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Abstract

In this paper, we present a realised range-based multipowervariation theory, which can be used to estimate return

variation and draw jump-robust inference about the diffusive volatility component, when a high-frequency record of

asset prices is available. The standard range-statistic – routinely used in financial economics to estimate the variance

of securities prices – is shown to be biased when the price process contains jumps. We outline how the new theory can

be applied to remove this bias by constructing a hybrid range-based estimator. Our asymptotic theory also reveals that

when high-frequency data are sparsely sampled, as is often done in practice due to the presence of microstructure noise,

the range-based multipower variations can produce significant efficiency gains over comparable subsampled return-

based estimators. The analysis is supported by a simulationstudy and we illustrate the practical use of our framework

on some recent TAQ equity data.
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1 Introduction

The standard, arbitrage-free continuous time setting for securities prices in financial economics shows that, in frictionless

markets, return variation admits a general decomposition into a continuous, diffusive volatility component and discontin-

uous jumps (e.g. Andersen, Bollerslev, Diebold, and Labys,2003; Back, 1991; Delbaen and Schachermayer, 1994). In

the past few years, our ability to assess the relative significance of these two fundamentally distinct sources of risk has

taken a major step forward with the increasing availabilityand use of high-frequency data. This has opened the way for

non-parametric estimation of the quadratic return variation and, for example, allows us to split this composite measure

of risk into the integrated variance and the sum of the squared jumps. It follows a long-standing tradition within asset-

and derivatives pricing, portfolio allocation and risk management of using low-frequency data (e.g., daily or weekly)to fit

parametric stochastic volatility or jump-diffusion models (e.g. Alizadeh, Brandt, and Diebold, 2002; Andersen, Benzoni,

and Lund, 2002; Bates, 1996, 2011; Chernov, Gallant, Ghysels, and Tauchen, 2003; Heston, 1993; Hull and White, 1987;

Gallant, Hsu, and Tauchen, 1999).

A large body of work in the high-frequency space is based on a framework called realised (return-based) multipower

variation, which relies on statistics constructed from intraday returns (e.g. Aı̈t-Sahalia and Jacod, 2009a,b, 2011;An-

dersen, Bollerslev, and Diebold, 2007; Barndorff-Nielsenand Shephard, 2004, 2006; Barndorff-Nielsen, Shephard, and

Winkel, 2006; Corsi, Pirino, and Renò, 2010; Dobrev and Szerszen, 2010; Huang and Tauchen, 2005; Mancini, 2004,

2009; Todorov, 2009). In practice, the presence of market imperfections (such as price discreteness and bid-ask spreads)

means that standard return-based multipower variation estimators often use sparse sampling (e.g. Bollerslev and Todorov,

2011; Corsi and Renò, 2010; Tauchen and Zhou, 2011). The idea being that at a moderate frequency, for example the

5-minute frequency, the impact of microstructure noise is small enough to be ignored. Of course, for many liquid assets

the data are much more abundant, so this principle often entails a significant loss of information, and much recent re-

search has focused on developing estimators that are more resistant to the noise (e.g. Barndorff-Nielsen, Hansen, Lunde,

and Shephard, 2008; Christensen, Oomen, and Podolskij, 2010; Fan and Wang, 2007; Jacod, Li, Mykland, Podolskij, and
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Vetter, 2009; Large, 2010; Podolskij and Vetter, 2009a; Zhang, Mykland, and Aı̈t-Sahalia, 2005, among others). A branch

of related work can be found in, e.g., Andersen, Dobrev, and Schaumburg (2008); Lee and Mykland (2008a,b); Mykland,

Shephard, and Sheppard (2010).

In this paper, we formulate a complete realisedrange-basedmultipower variation theory, which builds directly on the

return-based multipower variation by simply replacing absolute returns with ranges, suitably scaled. We outline how it

allows us to estimate aggregate return variation and form jump-robust estimates of integrated variance using the range.

The analysis shows that if high-frequency data are being sparsely sampled, using a realised range-statistic can produce

considerable efficiency gains relative to a standard return-based estimator, even when the latter employs subsamplingto

exhaust the entire database (e.g. Zhang, Mykland, and Aı̈t-Sahalia, 2005; Zhou, 1996). Intuitively, the range partially

distills some of the information contained in intermediatedata not used by a sparsely sampled return-based estimator,

and this turns out to be a more effective way of doing it compared to subsampling of low-frequency returns. Another

appealing key feature of this theory is that realised range-based multipower variation estimators can be made increasingly

robust to jumps without losing asymptotic efficiency. We useboth simulations and empirical data to illustrate how these

findings manifest, for example in order to construct feasible jump-robust confidence intervals for the integrated variance.

Moreover, we show that this advantage largely prevails alsoin the presence of a realistic level of market microstructure

noise. At low-frequency sampling, the range therefore offers a parsimonious, yet highly efficient, framework, which

avoids the need for doing complicated corrections in order to combat the noise.

Indeed, the main motivation for using the range is that realised range-based estimation of the integrated variance is

known to be very efficient in pure diffusion models (e.g. Christensen and Podolskij, 2007; Martens and van Dijk, 2007;

Parkinson, 1980). Interestingly, however, the propertiesof the high-low remain unchartered territory in jump-diffusion

models and, as we show here, the standard range-estimator suffers from systematic biases, when jumps are added to the

price equation. We propose to rectify this bias using a hybrid range-estimator, which has the form of a linear combination

of the original range-statistic and a jump-robust measure of integrated variance.
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It should be noted that the way we retrieve jump-robust measures of integrated multipower variation follows exactly

the procedure of the return-based framework, which dependson terms in the proximity of a jump to get small. As such,

it inherits some of the weaknesses associated with this approach, although our simulations do demonstrate that the range

has superior finite sample robustness. In this respect, an interesting route is adopted by Dobrev (2007), who extends

the standard range-statistic (used here) – based on the single largest price move – into a generalized range theory, which

maximizes the sum of multiple price moves. The generalized range is also jump-robust (potentially to some forms of

infinite activity jump processes), but this feature descends from scaling constants, which may entail some advantages in

finite samples. This topic is related to a multitude of recentalternative jump-robust estimators based on truncation (e.g.

Aı̈t-Sahalia and Jacod, 2009a,b; Andersen, Dobrev, and Schaumburg, 2008; Christensen, Oomen, and Podolskij, 2010,

2011; Corsi, Pirino, and Renò, 2010; Mancini, 2004, 2009).

The paper proceeds as follows. In section 2, we set notation and invoke a standard arbitrage-free continuous time

jump-diffusion semimartingale model. We also briefly review some aspects of the theory of return-based multipower

variation, before we switch to studying realised range-based multipower estimation. The key theoretical results are pre-

sented in Theorem 2 and a novel combination estimator is proposed in Eq. (23). In section 3, we conduct a Monte

Carlo study to investigate the finite sample properties of our new range-based multipower variations. We also inspect

the asymptotic approximation of the jump-robust range-based tripower variance. In section 4, we progress with some

empirical results using high-frequency data from the TAQ database. In section 5, we conclude and offer directions for

future research. An appendix contains the derivations of our theoretical results.

2 Theoretical framework

In this section, we derive new non-parametric theory, basedon the price range, for consistently estimating return variation,

and we show how it can be applied to filter out the continuous variation part from the squared jumps.
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2.1 The model

The theory is developed for a univariate log-price, sayp = (pt)t≥0, which is defined on a filtered probability space

(

Ω,F , (Ft)t≥0 ,P
)

. p evolves in continuous time and is adapted to the filtration(Ft)t≥0, which holds all relevant infor-

mation released with the passing of time.

As standard in asset pricing theory, we assume thatp is a member of the class of jump-diffusion semimartingales that

satisfy the generic representation:1

pt = p0 +

∫ t

0
µudu+

∫ t

0
σudWu +

Nt
∑

i=1

Ji, (1)

whereµ = (µt)t≥0 is a locally bounded and predictable drift term,σ = (σt)t≥0 is a càdlàg volatility process,W =

(Wt)t≥0 a standard Brownian motion,N = (Nt)t≥0 a finite activity simple counting process, andJ = {Ji}i=1,...,Nt
is

a sequence of non-zero random variables.2 Here,N represents the total number of jumps inp that has occurred up to

and including timet, while J are the corresponding jump sizes. Note that the drift term isof order dt and is therefore

negligible over short intervals of time, as typically considered in the high-frequency literature. As such, the model induces

two main sources of risk, namely diffusive volatility and jumps.

The quadratic variation of the cumulative return process isthen given by

[ p ]t =

∫ t

0
σ2
udu+

Nt
∑

i=1

J2
i , (2)

i.e. the integrated diffusive variance coefficient and the sum of the squared jumps. The quadratic variation plays a key

role in high-frequency volatility estimation due to the following definition from stochastic integration theory:

[ p ]t = p-lim
n→∞

n
∑

i=1

(pti − pti−1)
2, (3)

1Asset prices must be semimartingales under rather weak conditions (e.g. Back, 1991; Delbaen and Schachermayer, 1994).
2A simple counting process,N , is of finite activity provided thatNt < ∞ for t ≥ 0, almost surely. In this paper, we do not explore infinite

activity jump processes, although these models have been studied in the context of realised multipower variation (e.g.Aı̈t-Sahalia and Jacod,

2009a,b; Barndorff-Nielsen, Shephard, and Winkel, 2006; Todorov and Tauchen, 2010; Woerner, 2005, 2006).
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for any sequence of partitions0 = t0 < t1 < . . . < tn = t such thatmax1≤i≤n {ti − ti−1} → 0 asn → ∞ (e.g.

Protter, 2004). This result is important, because it shows that we can infer the latent quadratic return variation from high-

frequency observations ofp and, in the limit, consistently estimate it as more and more data are filled in the interval[0, t].

The practical relevance of the quadratic variation is stressed in several papers (e.g. Andersen, Bollerslev, and Diebold,

2010; Andersen, Bollerslev, Diebold, and Labys, 2003; Barndorff-Nielsen and Shephard, 2007). It is, for example, closely

related to the conditional variance, which features prominently in many pillars of financial economics.

In the special case where there are no jumps inp (i.e. N ≡ 0), it holds that

pt = p0 +

∫ t

0
µudu+

∫ t

0
σudWu, (4)

and the jump-diffusion process in Eq. (1) narrows down to a stochastic volatility model with continuous sample paths, for

which the quadratic variation equals the integrated variance,[ p ]t =
∫ t
0 σ

2
udu. We should note that some of our results are

derived under this assumption.

