+j/N> fori = 1,...,nandj =0,1....m—1. (12)

Then, we can compute and averageealised variance estimates:

m—1 n
SRV™™ = % ;O RV™I  where RV™ = ;@7 N (13)
The bipower and tripower variance can also be modified invifaig and the subsampled version of these estimators will
be calledS BV™™ and STV™™ in the following.
The averaging performed by Eq. (13) results in further eficiy gains, and it is known that the asymptotic variance
factor of the subsampled realised variance can be brougin éfom 2 to 1.33 as the number of subsamples» ~o (e.g.
Zhang, Mykland, and Ait-Sahalia, 2005). To our knowledie, reduction in variance associated with the subsampled

bipower and tripower variance is not known in closed-fori, ibwill be accessed with Monte Carlo simulations below,

where we compare it with the realised range-based estimmttvoduced next.

2.4 Range-based estimation of quadratic variation

The range provides an alternative way of learning about tleigtic return variation (e.g. Parkinson, 1980). Its use
in the high-frequency context was initiated by Christenard Podolskij (2007) and Martens and van Dijk (2007), who
developed the so-called realised range-based variance.

Write

fori=1,...,n, (14)

|
i
L
+
2|
~—

Sp. = max i—1
Pin.arm = o< s t<m (p w TN B

2Notation is a bit loose here. We can only compute e return for the initial subsample estimate, while doingfeothe rest requires a
log-price observation outside of the unit interval. Thig tastm — 1 subsample estimates are based on anty 1 high-frequency returns and we

apply an additional small sample correction to compensatthé missing summand.
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as the range over the intenvigl — 1)/n,4/n).*3 Then,

wm 1\
RV, = - > st (15)
moi=1

is the realised range-based variance at sampling frequeridgre,

Aran = E(sty,)  With  sym = max {W,/,, — Wy } (16)

5,t=0,1,...,m
is therth moment of the range of a standard Brownian motion on theinterval [0, 1], where this expectation is based
only on observations of the process at equidistant titnes j/m, for j = 0,1, ... ,m.** The subscripb appearing in
the definition ofRRV,™ indicates that it will be biased in the presence of jumps, asletail below.

Assumingp is a pure diffusion model as in Eq. (4), and under conditioly (e main theoretical findings of Chris-

tensen and Podolskij (2007) can be summarized as saying that
1 d 1
Vn (RRVb"’m — /0 agdu> S MN <O,Am /0 a;tdu>, (17)

whereA,, = (Am — A3,,) /A3

The A, factor appearing in the CLT aRRV,""™ depends omn, the total number of price changes available in each
interval of the form(i—1)/n,i/n],i = 1,...,n. We add that, forn > 2 as considered herd,,, is always strictly smaller
than the asymptotic variance coefficient of two for realisadance (see Figure 1}. This comparison also extends to the
subsampled version of realised variance. Hence, if dataeamded at a finer resolution than the sampling frequency,

and so long as the influence of noise is not too severe, it iay@etter to construct a realised range-statistic than to

3Below, in the appendix of proofs, we also make use of the rafigestandard Brownian motion over the inter{@l — 1) /n, i/n], which is

denoted bysw, , ,m, Simply replacing with W in the definition of Eq. (14).
1A couple of points are worth highlighting here. First, thestants),.,, used to rescale the range-statistic hinges on the assunthtibdata

be equidistant, which is typically not the case in practi shall return to this below. Second, and in contrast toehem-based estimators, the
range-based scalings are not available in closed-fornmo@ifih this is a drawback, it is relatively easy to estimagertivy simulation. To facilitate

this step, tables of, ,,,, as a function of- andm, can be obtained from the authors upon request.
As m grows large A, converges to a value of about 0.4, which is a restatemenedgriginal result by Parkinson (1980).

11



compute realised variance. In effect, we are better abled¢oup information about the integrated variance contained
in intermediate data by computing a price range on thatvateather than subsampling low-frequency returns. But, it
requires thap follows the stochastic volatility model in Eq. (4) and it letefore not valid in general. Still, it highlights

the potential of the range and motivates us to analyze isgpties in the jump-diffusion context.

2.4.1 Extension to jump-diffusion processes

To the best of our knowledge, little is known about the higiv-Estimator in models with jumps, as defined by Eq. (1). It
turns out that in its raw form, the realised range-basechras is inconsistent for the quadratic return variatiothefe

are jumps in the price process, as highlighted in Theorem 1.

Theorem 1. Assume thap follows the jump-diffusion process defined in EQ. Asn — oo, it holds that:

)

1 1 N1
RRV™™ 2 / o2du+ — > J?, 18
b 0 A2.m ; (18)
Proof. See appendix. O

As the theorem shows?RV,""™ is downward biased in the jump-diffusion framework, beesitisncorrectly scales
down the squared jumps by ,,,. To understand this, consider a model that consists sofglyngps (i.e., with drift and
diffusion coefficient set to zero). Then, as— oo, the sum of squared ranges converges to the sum of squared,jsm
the re-scaling is not required.

Although the conclusion of Theorem 1 is disappointing, tiecture of the inconsistency unveiled by it does suggest
a quick fix for constructing a hybrid range-statistic that estimate the whole quadratic return variation.

We could, for example, do the following:
1 N1
)\Q,mRRV},"”” + (1= Ao ) STV™™ EN / agdu + Z Jf, (29)
0 i=1

i.e., we take a linear combination &RV, andST'V"™™ using the weight§), ,,, 1 — X2, ). This effectively amounts

12



to undoing the re-scaling of the squared ranges in Eq. (1db}tsn using a jump-robust estimator to subtract the excess

portion of the integrated variance that emanates from thésation.

2.4.2 Realised range-based multipower variation

The main problem with this approach is that in doing the lo@asection to the realised range-based variance, we are
relying on a return-based estimator as the robust measurgegirated variance, which conflicts with our intention of
using the range-statistic. As such, a jump-robust rangeca&stimator of the integrated variance is required, which
again to best of our knowledge, has not been proposed intaratlire. To fill this hole, we are therefore going to

introduce and study a complete range-based multipoweati@mitheory, as laid out next.

Definition. The realised range-based multipower variation with paréenéy, ..., qx) € IR{’_‘; is defined as:
n n—k+1 k q]
n,m _ g+/2—-1 p(zﬂ DA,AM
RMV(QL---,%) T n—k4+ ln Z H Ngjom ) (20)

i=1 j=1

k
whereq, =37, q;.

RM V(Zm o) is composed of suitably scaled range-based cross-prodaistd to the powergyy, ..., q;) and it
constitutes a direct analogue to the general definitionalfsed multipower variation (e.g. Barndorff-Nielsen, ghard,

and Winkel, 2006).
Remark. Note thats;,, ,» > 0and SORMV(Z;T.’%) IS non-negative by construction.

