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Abstract

This chapter surveys the methods available for extracting forward-looking information from

option prices. We consider volatility, skewness, kurtosis, and density forecasting. More generally,

we discuss how any forecasting object which is a twice differentiable function of the future

realization of the underlying risky asset price can utilize option implied information in a well-

defined manner. Going beyond the univariate option-implied density, we also consider results on

option-implied covariance, correlation and beta forecasting as well as the use of option-implied

information in cross-sectional forecasting of equity returns.
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1 Introduction

We provide an overview of techniques used to extract information from derivatives, and document

the applicability of this information in forecasting. The premise of this chapter is that derivative

prices contain useful information on the conditional density of future underlying asset returns. This

information is not easily extracted using econometric models of historical values of the underlying

asset prices, even though historical information may also be useful for forecasting, and combining

historical information with information extracted from derivatives prices may be especially effective.

A derivative contract is an asset whose future payoff depends on the uncertain realization of the

price of an underlying asset. Many different types of derivative contracts exist: futures and forward

contracts, interest rate swaps, currency and other plain-vanilla swaps, credit default swaps (CDS)

and variance swaps, collateralized debt obligations (CDOs) and basket options, European style call

and put options, and American style and exotic options. Several of these classes of derivatives, such

as futures and options, exist for many different types of underlying assets, such as commodities,

equities, and equity indexes.

Because of space constraints, we are not able to discuss available techniques and empirical

evidence of forecastability for all these derivatives contracts. We therefore use three criteria to

narrow our focus. First, we give priority to larger and more liquid markets, because they presumably

are of greater interest to the reader, and the extracted information is more reliable. Second, we

focus on methods that are useful across different types of securities. Some derivatives, such as

basket options and CDOs, are multivariate in nature, and as a result techniques for information

extraction are highly specific to these securities. While there is a growing literature on extracting

information from these derivatives, the literature on forecasting using this information is as yet

limited, and we therefore do not focus on these securities. Third, some derivative contracts such

as forwards and futures are linear in the return on the underlying security, and therefore their

payoffs are too simple to contain useful and reliable information. This makes these securities less

interesting for our purpose. Other securities, such as exotic options, have path-dependent payoffs,

which may make information extraction cumbersome.

Based on these criteria, we mainly focus on European-style options. European-style options

hit the sweet spot between simplicity and complexity and will therefore be the main, but not

the exclusive, focus of our survey.1 Equity index options are of particular interest, because the

underlying risky asset (a broad equity index) is a key risk factor in the economy. They are among

the most liquid exchange-traded derivatives, so they have reliable and publicly available prices. The

fact that the most often used equity index options are European-style also makes them tractable

and computationally convenient.2 For these reasons, the available empirical literature on equity

1Note that for American options the early exercise premium can usually be estimated (using binomial trees for

example). By subtracting this estimate from the American option price, a synthetic European option is created which

can be analyzed using the techniques we study in this Chapter.
2Most studies use options on the S&P500 index, which are European. Early studies used options on the S&P100,
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index options is also the most extensive one.

Forecasting with option-implied information typically proceeds in two steps. First, derivative

prices are used to extract a relevant aspect of the option-implied distribution of the underlying asset.

Second, an econometric model is used to relate this option-implied information to the forecasting

object of interest. For example, the Black-Scholes model can be used to compute implied volatility

of an at-the-money European call option with 30 days to maturity. Then, a linear regression is

specified with realized volatility for the next 30 days regressed on today’s implied Black-Scholes

volatility. We will focus on the first step in this analysis, namely extracting various information

from observed derivatives prices. The econometric issues in the second step are typically fairly

standard and so we will not cover them in any detail.

Finally, there are a great number of related research areas we do not focus on, even though

we may mention and comment on some of them in passing. In particular, this chapter is not a

survey of option valuation models (see Whaley (2003)), or of the econometrics of option valuation

(see Garcia, Ghysels, and Renault (2010)), or of volatility forecasting in general (see Andersen,

Bollerslev, Christoffersen, and Diebold (2006)). Our chapter exclusively focuses on the extraction

of information from option prices, and only to the extent that such information has been used or

might be useful in forecasting.

The remainder of the chapter proceeds as follows. Section 2 discusses methods for extracting

volatility and correlation forecasts from option prices. Section 3 focuses on constructing option-

implied skewness and kurtosis forecasts. Sections 4 covers techniques that enable the forecaster

to construct the entire density, thus enabling event probability forecasts for example. Sections 2-4

cover model-based as well as model-free approaches. When discussing model-based techniques, we

discuss in each section the case of two workhorse models, Black and Scholes (1973) and Heston

(1993), as well as other models appropriate for extracting the object of interest. Sections 2-4 use

the option-implied distribution directly in forecasting the physical distribution of returns. Section

5 discusses the theory and practice of converting option-implied forecasts to physical forecasts.

Section 6 concludes.

2 Extracting Volatility and Correlation from Option Prices

Volatility forecasting is arguably the most widely used application of option implied information.

When extracting volatility information from options, model-based methods were originally more

popular, but recently model-free approaches have become much more important. We will discuss

each in turn.

which was the most liquid market at the time. These options are American.
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2.1 Model-Based Volatility Extraction

In this section we will review two of the most commonly used models for option valuation, namely

the Black and Scholes (1973) and Heston (1993) models. The Black-Scholes model only contains one

unknown parameter, namely volatility, and so extracting an option-implied volatility forecast from

this model is straightforward. The Heston model builds on more realistic assumptions regarding

volatility, but it also contains more parameters and so it is more cumbersome to implement.

2.1.1 Black-Scholes Implied Volatility

Black and Scholes (1973) assume a constant volatility geometric Brownian motion stock price

process of the form

dS = rSdt+ σSdz

where r is the risk-free rate, σ is the volatility of the stock price, and dz is a normally distributed

innovation.3 Given this assumption, the future log stock price is normally distributed and the

option price for a European call option with maturity T and strike price X can be computed in

closed form using

CBS (T,X, S0, r;σ) = S0N(d)−X exp (−rT )N
(
d− σ

√
T
)

(1)

where S0 is the current stock price, N (·) denotes the standard normal CDF and where

d =
ln (S0/X) + T

(
r + 1

2σ
2
)

σ
√
T

. (2)

European put options can be valued using the put-call parity

P0 + S0 = C0 +X exp (−rT )

which can be derived from a no-arbitrage argument alone and so is not model dependent.

The Black-Scholes option pricing formula has just one unobserved parameter, namely volatility,

denoted by σ. For any given option with market price, CMkt
0 , the formula therefore allows us to

back out the value of σ which is implied by the market price of that option,

CMkt
0 = CBS (T,X, S0, r;BSIV ) (3)

The resulting option-specific volatility, BSIV, is generically referred to as implied volatility (IV). To

distinguish it from other volatility measures implied by options, we will refer to it as Black-Scholes

IV, thus the BSIV notation.

3Throughout this chapter we assume for simplicity that the risk-free rate is constant across time and maturity. In

reality it is not and the time-zero, maturity-dependent risk-free rate, r0,T should be used instead of r in all formulas.

Recently, the overnight indexed swap rate has become the most commonly used proxy for the risk-free rate. See Hull

(2011) Chapter 7.
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Although the Black-Scholes formula in (1) is clearly non-linear, for at-the-money options, the

relationship between volatility and option price is virtually linear as illustrated in the top panel of

Figure 1.

[Figure 1: Black-Scholes Price and Vega]

In general the relationship between volatility and option prices is positive and monotone. This

in turn implies that solving for BSIV is quick even if it must be done numerically. The so-called

option Vega captures the sensitivity of the option price w.r.t. changes in volatility. In the Black-

Scholes model it can be derived as

V egaBS =
∂CBS0

∂σ
= S0

√
TN ′(d)

where d is as defined in (2) and where N ′ (d) is the standard normal probability density function.

The bottom panel of Figure 1 plots the Black-Scholes Vega as a function of moneyness. Note

that the sensitivity of the options with respect to volatility changes is largest for at-the-money

options. This in turn implies that changes in at-the-money option prices are the most informative

about changes in expected volatility.

Table 1 reproduces results from Busch, Christensen, and Nielsen (2011), who regress total

realized volatility (RV ) for the current month on the lagged daily, weekly and monthly realized

volatility, and subsequently use BSIV as an extra regressor. Realized daily volatility is computed

using intraday returns. Alternative specifications separate RV into its continuous (C) and jump

components (not reported here). Panel A contains $/DM FX data for 1987-1999, Panel B contains

S&P 500 data for 1990-2002, and Panel C contains Treasury bond data for 1990-2002.

The results in Table 1 are striking. Option implied volatility has an adjusted R2 of 40.7% for

FX, 62.1% for S&P 500 and 35% for Treasury bond data. This compares with R2 of 26.9%, 61.9%

and 37% respectively for the best RV based model. The simple BSIV forecast is thus able to

compete with some of the most sophisticated historical return-based forecasts. The Treasury bond

options contain wild-card features that increase the error in option implied volatility in this market.

The fact that BSIV performs worse in this case is therefore not surprising.

[Table 1: Forecasting Realized Volatility using Black-Scholes Implied Volatility]

In Figure 2 we plot BSIV s for S&P 500 call and put options quoted on October 22, 2009. In

the top panel of Figure 2 the BSIV s on the vertical axis are plotted against moneyness (X/S0) on

the horizontal axis for three different maturities.

[Figure 2: Black-Scholes Implied Volatility as a Function of Moneyness and Maturity]

The index-option BSIV s in the top panel of Figure 2 display a distinct downward sloping

pattern commonly known as the “smirk”or the “skew”. The pattern is evidence that the Black-

Scholes model—which relies on the normal distribution—is misspecified. Deep out-of-the-money
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(OTM) put options (X/S0 << 1) have much higher BSIV s than other options which from Figure

1 implies that they are more expensive than the normal-based Black-Scholes model would suggest.

Only a distribution with a fatter left tail (that is negative skewness) would be able to generate

these much higher prices for OTM puts. This finding will lead us to consider models that account

for skewness and kurtosis in Section 3.

The bottom panel of Figure 2 shows that the BSIV for at-the-money options (X/S0 ≈ 1)

tends to be larger for long-maturity than short-maturity options. This is evidence that volatility

changes over time although Black-Scholes assumes it is constant. We therefore consider models

with stochastic volatility next.

2.1.2 Stochastic Volatility

For variances to change over time, we need a richer setup than the Black-Scholes models. The

empirically most relevant model that provides this result is Heston (1993), who assumes that the

price of an asset follows the so-called square-root process4

dS = rSdt+
√
V Sdz1 (4)

dV = κ (θ − V ) dt+ σV
√
V dz2

where the two innovations are correlated with parameter, ρ.

At time zero, the variance forecast for horizon T can be obtained as

V AR0 (T ) ≡ E0

[∫ T

0
Vtdt

]
= θT + (V0 − θ)

(
1− e−κT

)
κ

(5)

The horizon-T variance V AR0 (T ) is linear in the spot variance V0. Notice how the mean-

reversion parameter κ determines the extent to which the difference between current spot volatility

and long run volatility, (V0 − θ), affects the horizon T forecast. The smaller the κ, the slower the
mean reversion in volatility, and the higher the importance of current volatility for the horizon T

forecast.

Figure 3 shows the volatility term structure in the Heston model, namely

√
V AR0 (T ) /T =

√
θ + (V0 − θ)

(1− e−κT )

κT
(6)

when θ = 0.09, κ = 2 and V0 = 0.36 (dashed line) corresponding to a high current spot variance

and V0 = 0.01 (solid line) corresponding to a low current spot variance.