Below, in the CLTs only, we are also going to impose some regularity conditions onσ:

Assumption (V): σ does not vanish(V1) and it satisfies the equation:

σt = σ0 +

∫ t

0
µ′
udu+

∫ t

0
σ′
udWu +

∫ t

0
v′udB′

u, for t ≥ 0, (V2)

whereµ′ = (µ′
t)t≥0, σ′ = (σ′

t)t≥0 andv′ = (v′t)t≥0 are c̀adlàg, withµ′ also being locally bounded and predictable, and

B′ = (B′
t)t≥0 is a Brownian motion independent ofW .

Assumption (V1) is a weak regularity condition, which is fulfilled for many financial models. Assumption (V2)

amounts to saying thatσ is of continuous semimartingale form.3 It appears restrictive, because it rules out jumps inσ,

which is at odds with empirical evidence (e.g. Eraker, Johannes, and Polson, 2003; Todorov, 2010). But, it should be

pointed out that the assumption is not a necessary conditionand, hence, it is not required for our results to go through. It

3Note the appearance ofW in σ, which allows for leverage effects (e.g. Christie, 1982).
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can be dispensed with in favor of a more flexible specification, allowingσ to jump, at the cost of substantial extra rigor

in the proofs (along the lines of Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard, 2006). Here, we rule out

such technical details to preserve a leaner and more clear-cut exposition.

2.2 The data

Throughout the remainder of the text, we will work on the unitinterval,t ∈ [0, 1]. We think of this as representing the part

of the day, for which high-frequency data are at our disposal. In our empirical application, where we are going to apply

the estimators introduced in this section on a day-by-day basis to high-frequency data from NYSE- and NASDAQ-listed

stocks, it is thus natural to let the unit interval be the hours spanned by the regular trading session.

The foundation for our econometric analysis is a high-frequency record ofp, supposed to be available at equidistant

timesti = i/N , i = 0, 1, . . . , N .4 Throughout, we assumeN = nm, for n,m ∈ N. Here,n is the number of subintervals

of the form [(i − 1)/n, i/n], for i = 1, . . . , n, on which we shall compute various statistics, whilem is the number of

price changes within such a time interval.5 Note that in the asymptotics we letn → ∞, while, for simplicity, we keepm

fixed throughout.

Thus, the challenge is to infer the quadratic variation, andits split into the continuous and discontinuous part, from a

set of discrete high-frequency data.

We define intraday returns at sampling frequencyn as follows

ri∆,∆ = pi/n − p(i−1)/n, for i = 1, . . . , n, (5)

where∆ = 1/n is the time distance between price observations.

4In practice, high-frequency data are irregularly spaced and equidistant prices are imputed from the observed ones. Twoapproaches are linear

interpolation (e.g. Andersen and Bollerslev, 1997) or the previous-tick method suggested by Wasserfallen and Zimmermann (1985). The former

method has an unfortunate property in connection with estimating quadratic return variation, see Hansen and Lunde (2006, Lemma 1).
5This way of blocking high-frequency data into smaller pieces is natural in our setup, see, for example, Mykland (2010).
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Note that forn < N , the sequenceri∆,∆ is not exhausting all the available high-frequency data. Ineffect, we are

assuming that returns are constructed at a coarser samplingfrequencyn, relative to the total amount ofN “ultra” high-

frequency returns that can potentially be made. In practice, high-frequency data are polluted with measurement error due

to market microstructure frictions, such as price discreteness, bid-ask spreads etc. (e.g. Hansen and Lunde, 2006). The

presence of such noise can be detrimental to standard estimators of return variation, in particular at very high sampling

frequencies. Although our ability to cope with and account for the impact of noise in the estimation of return variation

has significantly improved in recent years6, it still remains common in applied work to use low-frequency tick data, for

example 5-minute data are often used (e.g. Bollerslev and Todorov, 2011; Corsi and Renò, 2010; Tauchen and Zhou,

2011). It is precisely this type of sparse sampling, which motivates us to suggest using the range-statistic below.

In this paper, we do not explicitly control for the noise.7 Instead, we are going to assume that the econometrician has

selectedn low enough such that potential biases from the noise can be ignored.

2.3 Return-based estimation of quadratic variation

With the setup in place, we can proceed by estimating quadratic variation and its two components using standard model-

free return-based measures. The realised variance, proposed in Andersen and Bollerslev (1998) and Barndorff-Nielsen

and Shephard (2002), is defined as a sum of squared intraday returns and is at sampling frequencyn given by:

RV n =
n
∑

i=1

r2i∆,∆
p→
∫ 1

0
σ2
udu+

N1
∑

i=1

J2
i . (6)

The consistency ofRV n for the quadratic return variation is immediate in light of Eq. (3). However, use of the realised

variance by itself is not sufficient to learn about the composition of quadratic variation, so in order to isolate the integrated

variance and squared jumps, we are going to require more material.

6A representative, but necessarily incomplete, list of papers in this field, include Barndorff-Nielsen, Hansen, Lunde,and Shephard (2008);

Christensen, Oomen, and Podolskij (2010); Jacod, Li, Mykland, Podolskij, and Vetter (2009); Podolskij and Vetter (2009a,b); Zhang, Mykland, and

Aı̈t-Sahalia (2005); Zhang (2006).
7Christensen, Podolskij, and Vetter (2009) analyze the impact of noise on the range-statistic and propose a bias-correction to it.
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To accomplish this, consider the bipower and tripower variance:

BV n =
n

n− 1

n−1
∑

i=1

2
∏

j=1

|r(i+j−1)∆,∆|
µ1

, (7)

TV n =
n

n− 2

n−2
∑

i=1

3
∏

j=1

|r(i+j−1)∆,∆|2/3
µ2/3

, (8)

whereµr = E(|Z|r) andZ ∼ N(0, 1). The theoretical underpinnings of these estimators were derived in previous work

by Barndorff-Nielsen and Shephard (2004) and Barndorff-Nielsen, Shephard, and Winkel (2006), see also Barndorff-

Nielsen, Graversen, Jacod, Podolskij, and Shephard (2006).

In particular, they are consistent estimators of the integrated variance under both the jump-diffusion and pure diffusion

model given by Eq. (1) and (4), i.e. asn → ∞

BV n p→
∫ 1

0
σ2
udu and TV n p→

∫ 1

0
σ2
udu. (9)

The intuition for the jump-robustness is that, with only a finite number of jumps in the log-price, all “jump” returns are

eventually (i.e., forn large enough) paired with a “continuous” return. The latterhas orderOp(
√
∆), and this way jumps

get knocked out of the probability limit.8

We can subsequently retrieve the sum of the squared jumps, e.g. by usingTV n

RV n − TV n p→
N1
∑

i=1

J2
i . (10)

Note that, in absence of price jumps, all the above three estimators are targeting the integrated variance. A natural wayof

comparing them in this special case is then done via their limiting distributions.

8There are a number of alternative ways of estimating the integrated variance robustly in the presence of jumps. Aı̈t-Sahalia and Jacod (2009a,b)

and Mancini (2004, 2009), for example, use threshold elimination of “large” returns before computing the realised variance, while Andersen,

Dobrev, and Schaumburg (2008) and Christensen, Oomen, and Podolskij (2010) propose to infer diffusive volatility fromthe quantiles of high-

frequency returns. A couple of recent papers also show how toimprove finite sample jump robustness of the bipower variance and how to make it

more efficient, see Corsi, Pirino, and Renò (2010) and Mykland, Shephard, and Sheppard (2010).
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As an example, ifp follows the diffusion process defined by Eq. (4), the CLT ofRV n has the form

√
n

(

RV n −
∫ 1

0
σ2
udu

)

ds→ MN

(

0, 2

∫ 1

0
σ4
udu

)

, (11)

whereMN(0, V ) stands for a centered mixed normal distribution with conditional varianceV , and
∫ 1
0 σ4

udu is the inte-

grated quarticity.9 The only way this result is altered for theBV n andTV n is that the factor multiplying the integrated

quarticity increases to 2.6 and 3.1.

The key insight to draw from this discussion is that, in general, RV n estimates the quadratic return variation and,

in the absence of jumps, it is most efficient.10 But RV n is not jump-robust, whereas bothBV n andTV n are robust

in the probability limit. Moreover, only the CLT of the tripower variance also holds true in the presence of jumps (e.g.

Barndorff-Nielsen, Shephard, and Winkel, 2006).11 Hence, using products of lagged returns (while keeping the sum of

their powers equal to two) produces jump-robust estimates of integrated variance. The degree of robustness increases

with the addition of extra lags, but we pay a price for this by losing some efficiency, if in fact there are no jumps. It is

interesting to note this trade-off for later comparison, because the properties of the range-statistic turn out to be different.

2.3.1 Subsampling

In the above, the sparsely sampled return-based estimatorspotentially ignore a lot of information about the true return

variation, because a large portion of the total amount of available high-frequency data is effectively discarded upfront.

But, even if we do not want push the sampling frequency beyondn, it is easy to soak up more efficiency by subsampling

9Throughout the paper, the symbol “
ds
→” is used to denote convergence in law stably. We refer to Rényi (1963) for a formal definition of stable

convergence in law. Moreover, the motivation for using thistype of convergence in the high-frequency volatility setting is explained in great detail

by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008).
10In theory, the realised variance at the highest sampling frequencyN has the efficiency of the ML estimator in parametric versionsof this

problem. This shows that, in principle, we should constructthe realised variance based on all data, but of course this result ignores problems

associated with microstructure noise.
11This means that we can use the asymptotic distribution ofTV n to construct confidence intervals for the integrated variance in both the jump

and no-jump scenario, something we consider below.
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the data, as suggested by Zhou (1996) and Zhang, Mykland, andAı̈t-Sahalia (2005). This can be accomplished by simply

shifting the starting point from which low-frequency returns are computed.

Let

ri∆,∆,j = pi/n+j/N − p(i−1)/n+j/N , for i = 1, . . . , n andj = 0, 1 . . . ,m− 1. (12)

Then, we can compute and averagem realised variance estimates:

SRV n,m =
1

m

m−1
∑

j=0

RV n,j, where RV n,j =

n
∑

i=1

r2i∆,∆,j.
12 (13)

The bipower and tripower variance can also be modified in thisway and the subsampled version of these estimators will

be calledSBV n,m andSTV n,m in the following.