We should point out that, with proper modifications througfhéi + j — 1) may be replaced by + Kj — 1) for any
finite positive integel’ in the definition ofRM V(Z m o) Such "staggering” of the data has been suggested in Angerse
Bollerslev, and Diebold (2007) and Barndorff-Nielsen am@@hard (2006). Moreover, Huang and Tauchen (2005) show
how extra lagging can help to reduce the impact of microtiirecnoise in this type of estimators by effectively bregkin

the serial correlation in returns induced by the noise.

The next result states the theoretical properties of tHseshrange-based multipower variation.
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Theorem 2. Assume thap follows the diffusion process defined in E4). Asn — oo, it holds that:

RMV™ / |07 4+ clu. (21)

Moreover, if condition (V) is satisfied, it additionally luisl that

1
NG (RMV(’;;m o) / \au\‘”du) S MN (o A / \au\2q+du>, (22)
where
k k k-1 h
H >\2(Ij,m - (2]{7 - 1) H /\gj,m + 2 Z H >\(Ij7 H /\(IJ7m H /\qj“l‘q]Jrh,
m =1 Jj=1 h=1j=1 j=k—h+1
(q1sesqr) —

H /\(by
Furthermore, the consistency result in E@1) is robust to jumps |'{I<Ha<Xk(q‘j) < 2, while the CLT in Eq(22)is robust to
7>

jumps under the stronger conditiomax (g;) < 1.
1<j<k
Proof. See appendix. O

Remark. Note that the rate of convergence is not influenceddgnd no assumptions on the ratig/m are required.

Theorem 2 lays the foundation for producing range-baseathatds of integrated power variation of various orders.
It also shows what is required for such estimates to be radgeinst jumps in their probability limit and asymptotic
distribution.

In light of the return-based multipower variation theoihyerte is nothing too surprising about the conclusions of the
theorem. As such, the interested reader should note, whitegghrough the appendix, that the recipe used to prove
the results is to some extent “standard” by now. This meaaisdfveral of the steps taken to deduce the properties of
RM V(”m ) borrow directly from extant literature (e.g. Barndorffed§en, Graversen, Jacod, Podolskij, and Shephard,
2006; Christensen and Podolskij, 2007). However, the rémgecomplicated functional, which has a number of subtle,

technical implications in the analysis. In the proofs, wehlight where these complications arise and we also try to

pinpoint what is “new” relative to the existing theory.
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In this paper, the full force of Theorem 2, which can of cousseused to estimate many interesting objects, is not
required. We will mainly focus on defining jump-robust reati range-based estimates of the integrated variance by

cloning the return-based bipower and tripower variatfc€hus, we define

n,m __ Sp(z+ nHA,ATE _ _
RBV™ _n_le JAlm Jie.qr=q =1, (23)
=1 j5=1
n—2 3 32/3
RTV™™ = M ie.q=q =q3 =2/3, (24)
i=1 j=1 2/3m
for which it holds that
1 1
RBV™™ 5 / oldu and RTV™™ L / oldu, (25)
0 0

while only the limiting distribution of theRT'V™"™ remains unchanged in the jump setting, because the maximita o
powers is strictly smaller than unity.

Figure 1 plots the asymptotic variance CoeffICIAl’(’ﬁ

It g asa function ofn, for the three range-based estimators

considered her&. As evident, the variance decreases monotonically wittesingm, and by the timen reaches ten,
a large majority of the potential efficiency gain has beeaira¢id. To put this in perspective, consider using the papula
5-minute sampling frequency. Them, = 10 is equivalent to actually observing the price every 30 sdspwhich is not

unrealistic for many liquid series.

— Insert Figure 1 about here —

How much efficiency is being sacrificed to obtain jump robasin the range-based setting? The answer, which can

be gauged from the figure, is quite surprising. Note thatpioK 3, the ordering of the estimators is as expected, with

18Below, a jump-robust estimator of the integrated quastiisitalso used.
Note that the special case = 1 means that we are using only; 1y, andp;, ., to compute the range-statistic §f — 1) /n,i/n]. With no

interior data available, the absolute return and the rangédantical. This explains why the variance of the realisatje-based estimators, for

m = 1, coincides with those known from the return-based multipovariation theory, see, e.g., Eq. (11) and the followirsgdssion.
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RRV,"™ being the most efficient. However, and very intriguingle tiankings of the variances are swappedifor 4,
rendering the realised range-based tripower variancentptioe more robust estimator of the integrated variancelsat
the most efficient®

While the message conveyed by Figure 1 is compelling, it dBshes with intuition, because the range-based mul-
tipower estimators are designed to be increasingly rolmuginips. We would expect this feature to come at a cost, if
there are no jumps in the data, vis-a-vis the trade-off elded in the return-based estimators. In general, the eftigie
of a multipower variation statistic is a property of the urigiag moments of Brownian motion of the given functional,
i.e. in our setting the range. So, there is nothing to stop Bipower variation statistic with extra lags from being raor
efficient. But, apart from saying that in the proofs the cant, which pop up here and there, make it a fact, we lack a
convincing, intuitive explanation about, why it is true. eltnarginal reduction in variance from adding extra lagsmisa
pears fast, though, and from a practical perspective thgerbased tripower variance appears sufficient to captorestl
all incremental efficiency gain.

Using these results, we will close this subsection by intoiitg a new, purely range-based estimator that is consisten

for the quadratic variation of the jump-diffusion seminiagtle defined by Eq. (1):
1 N1
RRV™™ = Xy, RRV,"™ + (1 — Agn) RTV™™ B / oldu + Z J?, (26)
0 i=1

which is our preferred approach of estimating total retianation with the range.

2.4.3 Thejoint distribution of RRV,"™ and RTV™™

The univariate convergence in law &RV, and RT'V™™, which is available from Theorem 2, can be expanded to

cover their joint asymptotic distribution, which is reqedras a basic ingredient for conducting range-based n@mgdric

18Taken together, the above theory implies that in many praktiases, th&RV,™ of Christensen and Podolskij (2007) and Martens and van
Dijk (2007) should not be applied as a standalone estim#iiaihe presence of jumps, it is a biased estimate of quadratiation, and here we
should subsum&RV,™™ into the combined estimator given by Eq. (26) below, whitethie absence of jumps, the variance®®R V"™ is inferior

to the range-based multipower variation alternatives; if- 4.
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tests for the presence of jumps, a topic that has attractesidgrable attention in past research (e.g. Ait-Sahaléh a
Jacod, 2009a,b, 2011; Barndorff-Nielsen and Shephard}, Z6; Christensen, Oomen, and Podolskij, 2011; Huang

and Tauchen, 2005; Jiang and Oomen, 2008; Lee and Myklaf&p2Qi, 2011).