[ Figure 3: Heston Volatility Term Structures ]

A similar approach could be taken for the wide range of models falling in the affi ne class to which

the Heston model belongs. Duffi e, Pan, and Singleton (2000) provide an authoritative treatment

4Christoffersen, Jacobs, and Mimouni (2010) consider models with alternative drift and diffusion specifications.
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of a general class of continuous time affi ne models. For examples of discrete time affi ne models, see

for example Heston and Nandi (2000) and Christoffersen, Heston, and Jacobs (2006).

Note that whereas the Black-Scholes model only has one parameter, σ, the Heston model has

four parameters, namely κ, θ, σV , and ρ, in addition to the spot variance, V0. Estimation of the

parameters and spot volatility in the model can be done using a data set of returns, but also using

option prices. Bakshi, Cao, and Chen (1997) re-estimate the model daily treating V0 as a fifth

parameter to be estimated along with the structural parameters θ, κ, ρ, and σV . Bates (2000) and

Christoffersen, Heston, and Jacobs (2009) keep the structural parameters fixed over time. They

make use of an iterative two-step option valuation error minimization procedure where in the first

step the structural parameters are estimated for a given path of {Vt}Nt=1. In the second step Vt
is estimated each period keeping the structural parameters fixed. Iterating between the first and

second step provides the final estimates of structural parameters and spot volatilities. Alternatively,

a more formal filtering technique can be used, which is econometrically more complex.

The complications involved in estimating the parameters and filtering the spot volatility in mod-

els such as Heston’s—as well as the parametric assumptions required—have motivated the analysis

of model-free volatility extraction to which we now turn.

2.2 Model-Free Volatility Extraction

2.2.1 Theory

Under the assumptions that investors can trade continuously, interest rates are constant, and the

underlying futures price is a continuous semi-martingale, Carr and Madan (1998) show that the

expected value of the future realized variance can be computed as,

E0

[∫ T

0
Vtdt

]
= 2

∫ ∞
0

CF0 (T,X)−max (F0 −X, 0)

X2
dX, (7)

where F0 is the forward price of the underlying asset and CF (T,X) is a European call option on

the forward contract.

Britten-Jones and Neuberger (2000) show that the relationship also holds when Vt is replaced

by the return, dSt/St,

E0

[∫ T

0
(dSt/St)

2 dt

]
= 2

∫ ∞
0

CF0 (T,X)−max (F0 −X, 0)

X2
dX. (8)

Jiang and Tian (2005) generalize this result further and show that (8) holds even if the price process

contains jumps.

When relying on options on the underlying spot asset rather than on the forward contract, the

expected variance between now and horizon T is

V AR0 (T ) = 2

∫ ∞
0

C0

(
T, e−rTX

)
−max (S0 −X, 0)

X2
dX.

9



Jiang and Tian (2005) and Jiang and Tian (2007) discuss the implementation of (8). In particular,

they discuss potential biases that can arise from

1. Truncation errors: the integration is performed over a finite range of strike prices instead of

from 0 to ∞.

2. Discretization errors: the integral over strikes is replaced by a sum.

3. Limited availability of strikes: the range of available strikes is narrow and/or has large gaps.

In practice, a finite range, Xmax−Xmin, of discrete strikes are available. Jiang and Tian (2005)

consider using the trapezoidal integration rule

V AR0 (T ) ≈
m∑
i=1

{[
CF0 (T,Xi)−max (F0 −Xi, 0)

]
X2
i

+
[C0 (T,Xi−1)−max (F0 −Xi−1, 0)]

X2
i−1

}
∆X

(9)

where ∆X = (Xmax −Xmin) /m, and the discrete (evenly spaced) strikes Xi = Xmin + i∆X.

In order to reduce the discretization error, ∆X needs to be reasonably small. Jiang and Tian

(2005) fill in gaps in strikes by applying a cubic spline to the BSIV s of traded options, and demon-

strate using a Monte Carlo experiment that this approaches works well. To overcome truncation

problems, Jiang and Tian (2005) use a flat extrapolation outside of the strike price range, whereas

Jiang and Tian (2007) use a linear extrapolation with smooth pasting. Figlewski (2010) proposes

further modifications, including: (i) a fourth degree rather than a cubic spline, (ii) smoothing

which does not require the interpolation function to fit the traded option prices exactly, and (iii)

the application of extreme value functions for the tails of the distribution.

2.2.2 The VIX Volatility Index

The VIX volatility index is published by the Chicago Board of Options Exchange (CBOE). It

is probably the best-known and most widely used example of option-implied information. It has

become an important market indicator and it is sometimes referred to as “The Investor Fear Gauge”

(Whaley (2000)).

The history of the VIX nicely illustrates the evolution in the academic literature, and the

increasing prominence of model-free approaches rather than model-based approaches. Prior to

1993, the VIX was computed as the average of the BSIV for four call and four put options just

in- and out-of-the-money, with maturities just shorter and longer than thirty days. (See Whaley

(2000) for a detailed discussion.) Since 2003, the new VIX relies on a model-free construction, and

relies on the following general result.5

5The VIX calculation assumes a stock price process where the drift and diffusive volatility are arbitrary functions

of time. These assumptions encompass for example implied tree models in which volatility is a function of stock price

and time. See Dupire (1994) for a discussion of this type of models.
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A variance swap is a contract that at time T pays integrated variance between time 0 and T less

a strike price, XV S . The strike is set so that the value of the variance swap is zero when written

at time 0

e−rTE0

[
1

T

∫ T

0
Vtdt−XV S

]
= 0

Consider a stock price process with a generic dynamic volatility specification

dS = rSdt+
√
VtSdz

From Ito’s lemma we have

d ln(S) =
(
r − 1

2Vt
)
dt+

√
Vtdz

so that
dS

S
− d ln(S) = 1

2Vtdt

This relationship shows that variance can be replicated by taking positions sensitive to the

price, S, and the log price, ln(S), of the underlying asset. The idea of using log contracts to

hedge volatility risk was first introduced by Neuberger (1994). Demeterfi, Derman, Kamal, and

Zou (1999) use this result to derive the replicating cost of the variance swap as

V AR0 (T ) = E0

[∫ T

0
Vtdt

]
= 2E0

[∫ T

0

dS

S
− d ln(S)

]
= 2E0

[∫ T

0

dS

S
− ln

(
ST
S0

)]
(10)

CBOE (2009) implements the VIX as follows

V IX = 100

√√√√ 2

T

∑
i

∆Xi

X2
i

erTO (Xi)−
1

T

[
F0

X0
− 1

]2

(11)

where X0 is the first strike below F0, ∆Xi = (Xi+1 −Xi−1) /2, and O (Xi) is the midpoint of the

bid-ask spread for an out of the money call or put option with strike Xi. The second term in (11)

comes from the Taylor series expansion of the log function. Note that the VIX is reported in annual

percentage volatility units.

The CBOE computes VIX using out-of-the-money and at-the-money call and put options. It

calculates the volatility for the two available maturities that are the nearest and second-nearest to

30 days. Then they either interpolate, if one maturity is shorter and the other is longer than 30

days, or otherwise extrapolate, to get a 30 day index.

It is noteworthy that the implementation of this very popular index requires several ad hoc

decisions which could conceivably affect the results. See for example Andersen and Bondarenko

(2007), Andersen and Bondarenko (2009), and Andersen, Bondarenko, and Gonzalez-Perez (2011)

for potential improvements to the VIX methodology. The latter paper shows that the time-varying

range of strike prices available for the VIX calculation affects its precision and consequently suggests

an alternative measure based on corridor variances that use a consistent range of strike prices over

time.

11



Besides the underlying modeling approach, another important change was made to the computa-

tion of the VIX in 1993. Since 1993, the VIX is computed using S&P 500 option prices. Previously,

it was based on S&P100 options. Note that the CBOE continues to calculate and disseminate

the original-formula index, known as the CBOE S&P100 Volatility Index, with ticker VXO. This

volatility series is sometimes useful because it has a price history going back to 1986.

The popularity of the VIX index has spawned the introduction of alternative volatility indexes

in the U.S. and around the world. Table 2 provides an overview of VIX-like volatility products

around the world. Table 2 also contains other option-implied products to be discussed below.

[Table 2: Volatility Indexes Around the World]

2.3 Volatility Forecasting Applications

A large number of studies test if option-implied volatility can forecast the future volatility of the

underlying asset. The main market of interest has been the equity market, particularly stock market

indices. Older studies typically used model-based estimates, mainly BSIV , whereas more recent

studies focus more on model-free estimates.

Overall, the evidence indicates that option-implied volatility is a biased predictor of the fu-

ture volatility of the underlying asset, but most studies find that it contains useful information

over traditional predictors based on historical prices, and option-implied volatility by itself often

outperforms historical volatility. A few studies investigate if option-implied volatility can predict

variables other than volatility, such as stock returns and bond spreads. Table 3 contains a summary

of existing empirical results. We now discuss these empirical results for different underlying assets.

[Table 3: Forecasting with Option-Implied Volatility]

2.3.1 Equity Index Applications

Almost all studies find that option-implied index volatility is useful in forecasting the volatility

of the stock market index, a notable exception being Canina and Figlewski (1993). However,

the evidence is mixed regarding the unbiasedness and effi ciency of the option-implied estimates.

Fleming, Ostdiek, and Whaley (1995), Fleming (1998), and Blair, Poon, and Taylor (2001) find

that BSIV is an effi cient, but biased predictor, whereas Day and Lewis (1992) find that BSIV is

an unbiased, but ineffi cient predictor. Christensen and Prabhala (1998) find that BSIV is unbiased

and effi cient. Busch et al. (2011) find that BSIV is an effi cient and unbiased predictor in equity

index markets.

Jiang and Tian (2005) find that model-free option-implied volatility (MFIV ) is biased, but

effi cient, subsuming all information in BSIV . Andersen and Bondarenko (2007) find a different

result using a new measure of implied volatility, called Corridor IV (CIV ). They compare the

forecasting performance of the broad and narrow CIV , which are substitutes of the MFIV and
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BSIV respectively, and find that the narrow CIV (BSIV ) is biased, but subsumes the predictive

content of the broad CIV (MFIV ).

Harvey and Whaley (1992) test the predictability of BSIV itself and find that BSIV is predict-

able, but conclude that since arbitrage profits are not possible in the presence of transaction costs,

this predictability is not inconsistent with market effi ciency. Poon and Granger (2005) provide a

comprehensive survey of volatility forecasting in general.

Many recent studies have started exploring other ways in which the implied volatility can be used

in forecasting. Bollerslev, Tauchen, and Zhou (2009), Bekaert, Hoerova, and Lo Duca (2010), and

Zhou (2010) find strong evidence that the variance risk premium, which is the difference between

implied variance and realized variance, can predict the equity risk premium. Bakshi, Panayotov,

and Skoulakis (2011) compute the forward variance, which is the implied variance between two

future dates, and find that the forward variance is useful in forecasting stock market returns, T-bill

returns, and changes in measures of real economic activity. A related paper by Feunou, Fontaine,

Taamouti, and Tedongap (2011) find that the term structure of implied volatility can predict both

the equity risk premium and variance risk premium.

2.3.2 Individual Equity Applications

Latané and Rendleman (1976), Chiras and Manaster (1978), Beckers (1981), and Lamoureux and

Lastrapes (1993) find that BSIV is useful in forecasting the volatility of individual stocks. Swidler

and Wilcox (2002) focus on bank stocks, and find that BSIV outperforms historical predictors.