The averaging performed by Eq. (13) results in further efficiency gains, and it is known that the asymptotic variance

factor of the subsampled realised variance can be brought down from 2 to 1.33 as the number of subsamplesm → ∞ (e.g.

Zhang, Mykland, and Aı̈t-Sahalia, 2005). To our knowledge,the reduction in variance associated with the subsampled

bipower and tripower variance is not known in closed-form, but it will be accessed with Monte Carlo simulations below,

where we compare it with the realised range-based estimators introduced next.

2.4 Range-based estimation of quadratic variation

The range provides an alternative way of learning about the quadratic return variation (e.g. Parkinson, 1980). Its use

in the high-frequency context was initiated by Christensenand Podolskij (2007) and Martens and van Dijk (2007), who

developed the so-called realised range-based variance.

Write

spi∆,∆,m = max
0≤s,t≤m

(

p i−1
n

+ t
N
− p i−1

n
+ s

N

)

, for i = 1, . . . , n, (14)

12Notation is a bit loose here. We can only compute thenth return for the initial subsample estimate, while doing sofor the rest requires a

log-price observation outside of the unit interval. Thus, the lastm− 1 subsample estimates are based on onlyn− 1 high-frequency returns and we

apply an additional small sample correction to compensate for the missing summand.
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as the range over the interval[(i− 1)/n, i/n].13 Then,

RRV n,m
b =

1

λ2,m

n
∑

i=1

s2pi∆,∆,m, (15)

is the realised range-based variance at sampling frequencyn. Here,

λr,m = E
(

srW,m

)

with sW,m = max
{

Wt/m −Ws/m

}

s,t=0,1,...,m

(16)

is therth moment of the range of a standard Brownian motion on the unit interval [0, 1], where this expectation is based

only on observations of the process at equidistant timestj = j/m, for j = 0, 1, . . . ,m.14 The subscriptb appearing in

the definition ofRRV n,m
b indicates that it will be biased in the presence of jumps, as we detail below.

Assumingp is a pure diffusion model as in Eq. (4), and under condition (V), the main theoretical findings of Chris-

tensen and Podolskij (2007) can be summarized as saying that

√
n

(

RRV n,m
b −

∫ 1

0
σ2
udu

)

ds→ MN

(

0,Λm

∫ 1

0
σ4
udu

)

, (17)

whereΛm =
(

λ4,m − λ2
2,m

)

/λ2
2,m.

TheΛm factor appearing in the CLT ofRRV n,m
b depends onm, the total number of price changes available in each

interval of the form[(i−1)/n, i/n], i = 1, . . . , n. We add that, form ≥ 2 as considered here,Λm is always strictly smaller

than the asymptotic variance coefficient of two for realisedvariance (see Figure 1).15 This comparison also extends to the

subsampled version of realised variance. Hence, if data arerecorded at a finer resolution than the sampling frequency,

and so long as the influence of noise is not too severe, it is always better to construct a realised range-statistic than to

13Below, in the appendix of proofs, we also make use of the rangeof a standard Brownian motion over the interval[(i − 1)/n, i/n], which is

denoted bysWi∆,∆,m, simply replacingp with W in the definition of Eq. (14).
14A couple of points are worth highlighting here. First, the constantsλr,m used to rescale the range-statistic hinges on the assumption that data

be equidistant, which is typically not the case in practice.We shall return to this below. Second, and in contrast to the return-based estimators, the

range-based scalings are not available in closed-form. Although this is a drawback, it is relatively easy to estimate them by simulation. To facilitate

this step, tables ofλr,m, as a function ofr andm, can be obtained from the authors upon request.
15As m grows large,Λm converges to a value of about 0.4, which is a restatement of the original result by Parkinson (1980).
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compute realised variance. In effect, we are better able to recoup information about the integrated variance contained

in intermediate data by computing a price range on that interval rather than subsampling low-frequency returns. But, it

requires thatp follows the stochastic volatility model in Eq. (4) and it is therefore not valid in general. Still, it highlights

the potential of the range and motivates us to analyze its properties in the jump-diffusion context.

2.4.1 Extension to jump-diffusion processes

To the best of our knowledge, little is known about the high-low estimator in models with jumps, as defined by Eq. (1). It

turns out that in its raw form, the realised range-based variance is inconsistent for the quadratic return variation, ifthere

are jumps in the price process, as highlighted in Theorem 1.

Theorem 1. Assume thatp follows the jump-diffusion process defined in Eq.(1). Asn → ∞, it holds that:

RRV n,m
b

p→
∫ 1

0
σ2
udu+

1

λ2,m

N1
∑

i=1

J2
i , (18)

Proof. See appendix.

As the theorem shows,RRV n,m
b is downward biased in the jump-diffusion framework, because it incorrectly scales

down the squared jumps byλ2,m. To understand this, consider a model that consists solely of jumps (i.e., with drift and

diffusion coefficient set to zero). Then, asn → ∞, the sum of squared ranges converges to the sum of squared jumps, so

the re-scaling is not required.

Although the conclusion of Theorem 1 is disappointing, the structure of the inconsistency unveiled by it does suggest

a quick fix for constructing a hybrid range-statistic that can estimate the whole quadratic return variation.

We could, for example, do the following:

λ2,mRRV n,m
b + (1− λ2,m)STV n,m p→

∫ 1

0
σ2
udu+

N1
∑

i=1

J2
i , (19)

i.e., we take a linear combination ofRRV n,m
b andSTV n,m using the weights(λ2,m, 1−λ2,m). This effectively amounts

12



to undoing the re-scaling of the squared ranges in Eq. (15) and then using a jump-robust estimator to subtract the excess

portion of the integrated variance that emanates from this operation.

2.4.2 Realised range-based multipower variation

The main problem with this approach is that in doing the bias-correction to the realised range-based variance, we are

relying on a return-based estimator as the robust measure ofintegrated variance, which conflicts with our intention of

using the range-statistic. As such, a jump-robust range-based estimator of the integrated variance is required, which,

again to best of our knowledge, has not been proposed in the literature. To fill this hole, we are therefore going to

introduce and study a complete range-based multipower variation theory, as laid out next.

Definition. The realised range-based multipower variation with parameter (q1, . . . , qk) ∈ Rk
+ is defined as:

RMV n,m
(q1,...,qk)

=
n

n− k + 1
nq+/2−1

n−k+1
∑

i=1

k
∏

j=1

s
qj
p(i+j−1)∆,∆,m

λqj ,m
, (20)

whereq+ =
∑k

j=1 qj.

RMV n,m
(q1,...,qk)

is composed of suitably scaled range-based cross-productsraised to the powers(q1, . . . , qk) and it

constitutes a direct analogue to the general definition of realised multipower variation (e.g. Barndorff-Nielsen, Shephard,

and Winkel, 2006).

Remark. Note thatspi∆,∆,m ≥ 0 and soRMV n,m
(q1,...,qk)

is non-negative by construction.

We should point out that, with proper modifications throughout, (i+ j − 1) may be replaced by(i+Kj − 1) for any

finite positive integerK in the definition ofRMV n,m
(q1,...,qk)

. Such ”staggering” of the data has been suggested in Andersen,

Bollerslev, and Diebold (2007) and Barndorff-Nielsen and Shephard (2006). Moreover, Huang and Tauchen (2005) show

how extra lagging can help to reduce the impact of microstructure noise in this type of estimators by effectively breaking

the serial correlation in returns induced by the noise.

The next result states the theoretical properties of the realised range-based multipower variation.

13



Theorem 2. Assume thatp follows the diffusion process defined in Eq.(4). Asn → ∞, it holds that:

RMV n,m
(q1,...,qk)

p→
∫ 1

0
|σu|q+du. (21)

Moreover, if condition (V) is satisfied, it additionally holds that

√
n

(

RMV n,m
(q1,...,qk)

−
∫ 1

0
|σu|q+du

)

ds→ MN

(

0,Λm
(q1,...,qk)

∫ 1

0
|σu|2q+du

)

, (22)

where

Λm
(q1,...,qk)

=

k
∏

j=1

λ2qj ,m − (2k − 1)
k
∏

j=1

λ2
qj ,m + 2

k−1
∑

h=1

h
∏

j=1

λqj ,m

k
∏

j=k−h+1

λqj ,m

k−h
∏

j=1

λqj+qj+h,m

k
∏

j=1

λ2
qj ,m

.

Furthermore, the consistency result in Eq.(21) is robust to jumps ifmax
1≤j≤k

(qj) < 2, while the CLT in Eq.(22) is robust to

jumps under the stronger conditionmax
1≤j≤k

(qj) < 1.

Proof. See appendix.

Remark. Note that the rate of convergence is not influenced bym and no assumptions on the ration/m are required.

Theorem 2 lays the foundation for producing range-based estimates of integrated power variation of various orders.

It also shows what is required for such estimates to be robustagainst jumps in their probability limit and asymptotic

distribution.

In light of the return-based multipower variation theory, there is nothing too surprising about the conclusions of the

theorem. As such, the interested reader should note, while going through the appendix, that the recipe used to prove

the results is to some extent “standard” by now. This means that several of the steps taken to deduce the properties of

RMV n,m
(q1,...,qk)

borrow directly from extant literature (e.g. Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard,

2006; Christensen and Podolskij, 2007). However, the rangeis a complicated functional, which has a number of subtle,

technical implications in the analysis. In the proofs, we highlight where these complications arise and we also try to

pinpoint what is “new” relative to the existing theory.
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In this paper, the full force of Theorem 2, which can of coursebe used to estimate many interesting objects, is not

required. We will mainly focus on defining jump-robust realised range-based estimates of the integrated variance by

cloning the return-based bipower and tripower variance.16 Thus, we define

RBV n,m =
n

n− 1

n−1
∑

i=1

2
∏

j=1

sp(i+j−1)∆,∆,m

λ1,m
, i.e. q1 = q2 = 1, (23)

RTV n,m =
n

n− 2

n−2
∑

i=1

3
∏

j=1

s
2/3
p(i+j−1)∆,∆,m

λ2/3,m
, i.e. q1 = q2 = q3 = 2/3, (24)

for which it holds that

RBV n,m p→
∫ 1

0
σ2
udu and RTV n,m p→

∫ 1

0
σ2
udu, (25)

while only the limiting distribution of theRTV n,m remains unchanged in the jump setting, because the maximum of its

powers is strictly smaller than unity.