Proposition 1. Assume thap follows the diffusion process defined in E4), where the conditions om given by (V) are

satisfied. A% — oo, it holds that:

1
n,m 2
RR‘/E) /0‘ Uudu d 1 AERVL‘”,"L ATIQR%ﬂ,'nL ,RTV"’"L
vn X “MN | o, / oldu . (27
0
2
RTV™™ _ /0 o, du ArI;LRVb”’m,RTV”vm A?%Tw,m
with
2 2 2 4 2 43
A?va”vm,RTvmm = A2 )3 </\Lm/\5/3,m>‘2/3,m + /\5/37m>‘2/3,m - 2/\1,m>‘2/3,m> : (28)
17m 2/3,m

Because the jump detection analysis is not implementedsmptper, we exclude a formal verification of the propo-
sition (the proof can be forwarded upon requé3tRut, it should be noted that the bivariate extension is iredht simple

to derive.

3 Simulation study

In this section, we document some aspects of the above asiimpnalysis by means of Monte Carlo experiments.
The purpose of the study is to understand whether the thealrelarge sample properties of the realised range-based
estimators are preserved in smaller, but more realistnptasizes.

For the continuous piece of the model, we adopt a dynamidéaetmr stochastic volatility process, which can generate
highly erratic sample paths for the log-price and volatiseries. It is based on previous empirical work carried gut b

Chernov, Gallant, Ghysels, and Tauchen (2003), so thatstup £nsures that the simulation design captures manysalie

¥previous drafts of this article dealt more formally with ttege-based jump detection analysis. An electronic cophisfmaterial can be

found on the web or acquired by emailing the authors.
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features of real equity data (e.g., leverage correlatich \alatility feedback); a market considered in our empirica
application below.

In particular, the first building block is as follows:
dpy = puclt + s-exp| o + proy") + Baot” | AW, (29)

with

dat(l) = oqat(l)dt + dBt(l),
(30)

dat(Q) = agat@)dt + {1 + OégO’t(Q)] dBt(Q).

Here, s-exfx) is the so-called “spliced” exponential functiéh. The parameter values for the entire system are taken
from Huang and Tauchen (2005), i@, 5o, 81, B2, a1, a2, ag) = (0.03, —1.2,0.04, 1.5, —0.000137, —1.386, 0.25) and
corr(th,dBt(l)) = corr(dW, dBt(z)) =—0.3.

To specify the discontinuous piece mfa compound Poisson process is used. We fix a constant iyt@asameter
r = 0.4 per time unit. Thus, a jump ipis experienced every 2.5 replication, on average, and we tira corresponding
jump sizes from a normal distributiod; ~ N <O,pjmp fol agdu). In our simulations, we usgj,,, = 0.25/n;, where
ny is the total number of jumps in a given simulation run. Quadr@mp variation is thus taken to be proportional
to the integrated variance, with a typical squared jump déanger in size on high volatility days. Together with our
selection ofx, this choice implies that the unconditional jump propartie about 8% of total return variation; a figure
that broadly agrees with a consensus measure from the extaent literature (e.g. Andersen, Bollerslev, and Huang,
2011; Bollerslev, Law, and Tauchen, 2008; Corsi and Re@d02Tauchen and Zhou, 2011; Todorov, 2009).

A standard Euler approximation scheme is applied to the fsgtiochastic differential equations given by Eqg. (29)
— (30). Jumps are scattered randomly throughout the day. rdéegs a total of 10,000 simulations and assume that

N = 2,340. The latter choice is calibrated to match our empirical worlSection 4, where we study data from the

2\We refer to Chernov, Gallant, Ghysels, and Tauchen (2003we information about how the s-gxg) function operates. In short, s-gxp

slows down the growth rate of the exponential function ahhiglues of the input.
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NYSE TAQ database. The regular trading session at NYSE spa&nbours, or 23,400 seconds, and for the sample
period covered, we refresh the price every 10 seconds, whativates our selection d¥ here?! We use the sampling
frequenciesn = 26,39, 78, which translates into 15-, 10- and 5-minute sampling. Alse construct return-based
estimators by using subsampling, as explained above.

Finally, and although we do not model microstructure noiggli€itly in this paper, our approach is motivated by
the existence of such frictions. Therefore, we also gaugeénformance of our estimators in the presence of noise. In
particular, we add tp an i.i.d. noise process— independent of — such thatf (u) = 0 andE (u?) = @?*. We letu have
a two-point distribution: Pfu = +w) = 1/2. This choice has been further analyzed in Christensen,|flajand Vetter

(2009) and can loosely be thought of as representing a fobidedsk spread. The magnitude of the noise is controlled by
2 (L 2
w? [y o2du

v = N , Where~ is the noise ratio parameter (see, e.g., Oomen, 2006). t&hmsEn, Oomen, and Podolskij

(2010) report a comprehensive set of empirigadstimates. In accordance with their results, weyset 0.50, which

reflects the typical amount of noise found in high-frequedata from the U.S. stock market.

3.1 Simulation results

We start by looking closer at the ability of the range-bassiih®tors to provide unbiased and efficient measures of
quadratic variation and integrated variance. In Table lrepert the relative bias and root mean squared error (rnise) o
the various statistics for the three sampling frequenaies 26, 39, 78. The relative bias is computed as a ratio of the
estimate to its population target, averaged across simmng&gtand should equal 1 for an unbiased statistic. The numbe

parenthesis below the relative bias is the rmse, which has briltiplied by a factor 1,000.

—Insert Table 1 about here —

2ln order to minimize discretization bias, we first create mpact realization of Eq. (29) — (30) based on simulating al wft23,400 “second-

by-second” log-price updates and from this we extract et@ti data point.
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We first navigate through the left-hand portion of the tablkich covers the results in the absence of microstructure
noise. The presence of noise case is summarized towardadhaf ¢he section. First, as noticeable from the table, the
realised range-based estimators are mildly biased. Thséstovhe expected for the jump-robust measures, becaise
not sufficiently high in these simulations to fully eradiedle impact of jumps. Interestingly, though, the relatiizes lof
RBV™™ and RTV™™ is a bit smaller that what we compute for the return-basedpatitors, illustrating that the jump-
robust range-statistics appear less sensitive to thistafiesmall samples. Second, and by contrast to the subsdmple
realised variance, there is also a slight bias in the condbastimatorRRV"™™, but it is only about one percent at the
5-minute sampling frequency. In any instance, the rmseefdnge-based estimators is much smaller compared to the
equivalent return-based estimators, which reinforcesstatements from the previous section, based on large sample
theory. Thus, the range-statistic maintains also a coattlead in sampling stability in finite samples. Lastlg table
reaffirms that the range-based tripower extension is mdiaegft than its bipower companion. As readily seen, it i®als

less biased. Hence, going forward we restrict attentioR’Td/ ™.
— Insert Figure 2 about here —

To corroborate the analysis, we turn to Figure 2, which glesia reality check on the accuracy of the limiting normal
distribution derived forRT'V"™", Note that Panel A is based on the standardized version dCtiefrom Theorem 2,
while Panel B uses the delta method to conclude that

Vit (In RTV™™ —n [ o2du)
m 1 4 1 9 2
ARTV’!L,"L fo Uudu/ (fo Uudu)

As apparent from Panel A, the sampling distributionR3f V"™ deviates from the standard normal with some distortions

4 N(0,1). (31)

both in the tails and center area of the density, althougHittumes gradually improve as rises. On the other hand,

the log-based distribution theory in Panel B tracks thedigimple distribution ofn R7'V™™ somewhat better at all
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sampling frequencies. Thus, as a practical recommendatiermdvocate using the log-based approximation, which has

the added virtue of enforcing non-negativity on confidenaeds for the integrated variance.