Implied volatility has also been used to predict future stock returns. Banerjee, Doran, and

Peterson (2007) find that the VIX predicts the return on portfolios sorted on book-to-market

equity, size, and beta. Diavatopoulos, Doran, and Peterson (2008) find that implied idiosyncratic

volatility can forecast the cross-section of stock returns. Doran, Fodor, and Krieger (2010) find

that the information in option markets leads analyst recommendation changes.

Ang, Hodrick, Xing, and Zhang (2006) have a somewhat different focus, investigating the per-

formance of the VIX as a pricing factor: they find that the VIX is a priced risk factor with a

negative price of risk, so that stocks with higher sensitivities to the innovation in VIX exhibit on

average future lower returns. Delisle, Doran, and Peterson (2010) find that the result in Ang et al.

(2006) holds when volatility is rising, but not when volatility is falling.

2.3.3 Other Markets

Fackler and King (1990) and Kroner, Kneafsey, and Claessens (1995) study the forecasting ability

of implied volatility in commodity markets. For currencies, Jorion (1995) and Xu and Taylor

(1995) find that BSIV outperforms historical predictors. Pong, Shackleton, Taylor, and Xu (2004)

compare BSIV to predictors based on historical intraday data in currency markets, and find that

historical predictors outperform BSIV for one-day and one-week horizons, whereas BSIV is at

least as accurate as historical predictors for one-month and three-month horizons. Christoffersen
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and Mazzotta (2005) also find that the implied volatility yields unbiased and accurate forecast of

exchange rate volatility.

Busch et al. (2011) investigate assets in three different markets: the S&P 500, the currency

market, using the USD/DM exchange rate, and the fixed income market, using the 30-year US

Treasury bond. They find that the BSIV contains incremental information about future volatility

in all three markets, relative to continuous and jump components of intraday prices. BSIV is an

effi cient predictor in all three markets and is unbiased in foreign exchange and stock markets. Amin

and Ng (1997) also find that implied volatility from Eurodollar futures options forecasts most of

the realized interest rate volatility.

2.4 Extracting Correlations from Option Implied Volatilities

Certain derivatives contain very rich information on correlations between financial time series.

This is especially the case for basket securities, written on a basket of underlying securities, such

as collateralized debt obligations (CDOs). As mentioned in the introduction, because of space

constraints we limit our survey to options.

We now discuss the extraction of information on correlations for two important security classes,

currency and equity. In both cases, some additional assumptions need to be made. Despite the

differences in assumptions, in both cases correlations are related to option implied volatilities.

This is not entirely surprising, as correlation can be thought of as a second co-moment. Implied

correlation information on equities is particularly relevant, because equity as an asset class is

critically important for portfolio management. Table 4 contains a summary of existing empirical

results on the use of option-implied correlations in forecasting.

[Table 4: Forecasting with Option-Implied Correlation]

2.4.1 Extracting Correlations From Triangular Arbitrage

Using the U.S. dollar, $, the British Pound, £, and the Japanese Yen, U, as an example, from
triangular arbitrage in FX markets we know that

S$/$ = S$/¥S¥/$.

From this it follows that for log returns

R$/$ = R$/¥ +R¥/$.

From this we get that

V AR$/$ = V AR$/¥ + V AR¥/$ + 2COV (R$/¥, R¥/$)

so that the correlation must be

CORR(R$/¥, R¥/$) =

(
V AR$/$ − V AR$/¥ − V AR¥/$

)
2V AR

1/2
$/¥V AR

1/2
¥/$

.
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Provided we have option-implied variance forecasts for the three currencies, we can use this to get

an option-implied covariance forecast. See Walter and Lopez (2000) and Campa and Chang (1998)

for applications.

Siegel (1997) finds that option-implied exchange rate correlations for the DM/GBP pair and

the DM/JPY pair predict significantly better than historical correlations between 1992 and 1993.

Campa and Chang (1998) also find that the option-implied correlation for USD/DM/JPY predicts

better than historical correlations between 1989 and 1995. The evidence in Walter and Lopez (2000),

however, is mixed. They find that the option-implied correlation is useful for USD/DM/JPY (1990-

1997), but much less useful for USD/DM/CHF (1993-1997), and conclude that the option-implied

correlation may not be worth calculating in all instances.

Correlations have been extracted from options in fixed income markets. Longstaff, Santa-Clara,

and Schwartz (2001) and de Jong et al. (2004) provide evidence that forward rate correlations

implied by cap and swaption prices differ from realized correlations.

2.4.2 Extracting Average Correlations Using Index and Equity Options

Skintzi and Refenes (2005) and Driessen, Maenhout, and Vilkov (2009) propose the following meas-

ure of average option-implied correlation between the stocks in an index, I,

ρICI =
V ARI −

∑n
j=1w

2
jV ARj

2
∑n−1

j=1

∑n
i>j wiwjV AR

1/2
i V AR

1/2
j

(12)

where wj denotes the weight of stock j in the index.

Note that the measure is based on the option-implied variance for the index, V ARI , and the

individual stock variances, V ARj . Skintzi and Refenes (2005) use options on the DJIA index and

its constituent stocks between 2001 and 2002, and find that the implied correlation index is biased

upward, but is a better predictor of future correlation than historical correlation. Buss and Vilkov

(2011) use the implied correlation approach to estimate option-implied betas and find that the

option-implied betas predict realized betas well. DeMiguel, Plyakha, Uppal, and Vilkov (2011)

use option-implied information in portfolio allocation. They find that option-implied volatility and

correlation do not improve the Sharpe ratio or certainty-equivalent return of the optimal portfolio.

However, expected returns estimated using information in the volatility risk premium and option-

implied skewness increase both the Sharpe ratio and the certainty-equivalent return substantially.

The CBOE has recently introduced an Implied Correlation Index (ICI) for S&P 500 firms based

on (12).

3 Extracting Skewness and Kurtosis from Option Prices

The BSIV smirk patterns in Figure 2 revealed that index options imply negative skewness not

captured by the normal distribution. Prior to 1987, this pattern more closely resembled a symmetric
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“smile”. Other underlying assets such as foreign exchange rates often display symmetric smile

patterns in BSIV implying evidence of excess kurtosis rather than negative skewness. In this

section we consider methods capable of generating option-implied measures of skewness and kurtosis

which can be used as forecasts for subsequent realized skewness and kurtosis.

3.1 Model-Free Skewness and Kurtosis Extraction

We will begin with model-free methods for higher moment forecasting because they are the most

common. This section first develops the general option replication approach for which higher-

moment extraction is a special case. We will then briefly consider other approaches.

3.1.1 The Option Replication Approach

Bakshi and Madan (2000) and Carr and Madan (2001) show that any twice continuously differen-

tiable function, H(ST ), of the terminal stock price ST , can be replicated (or spanned) by a unique

position of risk-free bonds, stocks and European options. Let H (S0) −H ′ (S0)S0 denote units of

the risk-free discount bond, which of course is independent of ST , let H ′ (S0) denote units of the

underlying risky stock, which is trivially linear in ST , and let H ′′ (X) dX denote units of (nonlinear)

out-of-the-money call and put options with strike price X. Then we have

H (ST ) =
[
H (S0)−H ′ (S0)S0

]
+H ′ (S0)ST

+
S0∫
0

H ′′ (X) max (X − ST , 0) dX +
∞∫
S0

H ′′ (X) max (ST −X, 0) dX (13)

This result is clearly very general and we provide its derivation in Appendix A. From a forecasting

perspective, for any desired function H (·) of the future realization ST there is a portfolio of risk-
free bonds, stocks, and options whose current aggregate market value provides an option-implied

forecast of H (ST ).

Let the current market value of the bond be e−rT , and the current put and call prices be

P0 (T,X) and C0 (T,X) respectively, then we have

E0

[
e−rTH (ST )

]
= e−rT

[
H (S0)−H ′ (S0)S0

]
+ S0H

′ (S0) (14)

+
S0∫
0

H ′′ (X)P0 (T,X) dX +
∞∫
S0

H ′′ (X)C0 (T,X) dX

Bakshi, Kapadia, and Madan (2003) (BKM hereafter) apply this general result to the second,

third, and fourth power of log returns. We provide their option implied moments in Appendix

B. For simplicity we consider here higher moments of simple returns where H (ST ) =
(
ST−S0
S0

)2
,

H (ST ) =
(
ST−S0
S0

)3
, and H (ST ) =

(
ST−S0
S0

)4
.

We can use OTM European call and put prices to derive the quadratic contract as

M0,2 (T ) ≡ E0

[
e−rT

(
ST−S0
S0

)2
]

= 2
S2

0

[
S0∫
0

P0 (T,X) dX +
∞∫
S0

C0 (T,X) dX

]
. (15)
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The cubic contract is given by

M0,3 (T ) ≡ E0

[
e−rT

(
ST−S0
S0

)3
]

= 6
S2

0

[
S0∫
0

(
X−S0
S0

)
P0 (T,X) dX +

∞∫
S0

(
X−S0
S0

)
C0 (T,X) dX

]
(16)

and the quartic contract is given by

M0,4 (T ) ≡ E0

[
e−rT

(
ST−S0
S0

)4
]

= 12
S2

0

[
S0∫
0

(
X−S0
S0

)2
P0 (T,X) dX +

∞∫
S0

(
X−S0
S0

)2
C0 (T,X) dX

]
(17)

Notice how the quadratic contract—which is key for volatility—simply integrates over option

prices. The cubic contract—which is key for skewness—integrates over option prices multiplied by

moneyness, X−S0
S0

= X
S0
− 1. The quartic contract—which is key for kurtosis—integrates over the

option prices multiplied by moneyness squared. High option prices imply high volatility. High

OTM put prices and low OTM call prices imply negative skewness (and vice versa). High OTM

call and put prices at extreme moneyness imply high kurtosis.

We can now compute the option-implied volatility, skewness, and kurtosis (for convenience we

suppress the dependence of M on T ) as

V OL0 (T ) ≡ [V AR0 (T )]1/2 =
[
erTM0,2 −M2

0,1

]1/2
(18)

SKEW0 (T ) =
erTM0,3 − 3M0,1e

rTM0,2 + 2M3
0,1[

erTM0,2 −M2
0,1

] 3
2

(19)

KURT0 (T ) =
erTM0,4 − 4M0,1e

rTM0,3 + 6erTM2
0,1M0,2 − 3M4

0,1[
erTM0,2 −M2

0,1

]2 (20)

where

M0,1 ≡ E0

[(
ST−S0
S0

)]
= erT − 1 (21)

BKM provide a model-free implied variance, like Britten-Jones and Neuberger (2000) in (8).

BKM compute the variance of the holding period return, whereas Britten-Jones and Neuberger

(2000) compute the expected value of realized variance. These concepts of volatility will coincide

if the log returns are zero mean and uncorrelated.

Using S&P 500 index options from January 1996 through September 2009 Figure 4 plots the

higher moments of log returns for the one-month horizon.

[Figure 4: Option-Implied Moments for One-Month S&P 500 Returns]

Not surprisingly, the volatility series is very highly correlated with the VIX index, with a correl-

ation of 0.997 between January 1996 and September 2009. The annualized volatility varied between

around 0.1 and 0.4 before the subprime crisis of 2008, but its level shot up to an unprecedented

level of around 0.8 at the onset of the crisis, subsequently reverting back to its previous level by
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late 2009. The estimate of skewness is negative for every day in the sample, varying between minus

three and zero. Interestingly, skewness did not dramatically change during the subprime crisis,

despite the fact that option-implied skewness is often interpreted as the probability of a market

crash or the fear thereof. The estimate of kurtosis is higher than three (i.e. excess kurtosis) for

every day in the sample, indicating that the option-implied distribution has fatter tails than the

normal distribution. Its level did not dramatically change during the sub-prime crisis, but the time

series exhibits more day-to-day variation during this period.