Figure 1 plots the asymptotic variance coefficientΛm
(q1,...,qk)

, as a function ofm, for the three range-based estimators

considered here.17 As evident, the variance decreases monotonically with increasingm, and by the timem reaches ten,

a large majority of the potential efficiency gain has been attained. To put this in perspective, consider using the popular

5-minute sampling frequency. Then,m = 10 is equivalent to actually observing the price every 30 seconds, which is not

unrealistic for many liquid series.

– Insert Figure 1 about here –

How much efficiency is being sacrificed to obtain jump robustness in the range-based setting? The answer, which can

be gauged from the figure, is quite surprising. Note that, form ≤ 3, the ordering of the estimators is as expected, with

16Below, a jump-robust estimator of the integrated quarticity is also used.
17Note that the special casem = 1 means that we are using onlyp(i−1)/n andpi/n to compute the range-statistic on[(i − 1)/n, i/n]. With no

interior data available, the absolute return and the range are identical. This explains why the variance of the realisedrange-based estimators, for

m = 1, coincides with those known from the return-based multipower variation theory, see, e.g., Eq. (11) and the following discussion.
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RRV n,m
b being the most efficient. However, and very intriguingly, the rankings of the variances are swapped form ≥ 4,

rendering the realised range-based tripower variance not only the more robust estimator of the integrated variance butalso

the most efficient!18

While the message conveyed by Figure 1 is compelling, it alsoclashes with intuition, because the range-based mul-

tipower estimators are designed to be increasingly robust to jumps. We would expect this feature to come at a cost, if

there are no jumps in the data, vis-à-vis the trade-off embedded in the return-based estimators. In general, the efficiency

of a multipower variation statistic is a property of the underlying moments of Brownian motion of the given functional,

i.e. in our setting the range. So, there is nothing to stop a multipower variation statistic with extra lags from being more

efficient. But, apart from saying that in the proofs the constants, which pop up here and there, make it a fact, we lack a

convincing, intuitive explanation about, why it is true. The marginal reduction in variance from adding extra lags disap-

pears fast, though, and from a practical perspective the range-based tripower variance appears sufficient to capture almost

all incremental efficiency gain.

Using these results, we will close this subsection by introducing a new, purely range-based estimator that is consistent

for the quadratic variation of the jump-diffusion semimartingale defined by Eq. (1):

RRV n,m ≡ λ2,mRRV n,m
b + (1− λ2,m)RTV n,m p→

∫ 1

0
σ2
udu+

N1
∑

i=1

J2
i , (26)

which is our preferred approach of estimating total return variation with the range.

2.4.3 The joint distribution of RRV n,m
b and RTV n,m

The univariate convergence in law ofRRV n,m
b andRTV n,m, which is available from Theorem 2, can be expanded to

cover their joint asymptotic distribution, which is required as a basic ingredient for conducting range-based non-parametric

18Taken together, the above theory implies that in many practical cases, theRRV n,m
b of Christensen and Podolskij (2007) and Martens and van

Dijk (2007) should not be applied as a standalone estimator.In the presence of jumps, it is a biased estimate of quadraticvariation, and here we

should subsumeRRV n,m
b into the combined estimator given by Eq. (26) below, while, in the absence of jumps, the variance ofRRV n,m

b is inferior

to the range-based multipower variation alternatives, ifm ≥ 4.
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tests for the presence of jumps, a topic that has attracted considerable attention in past research (e.g. Aı̈t-Sahalia and

Jacod, 2009a,b, 2011; Barndorff-Nielsen and Shephard, 2004, 2006; Christensen, Oomen, and Podolskij, 2011; Huang

and Tauchen, 2005; Jiang and Oomen, 2008; Lee and Mykland, 2008b; Li, 2011).

Proposition 1. Assume thatp follows the diffusion process defined in Eq.(4), where the conditions onσ given by (V) are

satisfied. Asn → ∞, it holds that:

√
n











RRV n,m
b −

∫ 1

0
σ2
udu

RTV n,m −
∫ 1

0
σ2
udu











ds→MN











0,

∫ 1

0
σ4
udu











Λm
RRV n,m

b
Λm
RRV n,m

b ,RTV n,m

Λm
RRV n,m

b ,RTV n,m Λm
RTV n,m





















, (27)

with

Λm
RRV n,m

b ,RTV n,m =
2

λ2
1,mλ3

2/3,m

(

λ1,mλ2
5/3,mλ2

2/3,m + λ4
5/3,mλ2/3,m − 2λ2

1,mλ3
2/3,m

)

. (28)

Because the jump detection analysis is not implemented in this paper, we exclude a formal verification of the propo-

sition (the proof can be forwarded upon request).19 But, it should be noted that the bivariate extension is relatively simple

to derive.

3 Simulation study

In this section, we document some aspects of the above asymptotic analysis by means of Monte Carlo experiments.

The purpose of the study is to understand whether the theoretical, large sample properties of the realised range-based

estimators are preserved in smaller, but more realistic, sample sizes.

For the continuous piece of the model, we adopt a dynamic two-factor stochastic volatility process, which can generate

highly erratic sample paths for the log-price and volatility series. It is based on previous empirical work carried out by

Chernov, Gallant, Ghysels, and Tauchen (2003), so that our setup ensures that the simulation design captures many salient

19Previous drafts of this article dealt more formally with therange-based jump detection analysis. An electronic copy ofthis material can be

found on the web or acquired by emailing the authors.
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features of real equity data (e.g., leverage correlation and volatility feedback); a market considered in our empirical

application below.

In particular, the first building block is as follows:

dpt = µdt+ s-exp
[

β0 + β1σ
(1)
t + β2σ

(2)
t

]

dWt, (29)

with

dσ(1)
t = α1σ

(1)
t dt+ dB(1)

t ,

dσ(2)
t = α2σ

(2)
t dt+

[

1 + α3σ
(2)
t

]

dB(2)
t .

(30)

Here, s-exp(x) is the so-called “spliced” exponential function.20 The parameter values for the entire system are taken

from Huang and Tauchen (2005), i.e.(µ, β0, β1, β2, α1, α2, α3) = (0.03,−1.2, 0.04, 1.5,−0.000137,−1.386, 0.25) and

corr(dWt,dB
(1)
t ) = corr(dWt,dB

(2)
t ) = −0.3.

To specify the discontinuous piece ofp, a compound Poisson process is used. We fix a constant intensity parameter

κ = 0.4 per time unit. Thus, a jump inp is experienced every 2.5 replication, on average, and we draw the corresponding

jump sizes from a normal distribution,Ji ∼ N
(

0, pjmp

∫ 1
0 σ2

udu
)

. In our simulations, we usepjmp = 0.25/nJ , where

nJ is the total number of jumps in a given simulation run. Quadratic jump variation is thus taken to be proportional

to the integrated variance, with a typical squared jump being larger in size on high volatility days. Together with our

selection ofκ, this choice implies that the unconditional jump proportion is about 8% of total return variation; a figure

that broadly agrees with a consensus measure from the extant, recent literature (e.g. Andersen, Bollerslev, and Huang,

2011; Bollerslev, Law, and Tauchen, 2008; Corsi and Renò, 2010; Tauchen and Zhou, 2011; Todorov, 2009).

A standard Euler approximation scheme is applied to the set of stochastic differential equations given by Eq. (29)

– (30). Jumps are scattered randomly throughout the day. We process a total of 10,000 simulations and assume that

N = 2, 340. The latter choice is calibrated to match our empirical workin Section 4, where we study data from the

20We refer to Chernov, Gallant, Ghysels, and Tauchen (2003) for more information about how the s-exp(x) function operates. In short, s-exp(x)

slows down the growth rate of the exponential function at high values of the inputx.
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NYSE TAQ database. The regular trading session at NYSE spans6.5 hours, or 23,400 seconds, and for the sample

period covered, we refresh the price every 10 seconds, whichmotivates our selection ofN here.21 We use the sampling

frequenciesn = 26, 39, 78, which translates into 15-, 10- and 5-minute sampling. Also, we construct return-based

estimators by using subsampling, as explained above.

Finally, and although we do not model microstructure noise explicitly in this paper, our approach is motivated by

the existence of such frictions. Therefore, we also gauge the performance of our estimators in the presence of noise. In

particular, we add top an i.i.d. noise processu – independent ofp – such thatE (u) = 0 andE
(

u2
)

= ̟2. We letu have

a two-point distribution: Pr(u = ±̟) = 1/2. This choice has been further analyzed in Christensen, Podolskij, and Vetter

(2009) and can loosely be thought of as representing a form ofbid-ask spread. The magnitude of the noise is controlled by

γ =

√

̟2
∫ 1
0 σ2

udu

N
, whereγ is the noise ratio parameter (see, e.g., Oomen, 2006). Christensen, Oomen, and Podolskij

(2010) report a comprehensive set of empiricalγ estimates. In accordance with their results, we setγ = 0.50, which

reflects the typical amount of noise found in high-frequencydata from the U.S. stock market.

3.1 Simulation results

We start by looking closer at the ability of the range-based estimators to provide unbiased and efficient measures of

quadratic variation and integrated variance. In Table 1, wereport the relative bias and root mean squared error (rmse) of

the various statistics for the three sampling frequenciesn = 26, 39, 78. The relative bias is computed as a ratio of the

estimate to its population target, averaged across simulations, and should equal 1 for an unbiased statistic. The number in

parenthesis below the relative bias is the rmse, which has been multiplied by a factor 1,000.

– Insert Table 1 about here –
21In order to minimize discretization bias, we first create a compact realization of Eq. (29) – (30) based on simulating a total of 23,400 “second-

by-second” log-price updates and from this we extract every10th data point.
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We first navigate through the left-hand portion of the table,which covers the results in the absence of microstructure

noise. The presence of noise case is summarized towards the end of the section. First, as noticeable from the table, the

realised range-based estimators are mildly biased. This was to be expected for the jump-robust measures, becausen is

not sufficiently high in these simulations to fully eradicate the impact of jumps. Interestingly, though, the relative bias of

RBV n,m andRTV n,m is a bit smaller that what we compute for the return-based competitors, illustrating that the jump-

robust range-statistics appear less sensitive to this effect in small samples. Second, and by contrast to the subsampled

realised variance, there is also a slight bias in the combined estimatorRRV n,m, but it is only about one percent at the

5-minute sampling frequency. In any instance, the rmse of the range-based estimators is much smaller compared to the

equivalent return-based estimators, which reinforces thestatements from the previous section, based on large sample

theory. Thus, the range-statistic maintains also a comfortable lead in sampling stability in finite samples. Lastly, the table

reaffirms that the range-based tripower extension is more efficient than its bipower companion. As readily seen, it is also

less biased. Hence, going forward we restrict attention toRTV n,m.