— Insert Figure 3 about here —

Next, we consider the problem of making inference aboutdlifie return variation, as it would be done in practice,
where the integrated variance is unknown. Figure 3 shows &&8tidence intervals for the integrated variance, using
the log-based distribution theory amd= 78.22 As an illustration, we took a sequence of ten simulationsnesof
which include both small and large jumps. The x-axis labefgort, in trials with jumps, how large is the jump as a
ratio of total quadratic variation. In order to present asfele theory, we replaced the unobserved integrated qiigrti
by a consistent jump-robust realised range-based mulépeariation estimator. Among several candidates, we chose
a tripower estimator for the job (with parameigr = 4/3, for j = 1,...,3). Also, as a benchmark in the chart,
we compare with the return-based confidence intervals usiig”™ "™, where the feasible bands are computed using a
subsampled return-based tripower quarticity estimator.

Across all 10,000 simulations, the coverage rates are akegosl, whether using the return- or range-based approach.
For example, at the 95% level displayed in the figure, theadraped intervals include the integrated variance 93.38%
of the times, while this number is marginally better at 9363for the return-based interval. Meanwhile, at the 99%
confidence level, the rates change to 98.56% and 98.46%&atdsgly, yielding almost identical performance. As evitje
however, the range-based confidence intervals typicaliyedesharper inference with much tighter bands, which is a
reflection of the smaller asymptotic variance embeddedcéh sstimators.

Finally, consider the right-hand part of Table 1, which tises how the results are altered, when the efficient log-
price data are concealed behind a realistic level of miaosire noise. As apparent, the range by and large presisves

relative efficiency advantage also under noise, at leash®moderate sampling frequencies considered in this plper

Z2Note that because the log-based approximation is usedottilence intervals are not completely symmetric aroungthiet estimate.
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is precisely in this setting, so often used in practice, wiebe the range-based estimators hold some potential catpa
to the mainstream estimators. They are easy to implememtgefficient and fairly robust to noise at low-frequency. But
as consistent with the analysis of Christensen, Podolahij, Vetter (2009), we also observe that the noise has a larger
impact on the range vis-a-vis the return for a fixed value.ofhus, if higher sampling frequencies are required, theaoi

will eventually swamp the advantages of the range and a-mokagst estimator should be adopted instead.

4 Empirical application

We illustrate some features of the range-based multipoaséation theory for a few members of the Dow Jones Industrial
Average index. The exposition is based on transaction dataé following three constituents: American Express (AXP
Merck (MRK) and Exxon (XOM). We also include data for the S&B0Iepository Receipts (SPY); an exchange-traded
fund tracking the S&P 500. We retrieved high-frequency datahese tickers from the TAQ database via the WRDS
interface. The sample period spans the whole of 2007 — 20@9aansuch, includes part of the ongoing financial crisis.
Prior to analysis, we filtered the raw data for outliers, oy a set of rules that follow the guide proposed by Barrfdorf
Nielsen, Hansen, Lunde, and Shephard (2689Moreover, we restrict attention to the regular trading Soand so
remove updates with a timestamp outside 2:8@ 4:0(m Eastern Standard Time.

Before we commence with the empirical analysis, it is wootkelaborate on a couple of practical points. Firstly, in
real markets an important source of noise is price discestenBecause of this feature — but also other aspects of the
market microstructure (e.g., the practice of splittinggéablock trades into smaller slices) — it is not unusual to lioma)
stretches in the data, where the price either repeats oradtesnates between the bid and ask quotation (the so-called
bid-ask bounce). Here, we recall that the range-basedytmequests the number of “price changestontained in each

sampling interval, on which the range is being computedhssserves as a prerequisite for returning the appropriate

ZIn our application, we maintain the complete set of trarieadalata from every exchange, but we synchronize with quatiginating from the

primary exchange only.
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scaling factor), ,,,. Hence, if we were to count every observation in the data am@ement to the price process,
such practical features would tend to unduly propagateThe outcome is an inflation of, ,,,, which transforms into

a downward bias in the range-based estimatbigleanwhile, designing a good algorithm to tally the “true’nmoer of
price changes requires us to deliver a formal definition cditwie perceive to constitute an increment to the price peyces
a very subjective and challenging task.

Secondly, and equally important, the theory also calls wgoequidistant grid of log-price observations, while real
trade arrivals are, of course, random. With irregularlycgohobservations, the scaling factovs,,, which are built
from equidistant data, are no longer correct and using tbasdave a profound effect on the estimation. Consider, for
example, a uniform sampling scheme from a Brownian motiormvhich 2,341 log-price observations are drawn without
replacement from the entire set of 23,401 possible onerskiime stamps available in the 6.5 hours trading day, yieldi
N = 2,340 irregularly spaced returns. Suppose also, as in the siionlaection, that we split the data into= 78

intervals containingn = 30 returns each. Then, Table 2 illustrates the resultingivel&ias and mse:

— Insert Table 2 about here —

As apparent, with irregular spacings the use\pf,, leads to non-trivial downward biases in the range-based est
mators, which reduces their advantage from an mse pointesf. virhe solution to this problem is to tailay. ,,, to the
observation times. This implies simulating scaling faston the fly, which is less appealing. But, it can be done (e.g.
Rossi and Spazzini, 2009). We feel this issue is not too virgrior the data series under investigation here, which are

comprised of deeply liquid securitiés. However, when working with older data sets or illiquid seri¢his issue has

%The problem is in some sense akin to the no-trade bias of lsipeariation, see Corsi, Pirino, and Rend (2010).
For example, if we modify the above simulation exercise amdt1,700 irregular observations of Brownian motion (matgttioser with our

empirical data) and then construct an artificial 10-sececdnd of log-prices using previous-tick interpolation ¢ase below), the downward bias

is reduced to a mere 0.2% in baBRV™™ and RT'V™™ across 10,000 trials.
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more substance, and here it would be an advantage, and fyoleglessary, to suitably account for the irregular natdire o
high-frequency data by simulating grid-specific scalings.

As a consequence of the above features, i.e. price disessteand irregular spacing, a further modification of the
theory is necessary for the empirical use of the realisedeadrased multipower variation framework. Therefore, we
settled on the following compromise. Throughout the trgdiay, we collect a new observationpévery 10th second,
using previous-tick interpolation to replace missing ealiy the most recent transaction price. We then constract th
realised range- and return-based estimators using 5-engarpling (i.e., setting = 78 andm = 30). Table 3 holds

descriptive statistics of the data and resulting series.