The estimation of skewness and kurtosis using the BKM method is subject to the same concerns

discussed by Jiang and Tian (2005) and Jiang and Tian (2007) in the context of volatility estimation.

Chang, Christoffersen, Jacobs, and Vainberg (2011) present Monte Carlo evidence on the quality

of skewness estimates when only discrete strike prices are available. Fitting a spline through the

implied volatilities and integrating the spline, following the methods of Jiang and Tian (2005) and

Jiang and Tian (2007), seems to work well for skewness too, and dominates simple integration using

only observed contracts.

In February 2011, the CBOE began publishing the CBOE S&P 500 Skew Index. The skewness

index is computed using the methodology in BKM described in this section combined with the

interpolation/extrapolation method used in the VIX calculation described in Section 2.2.2. See

CBOE (2011) for details.

3.1.2 Other Model-Free Measures of Option Implied Skewness

Many empirical studies on option implied skewness use the asymmetry observed in the implied

volatility curve in Figure 2, often referred to as the smirk, to infer the skewness of the option-

implied distribution. There are many variations in the choice of options used to measure the

asymmetry of the implied volatility curve. The most popular method involves taking the difference

of the out-of-the-money put BSIV and out-of-the-money call BSIV . This measure, proposed by

Bates (1991), reflects the different extent to which the left-hand tail and the right-hand tail of the

option-implied distribution of the underlying asset price deviate from the lognormal distribution.

Another approach is to take the difference between the out-of-the-money put BSIV and at-the-

money put (or call) BSIV as in Xing, Zhang, and Zhao (2010). This measure only looks at the

left-hand side of the distribution, and is often used in applications where the downside risk of the

underlying asset is the variable of interest. Another variable that is also shown to be somewhat

related to implied skewness is the spread of implied volatility of call and put options with the same

maturity and same strike (Cremers and Weinbaum (2010) and Bali and Hovakimian (2009)).

Recently, Neuberger (2011) has proposed a model-free method that extends the variance swap

methodology used to compute the VIX index. He shows that just as there is a model-free strategy

to replicate a variance swap, a contract that pays the difference between option implied variance

and realized variance, there is also a model-free strategy to replicate a skew swap, a contract that

pays the difference between option implied skew and realized skew.
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3.2 Model-Based Skewness and Kurtosis Extraction

In this section we first review two models that are based on expansions around the Black-Scholes

model explicitly allowing for skewness and kurtosis. We then consider an alternative model-based

approach specifying jumps in returns which imply skewness and kurtosis.

3.2.1 Expansions of the Black-Scholes Model

Jarrow and Rudd (1982) propose an option pricing method where the density of the security price at

option maturity, T , is approximated by an alternative density using the Edgeworth series expansion.

If we choose the lognormal as the approximating density, and use the shorthand notation for the

Black-Scholes model

CBS0 (T,X) ≡ CBS (T,X, S0, r;σ)

then the Jarrow-Rudd model is defined by

CJR0 (T,X) ≈ CBS0 (T,X)− e−rT (K3 −K3 (Ψ))

3!

dψ (T,X)

dX
+ e−rT

(K4 −K4 (Ψ))

4!

d2ψ (T,X)

dX2
(22)

where Kj is the jth cumulant of the actual density, Kj (Ψ) is the cumulant of the lognormal density,

ψ (T,X), so that

ψ (T,X) =
(
Xσ
√
T2π

)−1
exp

{
−1

2

(
d− σ

√
T
)2
}

dψ (T,X)

dX
=
ψ (T,X)

(
d− 2σ

√
T
)

Xσ
√
T

d2ψ (T,X)

dX2
=
ψ (T,X)

X2σ2T

[(
d− 2σ

√
T
)2
− σ
√
T
(
d− 2σ

√
T
)
− 1

]
and where d is as defined in (2).

In general we have the following relationships between cumulants and moments

K2 = V AR, K3 = K
3/2
2 SKEW, K4 = K2

2 (KURT − 3)

For the log normal density we have the following moments

V AR(X) = exp

(
2

(
ln (S0) +

(
r − 1

2
σ2

)
T

)
+ σ2T

)(
exp

(
σ2T

)
− 1
)

SKEW (X) =
(
exp

(
σ2T

)
+ 2
)√

exp (σ2T )− 1

KURT (X) = exp
(
4σ2T

)
+ 2 exp

(
3σ2T

)
+ 3 exp

(
2σ2T

)
− 3

The cumulants corresponding to these moments provide the expressions for K3 (X) and K4 (X) in

equation (22) above.

The Jarrow-Rudd model in (22) now has three parameters left to estimate, namely, σ, K3,

and K4 or equivalently σ, SKEW and KURT . In principle these three parameters could be
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solved for using three observed option prices. These parameters would then provide option-implied

forecasts of volatility, skewness and kurtosis in the distribution of ln (ST ). Alternatively they could

be estimated by minimizing the option valuation errors on a larger set of observed option prices.

Christoffersen and Jacobs (2004) discuss the choice of objective function in this type of estimation

problems.

As an alternative to the Edgeworth expansion, Corrado and Su (1996) consider a Gram-Charlier

series expansion,6 in which

CCS0 (T,X) = CBS0 (T,X) +Q3SKEW +Q4 (KURT − 3) (23)

where

Q3 =
1

3!
S0σ
√
T
((

2σ
√
T − d

)
N ′ (d) + σ2TN(d)

)
;

Q4 =
1

4!
S0σ
√
T
((
d2 − 1− 3σ

√
T
(
d− σ

√
T
))

N ′ (d) + σ3T 3/2N(d)
)

where N ′ (d) is again the standard normal probability density function. Note that Q4 and Q3

represent the marginal effect of skewness and kurtosis respectively and note that d is as defined in

(2). In the Corrado-Su model SKEW and KURT refer to the distribution of log return shocks

defined by

ZT =

[
lnST − ln (S0)−

(
r − 1

2
σ2

)
T

]
/
(
σ
√
T
)

Again, option-implied volatility, skewness and kurtosis can be estimated by minimizing the

distance between CCS0 (T,X) and a sample of observed option prices or by directly solving for the

three parameters using just three observed option prices.

3.2.2 Jumps and Stochastic Volatility

While the Black and Scholes (1973) and stochastic volatility option pricing models are often used

to extract volatility, the study of higher moments calls for different models. The Black-Scholes

model assumes normality, and therefore strictly speaking cannot be used to extract skewness and

kurtosis from the data, although patterns in Black-Scholes implied volatility are sometimes used to

learn about skewness.

Stochastic volatility models such as Heston (1993) can generate skewness and excess kurtosis,

but fall short in reconciling the stylized facts on physical higher moments with the dynamics of

higher option-implied moments (Bates (1996b) and Pan (2002)). Instead, generalizations of the

Black and Scholes (1973) and Heston (1993) setup are often used, such as the jump-diffusion model

of Bates (1991) and the stochastic volatility jump-diffusion (SVJ) model of Bates (1996b).

In Bates (2000), the futures price F is assumed to follow a jump-diffusion of the following form

dF/F = −λkdt+
√
V dz1 + kdq, (24)

dV = κ (θ − V ) dt+ σV
√
V dz2

6See also Backus, Foresi, Li, and Wu (1997).
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where q is a Poisson counter with instantaneous intensity λ, and where k is a lognormally distributed

return jump

ln (1 + k) ∼ N
[
ln
(
1 + k

)
− δ2/2, δ2

]
As in Heston (1993) the return and variance diffusion terms are correlated with coeffi cient ρ.

Bates (2000) derives the nth cumulant for horizon T to be

Kn (T ) =

[
∂nA (T ; Φ)

∂Φn
+
∂nB (T ; Φ)

∂Φn
V

]
Φ=0

+ λT

[
∂nC (Φ)

∂Φn

]
Φ=0

where

A (T ; Φ) = −κθT
σ2
V

(ρσV Φ− κ−D (Φ))− 2κθ

σ2
V

ln

[
1 +

1

2
(ρσV Φ− κ−D (Φ))

1− eD(Φ)T

D (Φ)

]
,

B (T ; Φ) =
−
[
Φ2 − Φ

]
ρσV Φ− κ+D (Φ)

(
1+eD(Φ)T

1−eD(Φ)T

) , and
C (Φ) =

[(
1 + k

)Φ
e

1
2
δ2[Φ2−Φ] − 1

]
− kΦ, and where

D (Φ) =

√
(ρσV Φ− κ)2 − 2σ2

V

{
1

2
[Φ2 − Φ]

}
,

From the cumulants we have the following conditional moments for the log futures returns for

holding period T

V AR0 (T ) = K2 (T ) , SKEW0 (T ) = K3 (T ) /K
3/2
2 (T ) , KURT0 (T ) = K4 (T ) /K2

2 (T ) + 3

Besides the higher moments such as skewness and kurtosis, this model yields parameters de-

scribing the intensity and size of jumps, which can potentially be used to forecast jump-like events

such as stock market crashes and defaults.

There is an expanding literature estimating models like (24) as well as more general models

with jumps in volatility using returns and/or options. See for instance Bates (2000), Bates (2008),

Andersen, Benzoni, and Lund (2002), Pan (2002), Huang and Wu (2004), Eraker, Johannes, and

Polson (2003), Broadie, Chernov, and Johannes (2009), Li, Wells, and Yu (2008), and Chernov,

Gallant, Ghysels, and Tauchen (2003).

3.3 Applications

As discussed in Section 2.3, many studies use option implied volatility to forecast the volatility of

the underlying asset. A few studies have used option implied skewness and kurtosis to forecast the

returns on the underlying, as well as cross-sectional differences in stock returns. Table 5 contains

a summary of existing empirical results.

[Table 5: Forecasting with Option-Implied Skewness and Kurtosis]
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3.3.1 Time Series Forecasting

Bates (1991) investigates the usefulness of jump parameters estimated using a jump diffusion model

for forecasting the stock market crash of 1987. He also forecasts using a skewness premium con-

structed from prices of out-of-the-money puts and calls. Bates (1996a) examines option implied

skewness and kurtosis of the USD/DM and USD/JPY exchange rates between 1984 and 1992,

and finds that the option implied higher moments contain significant information for the future

USD/DM exchange rate, but not for the USD/JPY rate. The option implied higher moments are

again estimated both using a model-based approach, using a jump-diffusion dynamic, but also using

a model-free measure of the skewness premium.

Navatte and Villa (2000) extract option implied moments for the CAC 40 index using the Gram-

Charlier expansion. They find that the moments contain a substantial amount of information for

future moments, with kurtosis contributing less forecasting power than skewness and volatility.

Carson, Doran, and Peterson (2006) find that the implied volatility skew has strong predictive

power in forecasting short-term market declines. However, Doran, Peterson, and Tarrant (2007)

find that the predictability is not economically significant.

For individual stocks, Diavatopoulos, Doran, Fodor, and Peterson (2008) look at changes in

implied skewness and kurtosis prior to earnings announcements and find that both have strong

predictive power for future stock and option returns. DeMiguel et al. (2011) propose using implied

volatility, skewness, correlation and variance risk premium in portfolio selection, and find that the

inclusion of skewness and the variance risk premium improves the performance of the portfolio

significantly.

3.3.2 Option Implied Market Moments as Pricing Factors

Two recent studies investigate if option-implied higher moments of the S&P 500 index help explain

the subsequent cross-section of returns. Chang, Christoffersen, and Jacobs (2009) test the cross-

section of all stocks in the CRSP database, whereas Agarwal, Bakshi, and Huij (2009) investigate

returns on the cross-section of hedge fund returns. Both studies use the model-free moments of BKM

described in Section 3.1. Both studies find strong evidence that stocks with higher sensitivity to

the innovation in option-implied skewness of the S&P 500 index exhibit lower returns in the future.