– Insert Figure 2 about here –

To corroborate the analysis, we turn to Figure 2, which provides a reality check on the accuracy of the limiting normal

distribution derived forRTV n,m. Note that Panel A is based on the standardized version of theCLT from Theorem 2,

while Panel B uses the delta method to conclude that

√
n
(

lnRTV n,m − ln
∫ 1
0 σ2

udu
)

√

Λm
RTV n,m

∫ 1
0 σ4

udu/
(

∫ 1
0 σ2

udu
)2

d→ N(0, 1). (31)

As apparent from Panel A, the sampling distribution ofRTV n,m deviates from the standard normal with some distortions

both in the tails and center area of the density, although thefit does gradually improve asn rises. On the other hand,

the log-based distribution theory in Panel B tracks the finite sample distribution oflnRTV n,m somewhat better at all
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sampling frequencies. Thus, as a practical recommendation, we advocate using the log-based approximation, which has

the added virtue of enforcing non-negativity on confidence bands for the integrated variance.

– Insert Figure 3 about here –

Next, we consider the problem of making inference about diffusive return variation, as it would be done in practice,

where the integrated variance is unknown. Figure 3 shows 95%confidence intervals for the integrated variance, using

the log-based distribution theory andn = 78.22 As an illustration, we took a sequence of ten simulations, some of

which include both small and large jumps. The x-axis labels report, in trials with jumps, how large is the jump as a

ratio of total quadratic variation. In order to present a feasible theory, we replaced the unobserved integrated quarticity

by a consistent jump-robust realised range-based multipower variation estimator. Among several candidates, we chose

a tripower estimator for the job (with parameterqj = 4/3, for j = 1, . . . , 3). Also, as a benchmark in the chart,

we compare with the return-based confidence intervals usingSTV n,m, where the feasible bands are computed using a

subsampled return-based tripower quarticity estimator.

Across all 10,000 simulations, the coverage rates are almost equal, whether using the return- or range-based approach.

For example, at the 95% level displayed in the figure, the range-based intervals include the integrated variance 93.38%

of the times, while this number is marginally better at 93.81% for the return-based interval. Meanwhile, at the 99%

confidence level, the rates change to 98.56% and 98.46%, respectively, yielding almost identical performance. As evident,

however, the range-based confidence intervals typically deliver sharper inference with much tighter bands, which is a

reflection of the smaller asymptotic variance embedded in such estimators.

Finally, consider the right-hand part of Table 1, which discloses how the results are altered, when the efficient log-

price data are concealed behind a realistic level of microstructure noise. As apparent, the range by and large preservesits

relative efficiency advantage also under noise, at least forthe moderate sampling frequencies considered in this paper. It

22Note that because the log-based approximation is used, the confidence intervals are not completely symmetric around thepoint estimate.
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is precisely in this setting, so often used in practice, we believe the range-based estimators hold some potential compared

to the mainstream estimators. They are easy to implement, very efficient and fairly robust to noise at low-frequency. But,

as consistent with the analysis of Christensen, Podolskij,and Vetter (2009), we also observe that the noise has a larger

impact on the range vis-à-vis the return for a fixed value ofn. Thus, if higher sampling frequencies are required, the noise

will eventually swamp the advantages of the range and a noise-robust estimator should be adopted instead.

4 Empirical application

We illustrate some features of the range-based multipower variation theory for a few members of the Dow Jones Industrial

Average index. The exposition is based on transaction data for the following three constituents: American Express (AXP),

Merck (MRK) and Exxon (XOM). We also include data for the S&P 500 Depository Receipts (SPY); an exchange-traded

fund tracking the S&P 500. We retrieved high-frequency datafor these tickers from the TAQ database via the WRDS

interface. The sample period spans the whole of 2007 – 2009 and, as such, includes part of the ongoing financial crisis.

Prior to analysis, we filtered the raw data for outliers, applying a set of rules that follow the guide proposed by Barndorff-

Nielsen, Hansen, Lunde, and Shephard (2009).23 Moreover, we restrict attention to the regular trading hours and so

remove updates with a timestamp outside 9:30AM to 4:00PM Eastern Standard Time.

Before we commence with the empirical analysis, it is worth to elaborate on a couple of practical points. Firstly, in

real markets an important source of noise is price discreteness. Because of this feature – but also other aspects of the

market microstructure (e.g., the practice of splitting large block trades into smaller slices) – it is not unusual to findlong

stretches in the data, where the price either repeats or onlyalternates between the bid and ask quotation (the so-called

bid-ask bounce). Here, we recall that the range-based theory requests the number of “price changes”m contained in each

sampling interval, on which the range is being computed, as this serves as a prerequisite for returning the appropriate

23In our application, we maintain the complete set of transaction data from every exchange, but we synchronize with quotesoriginating from the

primary exchange only.
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scaling factorλr,m. Hence, if we were to count every observation in the data as anincrement to the price process,

such practical features would tend to unduly propagatem. The outcome is an inflation ofλr,m, which transforms into

a downward bias in the range-based estimators.24 Meanwhile, designing a good algorithm to tally the “true” number of

price changes requires us to deliver a formal definition of what we perceive to constitute an increment to the price process;

a very subjective and challenging task.

Secondly, and equally important, the theory also calls uponan equidistant grid of log-price observations, while real

trade arrivals are, of course, random. With irregularly spaced observations, the scaling factorsλr,m, which are built

from equidistant data, are no longer correct and using thesecan have a profound effect on the estimation. Consider, for

example, a uniform sampling scheme from a Brownian motion, in which 2,341 log-price observations are drawn without

replacement from the entire set of 23,401 possible one-second time stamps available in the 6.5 hours trading day, yielding

N = 2, 340 irregularly spaced returns. Suppose also, as in the simulation section, that we split the data inton = 78

intervals containingm = 30 returns each. Then, Table 2 illustrates the resulting relative bias and mse:

– Insert Table 2 about here –

As apparent, with irregular spacings the use ofλr,m leads to non-trivial downward biases in the range-based esti-

mators, which reduces their advantage from an mse point of view. The solution to this problem is to tailorλr,m to the

observation times. This implies simulating scaling factors on the fly, which is less appealing. But, it can be done (e.g.

Rossi and Spazzini, 2009). We feel this issue is not too worrying for the data series under investigation here, which are

comprised of deeply liquid securities.25 However, when working with older data sets or illiquid series, this issue has

24The problem is in some sense akin to the no-trade bias of bipower variation, see Corsi, Pirino, and Renò (2010).
25For example, if we modify the above simulation exercise to draw 11,700 irregular observations of Brownian motion (matching closer with our

empirical data) and then construct an artificial 10-second record of log-prices using previous-tick interpolation (asdone below), the downward bias

is reduced to a mere 0.2% in bothRRV n,m andRTV n,m across 10,000 trials.
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more substance, and here it would be an advantage, and probably necessary, to suitably account for the irregular nature of

high-frequency data by simulating grid-specific scalings.

As a consequence of the above features, i.e. price discreteness and irregular spacing, a further modification of the

theory is necessary for the empirical use of the realised range-based multipower variation framework. Therefore, we

settled on the following compromise. Throughout the trading day, we collect a new observation ofp every 10th second,

using previous-tick interpolation to replace missing values by the most recent transaction price. We then construct the

realised range- and return-based estimators using 5-minute sampling (i.e., settingn = 78 andm = 30). Table 3 holds

descriptive statistics of the data and resulting series.

– Insert Table 3 about here –

As can be gleaned from the table, the range-based multipowervariations deliver estimates of quadratic return variation

and integrated variance, which are in line or marginally above the corresponding return-based estimates. This holds across

the entire sample or by yearly subsample periods, as reported in Table 3. Browsing through the four equities, the range

suggests that jump variation, i.e. the proportion of total variation produced by jumps, is in the order of 4.6% – 11.7%,

which broadly agrees with the return-based estimates and also the previous literature. This is comforting, as we would

expect the unconditional sample averages of both return-based and range-based estimation to be broadly in line. It is also

interesting to note that SPY, representing the S&P 500 index, has the lowest estimated jump proportion.

– Insert Figure 4 about here –

In Panel A of Figure 4, we apply the range-statistic to estimate the overall level of return variation and its composition

using the high-frequency data from MRK as an illustration. In the graph, all series are converted to an annualized standard

deviation term. As readily observed, in general theRRV n,m andRTV n,m series tend to swing in parallel, although there

24



a few notable departures, as revealed by the jump variation (JV) figure also reported in the chart. Panel B investigates

such an instance by plotting the high-frequency data for MRKon January 25, 2008, where the JV measure is about

75%. On this day, Merck published a press release regarding its anti-cholesterol product Mevacor, which received a

“not approvable” letter from the FDA, while government regulators also said they were analyzing recent results from the

clinical trials of the company’s Vytorin drug (the so-called ENCHANCE study). The news were largely perceived as bad

by the market, moving the equity into deep negative territory, although most of the losses were recovered before the end

of trading. Of course, to reach statistical conclusions about the presence of jumps in the sample path, we would need to

do a formal hypothesis test, but the plot and point estimatesdo indicative this.

– Insert Figure 5 about here –

Finally, in Figure 5, we compare the range-based and subsampled return-based tripower estimators of the integrated

variance. In the left panel, we plot the autocorrelation functions of the two estimators up to 100 lags. As evident, they

are virtually identical and both display the typical long-range dependence that has been observed in volatility many times

before (e.g. Andersen, Bollerslev, Diebold, and Labys, 2003). The range-statistic is slightly more persistent than the

return-based companion, which is in fact true across all equities considered here (not reported). Although the differences

between the two series are larger in magnitude for some of theother symbols, it is not clear if this can be exploited to

produce superior forecasting accuracy. We leave this task for future work to decide. In the right panel, we mimic the

approach taken in the simulation section to construct feasible confidence intervals for the integrated variance in the highly

volatile month of September, 2008, which featured the demise of Lehman Brothers, the 4th largest investment bank in the

U.S. at that time. Notice the widening of the error bands (viathe estimate of integrated quarticity) asσ increases, which

reflects the surge in volatility in the aftermath of the bankruptcy. Again, and according to theory, the range-based intervals

are smaller than the return-based ones, thus delivering sharper inference about the integrated variance.