— Insert Table 3 about here —

As can be gleaned from the table, the range-based multipawviations deliver estimates of quadratic return varratio
and integrated variance, which are in line or marginallyadbe corresponding return-based estimates. This hofdssac
the entire sample or by yearly subsample periods, as report€able 3. Browsing through the four equities, the range
suggests that jump variation, i.e. the proportion of totiation produced by jumps, is in the order of 4.6% — 11.7%,
which broadly agrees with the return-based estimates audtlaé previous literature. This is comforting, as we would
expect the unconditional sample averages of both retusaeband range-based estimation to be broadly in line. I al

interesting to note that SPY, representing the S&P 500 inldax the lowest estimated jump proportion.

— Insert Figure 4 about here —

In Panel A of Figure 4, we apply the range-statistic to edtintlae overall level of return variation and its composition
using the high-frequency data from MRK as an illustrationthle graph, all series are converted to an annualized sthnda

deviation term. As readily observed, in general BBV ™™ and RT'V™™ series tend to swing in parallel, although there
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a few notable departures, as revealed by the jump variafigh flgure also reported in the chart. Panel B investigates
such an instance by plotting the high-frequency data for MiRKJanuary 25, 2008, where the JV measure is about
75%. On this day, Merck published a press release regartingnti-cholesterol product Mevacor, which received a
“not approvable” letter from the FDA, while government rigars also said they were analyzing recent results from the
clinical trials of the company’s Vytorin drug (the so-callENCHANCE study). The news were largely perceived as bad
by the market, moving the equity into deep negative tefrjtalthough most of the losses were recovered before the end
of trading. Of course, to reach statistical conclusionsuglize presence of jumps in the sample path, we would need to

do a formal hypothesis test, but the plot and point estim@asadicative this.

— Insert Figure 5 about here —

Finally, in Figure 5, we compare the range-based and subldedmgturn-based tripower estimators of the integrated
variance. In the left panel, we plot the autocorrelationctions of the two estimators up to 100 lags. As evident, they
are virtually identical and both display the typical loragige dependence that has been observed in volatility maes ti
before (e.g. Andersen, Bollerslev, Diebold, and Labys,3200rhe range-statistic is slightly more persistent tham th
return-based companion, which is in fact true across aitiegconsidered here (not reported). Although the difiees
between the two series are larger in magnitude for some obtther symbols, it is not clear if this can be exploited to
produce superior forecasting accuracy. We leave this @skufure work to decide. In the right panel, we mimic the
approach taken in the simulation section to construct idasonfidence intervals for the integrated variance in thkli
volatile month of September, 2008, which featured the demifis.ehman Brothers, the 4th largest investment bank in the
U.S. at that time. Notice the widening of the error bands (W&estimate of integrated quarticity) asncreases, which
reflects the surge in volatility in the aftermath of the bagkcy. Again, and according to theory, the range-basedviaite

are smaller than the return-based ones, thus deliveringehimference about the integrated variance.
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5 Conclusions and directions for future research

This paper has presented the concept of realised rangd-basiéipower variation and shown how it can be used to
estimate the ex-post quadratic return variation and cdnjdatp-robust inference about integrated variance. Tlgelar
sample asymptotic theory was backed by both a simulatiadysind an empirical application, illustrating the potentia

of the range-statistic. The range was motivated by the &miparse sampling of return-based estimators caused by the
presence of microstructure noise in financial high-fregyetiata. Of course, the range itself is affected by the noise
component, as we demonstrated with numerical simulatibna. companion paper (Christensen, Podolskij, and Vetter,
2009), we study more formally the impact of noise on the stasthdealised range-based variance, and the interesteerread
is encouraged to read this material.

The theory developed here casts new light on the range aplhylsits properties in a general semimartingale model
with stochastic volatility and finite activity jumps. Butdlre are still several interesting issues left untouchedst,Fi
covariance risk is important in financial economics and eabgsed measures are notoriously difficult to extend to the
multivariate setting. Range-based covariance estimdtimnbeen studied in Brandt and Diebold (2006) and Bannouh,
van Dijk, and Martens (2009), although they make rathemgtrassumptions about the underlying process driving the
evolution of asset prices over time. Moreover, those pagerdased on a polarization identity, which in general does
not guarantee a positive semi-definite covariance mattimase. In an ongoing paper, we are working on an extension
of some of the concepts discussed here to multivariate psese and we hope to be able to publish some results soon.
Second, it could be worth to consider alternative availabtds, which may refine the asymptotic approximations pre-
sented here, for example bootstrapping, Edgeworth expamsir Box-Cox transformations, as has been suggested by
Ait-Sahalia, Mykland, and Zhang (2011); Goncalves andl@iédni (2009, 2011) in the context of the realised variance.
Finally, as the realised range-based variance of Christeaad Podolskij (2007); Martens and van Dijk (2007), which
in this paper was shown to be biased, has been found to praghackforecasts of future return variation (e.g. Patton

and Sheppard, 2009), we look forward to a more thorough aisatf the forecasting capabilities of realised range-thase
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multipower variations introduced here, for example follogvthe lines of Andersen, Bollerslev, and Diebold (2007).
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Appendix of proofs

Proof of Theorem 1

First, we decompose

s 1 2 2
RRVZL "= A2, (Z Spin,am + Z szA,A,m) )

i€lp ielg

wherel',, = {1 < i < n | the procesp jumps on|[(i — 1)/n,i/n]}. Because the jump part pfhas finite activity, there
are only finitely many jumps of0, 1], so the first sum in the above decomposition is finite (almosglg). In addition,
with a probability converging towards there is at most one jump per interyél — 1) /n,¢/n]. Combined with the results

of Christensen and Podolskij (2007) (or Theorem 2 in thisepgphis implies that

1 2 p, 1 - 2 1 2 v 1o
— S5, - — J; and — El —>/ o, tu
Aom Z Pis A N Z i Ao Z Pin,Asm P

iely, i=1 M iere
i.e.
1 1 N1
RRV,™ 2 / o2du + S /s
0 27m —
i=1
as asserted. [ |

Proof of Theorem 2

Preliminaries and some notation

First, we note that as— o is cadlag, all powers aof are locally integrable with respect to the Lebesgue measarthat
for anyt ands > 0, fot |ow|*du < oco. Moreover, and without loss of generality, we will restiiice functionsy, o, i/, o/,
v" ando~! to be bounded (e.g., Barndorff-Nielsen, Graversen, Jdodplskij, and Shephard, 2006, Section 3).