Agarwal et al. (2009) also find a positive relationship between a stock’s sensitivity to innovations

in option-implied kurtosis of the S&P 500 index and future returns.

3.3.3 Equity Skews and the Cross-Section of Future Stock Returns

Several recent studies find a cross-sectional relationship between the option-implied skew of indi-

vidual stocks and their subsequent returns. Xing et al. (2010) define skew as the difference in

implied volatilities between out-of-the-money puts and at-the-money calls. They find that steeper

smirks are associated with lower future stock returns. Doran and Krieger (2010) decompose the
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volatility skew into several components. They find that future stock returns are positively related

to the difference in volatilities between at-the-money calls and puts, and negatively related to a

measure of the left skew of the implied volatility curve. These results are consistent with those

found in Cremers and Weinbaum (2010), Bali and Hovakimian (2009), and Xing et al. (2010). More

importantly, the results in Doran and Krieger (2010) indicate that different measures of implied

skewness can lead to different empirical results on the relationship between implied skewness and

the cross-section of future stock returns.

Conrad, Dittmar, and Ghysels (2009) and Rehman and Vilkov (2010) both use the model-free

skewness of Bakshi et al. (2003), but find the opposite relationship between implied skewness

and the cross-section of future stock returns. Conrad et al. (2009) find a negative relationship

while Rehman and Vilkov (2010) find a positive one. The difference between these two empirical

studies is that Conrad et al. (2009) use average skewness over the last three months whereas

Rehman and Vilkov (2010) use skewness measures computed only on the last available date of each

month. Again, these conflicting results indicate that the relationship between equity skews and the

cross-section of future stocks returns is sensitive to variations in empirical methodology.

3.3.4 Option Implied Betas

Section 2.4 above documents how option-implied correlation can be extracted from option data.

Given the assumptions, correlations are a function of option-implied volatilities. Chang et al.

(2011) provide an alternative approach, assuming that firm-specific risk has zero skewness. In this

case it is possible to derive an option-implied beta based on the option-implied moments of firm j

and the market index I as follows

βj =

(
SKEWj

SKEWI

)1/3(V ARj
V ARI

)1/2

, (25)

where V AR and SKEW can be computed from index options and from equity options for firm j

using (18) and (19). Chang et al. (2011) find that, similar to the evidence for implied volatilities,

historical betas and option-implied betas both contain useful information for forecasting future

betas.

4 Extracting Densities from Option Prices

There are many surveys on density forecasting using option prices. See Söderlind and Svensson

(1997), Galati (1999), Jackwerth (1999), Jondeau and Rockinger (2000), Bliss and Panigirtzoglou

(2002), Rebonato (2004), Taylor (2005), Bu and Hadri (2007), Jondeau, Poon, and Rockinger

(2007), Figlewski (2010), Fusai and Roncoroni (2008), and Markose and Alentorn (2011). We

describe the details of only a few of the most popular methods in this section, and refer the readers

interested in the details of other methods to these surveys. We start by discussing model-free
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estimation, and subsequently discuss imposing more structure on the problem using no-arbitrage

restrictions or parametric models.

4.1 Model-Free Estimation

Breeden and Litzenberger (1978) and Banz and Miller (1978) show that the option-implied density

of a security can be extracted from a set of European-style option prices with a continuum of strike

prices. This result can be derived as a special case of the general replication result in (13).

The value of a European call option, C0, is the discounted expected value of its payoff on the

expiration date T . Under the option-implied measure, f0 (ST ), the payoff is discounted at the

risk-free rate

C0(T,X) = e−rT
∫ ∞

0
max {ST −X, 0} f0 (ST ) dST = e−rT

∞∫
X

(ST −X) f0 (ST ) dST (26)

Take the partial derivative of C0 with respect to the strike price X to get

∂C0(T,X)

∂X
= −e−rT

[
1− F̃0 (X)

]
, (27)

which yields the cumulative density function (CDF)

F̃0 (X) = 1 + erT
∂C0(T,X)

∂X
so that F̃0 (ST ) = 1 + erT

∂C0(T,X)

∂X

∣∣∣∣
X=ST

. (28)

The conditional probability density function (PDF) denoted by f0(X) can be obtained by taking

the derivative of (28) with respect to X.

f0 (X) = erT
∂2C0(T,X)

∂X2
so that f0 (ST ) = erT

∂2C0(T,X)

∂X2

∣∣∣∣
X=ST

(29)

As noted above, the put-call parity states that S0 +P0 = C0 +Xe−rT , so that if we use put option

prices instead, we get

F̃0 (ST ) = erT
∂P0(T,X)

∂X

∣∣∣∣
X=ST

and f0 (ST ) = erT
∂2P0(T,X)

∂X2

∣∣∣∣
X=ST

. (30)

In practice, we can obtain an approximation to the CDF in (28) and (30) using finite differences

of call or put option prices observed at discrete strike prices

F̃0 (Xn) ≈ 1 + erT
(
C0 (T,Xn+1)− C0 (T,Xn−1)

Xn+1 −Xn−1

)
(31)

or

F̃0 (Xn) ≈ erT
(
P0 (T,Xn+1)− P0 (T,Xn−1)

Xn+1 −Xn−1

)
. (32)

Similarly, we can obtain an approximation to the PDF in (29) and (30) via

f0 (Xn) ≈ erT C0 (T,Xn+1)− 2C0 (T,Xn) + C0 (T,Xn−1)

(∆X)2 (33)
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f0 (Xn) ≈ erT P0 (T,Xn+1)− 2P0 (T,Xn) + P0 (T,Xn−1)

(∆X)2 . (34)

In terms of the log return, RT = lnST − lnS0, the CDF and PDF are

F̃0,RT (x) = F0

(
ex+lnS0

)
and f0,RT (x) = ex+lnS0f0

(
ex+lnS0

)
.

The most important constraint in implementing this method is that typically only a limited number

of options are traded in the market, with a handful of strike prices. This approximation method

can therefore only yield estimates of the CDF and the PDF at a few points in the domain. This

constraint has motivated researchers to develop various ways of imposing more structure on the

option-implied density. In some cases the additional structure exclusively derives from no-arbitrage

restrictions, in other cases a parametric model is imposed. We now survey these methods, below

in increasing order of structure imposed.

4.2 Imposing Shape Restrictions

Aït-Sahalia and Duarte (2003) propose a model-free method of option-implied density estimation

based on locally polynomial regressions that incorporates shape restrictions on the first and the

second derivatives of the call pricing function. Again, let f0 (ST ) be the conditional density, then

the call option prices are

C0 (T,X) = e−rT
∫ +∞

0
max (ST −X, 0) f0 (ST ) dST

By differentiating the call price C with respect to the strike X, we get

∂C0(T,X)

∂X
= −e−rT

∫ +∞

X
f0 (ST ) dST .

Since f0 (ST ) is a probability density, it is positive and integrates to one across X. Therefore,

−e−rT ≤ ∂C0(T,X)

∂X
≤ 0. (35)

By differentiating the call price twice with respect to the strike price, we obtain as before

∂2C0(T,X)

∂X2
= e−rT f0 (X) ≥ 0. (36)

Two additional restrictions can be obtained using standard no arbitrage bounds of the call option

prices,

max
(
0, S0 −Xe−rT

)
≤ C0 (T,X) ≤ S0.

Li and Zhao (2009) develop a multivariate version of the constrained locally polynomial estim-

ator in Aït-Sahalia and Duarte (2003) and apply it to interest rate options.
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4.3 Using Black-Scholes Implied Volatility Functions

The simple but flexible Ad-Hoc Black-Scholes (AHBS) model in which the density forecast is

constructed from Black-Scholes implied volatility curve fitting is arguably the most widely used

method for option-implied density forecasting, and we now describe it in some more detail. The

density construction proceeds in two steps.

First, we estimate a second-order polynomial or other well-fitting function for implied Black-

Scholes volatility as a function of strike and maturity. This will provide the following fitted values

for BSIV . We can write

BSIV (X,T ) = a0 + a1X + a2X
2 + a3T + a4T

2 + a5XT (37)

Second, using this estimated polynomial, we generate a set of fixed-maturity implied volatilities

across a grid of strikes. Call prices can then be obtained using the Black-Scholes functional form

CAHBS0 (X,T ) = CBS0 (T,X, S0, r;BSIV (X,T )) . (38)

Once the model call prices are obtained the option implied density can be obtained using the second

derivative with respect to the strike price.

f0 (ST ) = erT
∂2CAHBS0 (T,X)

∂X2

∣∣∣∣
X=ST

.

Shimko (1993) was the first to propose this approach to constructing density forecasts from

smoothed and interpolated BSIV s. Many variations on the Shimko approach have been proposed

in the literature, and strictly speaking most of these are not entirely model-free, because some

parametric assumptions are needed. The differences between these variations mainly concern three

aspects of the implementation (See Figlewski (2010) for a comprehensive review):

1. Choice of independent variable: the implied volatility function can be expressed as a function

of strike (X), or of moneyness (X/S), or of option delta (see Malz (1996)).

2. Choice of interpolation method: implied volatilities can be interpolated using polynomials

(Shimko (1993) and Dumas, Fleming, and Whaley (1998)) or splines, which can be quadratic,

cubic (Bliss and Panigirtzoglou (2002)) or quartic (Figlewski (2010)). Malz (1997), Rosenberg

(1998), Weinberg (2001), and Monteiro, Tutuncu, and Vicente (2008) propose other methods.

3. Choice of extrapolation method: for strikes beyond the range of traded options, one can

use extrapolation (Jiang and Tian (2005), Jiang and Tian (2007)), truncation (Andersen

and Bondarenko (2007), Andersen and Bondarenko (2009) and Andersen et al. (2011)),

or alternatively a parametric density function can be used. For instance Figlewski (2010)

and Alentorn and Markose (2008) propose the Generalized Extreme Value distribution. Lee

(2004), Benaim and Friz (2008), and Benaim and Friz (2009) derive restrictions on the slope

of the implied volatility curve at tails based on the slope’s relationship to the moments of the

distribution.
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Figure 5 shows the CDF and PDF obtained when applying a smoothing cubic spline using

BSIV data on 30-day OTM calls and puts on the S&P 500 index on October 22, 2009 together

with the CDF and PDF of the lognormal distribution. The model-free estimate of the option-

implied distribution is clearly more negatively skewed than the lognormal distribution. Note that

we only draw the distribution for available strike prices and thus do not extrapolate beyond the

lowest and highest strikes available.

[Figure 5: Option-Implied Distribution from BSIV Curve Fitting vs. Lognormal]

Related approaches are proposed by Madan and Milne (1994), who use Hermite polynomials,

and Abadir and Rockinger (2003), who propose the use of hypergeometric functions. Empir-

ical studies using these approaches include Abken, Madan, and Ramamurtie (1996), Jondeau and

Rockinger (2001), Flamouris and Giamouridis (2002), Rompolis and Tzavalis (2008), and Giac-

omini, Härdle, and Krätschmer (2009).