25



5 Conclusions and directions for future research

This paper has presented the concept of realised range-based multipower variation and shown how it can be used to

estimate the ex-post quadratic return variation and conduct jump-robust inference about integrated variance. The large

sample asymptotic theory was backed by both a simulation study and an empirical application, illustrating the potential

of the range-statistic. The range was motivated by the typical sparse sampling of return-based estimators caused by the

presence of microstructure noise in financial high-frequency data. Of course, the range itself is affected by the noise

component, as we demonstrated with numerical simulations.In a companion paper (Christensen, Podolskij, and Vetter,

2009), we study more formally the impact of noise on the standard realised range-based variance, and the interested reader

is encouraged to read this material.

The theory developed here casts new light on the range and displays its properties in a general semimartingale model

with stochastic volatility and finite activity jumps. But there are still several interesting issues left untouched. First,

covariance risk is important in financial economics and range-based measures are notoriously difficult to extend to the

multivariate setting. Range-based covariance estimationhas been studied in Brandt and Diebold (2006) and Bannouh,

van Dijk, and Martens (2009), although they make rather strong assumptions about the underlying process driving the

evolution of asset prices over time. Moreover, those papersare based on a polarization identity, which in general does

not guarantee a positive semi-definite covariance matrix estimate. In an ongoing paper, we are working on an extension

of some of the concepts discussed here to multivariate processes, and we hope to be able to publish some results soon.

Second, it could be worth to consider alternative availabletools, which may refine the asymptotic approximations pre-

sented here, for example bootstrapping, Edgeworth expansions or Box-Cox transformations, as has been suggested by

Aı̈t-Sahalia, Mykland, and Zhang (2011); Gonçalves and Meddahi (2009, 2011) in the context of the realised variance.

Finally, as the realised range-based variance of Christensen and Podolskij (2007); Martens and van Dijk (2007), which

in this paper was shown to be biased, has been found to producegood forecasts of future return variation (e.g. Patton

and Sheppard, 2009), we look forward to a more thorough analysis of the forecasting capabilities of realised range-based
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multipower variations introduced here, for example following the lines of Andersen, Bollerslev, and Diebold (2007).
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Appendix of proofs

Proof of Theorem 1

First, we decompose

RRV n,m
b =

1

λ2,m





∑

i∈Γn

s2pi∆,∆,m +
∑

i∈Γc
n

s2pi∆,∆,m



 ,

whereΓn = {1 ≤ i ≤ n | the processp jumps on [(i− 1)/n, i/n]}. Because the jump part ofp has finite activity, there

are only finitely many jumps on[0, 1], so the first sum in the above decomposition is finite (almost surely). In addition,

with a probability converging towards1, there is at most one jump per interval[(i− 1)/n, i/n]. Combined with the results

of Christensen and Podolskij (2007) (or Theorem 2 in this paper), this implies that

1

λ2,m

∑

i∈Γn

s2pi∆,∆,m
p→ 1

λ2,m

N1
∑

i=1

J2
i and

1

λ2,m

∑

i∈Γc
n

s2pi∆,∆,m
p→
∫ 1

0
σ2
udu,

i.e.

RRV n,m
b

p→
∫ 1

0
σ2
udu+

1

λ2,m

N1
∑

i=1

J2
i ,

as asserted. �

Proof of Theorem 2

Preliminaries and some notation

First, we note that ast 7→ σt is càdlàg, all powers ofσ are locally integrable with respect to the Lebesgue measure, so that

for anyt ands > 0,
∫ t
0 |σu|sdu < ∞. Moreover, and without loss of generality, we will restrictthe functionsµ, σ, µ′, σ′,

v′ andσ−1 to be bounded (e.g., Barndorff-Nielsen, Graversen, Jacod,Podolskij, and Shephard, 2006, Section 3).

Next, if a processXn is of the form:

Xn =
n
∑

i=1

ζni ,
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for an array(ζni ) andXn p→ 0, we say that(ζni ) is asymptotically negligible (AN).

Also, in the below we employ generic constants, which are denoted byC or Cp (the latter notation is applied, when

the constant depends on some external parameterp).

Moreover, we define

βn
i,j =

√
n|σ i−1

n
|sW(i+j−1)∆,∆,m, j = 1, . . . , k. (32)

This construct is used to locally approximate the true (rescaled) range
√
nsp(i+j−1)∆,∆,m. We suppress the dependence of

βn
i,j onm for notational convenience. Finally, we also set

gj(x) =
1

λqj ,m
xqj , j = 1, . . . , k,

and

ρx(f) = E[f(|x|sW,m)].

It should be noted that

ρx(gj) = |x|qj , j = 1, . . . , k.

Structure of the multipower variation proof

Before we write down the proof of the realised range-based multipower variation estimator, we will briefly sketch the

main steps and ideas behind it.

(1) First, we prove consistency of the estimator

R̃MV
n,m

(q1,...,qk)
=

1

n

n−k+1
∑

i=1

k
∏

j=1

(

βn
i,j

)qj

λqj ,m
.

which is an approximation ofRMV n,m
(q1,...,qk)

based on the representation in Eq. (32). The trick is then to show that the

error committed by using this approximation goes to0. That this is true follows exactly as in the return-based setting

(e.g., Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard, 2006, Section 6).
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(2) The proof of the central limit theorem also starts by figuringout the corresponding result for the approximating

sequence, i.e. we first deduce that

1√
n

n−k+1
∑

i=1







k
∏

j=1

(

βn
i,j

)qj

λqj ,m
−

k
∏

j=1

ρσ i−1
n

(gj)







ds→
√

Λm
(q1,...,qk)

∫ 1

0
|σu|q+dBu.

The basic tool used to work out this assertion is Theorem IX 7.28 in Jacod and Shiryaev (2003). We note that the

computation of the asymptotic conditional variance is quite tedious and requires some very lengthy calculations.

(3) In the next step, we justify the approximation made in step (2). Here, we assume without loss of generality thatk = 2

and prove a CLT for the canonical process:

1√
n

n
∑

i=1

{

g1
(√

nspi∆,∆,m

)

g2

(√
nsp(i+1)∆,∆,m

)

− E
[

g1
(√

nspi∆,∆,m

)

g2

(√
nsp(i+1)∆,∆,m

)

| F i−1
n

]

}

This part is in fact also shown as in the return-based case (e.g., Barndorff-Nielsen, Graversen, Jacod, Podolskij, and

Shephard, 2006, Section 5).

(4) And, finally, the last step is to show that the process from step (3) and the original normalized statistic in Theorem 2 are

asymptotically equivalent. This is the most complicated part. It is much more involved than with return-based estimation,

because the supremum is not a smooth functional. On the otherhand, as with returns, additional problems arise when

powersqj ≤ 1 appear in the multipower variation, becausef(x) = |x|p is non-differentiable forp ∈ (0, 1].

A Proof of consistency

Write

R̃MV
n,m

(q1,...,qk)
=

n−k+1
∑

i=1

χn
i

with

χn
i =

1

n

k
∏

j=1

(

βn
i,j

)qj

λqj ,m
.
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As explained above, this statistic serves to approximate the true estimatorRMV n,m
(q1,...,qk)

. Now, as in Barndorff-Nielsen,

Graversen, Jacod, Podolskij, and Shephard (2006, Section 6), it holds that

RMV n,m
(q1,...,qk)

− R̃MV
n,m

(q1,...,qk)
p→ 0. (33)

On the other hand:
n−k+1
∑

i=1

E
[

χn
i | F i−1

n

]

=
1

n

n−k+1
∑

i=1

|σ i−1
n
|q+ p→

∫ 1

0
|σu|q+du, (34)

and
n−k+1
∑

i=1

(

χn
i − E

[

χn
i | F i−1

n

])

p→ 0, (35)

because the above summands are conditionallyk-independent. Putting Eq. (33) together with Eq. (34), and using that the

sequence is Eq. (35) is AN, we are able to conclude that

RMV n,m
(q1,...,qk)

p→
∫ 1

0
|σu|q+du.

This completes the proof of the range-based multipower variation consistency property. �

B Proof of the central limit theorem

We divide the proof into several steps, as detailed in the overview above.

B.1 A central limit theorem for the approximation

First, we introduce the quantity

U ′n,m =
1√
n

n−k+1
∑

i=1







k
∏

j=1

(

βn
i,j

)qj

λqj ,m
−

k
∏

j=1

ρσ i−1
n

(gj)







,

which is an approximation of
√
n
(

RMV n,m
(q1,...,qk)

−
∫ 1
0 |σu|q+du

)

.
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Lemma 1. Assume thatp follows the diffusion process defined in Eq.(4). Asn → ∞, it holds that

U ′n,m ds→
√

Λm
(q1,...,qk)

∫ 1

0
|σu|q+dBu.

Before giving the proof of the Lemma, note that the followingestimates are true, whenp is a diffusion:

E
[

|βn
i,j |q

]

≤ Cq, j = 1, . . . , k,

for all q > 0 and a fixedm ∈ N.

Proof of Lemma 1: By shifting the indices, we form a decomposition

U ′n,m =

n
∑

i=j

ζni + op(1)

with

ζni =
1√
n

k
∑

j=1

{

gj(β
n
i−j+1,j)− ρσ i−j

n

(gj)

} j−1
∏

l=1

gl(β
n
i−j+1,l)

k
∏

l=j+1

ρσ i−j
n

(gl).

We remark that the termgj(βn
i−j+1,j) − ρσ i−j

n

(gj) is measurable with respect toF i
n

, while the other factors in the

definition ofζni areF i−1
n

-measurable.

By Theorem IX 7.28 in Jacod and Shiryaev (2003), the proof of Lemma 1 will follow, if we can verify the following

five conditions on the sequence(ζni ):

(A)
n
∑

i=k

E
[

ζni | F i−1
n

]

p→ 0, (B)
n
∑

i=k

E
[

|ζni |2 | F i−1
n

]

p→ Λm
(q1,...,qk)

∫ 1

0
|σu|2q+du,

(C)
n
∑

i=k

E
[

ζni

(

W i
n
−W i−1

n

)

| F i−1
n

]

p→ 0, (D)
n
∑

i=k

E
[

|ζni |4 | F i−1
n

]

p→ 0,

(E)
n
∑

i=k

E
[

ζni

(

N i
n
−N i−1

n

)

| F i−1
n

]

p→ 0,

where the last condition must hold for any bounded martingaleN that is orthogonal toW (i.e. with quadratic covariation

[N,W ] = 0).
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As ζni is a martingale difference, it follows that

E
[

ζni | F i−1
n

]

= 0.