Next, if a processX” is of the form:

X" =3¢,
=1
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for an array(¢*) and X" 0, we say that(") is asymptotically negligible (AN).
Also, in the below we employ generic constants, which aret&hbyC or C, (the latter notation is applied, when
the constant depends on some external paramgter

Moreover, we define
Zj = \/ﬁ|0%|SW@H71>A,A7m> i=1,... k. (32)

This construct is used to locally approximate the true @lest) rangq/ﬁspuﬂim’mm. We suppress the dependence of

@"j onm for notational convenience. Finally, we also set

gj(z) = x%, j=1,...,k,

Agjom
and
pa(f) = ELf(|z]sw,m)]-
It should be noted that
pal(gy) = l2|%,  j=1,... .k
Structure of the multipower variation proof

Before we write down the proof of the realised range-basetlipower variation estimator, we will briefly sketch the

main steps and ideas behind it.

(1) First, we prove consistency of the estimator

——nm 1 n—k+1 k ( n_)Qj
RMV(Q17~~7%) = n Z H )\27? :
i=1 j=1 "M

, M

which is an approximation ORMV(ql,m,qk)

based on the representation in Eq. (32). The trick is themowvghat the
error committed by using this approximation goetoThat this is true follows exactly as in the return-basedirspt

(e.g., Barndorff-Nielsen, Graversen, Jacod, Podolskij, 8hephard, 2006, Section 6).
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(2) The proof of the central limit theorem also starts by figurimg the corresponding result for the approximating

sequence, i.e. we first deduce that

1
dg m
Pois (g5) ¢ =, /A(q1,...,qk)/0 o] dB,,.

The basic tool used to work out this assertion is Theorem B8 1n Jacod and Shiryaev (2003). We note that the

|
<.
Il >
-

computation of the asymptotic conditional variance is@tedious and requires some very lengthy calculations.

(3) In the next step, we justify the approximation made in stg¢pKi&re, we assume without loss of generality that 2

and prove a CLT for the canonical process:

1 n
% Z{gl (\/ﬁspiA,Aﬂn) g2 (\/ﬁsp(i+1)A,A7m> —-E |:gl (\/ﬁspiAyA,m) 92 (’\/ﬁsp(ii,l)A?A,m) ‘ flnl]}
i=1

This part is in fact also shown as in the return-based cage @arndorff-Nielsen, Graversen, Jacod, Podolskij, and

Shephard, 2006, Section 5).

(4) And, finally, the last step is to show that the process from &gand the original normalized statistic in Theorem 2 are
asymptotically equivalent. This is the most complicated.dais much more involved than with return-based estiomati
because the supremum is not a smooth functional. On the b#mel, as with returns, additional problems arise when

powersg; < 1 appear in the multipower variation, becay&e) = |z|? is non-differentiable fop < (0, 1].

A Proof of consistency

Write

with




As explained above, this statistic serves to approximagertre estimatoRM V"™

( ar)” Now, as in Barndorff-Nielsen,

Graversen, Jacod, Podolskij, and Shephard (2006, Seqtid@rm6lds that

RMV™

D,
ot ey ~ BMV g 0. (33)

On the other hand:
n—k+1 n—k+1

Z E[in | ‘7:1'71:| _:L Z |Uz 1|qu —)/ |O‘u|q+du (34)

i=1 i=1

and
n—k+1

> (B[ | Fa

i=1

]) 2, (35)

because the above summands are conditioalhdependent. Putting Eq. (33) together with Eq. (34), asidgithat the

sequence is Eq. (35) is AN, we are able to conclude that
RMV™™ —>/ |0 | T .

(ql, k)

This completes the proof of the range-based multipoweatiari consistency property. |

B Proof of the central limit theorem

We divide the proof into several steps, as detailed in thevisw@ above.

B.1 A central limit theorem for the approximation

First, we introduce the quantity

which is an approximation of/n (RMV’(Zlm 0= fol \auyq+du>.



Lemma 1. Assume thap follows the diffusion process defined in E4). Asn — oo, it holds that

1
m,m d m
v m/o 0|9 dB,,.

Before giving the proof of the Lemma, note that the followegjimates are true, whens a diffusion:

E“BZ]VI]SC(]? jzlv"'vkv
forall ¢ > 0 and a fixedn € N.

Proof of Lemma 1. By shifting the indices, we form a decomposition

U™ =+ op(1)

with

k
1
C?:%Z{gj(ﬂf—jﬂ,j)—f’ - }Hgl i— ]+1z H Poi_j; (91)-
j=1

l=j+1 "

We remark that the termg; (5" ;,, ;) — po;_; (9;) is measurable with respect 18, while the other factors in the
definition of(;* are Fi—. -measurable.
By Theorem 1X 7.28 in Jacod and Shiryaev (2003), the prooferhima 1 will follow, if we can verify the following

five conditions on the sequen¢g’):

zn: E [gb | Fi
i=k

X ® SE[GPFu] BAL . / (a2 s,
i=k

o Safer (v w17 %o @ SEferis] 2
i=k

n
SE[Gr (N =N ) | P | Bo,
Z:k n n n
where the last condition must hold for any bounded martmgéathat is orthogonal téV (i.e. with quadratic covariation

[N, W] = 0).
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As (" is a martingale difference, it follows that
E [ n | fﬂ] ~0.
This verifies conditior{A). Next, becausg€;" is an even functional i and W 4 —W, we get that

afer (v, i) 1 7] =0

which implies conditior(C). Moreover, we also deduce that

<«

B[l Fio | <

n

and this proveg¢D). That condition(E) is true follows from the work of Christensen and Podolsk{)q2).
So, we are left with the task of proving conditi¢B), which requires a straightforward but somewhat tediousueal

lation. We start out by defining
pi—ji-n(fr9) = /f (’U$’$> g (\UM%\x) O ()dz, 1<4,h<k,
whered,,, denotes the density afy,,,. We note that due to the continuity of

sup sup |pi—ji-n(f19) = po._y (f9) 20, (36)
i<n 1<j,h<k 2

a result that is used in the computations below. By alsorggtti

j—1 k
= {gj (B j415) = Pois (gj)} 1o (Bsia0) TI poiey ()
" =1

I=j+1 "
we find the identity

k—1k—j

E DC?F | 7:;1] = Zk:E [\MZ]P | J-";l] +2

n n
E [Ni,hﬂi,h—i—j |7 %1} :
=1 =1 h=1

<

From this, we deduce that

7j—1 k
E ||uf,? | Fi | = {p (69) — P2, <gj>} [ (3250 T1 72, @0
" =1

n
l=j+1 "
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and

}ng Bl ha1)

E [Mﬁhuﬁhﬂ- \ f%} = {Pi—h,i—h—j(ghﬂgh) Poin (9n+5)Po

h+j—1
XHPUZ]Qnglﬁhg—i-ll Hpcnhygl
1= h+1 n = h+]+l
Note that
h—1 h4j—1 h—1 J
[T Bnid) TT @ (Bnsind = TT o (Bnins) 9145 (Bn—jinins) x [T o (Bln-jia0)
<1 =1 I=1 =t