Many alternative approaches have been proposed including 1) Implied binomial trees (Rubin-

stein (1994)) and its extensions (Jackwerth (1997), Jackwerth and Rubinstein (1996), Jackwerth

(2000), and Dupont (2001)); 2) Entropy (Stutzer (1996), Buchen and Kelly (1996)); 3) Kernel

regression (Aït-Sahalia and Lo (1998), Aït-Sahalia and Lo (2000)); 4) Convolution approximations

(Bondarenko (2003)); and 5) Neural networks (Healy, Dixon, Read, and Cai (2007)). However,

Black-Scholes implied volatility curve fitting remains the simplest and most widely used method.7

4.4 Static Distribution Models

As discussed above in Section 3.2.1, Jarrow and Rudd (1982) propose an Edgeworth expansion of

the option-implied distribution around the lognormal density and Corrado and Su (1996) propose

a related Gram-Charlier expansion which we also discussed above. These methods can be used to

produce density forecasts as well as moment forecasts.

If we alternatively assume that ST is distributed as a mixture of two lognormals, then we get

f0 (ST ) = wψ (ST , µ1, σ1, T ) + (1− w)ψ (ST , µ2, σ2, T ) (39)

The forward price for maturity T imposes the constraint

F0 = wµ1 + (1− w)µ2

where µ1 and µ2 are parameters to be estimated, subject to the above constraint, along with the

remaining parameters w, σ1 and σ2. The resulting option pricing formula is simply a weighted

average of BS option prices.

CMix
0 (T,X) = wCBS (T,X, µ1, r;σ1) + (1− w)CBS (T,X, µ1, r;σ2)

7See for example Christoffersen and Jacobs (2004) and Christoffersen, Heston, and Jacobs (2011).
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Most applications assume a mixture of two or three lognormals. The resulting mixture is easy

to interpret, especially when it comes to predicting events with a small number of outcomes. The

moments can be obtained from

E0 [SnT ] = wµn1 exp
(

1
2

(
n2 − n

)
σ2

1T
)

+ (1− w)µn2 exp
(

1
2

(
n2 − n

)
σ2

2T
)

The distribution is thus flexible enough to capture higher moments such as skewness and kurtosis.

See for instance Ritchey (1990), Bahra (1997), and Melick and Thomas (1997) as well as Taylor

(2005).

Alternative parametric distributions have been entertained by Bookstaber and McDonald (1991),

who use a generalized beta distribution of the second kind, Sherrick, Garcia, and Tirupattur (1996),

who use a Burr III distribution, Savickas (2002), who uses a Weibull distribution, and Markose and

Alentorn (2011), who assume a Generalized Extreme Value (GEV) distribution. Other distribu-

tions used include generalized Beta functions (Aparicio and Hodges (1998) and Liu, Shackleton,

Taylor, and Xu (2007)), generalized Lambda distribution (Corrado (2001)), generalized Gamma dis-

tribution (Tunaru and Albota (2005)), skewed Student-t (de Jong and Huisman (2000)), Variance

Gamma (Madan, Carr, and Chang (1998)), and Lévy processes (Matache, Nitsche, and Schwab

(2004)).

4.5 Dynamic Models with Stochastic Volatility and Jumps

There is overwhelming evidence that a diffusion with stochastic volatility (Heston (1993)), a jump-

diffusion with stochastic volatility (Bates (1996b)), or an even more complex model for the underly-

ing with jumps in returns and volatility is a more satisfactory description of the data than a simple

Black-Scholes model. Nevertheless, these models are not the most popular choices in forecasting

applications. This is presumably due to the significantly higher computational burden, which is

especially relevant in a forecasting application which requires frequent re-calibration of the model.

The advantage of assuming a stochastic volatility model with jumps is that the primitives of the

model include specification of the dynamic of the underlying at a frequency which can be chosen by

the researcher. This not only adds richness to the model in the sense that it allows the multiperiod

distribution to differ from the one-period distribution, it also allows consistent treatment of options

of different maturities, and it ensures that the estimation results can be related in a straightforward

way to estimation results for the underlying security.

In affi ne SVJ models closed form solutions are available for the conditional characteristic func-

tion for the log stock price at horizon T defined by

Υ0 (iφ, T ) ≡ E0[exp (iφ ln (ST ))].

The characteristic function can be used to provide call option prices as follows:

C0(T,X) = S0P1 (X,T )−Xe−rTP2 (X,T ) , (40)
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where P1 and P2 are obtained using numerical integration of the characteristic function

P1 (X,T ) =
1

2
+

1

π

∫ ∞
0

Re

[
X−iφΥ0 (iφ+ 1, T )

iφS0erT

]
dφ (41)

P2 (X,T ) =
1

2
+

1

π

∫ ∞
0

Re

[
X−iφΥ0 (iφ, T )

iφ

]
dφ (42)

where Υ0 (φ, T ) denotes the characteristic function. The cumulative density forecast implied by

the model is directly provided by P2 (X,T ) and the density forecast can be obtained from

f0 (ST ) =
∂P2 (X,T )

∂X

∣∣∣∣
X=ST

,

which must be computed numerically.

4.6 Comparison of Methods

Many studies have compared the empirical performance of different density estimation methods.

Jondeau and Rockinger (2000) compare semi-parametric methods based on Hermite and Edgeworth

expansions, single and mixture lognormals, and methods based on jump diffusion and stochastic

volatility models, and recommend using the mixture of lognormals model for the short-run options,

and the jump-diffusion model for the long-run options. Coutant, Jondeau, and Rockinger (2001)

compare Hermite expansion, maximum entropy, mixture of lognormals, and a single lognormal

methods and conclude that all methods do better than a single lognormal method. They favor

the Hermite expansion method due to its numerical speed, stability, and accuracy. Bliss and

Panigirtzoglou (2002) compare double-lognormal and smoothed implied volatility function, focusing

on the robustness of their parameter estimates, and conclude that the smoothed implied volatility

function method dominates the double-lognormal method. Campa, Chang, and Reider (1998) and

Jackwerth (1999) compare various parametric and nonparametric methods, and conclude that the

estimated distributions from different methods are rather similar.

In summary, these and many other papers compare different estimation methods, and arrive

at conclusions that are not always consistent with one another. Since the resulting densities are

often not markedly different from each other using different estimation methods, it makes sense to

use methods that are computationally easy and/or whose results are easy to interpret given the

application at hand. Because of computational ease and the stability of the resulting parameter

estimates, the smoothed implied volatility function method is a good choice for many purposes.

The jump-diffusion model is useful if the event of interest is a rare event such as stock market crash.

The lognormal-mixture is particularly useful when dealing with situations with a small number of

possible outcomes, such as elections.

4.7 Density Forecasting Applications

Table 6 contains a summary of the existing empirical studies using option-implied densities (OID)

in forecasting. Many early studies focus on the markets for commodities and currencies. Silva and

29



Kahl (1993) estimate soybean and corn futures price OIDs. Melick and Thomas (1997) estimate

the distribution for crude oil during the Persian Gulf crisis. Høg and Tsiaras (2011) also examine

options on crude oil futures. Leahy and Thomas (1996) estimate densities from Canadian dollar

futures options around the referendum on Quebec sovereignty. Malz (1997) use s to explore issues

related to the puzzle of excess returns in currency markets. Campa and Chang (1996), Malz (1996),

and Haas, Mittnik, and Mizrach (2006) examine the information content of exchange rate OIDs

around ERM crises. Bodurtha and Shen (1999) and Campa et al. (1998) both study the USD/DM

and USD/Yen relationship using options. Campa, Chang, and Refalo (2002) apply the intensity of

realignment and credibility measures developed in Campa and Chang (1996) to the “crawling peg”

between the Brazilian Real and the USD between 1994 and 1999.

Using equity options, Gemmill and Saflekos (2000) study the predictive power of OID around

four stock market crashes and three British elections between 1987 and 1997 using FTSE-100 index

options. Mizrach (2006) examines whether the collapse of Enron was expected in option mar-

kets. Shackleton, Taylor, and Yu (2010) estimate S&P 500 index densities using various methods.

Recently, Kostakis, Panigirtzoglou, and Skiadopoulos (2011) use estimated densities for portfolio

selection.

[Table 6: Forecasting using Option-Implied Densities]

4.8 Event Forecasting Applications

There is a significant and expanding literature on prediction markets. The primary purpose of

these markets is to forecast future events, and the contracts are designed to facilitate extracting

information to use in forecasting. This literature is covered in detail in Snowberg, Wolfers, and

Zitzewitz (2011) and is therefore not discussed here. We instead focus on the prediction of events

using option data, where the primary function of the traded options is not the prediction itself.

In this literature, which naturally overlaps with the density forecasting work discussed above,

estimation methods vary greatly depending on the events to be forecast. We therefore do not

describe the details of the estimation methods and focus our attention on the empirical results.

Table 7 contains a summary of relevant empirical studies.

[Table 7: Forecasting with Option-Implied Event Probabilities]

Many stock market events are of great interest from a forecasting perspective, including stock

market crashes and individual corporate events such as earnings announcements, stock splits, and

acquisitions. Bates (1991) is the best known study of whether and how stock market index option

prices reveal the market’s expectation of future stock market crashes. He studies the behavior of

S&P 500 futures options prices prior to the crash of October 1987, and finds unusually negative

skewness in the option implied distribution of the S&P 500 futures between October 1986 and

August 1987, leading to the conclusion that the crash was expected. He finds, however, that
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the same indicators do not exhibit any strong crash fears during the two months immediately

preceding the crash. There are few other studies investigating if index option prices can predict

stock market crashes. Doran et al. (2007) find that the option skew is useful in predicting stock

market crashes and spikes, but conclude that the value of this predictive power is not always

economically significant. Overall therefore, there is some evidence in favor of predictability, but

the evidence is not conclusive.

Mizrach (2006) finds that option prices did not reflect the risk of Enron until just weeks before

the firm’s bankruptcy filing in 2001. Other studies examine corporate events other than crashes,

and the results of these studies are more positive. Jayaraman, Mandelker, and Shastri (1991),

Barone-Adesi, Brown, and Harlow (1994), Cao, Chen, and Griffi n (2005), and Bester, Martinez,

and Roşu (2011) all test the forecasting ability of variables in the option market (e.g. prices, trading

volume, etc.) prior to corporate acquisitions. Jayaraman et al. (1991) find that implied volatilities

increase prior to the announcement of the first bid for the target firm and decrease significantly

at the announcement date, indicating that the market identifies potential targets firms prior to

the first public announcement of the acquisition attempt. Cao et al. (2005) find that takeover

targets with the largest preannouncement call-volume imbalance increases experience the highest

announcement day returns. As for the probability of success and timing of announced acquisitions,

Bester et al. (2011) show that their option pricing model yields better predictions compared to a

“naive”method, although Barone-Adesi et al. (1994) find no evidence that option prices predict

the timing of announced acquisitions.

5 Option-Implied Versus Physical Forecasts

So far in the chapter we have constructed various forecasting objects using the so-called risk-

neutral or pricing measure implied from options. When forecasting properties of the underlying

asset we ideally want to use the physical measure and not the risk-neutral measure which is directly

embedded in option prices. Knowing the mapping between the two measures is therefore required. A

fully specified option valuation model provides a physical measure for the underlying asset return

as well as a risk-neutral measure for derivatives valuation, and therefore implicitly or explicitly

defines the mapping. In this section we explore the mapping between measures. In this section

use superscript Q to describe the option-implied density used above and we use superscript P to

denote the physical density obeyed by the underlying asset.

5.1 Complete Markets

Black and Scholes (1973) assume a physical stock price process of the form

dS = (r + µ)Sdt+ σSdz (43)
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where µ is the equity risk premium. In the Black-Scholes model a continuously rebalanced dynamic

portfolio consisting of one written derivative, C, and ∂C
∂S shares of the underlying asset has no risk

and thus earns the risk-free rate. This portfolio leads to the Black-Scholes differential equation.