This verifies condition(A). Next, becauseζni is an even functional inW andW
d
= −W , we get that

E
[

ζni

(

W i
n
−W i−1

n

)

| F i−1
n

]

= 0,

which implies condition(C). Moreover, we also deduce that

E
[

|ζni |4 | F i−1
n

]

≤ C

n2
,

and this proves(D). That condition(E) is true follows from the work of Christensen and Podolskij (2007).

So, we are left with the task of proving condition(B), which requires a straightforward but somewhat tedious calcu-

lation. We start out by defining

ρi−j,i−h(f, g) =

∫

f
(

|σ i−j−1
n

|x
)

g
(

|σ i−h−1
n

|x
)

δm(x)dx, 1 ≤ j, h ≤ k,

whereδm denotes the density ofsW,m. We note that due to the continuity ofσ

sup
i≤n

sup
1≤j,h≤k

|ρi−j,i−h(f, g)− ρσ i−k
n

(fg)| p→ 0, (36)

a result that is used in the computations below. By also setting

µn
i,j =

{

gj
(

βn
i−j+1,j

)

− ρσ i−j
n

(gj)

} j−1
∏

l=1

gl
(

βn
i−j+1,l

)

k
∏

l=j+1

ρσ i−j
n

(gl)

we find the identity

E
[

|ζni |2 | F i−1
n

]

=
k

∑

j=1

E
[

|µn
i,j|2 | F i−1

n

]

+ 2
k−1
∑

j=1

k−j
∑

h=1

E
[

µn
i,hµ

n
i,h+j | F i−1

n

]

.

From this, we deduce that

E
[

|µn
i,j|2 | F i−1

n

]

=

{

ρσ i−j
n

(g2j )− ρ2σ i−j
n

(gj)

} j−1
∏

l=1

g2l
(

βn
i−j+1,l

)

k
∏

l=j+1

ρ2σ i−j
n

(gl)
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and

E
[

µn
i,hµ

n
i,h+j | F i−1

n

]

=

{

ρi−h,i−h−j(gh+jgh)− ρσ i−h−j
n

(gh+j)ρσ i−h
n

(gh)

} h−1
∏

l=1

gl
(

βn
i−h+1,l

)

×
k
∏

l=h+1

ρσ i−j
n

(gl)

h+j−1
∏

l=1

gl
(

βn
i−h−j+1,l

)

k
∏

l=h+j+1

ρσ i−h−j
n

(gl).

Note that

h−1
∏

l=1

gl
(

βn
i−h+1,l

)

h+j−1
∏

l=1

gl
(

βn
i−h−j+1,l

)

=

h−1
∏

l=1

gl
(

βn
i−h+1,l

)

gl+j

(

βn
i−h−j+1,l+j

)

×
j
∏

l=1

gl
(

βn
i−h−j+1,l

)

.

We remark thatgl
(

βn
i−h+1,l

)

andgl+j

(

βn
i−h−j+1,l+j

)

include the same increment of the Brownian motionW . Putting

the pieces together and then calling upon Eq. (36), we conclude that

n
∑

i=j

E
[

|ζni |2 | F i−1
n

]

p→











k
∏

j=1

λqj ,m





−2 



k
∑

j=1

{

λ2qj ,m − λ2
qj ,m

}

j−1
∏

l=1

λ2ql,m

k
∏

l=j+1

λ2
ql,m

+ 2

k−1
∑

j=1

k−j
∑

h=1

{

λqh+j+qh,m − λqh+j ,mλqh,m

}

k
∏

l=h+j+1

λql,m

k
∏

l=h+1

λql,m

h−1
∏

l=1

λql+ql+j,m

j
∏

l=1

λql,m

)}

∫ 1

0
|σu|2q+du.

What is left is to show that the constant in front of
∫ 1
0 |σu|2q+du equalsΛm

(q1,...,qk)
. First, make the observation that

k
∑

j=1

{

λ2qj ,m − λ2
qj ,m

}

j−1
∏

l=1

λ2ql,m

k
∏

l=j+1

λ2
ql,m

=

k
∑

j=1





j
∏

l=1

λ2ql,m

k
∏

l=j+1

λ2
ql,m

−
j−1
∏

l=1

λ2ql,m

k
∏

l=j

λ2
ql,m





=

k
∏

l=1

λ2ql,m −
k
∏

l=1

λ2
ql,m

,

where we applied a telescopic sum argument. Using the notation

ah,j =
k
∏

l=h+j+1

λql,m

k
∏

l=h+1

λql,m

h
∏

l=1

λql+ql+j ,m

j
∏

l=1

λql,m
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allows us to reduce this further

2
k−1
∑

j=1

k−j
∑

h=1

{

λqh+j+qh,m − λqh+j,mλqh,m

}

k
∏

l=h+j+1

λql,m

k
∏

l=h+1

λql,m

h−1
∏

l=1

λql+ql+j ,m

j
∏

l=1

λql,m

= 2

k−1
∑

j=1

k−j
∑

h=1

(ah,j − ah−1,j) = 2

k−1
∑

j=1

(ak−j,j − a0,j)

= −2(k − 1)

k
∏

l=1

λ2
ql,m

+ 2

k−1
∑

j=1

k
∏

l=k−j+1

λql,m

k−j
∏

l=1

λql+ql+j ,m

j
∏

l=1

λql,m,

which, upon collecting pieces, completes the proof. �

B.2 Justification of the approximation: I

To keep ideas fixed, we concentrate here on thek = 2 setting (i.e., range-based bipower variation). The schemeof the

proof does not change for a generalk, but of course it does get slightly more complicated, although not by much.

First, we define the process

U(g1, g2)
n,m =

1√
n

n
∑

i=1

{

g1
(√

nspi∆,∆,m

)

g2

(√
nsp(i+1)∆,∆,m

)

− E
[

g1
(√

nspi∆,∆,m

)

g2

(√
nsp(i+1)∆,∆,m

)

| F i−1
n

]

}

,

Then, the convergence

U(g1, g2)
n,m − U ′n,m p→ 0

follows as in the return-based world, see Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard (2006, Section

5). As a consequence

U(g1, g2)
n,m ds→

√

Λm
(q1,q2)

∫ 1

0
|σu|q+dBu,

which completes this part. �
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B.3 Justification of the approximation: II

Again, and without loss of generality (but a pleasant loss ofcomplexity), we assume thatk = 2. In light of the previous

steps, the CLT will follow, if we can prove the convergence

√
n

(

RMV n,m
(q1,q2)

−
∫ 1

0
|σu|q+du

)

− U(g, h)n,m
p→ 0,

for a fixedm ∈ N. We do this by proving that

ζn,mi =
1√
n
E
[

g1(
√
nspi∆,∆,m)g2(

√
nsp(i+1)∆,∆,m) | F i−1

n

]

−
√
n

∫ i
n

i−1
n

ρσu (g1) ρσu (g2)du,

is AN. To accomplish this, we splitζn,mi into:

ζn,mi = ζ ′n,mi + ζ ′′ni ,

where

ζ ′n,mi =
1√
n

(

E
[

g1
(√

nspi∆,∆,m

)

g2

(√
nsp(i+1)∆,∆,m

)

| F i−1
n

]

− E
[

g1
(

βn
i,1

)

| F i−1
n

]

E
[

g2
(

βn
i,2

)

| F i−1
n

])

,

ζ ′′ni =
√
n

∫ i
n

i−1
n

(

ρσu (g1) ρσu (g2)− ρσ i−1
n

(g1) ρσ i−1
n

(g2)

)

du.

It follows from Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard (2006, Section 8) thatζ ′′ni is AN. So, the

only missing piece is to show the sequenceζ ′n,mi is also AN and we are done. We set

ξn,mi =
√
nspi∆,∆,m − βm

i,1, ξ′n,mi =
√
nsp(i+1)∆,∆,m − βm

i,2.
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Using assumption (V2), we introduce the random variables:

ζ (1)n,mi =
√
nmax

(
∫ t

s
σ i−1

n
d

s,t∈Imi,n

Wu +

∫ t

s
µ i−1

n
du

+

∫ t

s

{

σ′
i−1
n

(

Wu −W i−1
n

)

+ v′i−1
n

(

B′
u −B′

i−1
n

)}

dWu

)

− βn
i,1, (37)

ζ (2)n,mi =
√
n

{

max
(

∫ t

s
µudu

s,t∈Imi,n

+

∫ t

s
σudWu

)

−max

(
∫ t

s
σ i−1

n

s,t∈Imi,n

dWu +

∫ t

s
µ i−1

n
du

+

∫ t

s

{

σ′
i−1
n

(

Wu −W i−1
n

)

+ v′i−1
n

(

B′
u −B′

i−1
n

)}

dWu

)}

, (38)

whereImi,n =
{

t | t = i−1
n + j

N for some0 ≤ j ≤ m
}

. We get that

ξn,mi = ζ (1)n,mi + ζ (2)n,mi ,

with an identical decomposition holding forξ′n,mi . As in Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard

(2006, Section 7.1) we obtain, under assumption (V2), the estimate

E [|ξn,mi |q] ≤ Cn−
q
2 ,

for anyq > 0 and uniformly ini. We rewriteζ ′n,mi as follows

ζ ′n,mi = E
[

δn,mi | F i−1
n

]

,

with δn,mi defined by:

δn,mi =
1√
n

(

g1
(√

nspi∆,∆,m

)

g2

(√
nsp(i+1)∆,∆,m

)

− g1
(

βn
i,1

)

g2
(

βn
i,2

)

)

.

Next, we observe that

δn,mi =
1√
n
g1

(√
nspi∆,∆,m

)

(

g2

(√
nsp(i+1)∆,∆,m

)

− g2
(

βn
i,2

)

)

+
1√
n

(

g1
(√

nspi∆,∆,m

)

− g
(

βn
i,1

))

g2
(

βn
i,2

)

≡ δ′n,mi + δ′′n,mi .
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We show that

E
[

δ′′n,mi | F i−1
n

]

is AN, but omit the proof forE
[

δ′n,mi | F i−1
n

]

to save space. Note that

n
∑

i=1

E
[

δ′′n,mi | F i−1
n

]

=

n
∑

i=1

E
[

ϑn,m
i | F i−1

n

]

+ op(1)

with

ϑn,m
i =

1√
n
g2

(

βn
i,2

)

∇g1
(

βn
i,1

)

ξn,mi .