We remark thay, (5?_h+1 z) andg;; (ﬁi“_h_jﬂ l+j) include the same increment of the Brownian motidh Putting

the pieces together and then calling upon Eqg. (36), we cdediuat
-2

k k Jj—1
ZE [sz | ]:1;1} £> H qu,m Z {/\2qj,m - )\i,m} H /\2(117 H /\ql m
; j=1 j=1 =1

I=j+1

k—1k—j

1
+2 {)‘Qhﬂ‘-ﬂnu EI}L+J7 Q;um} H )‘%m H )‘mm H)\QI+QL+]7WH)\QL7 )}/0 ‘UU‘Z(Hdu'

j=1h=1 I=h+j+1 I=h+1

What is left is to show that the constant in front)g]f|au|2‘l+du equaIsAz’; )" First, make the observation that

Lyeees

k j—1
Z {/\2%‘77” o Agjvm} H /\2‘117 H /\Ql, Z HAqu’ H )\QL m H )\2‘11’ HA%

j=1 =1 l=j+1 J=1 \Il= l=j+1

k
=] 22 HAW
=1

where we applied a telescopic sum argument. Using the ootati

Qh,j = H Agi,m H Agi,m H >‘(Il+fIl+]7m H Agim

I=h+j+1 I=h+1

34



allows us to reduce this further

k—1k—j
2 Z {)‘Qhﬂ‘-ﬂ]m Qhﬂ,m Q;um} H )‘qmn H )\Qh H )‘QL-H]HJW"L H )‘Ql,
j=1h=1 I=h+j+1 I=h+1
k—1k—j k—1
=2 (an; —an—1;) =2 ) (ar—;; — ao;)
j=1 h=1 j=1

k—1 k k—j
== —1 HA(]zm 22 H (Il7mH/\lIl+(Iz+J,mH>‘(Iz7mv
=1 1=k—j+1

which, upon collecting pieces, completes the proof. |

B.2 Justification of the approximation: |

To keep ideas fixed, we concentrate here onkthe 2 setting (i.e., range-based bipower variation). The schehtlee
proof does not change for a genekabut of course it does get slightly more complicated, algfonot by much.

First, we define the process

U(gng \/7 Z{gl nSpZA A, ) g2 (\/_S;D(Z+1)A AT )

—E [91 (\/ESPiA,A,m) g2 (\/ﬁsp(iJrl)ATA,m) | .7:%] },

Then, the convergence

U(g1,gz)n’m o U/n,m £> 0

follows as in the return-based world, see Barndorff-NieJ98raversen, Jacod, Podolskij, and Shephard (2006, Sectio

5). As a consequence

1
U(gl,gg) ’ 44/A(q17q2)/0 ‘gu‘qudBu,

which completes this part. |
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B.3 Justification of the approximation: Il

Again, and without loss of generality (but a pleasant lossoofplexity), we assume that= 2. In light of the previous

steps, the CLT will follow, if we can prove the convergence

(q1,92

1
vn (RMV”’m )= / |au|q+du> —U(g,h)"™ 50,
0

for a fixedm € N. We do this by proving that

nan 1 z
G = B [0 (Vt5pis ) (VS ) | Fica ] = Vi [ o ) s g2

is AN. To accomplish this, we spli""™ into:
Cn,m — C!n,m + C(/n
1 1 1 )

where

= 7 B [ s sm) 2 (Vs am) | Pia] =B (80) 1 7 B [ (011 722 ]).

=i [ (b @) 0 (0= 1y (00 o (00))

n

It follows from Barndorff-Nielsen, Graversen, Jacod, Pekip and Shephard (2006, Section 8) tig#t is AN. So, the

only missing piece is to show the sequelqﬁem is also AN and we are done. We set

n,m __ m /n,m _ m
éi - \/ﬁsfvm,mm — Mil 62 - \/ﬁsp(i+1)A,A7m = M2
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Using assumption (%), we introduce the random variables:

t t
((D?vm:\/ﬁma}{(/ Ui_lqu+/ i—1Cu

s,telﬁn

b [ o (W W) ot (- ) ) — (37)
t t t t
¢(2);"™ = ﬁ{max(/ ,uudu—l—/ auqu> - max(/ J%qu —1—/ ﬂFTldu

s,tEIZﬁL s,tEITf’

[ o () ot () o) o

wherel, = {t [t=214 % for some0 < j < m} We get that

&M =C) + @),

with an identical decomposition holding f@j”’m. As in Barndorff-Nielsen, Graversen, Jacod, Podolskig 8hephard

(2006, Section 7.1) we obtain, under assumptiog) (the estimate

g

E[I&"™ < Cn™2,

(2

m,m

for anyq > 0 and uniformly ini. We rewrite(;"" as follows

G =[5 | F ]
with 6;"" defined by:

n,m 1 m m
0, = —= <91 (\/EspiA,A,m) 92 <\/’Esp(i+1)A,A7m) 9 (ﬁi’l) 92 (5“2)) '

B

Next, we observe that

1
5?’m = %91 (\/ﬁspm,A,m) <92 <\/Esp(i+1)A,Avm) — 92 ( ZZ))

1 n n\ — /m,m n,m
= (01 (Vs ) = 0 (510)) 00 (31) = 07 617
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We show that

E [(%/n,m | ]‘—%}

is AN, but omit the proof foi [52’7”“ | }‘ﬂ} to save space. Note that
Zn:E [5;’"”” | fﬂ} - Zn:E [19;”” | .7-“@} +0,(1)
=1 1=1
with
1

0 = ' (Bi2) Vo (i) &

While the above approximation appears to be a simple apiglicaf the mean value theorem, this result is actually highl
non-trivial, because the functian is not differentiable at 0, wheq < 1. NonethelessVg; (3}, ) is well-defined a.s.
andE [Vgl (ﬁfl)} < oo under assumption (M. The approximation can be shown as in Barndorff-Nielseravérsen,
Jacod, Podolskij, and Shephard (2006, Section 8).

Recall that
& =)™+ 2,

with ¢ (1) and(¢ (2)"™ defined by (37) and (38), respectively. Set

fin (5,t) = Vno iz (Wi = W),

to achieve the identity:

1
C(l)?vm = max <flln (t,s) + %gm (t, s)) — mafv;fé??gnt, s).
s,te Z’ﬁl ’
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Imposing assumption (V:

(t; (W), sit (W) = argmax fi, (s,t)

mn mn
s,tel™
e 1,Mm

= arg max /n(W; — W)

s,telﬁn

4 arg max(Wy /=W, ).

s,t=0,1,...,m
A standard result then states that the g&if* (W), s;7* (W)) is unique, almost surely (e.g. Karatzas and Shreve, 1991,

p. 107). Next, the following results, which are proven in iStemsen and Podolskij (2007), present a useful stochastic

expansion fog (1);""™ and a result o (2);""".
Lemma 2. Given assumption (M
COP™ = —={ gin (E5 (W) 5520 (W) + 1 |

where

E[|giml"] =o(1), (39)
for all p > 0 and uniformly ini.