In the complete markets Black-Scholes world the option is a redundant asset which can be

perfectly replicated by trading the stock and a risk-free bond. The option price is independent

of the degree of risk-aversion of investors because they can replicate the option using a dynamic

trading strategy in the underlying asset. This insight leads to the principle of risk-neutral valuation

where all derivative assets can be valued using the risk-neutral expected pay-off discounted at the

risk free rate. For example, for a European call option we can write

C0 (X,T ) = exp (−rT )EQ0 [max {ST −X, 0}]

Using Ito’s lemma on (43) we get

d ln (S) =
(
r + µ− σ2

2

)
dt+ σdz

which implies that log returns are normally distributed

fP0 (ln (ST )) =
1√

2πσ2T
exp

(
1

2σ2T

(
ln (ST )− ln (S0) +

(
r + µ− σ2

2

)
T
)2
)

Under the risk-neutral measure, µ = 0, and we again have the lognormal density, but now with a

different mean

fQ0 (ln (ST )) =
1√

2πσ2T
exp

(
1

2σ2T

(
ln (ST )− ln (S0) +

(
r − σ2

2

)
T
)2
)

In a Black-Scholes world, the option-implied density forecast will therefore have the correct

volatility and functional form but a mean biased downward because of the equity premium, µ. Since

the risk-neutral mean of the asset return is the risk-free rate, the option price has no predictive

content for the mean return.

5.2 Incomplete Markets

The Black-Scholes model is derived in a complete market setting where risk-neutralization is

straightforward. Market incompleteness arises under the much more realistic assumptions of mar-

ket frictions arising for example from discrete trading, transactions costs, market illiquidity, price

jumps and stochastic volatility or other non-traded risk factors.

5.2.1 Pricing Kernels and Investor Utility

In the incomplete markets case we can still assume a pricing relationship of the form

C0 (X,T ) = exp (−rT )EQ0 [max {ST −X, 0}]

= exp (−rT )

∫ ∞
X

max {exp (ln(ST ))−X, 0} fQ0 (ln (ST )) dST
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But the link between the option-implied and the physical distributions is not unique and a

pricing kernel MT must be assumed to link the two distributions. Define

MT = exp (−rT )
fQ0 (ln (ST ))

fP0 (ln (ST ))

then we get

C0 (X,T ) = exp (−rT )EQ0 [max {ST −X, 0}]

= EP0 [MT max {ST −X, 0}]

The pricing kernel (or stochastic discount factor) describes how in equilibrium investors trade

off the current (known) option price versus the future (stochastic) pay-off.

The functional form for the pricing kernel can be motivated by a representative investor with a

particular utility function of terminal wealth. Generally, we can write

MT ∝ U ′ (ST )

where U ′ (ST ) is the first-derivative of the utility function.

For example, assuming exponential utility with risk-aversion parameter γ we have

U (S) = −1

γ
exp (−γS)

so that U ′ (S) = exp (−γS), and

fQ0 (ST ) = exp (rT )MT f
P
0 (ln (ST )) =

exp (−γ (ST )) fP0 (ST )∫∞
0 exp (−γ (S)) fP0 (S) dS

where the denominator ensures that fQ0 (ST ) is a proper density.

Assuming instead power utility, we have

U (S) =
S1−γ − 1

1− γ , (44)

so that U ′ (S) = S−γ , and

fQ0 (ST ) =
S−γT fP0 (ST )∫∞

0 S−γfP0 (S) dS

Importantly, these results demonstrate that any two of the following three uniquely determine

the third: 1) the physical density; 2) the risk-neutral density; 3) the pricing kernel. We refer to

Hansen and Renault (2009) for a concise overview of various pricing kernels derived from economic

theory.

The Black-Scholes model can be derived in a discrete representative investor setting where

markets are incomplete. Brennan (1979) outlines the suffi cient conditions on the utility function

to obtain the Black-Scholes pricing result. Christoffersen, Elkamhi, Feunou, and Jacobs (2010)

provide a general class of pricing kernels in a discrete time setting with dynamic volatility and

non-normal return innovations.
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5.2.2 Static Distribution Models

Liu et al. (2007) show that if we assume a mixture of lognormal option-implied distribution as in

(39) and furthermore a power utility function with risk aversion parameter γ as in (44) then the

physical distribution will also be a mixture of lognormals with the following parameter mapping

µPi = µi exp
(
γσ2

iT
)
for i = 1, 2

wP =

[
1 +

1− w
w

(
µ2

µ1

)γ
exp

(
1

2

(
γ2 − γ

) (
σ2

2 − σ2
1

)
T

)]−1

where σ2
1 and σ

2
1 do not change between the two measures.

The physical moments can now be obtained from

EP0 [SnT ] = wP
(
µP1
)n

exp
(

1
2

(
n2 − n

)
σ2

1T
)

+
(
1− wP

) (
µP2
)n

exp
(

1
2

(
n2 − n

)
σ2

2T
)
.

Keeping µ1, µ2, w, σ
2
1 and σ

2
1 fixed at their option-implied values, the risk aversion parameter

γ can be estimated via maximum likelihood on returns using the physical mixture of lognormals

defined by the parameter mapping above. Liu et al. (2007) also investigate other parametric distri-

butions. See Fackler and King (1990) and Bliss and Panigirtzoglou (2004) for related approaches.

5.2.3 Dynamic Models with Stochastic Volatility

The Heston model allows for stochastic volatility implying that the option, which depends on

volatility, cannot be perfectly replicated by the stock and bond. Markets are incomplete in this

case and the model therefore implicitly makes an assumption on the pricing kernel or the utility

function of the investor. Heston (1993) assumes that the price of an asset follows the following

physical process

dS = (r + µV )Sdt+
√
V Sdz1 (45)

dV = κP
(
θP − V

)
dt+ σV

√
V dz2

where the two diffusions are allowed to be correlated with parameter ρ. The mapping between the

physical parameters in (45) and the option-implied parameters in (4) is given by

κ = κP + λ, θ = θP
κP

κ

where λ is the price of variance risk.

Christoffersen et al. (2011) show that the physical and option-implied processes in (45) and (4)

imply a pricing kernel of the form

MT = M0

(
ST
S0

)γ
exp

(
δT + η

∫ T

0
V (s)ds+ ξ(VT − V0)

)
(46)
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where ξ is a variance preference parameter. The risk premia µ and λ are related to the preference

parameters γ and ξ via

µ = −γ − ξσV ρ

λ = −ρσV γ − σ2
V ξ

In order to assess the implication of the price of variance risk, λ, for forecasting we consider the

physical expected integrated variance

V ARP0 (T ) = θPT +
(
V0 − θP

) (1− e−κPT
)

κP

= θ
κ

κ− λT +

(
V0 − θ

κ

κ− λ

) (
1− e−(κ−λ)T

)
κ− λ

Under the physical measure the expected future variance in the Heston (1993) model of course

differs from the risk-neutral forecast in (5) when λ 6= 0. If an estimate of λ can be obtained, then

the transformation from option-implied to physical variance forecasts is trivial.

In Figure 6 we plot the physical volatility term structure per year defined by

√
V ARP0 (T ) /T =

√
θ

κ

κ− λ +

(
V0 − θ

κ

κ− λ

) (
1− e−(κ−λ)T

)
(κ− λ)T

(47)

along with the option-implied term structure from (6). We use parameter values as in Figure 3,

where θ = 0.09 κ = 2, and we set λ = −1.125 which implies that θ/θP = κ−λ
κ = (1.25)2 which

corresponds to a fairly large variance risk premium. Figure 6 shows the effect of a large volatility

risk premium on the volatility term structure. For short horizons and when the current volatility

is low then the effect of the volatility risk premium is relatively small. However for long-horizons

the effect is much larger.

5.2.4 Model-free Moments

Bakshi et al. (2003) also assume power utility with parameter γ, and show that option-implied and

physical moments for the market index are approximately related as follows

V ARQ ≈ V ARP
(

1− γSKEWP
(
V ARP

)2)
SKEWQ ≈ SKEWP − γ(KURTP − 3)

(
V ARP

)2
Given a reasonable estimate for γ it is thus possible to convert option-implied estimates for V ARQ

and SKEWQ into physical moment forecasts, V ARP and SKEWP without making explicit as-

sumptions on the functional form of the distribution.
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5.3 Pricing Kernels and Risk Premia

There is a related literature focusing on estimating pricing kernels from P and Q densities rather

than on forecasting. Jackwerth (2000) estimates pricing kernels using Q-densities obtained from

one day of option prices, and P -densities using returns for the previous month. Christoffersen

et al. (2011) estimate pricing kernels using the entire return sample by standardizing returns by

a dynamic volatility measure. Some authors assume that Q is time varying while P is constant

over time. Aït-Sahalia and Lo (2000) use four years of data to estimate P when constructing

pricing kernels. Rosenberg and Engle (2002) use returns data over their entire sample 1970-1995

to construct estimates of the pricing kernel.

Interestingly, recent evidence suggests that key features of the pricing kernel such as risk premia

are useful for forecasting returns. This is not surprising, because as we saw above, the pricing kernel

is related to preferences, and therefore changes in the pricing kernel may reflect changes in risk

aversion, or, more loosely speaking, in sentiment.

Bollerslev et al. (2009), Zhou (2010), and Bekaert et al. (2010) find evidence that the variance

risk premium, V ARQ − V ARP , can predict the equity risk premium.

Risk premia can be estimated in various ways. Parametric models can be used to jointly

calibrate a stochastic model of stock and option prices with time-variation in the Q and P densities.

For instance, Shackleton et al. (2010) and Pan (2002) calibrate stochastic volatility models to

options and asset prices. Alternatively, (model-free) option-implied moments can be combined with

separately estimated physical moments to compute risk premia. In this case, the question arises how

to estimate the physical moments. The literature on the optimal type of physical information to

combine with option-implied information is in its infancy. However, we have extensive knowledge

about the use of different types of physical information from the literature on forecasting with

historical information as chronicled in this and the previous Handbook of Economic Forecasting

volume.

6 Summary and Discussion

The literature contains a large body of evidence supporting the use of option-implied information

to predict physical objects of interest. In this chapter we have highlighted some of the key tools

for extracting forecasting information using option-implied moments and distributions. We have

also summarized the key theoretical relationships between option-implied and physical densities,

enabling the forecaster to convert the option-implied forecasts to physical forecasts.

We hasten to add that it is certainly not mandatory that the option-implied information is

mapped into the physical measure to generate forecasts. Some empirical studies have found that

transforming option-implied to physical information improves forecasting performance in certain

situations (see Shackleton et al. (2010) and Chernov (2007)) but these results do not necessarily

generalize to other types of forecasting exercises.
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We would expect the option-implied distribution or moments to be biased predictors of their

physical counterpart, but this bias may be small, and attempting to remove it can create prob-

lems of its own, because the resulting predictor is no longer exclusively based on forward-looking

information from option prices, but also on backward-looking information from historical prices as

well as on assumptions on investor preferences.

More generally, the existence of a bias does not prevent the option-implied information from

being a useful predictor of the future object of interest. Much recent evidence for example on

volatility forecasting (See Table 1 from Busch et al. (2011)) strongly suggest that this is indeed

the case empirically.

Appendix A: Option Spanning

Carr and Madan (2001) show that any twice continuously differentiable payoff function H(ST ) can

be replicated with bonds, the underlying stock and the cross section of out-of-the-money options.