While the above approximation appears to be a simple application of the mean value theorem, this result is actually highly

non-trivial, because the functiong1 is not differentiable at 0, whenq1 < 1. Nonetheless,∇g1
(

βn
i,1

)

is well-defined a.s.

andE
[

∇g1
(

βn
i,1

)

]

< ∞ under assumption (V1). The approximation can be shown as in Barndorff-Nielsen, Graversen,

Jacod, Podolskij, and Shephard (2006, Section 8).

Recall that

ξn,mi = ζ (1)n,mi + ζ (2)n,mi ,

with ζ (1)n,mi andζ (2)n,mi defined by (37) and (38), respectively. Set

fin (s, t) =
√
nσ i−1

n
(Wt −Ws) ,

gin (s, t) = n

∫ t

s
µ i−1

n
du+ n

∫ t

s

{

σ′
i−1
n

(

Wu −W i−1
n

)

+ v′i−1
n

(

B′
u −B′

i−1
n

)}

dWu

= µ i−1
n
g1in (s, t) + σ′

i−1
n

g2in (s, t) + v′i−1
n

g3in (s, t) ,

to achieve the identity:

ζ (1)n,mi = max

(

fin (t, s)

s,t∈Imi,n

+
1√
n
gin (t, s)

)

−max fin (t, s)
s,t∈Imi,n

.
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Imposing assumption (V1):

(t∗min (W ) , s∗min (W )) = argmax fin (s, t)
s,t∈Imi,n

= argmax
√
n(Wt

s,t∈Imi,n

−Ws)

d
= argmax(Wt/m−

s,t=0,1,...,m

Ws/m).

A standard result then states that the pair(t∗min (W ) , s∗min (W )) is unique, almost surely (e.g. Karatzas and Shreve, 1991,

p. 107). Next, the following results, which are proven in Christensen and Podolskij (2007), present a useful stochastic

expansion forζ (1)n,mi and a result onζ (2)n,mi .

Lemma 2. Given assumption (V1 )

ζ (1)n,mi =
1√
n

{

gin (t
∗m
in (W ) , s∗min (W )) + g̃min

}

,

where

E
[

|g̃min|p
]

= o(1) , (39)

for all p > 0 and uniformly ini.

Lemma 3. If q ≥ 2, it then holds that

1√
n

n
∑

i=1

(

E [|ζ (2)n,mi |q]
)

1
q → 0,

for all t > 0.

Note that(t∗min (W ) , s∗min (W )) = (s∗min (−W ) , t∗min (−W )) . Moreover, as(W,B′)
d
= − (W,B′) and∇g1

(

βn
i,1

)

is an

even functional ofW :

E
[

∇g1
(

βn
i,1

)

gkin (t
∗m
in (W ) , s∗min (W )) | F i−1

n

]

= 0,

for k = 1, 2, 3. Hence

E
[

∇g1
(

βn
i,1

)

gin (t
∗m
in (W ) , s∗min (W )) | F i−1

n

]

= 0. (40)
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Using Hölder’s inequality, it follows that

|E
[

ϑn,m
i | F i−1

n

]

| = 1√
n
ρσ i−1

n

(g2) |E
[

∇g1
(

βn
i,1

)

(ζ (1)n,mi + ζ (2)n,mi ) | F i−1
n

]

|

≤ 1√
n
ρσ i−1

n

(g2)

(

|E
[

∇g1
(

βn
i,1

)

ζ (1)n,mi | F i−1
n

]

|

+
(

E
[

|∇g1
(

βn
i,1|

)p]) 1
p (E [|ζ (2)n,mi |q])

1
q

)

,

for somep > 1, q ≥ 2 with (q1 − 1) p > −1 and1/p + 1/q = 1. Note thatE
[(

∇g1
(

βn
i,1

)

)p]

≤ Cp < ∞, when

(q1 − 1) p > −1. Finally, by combining Lemma 2 and 3 with Eq. (39) and (40), weget the AN property of the sequence

E
[

ϑn,m
i | F i−1

n

]

. Hence, the CLT has been proven. �
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Figure 1: Asymptotic variance factor of realised range-based estimators.
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Note.The figure shows the asymptotic variance factor of the range-based realised, bipower and tripower variance, as a function of m.
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Figure 2: Asymptotic approximation of the realised range-based tripower variance.
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Note. We present smoothed density plots of the raw and log-based sampling distribution of the standardized realised range-based tripower variance

estimator. The sampling frequency runs throughn = 26, 39, 78, which represents 15-, 10- and 5-minute sampling and corresponds tom = 90, 60, 30.
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Figure 3: Jump-robust 95% confidence intervals for the integrated variance.
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Note. This chart shows point estimates ofRTV n,m andSTV n,m and 95% confidence intervals for the integrated variance, using n = 78. The box

(“whisker”) is the range-based (return-based) confidence interval. In both cases, the integrated quarticity is proxied with a tripower estimator.x marks the

true value of integrated variance. The labels on the x-axis report the proportion of quadratic variation induced by jumps (blank if zero).
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Figure 4: Illustration using MRK.

Panel A:RRV n,m, RTV n,m and jump variation Panel B: MRK transaction data, 20080125

2007 2008 2009 2010
200

150

100

50

0

50

100

150

200

Time

A
n

n
u

a
liz

e
d

 v
o

la
ti
lit

y

 

 

RRVn,m

RTVn,m

JV

10 11 12 13 14 15 16
−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

Time

C
u

m
u

la
ti
v
e

 l
o

g
−

re
tu

rn
 (

in
 p

c
t.

)

 

 

QV estimate

RRVn,m: 165.0

SRVn,m: 166.8

IV estimate

RTVn,m: 121.6

STVn,m: 141.0

Merck − January 25, 2008

Note. In Panel A, we plot the complete time series ofRRV n,m andRTV n,m for MRK. The latter has been reflected in the x-axis to improvethe visual

layout. Jump variation is the defined asmax (RRV n,m − RTV n,m, 0). The series have been converted to an annualized standard deviation measure.

In Panel B, we plot the filtered transaction data for MRK on January 25, 2008.
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Figure 5: Comparison of return- and range-based estimator of the integrated variance, SPY data.

Panel A: ACF ofRTV n,m andSTV n,m Panel B: Estimates of IV, September 2008
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Note.To the left, we plot the autocorrelation function (ACF) of the jump-robustRTV n,m andSTV n,m from lags 1 – 100. The shaded area defines the

Bartlett’s two standard error bands for testing a white noise hypothesis. To the right, we display theRTV n,m andSTV n,m point and interval estimates

of the integrated variance for the month of September, 2008.
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Table 1: Relative bias and root mean squared error.

Absence of noise Presence of noise

(n,m) = (78, 30) (39, 60) (26, 90) (78, 30) (39, 60) (26, 90)

Panel A: Range-based

RRV n,m [QV] 1.011 1.022 1.033 1.018 1.027 1.037

(0.349) (0.522) (0.667) (0.353) (0.524) (0.669)

RBV n,m [IV] 1.019 1.023 1.025 1.031 1.031 1.032

(0.298) (0.398) (0.485) (0.310) (0.405) (0.492)

RTV n,m [IV] 1.010 1.011 1.010 1.022 1.019 1.017

(0.281) (0.378) (0.469) (0.291) (0.384) (0.476)

Panel B: Return-based (with subsampling)

SRV n,m [QV] 0.999 0.999 0.997 1.001 0.999 0.997

(0.467) (0.663) (0.816) (0.467) (0.662) (0.817)

SBV n,m [IV] 1.034 1.039 1.040 1.036 1.040 1.040

(0.539) (0.749) (0.901) (0.540) (0.749) (0.901)

STV n,m [IV] 1.021 1.023 1.022 1.023 1.023 1.022

(0.528) (0.737) (0.895) (0.529) (0.737) (0.895)

Note. We report the relative bias and rmse of the estimators included in the simulation study. The bias measure is equal to 1 foran

unbiased estimator. The number reported in parenthesis is 1000× rmse. The square bracket to the right of each estimator showsits

theoretical limit, against which the numbers are computed.
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Table 2: Relative bias and mean squared error with irregularly spaced data.

(n,m) = (78, 30) return-based range-based

SRV n,m STV n,m RRV n,m RTV n,m

Relative bias 1.000 0.990 0.965 0.947

Mse×n 1.399 1.665 0.643 0.681

Note. We report the relative bias and mse of the estimators using irregularly spaced data. The bias measure is 1 for an unbiasedestimator.

The mse has been normalized by multiplying withn.
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Table 3: Descriptive statistics of the equity data.

AXP MRK

2007 2008 2009 all 2007 2008 2009 all

nobs(avg. 1000) 8.3 12.3 11.2 10.6 9.4 11.8 10.5 10.6

RRV n,m 24.5 59.8 51.4 45.3 20.7 38.9 30.3 30.0

RTV n,m 21.8 55.4 47.2 41.5 18.1 34.6 26.7 26.5

JV(range) 10.9 7.5 8.2 8.4 12.4 11.1 12.0 11.7

SRV n,m 23.2 56.0 49.2 42.8 19.4 36.3 28.6 28.1

STV n,m 21.7 53.7 46.6 40.7 18.0 34.1 26.8 26.3

JV(return) 6.5 4.2 5.3 5.1 7.3 6.2 6.4 6.5

SPY XOM

2007 2008 2009 all 2007 2008 2009 all

nobs(avg. 1000) 15.3 19.4 19.2 17.9 14.3 16.8 14.6 15.2

RRV n,m 11.7 26.5 19.6 19.3 21.1 36.4 22.4 26.6

RTV n,m 11.0 25.6 18.5 18.4 19.9 34.4 20.9 25.1

JV(range) 5.5 3.4 5.9 4.6 5.6 5.5 6.6 5.8

SRV n,m 11.5 26.0 19.2 18.9 20.2 34.9 21.5 25.6

STV n,m 10.9 25.2 18.1 18.1 19.5 33.8 20.5 24.6

JV(return) 4.5 3.2 5.8 4.3 3.8 3.2 4.4 3.7

Note. We report descriptive statistics for AXP, MRK, SPY and XOM.The sample period is January, 2007 – December, 2009, both

included. nobs is the average number of transaction data after cleaning (in 1000s). Volatility is reported as annualized standard deviation,

in percent. JV is one minus the average ratio of the jump-robust integrated variance estimate to the quadratic variance estimate.
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