Lemma 3. If ¢ > 2, it then holds that

forall ¢ > 0.

Note that(t™ (W), si™ (W)) = (si™ (W), 5™ (—W)) . Moreover, ayW, B') < — (W, B') and Vg, (67,) is an

m r7n

even functional of1:

£ [Var (814) o (57 (W), 57 (W) | Fis | =0,

n

for k =1,2,3. Hence

E (Vg1 (82) gin (£ (W) 3 (W) | Fizt | = 0. (40)
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Using Holder’s inequality, it follows that

|E [192"’” \ }";1} | = LPaﬂ (92) | E [Vgl (81) (€ (™ +¢(2)"™) | }-;1} |

n n

<

S

prcs () (1B [V (312) c 02 | 7]

n

T (E [IVar (841)7))7 (B[ @™ mﬁ),

for somep > 1,¢ > 2 with (3 —1)p > —1l and1/p + 1/¢ = 1. Note thatE [(Vgl(ﬁfﬁ))p] < (), < oo, when
(g1 — 1) p > —1. Finally, by combining Lemma 2 and 3 with Eq. (39) and (40),ge¢ the AN property of the sequence

E [19;”” | }‘;1} Hence, the CLT has been proven. [ |
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Figure 1: Asymptotic variance factor of realised rangeeblasstimators.
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Note. The figure shows the asymptotic variance factor of the rdoagped realised, bipower and tripower variance, as a funofien.
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Figure 2: Asymptotic approximation of the realised rangsdul tripower variance.
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Note. We present smoothed density plots of the raw and log-baseglsey distribution of the standardized realised rangsebatripower variance

estimator. The sampling frequency runs through- 26, 39, 78, which represents 15-, 10- and 5-minute sampling and quorets tom = 90, 60, 30.
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Figure 3: Jump-robust 95% confidence intervals for the natiegl variance.
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Note. This chart shows point estimates Bf'V ™" and ST'V™™ and 95% confidence intervals for the integrated variandegus = 78. The box
(“whisker”) is the range-based (return-based) confident=val. In both cases, the integrated quarticity is prdxiith a tripower estimatorx marks the

true value of integrated variance. The labels on the x-a@psnt the proportion of quadratic variation induced by jen(iplank if zero).
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Figure 4: lllustration using MRK.
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Note.In Panel A, we plot the complete time seriesfaRV ™™ and RT'V ™™ for MRK. The latter has been reflected in the x-axis to impriheevisual
layout. Jump variation is the definedasx (RRV™™ — RTV™™ 0). The series have been converted to an annualized standaatiate measure.

In Panel B, we plot the filtered transaction data for MRK onuzam 25, 2008.
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Figure 5: Comparison of return- and range-based estiméatbeontegrated variance, SPY data.
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Note. To the left, we plot the autocorrelation function (ACF) oéffump-robustR7'V ™™ and. STV ™" from lags 1 — 100. The shaded area defines the
Bartlett's two standard error bands for testing a white ebigpothesis. To the right, we display tRg"V ™" andST'V"™ ™ point and interval estimates

of the integrated variance for the month of September, 2008.
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Table 1: Relative bias and root mean squared error.

Absence of noise Presence of noise
(n,m) = (78, 30) (39, 60) (26,90) (78, 30) (39, 60) (26,90)
Panel A: Range-based
RRV™™ [QV] 1.011 1.022 1.033 1.018 1.027 1.037
(0.349) (0.522) (0.667) (0.353) (0.524) (0.669)
RBV™™ [IV] 1.019 1.023 1.025 1.031 1.031 1.032
(0.298) (0.398) (0.485) (0.310) (0.405) (0.492)
RTV™™ [IV] 1.010 1.011 1.010 1.022 1.019 1.017
(0.281) (0.378) (0.469) (0.291) (0.384) (0.476)

Panel B: Return-based (with subsampling)

SRY™™ [QV] 0.999 0.999 0.997 1.001 0.999 0.997
(0.467)  (0.663)  (0.816) (0.467)  (0.662)  (0.817)

SBymm [IV] 1.034 1.039 1.040 1.036 1.040 1.040
(0.539)  (0.749)  (0.901) (0.540)  (0.749)  (0.901)

STYmm [IV] 1.021 1.023 1.022 1.023 1.023 1.022
(0.528)  (0.737)  (0.895) (0.529)  (0.737)  (0.895)

Note We report the relative bias and rmse of the estimators diecluin the simulation study. The bias measure is equal to arfor
unbiased estimator. The number reported in parenthesi308 % rmse. The square bracket to the right of each estimator shews

theoretical limit, against which the numbers are computed.
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Table 2: Relative bias and mean squared error with irrelyusgaced data.

(n,m) = (78, 30) return-based range-based
SRym™m™ - STymm RRV™™  RTV™™

Relative bias 1.000 0.990 0.965 0.947

Msexn 1.399 1.665 0.643 0.681

Note We report the relative bias and mse of the estimators usiegularly spaced data. The bias measure is 1 for an unbéssiedator.

The mse has been normalized by multiplying with
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Table 3: Descriptive statistics of the equity data.

nobs(avg. 1000)

RRV™™
RTV™™
JV(range)

SRy™™
STvmm
JV(return)

nobs(avg. 1000)

RRV™™
RTV™™
JV(range)

SRV™™
STvmm
JV(return)

AXP MRK
2007 2008 2009 all 2007 2008 2009 all
8.3 12.3 11.2 10.6 9.4 11.8 10.5 10.6
24.5 59.8 514 453 20.7 38.9 30.3 30.0
21.8 55.4 47.2 415 18.1 34.6 26.7 26.5
10.9 7.5 8.2 8.4 12.4 111 12.0 11.7
23.2 56.0 49.2 428 19.4 36.3 28.6 28.1
21.7 53.7 46.6  40.7 18.0 34.1 26.8 26.3
6.5 4.2 5.3 5.1 7.3 6.2 6.4 6.5
SPY XOM
2007 2008 2009 all 2007 2008 2009 all
15.3 194 19.2 17.9 14.3 16.8 14.6 15.2
11.7 26.5 19.6 19.3 21.1 36.4 22.4 26.6
11.0 25.6 18.5 18.4 19.9 34.4 20.9 25.1
5.5 3.4 5.9 4.6 5.6 5.5 6.6 5.8
115 26.0 19.2 18.9 20.2 34.9 215 25.6
10.9 25.2 18.1 18.1 19.5 33.8 20.5 24.6
4.5 3.2 5.8 4.3 3.8 3.2 4.4 3.7

Note We report descriptive statistics for AXP, MRK, SPY and XOWhe sample period is January, 2007 — December, 2009, both

included. nobs is the average number of transaction daeaéaning (in 1000s). Volatility is reported as annualiseandard deviation,

in percent. JV is one minus the average ratio of the jumpsbintegrated variance estimate to the quadratic variasti@ate.
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