The fundamental theorem of calculus implies that for any fixed S0

H(ST ) = H(S0) + 1(ST>S0)

ST∫
S0

H ′(u)du− 1(ST<S0)

S0∫
ST

H ′(u)du

= H(S0) + 1(ST>S0)

ST∫
S0

H ′(S0) +

u∫
S0

H ′′(v)dv

 du− 1(ST<S0)

S0∫
ST

H ′(S0) +

S0∫
u

H ′′(v)dv

 du
Because H ′(S0) is not a function of u we are able to apply Fubini’s theorem to get

H(ST ) = H(S0) +H ′(S0)(ST − S0) + 1(ST>S0)

ST∫
S0

ST∫
v

H ′′(v)dudv + 1(ST<S0)

S0∫
ST

v∫
ST

H ′′(v)dudv

Now integrate over u

H(ST ) = H(S0) +H ′(S0)(ST − S0) + 1(ST>S0)

ST∫
S0

H ′′(v)(ST − v)dv + 1(ST<S0)

S0∫
ST

H ′′(v)(v − ST )dv

= H(S0) +H ′(S0)(ST − S0) +

∞∫
S0

H ′′(v)(ST − v)+dv +

S0∫
0

H ′′(v)(v − ST )+dv

If we integrate over X instead of v, where X is interpreted as the strike, we are left with the

spanning equation

H(ST ) = [H(S0)−H ′(S0)S0] +H ′(S0)ST +

∞∫
S0

H ′′(X)(ST −X)+dX +

S0∫
0

H ′′(X)(X − ST )+dX

From this equation we see that the payoff H(ST ) is spanned by a [H(S0) −H ′(S0)S0] position in

bonds, H ′(S0) position in shares of the stock and a H ′′(X)dX position in out-of-the-money options.
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Appendix B: Log Return Moments

Bakshi et al. (2003) apply the general result in (14) to the second, third, and fourth power of

log returns, H (ST ) = R2
T = ln (ST /S0)2, H (ST ) = R3

T = ln (ST /S0)3 , and H (ST ) = R4
T =

ln (ST /S0)4. They get the quadratic contract to be

M0,2 (T ) ≡ E0

[
e−rTR2

T

]
=
∞∫
S0

2 (1− ln [X/S0])

X2
C0 (T,X) dX +

S0∫
0

2 (1 + ln [S0/X])

X2
P0 (T,X) dX,

(48)

The cubic and quartic contracts are given by

M0,3 (T ) ≡ E0

[
e−rTR3

T

]
=
∞∫
S0

6 ln [X/S0]− 3 (ln [X/S0])2

X2
C0 (T,X) dX

−
S0∫
0

6 ln [S0/X] + 3 (ln [S0/X])2

X2
P0 (T,X) dX, (49)

M0,4 (T ) ≡ E0

[
e−rTR4

T

]
=
∞∫
S0

12 (ln [X/S0])2 − 4 (ln [X/S0])3

X2
C0 (T,X) dX (50)

+
S0∫
0

12 (ln [S0/X])2 + 4 (ln [S0/X])3

X2
P0 (T,X) dX.

from this we can compute the option-implied volatility, skewness, and kurtosis (for convenience we

suppress the dependence on T ) as

V OL0 (T ) ≡ [V AR0 (T )]1/2 = E0

[
(RT − E0 [RT ])2

]1/2
=
[
erTM0,2 −M2

0,1

]1/2
(51)

SKEW0 (T ) ≡
E0

[
(RT − E0 [RT ])3

]
V OL0 (T )3

=
erTM0,3 − 3M0,1e

rTM0,2 + 2M3
0,1[

erTM0,2 −M2
0,1

] 3
2

(52)

KURT0 (T ) ≡
E0

[
(RT − E0 [RT ])4

]
V OL0 (T )4

=
erTM0,4 − 4M0,1e

rTM0,3 + 6erTM2
0,1M0,2 − 3M4

0,1[
erTM0,2 −M2

0,1

]2 (53)

where

M0,1 (T ) ≡ E0 [RT ] ≈ erT − 1− erT

2
M0,2 (T )− erT

6
M0,3 (T )− erT

24
M0,4 (T ) . (54)
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Figure 1: Black-Scholes Price and Vega
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Notes to Figure: In the top panel, we plot the Black-Scholes call price as a function of volatility

for an at-the-money option with a strike price of 100 and three months to maturity. The risk-free

interest rate is 5% per year. In the bottom panel we plot the Black-Scholes Vega as a function of

moneyness for a call option with a volatility of 50% per year.
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Figure 2: Black-Scholes Implied Volatility as a Function of Moneyness and Maturity
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Notes to Figure: In the top panel, we plot Black-Scholes implied volatility (BSIV ) against money-

ness, X/S0, for various S&P 500 options quoted on October 22, 2009. In the bottom panel we plot

at-the-money BSIV against days to maturity (DTM).

53



Figure 3: Volatility Term Structures in the Heston Model
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Notes to Figure: We plot the volatility term structure in the Heston model defined as

√
V AR0 (T ) /T =

√
θ + (V0 − θ)

(1− e−κT )

κT

when θ = 0.09, κ = 2 and V0 = 0.36 (dashed line) corresponding to a high current spot variance

and V0 = 0.01 (solid line) corresponding to a low current spot variance.
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Figure 4: Option-Implied Moments for One-Month S&P 500 Returns
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Notes to Figure: We plot the volatility, skewness, and kurtosis implied by S&P 500 index options

using the methodology in Bakshi et al. (2003).
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Figure 5: Option-Implied Distribution from BSIV Curve Fitting vs. Lognormal
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Notes to Figure: We plot the CDF and PDF obtained from applying a smoothing cubic spline

(solid lines) using data for S&P index options with thirty days to expiration on October 22, 2009,

together with the CDF and PDF of the lognormal distribution (dashed lines).
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Figure 6: Physical and Option-Implied Volatility Term Structures in the Heston

Model
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Notes to Figure: We plot the option-implied (from Figure 3) as well as the physical volatility term

structure in the Heston model defined as√
V ARP0 (T ) /T =

√
θ

κ

κ− λ +

(
V0 − θ

κ

κ− λ

) (
1− e−(κ−λ)T

)
(κ− λ)T

where θ = 0.09, κ = 2, and λ = −1.125. Lines with ‘*’and ‘+’markers denote physical forecasts.

The dashed line with V0 = 0.36 shows the option-implied forecast from a a high current spot

variance and the solid line with V0 = 0.01 shows the option-implied forecasts from a low current

spot variance.
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Table 1: Forecasting Monthly Realized Volatility using Black-Scholes Implied Volatility
Panel A: Foreign exchange data

Constant RVM RVW RVD CM CW CD BSIV Adj. R2

0.0061
(0.0011)

0.2186
(0.1138)

0.0981
(0.1438)

0.1706
(0.0828)

− − − − 26.0

0.0061
(0.0011)

− − − 0.2355
(0.1597)

0.0871
(0.1623)

0.2407
(0.0930)

− 26.9

0.0022
(0.0011)

− − − − − − 0.8917
(0.0884)

40.7

0.0021
(0.0011)

−0.1483
(0.1178)

0.0769
(0.1284)

0.0765
(0.0754)

− − − 0.8733
(0.1419)

41.1

0.0022
(0.0012)

− − − −0.0517
(0.1526)

0.0097
(0.1471)

0.1114
(0.0869)

0.8715
(0.1515)

40.4

Panel B: S&P 500 data

Constant RVM RVW RVD CM CW CD BSIV Adj. R2

0.0053
(0.0025)

0.6240
(0.1132)

−0.3340
(0.1039)

0.6765
(0.1007)

− − − − 53.0

0.0037
(0.0023)

− − − 0.1568
(0.1327)

0.0407
(0.1353)

0.9646
(0.1088)

− 61.9

−0.0050
(0.0027)

− − − − − − 1.0585
(0.0667)

62.1

−0.0052
(0.0027)

0.0378
(0.1311)

−0.1617
(0.0943)

0.3177
(0.1026)

− − − 0.9513
(0.1391)

64.0

−0.0051
(0.0027)

− − − −0.1511
(0.1336)

0.0633
(0.1237)

0.6016
(0.1194)

0.7952
(0.1447)

68.2

Panel C: Treasury bond data

Constant RVM RVW RVD CM CW CD BSIV Adj. R2

0.0031
(0.0005)

0.3600
(0.1106)

0.1112
(0.1143)

0.1389
(0.0744)

− − − − 32.5

0.0037
(0.0005)

− − − 0.4203
(0.1347)

0.1436
(0.1363)

0.0826
(0.0776)

− 37.0

0.0023
(0.0006)

− − − − − − 0.5686
(0.0641)

35.0

0.0018
(0.0006)

0.0462
(0.1254)

0.1835
(0.1086)

0.0817
(0.0710)

− − − 0.3933
(0.0882)

40.4

0.0023
(0.0006)

− − − 0.1736
(0.1355)

0.1424
(0.1267)

0.0318
(0.0729)

0.4129
(0.0867)

45.5

Note: We reproduce parts of Table 1 from Busch et al. (2011), who regress total realized volatility

(RV ) for the current month on the lagged monthly (subscript M), weekly (subscript W ) and daily

(subscript D) realized volatility. Alternative specifications separate RV into its continuous (C) and

jump components (not reported here). Black-Scholes implied volatility (BSIV ) is introduced in

univariate regressions as well as an additional regression in the RV regressions. Panel A contains

$/DM FX data for 1987-1999, Panel B contains S&P 500 data for 1990-2002, and Panel C contains

Treasury bond data for 1990-2002.
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Country Exchange Index Underlying Maturity Launch Date Method
US Chicago Board Options 

Exchange (CBOE)
VIX S&P 500 1 month Sep 2003 (old index 

renamed VXO, 1993-)
Demeterfi, Derman, Kamal, and 
Zou (99) - Goldman Sachs (VIX 
methodology)

US CBOE VXV S&P 500 3 months Nov 2007 VIX
US CBOE VXO S&P 100 1 month 1993 Whaley (1993)
US CBOE VXD DJIA 1 month Mar 2005 VIX
US CBOE VXN Nasdaq 100 1 month VIX
US CBOE VXAZN, VXAPL, 

VXGS, VXGOG, 
VXIBM

Stocks - Amazon, Apple, Goldman 
Sachs, Google, IBM

1 month Jan 2011 VIX

US CBOE EVZ, GVZ, OVX, 
VXEEM, VXSLV, 
VXFXI, VXGDX, 
VXEWZ, VXXLE

ETFs - EuroCurrency, gold, crude 
oil, emerging markets, silver, 
China, gold miners, Brazil, energy 
sector

1 month 2008 VIX

US CBOE ICJ, JCJ, KCJ S&P 500 As of May 2011, KCJ - Jan 2012, 
ICJ - Jan 2013, JCJ - Jan 2014, 
the tickers are to be recycled as 
they expire

Jul 2009 Skintzi and Refenes (2005)

Australia Australian Securities 
Exchange

S&P/ASX 200 VIX 
(ASX code: XVI)

S&P/ASX 200 (XJO) 1 month Sep 2010 VIX

Belgium Euronext VBEL BEL 20 1 month Sep 2007 VIX
Canada TMX S&P/TSX 60 VIX 

(VIXC)
S&P/TSX 60 1 month Oct 2010 VIX

Europe Eurex VSTOXX Euro STOXX 50 30, 60, 90,..., 360 days Apr 20, 2005 (30 days); 
May 31, 2010 (60-360 
days)

VIX

France Euronext VCAC CAC 40 1 month Sep 2007 VIX
Germany Deutsche Borse VDAX-NEW DAX 1 month Apr 2005 (previously 

VDAX, Dec 1994)
VIX

Hong Kong Hong Kong Futures 
Exchange

VHSI HSI 1 month Feb 2011 VIX

India National Stock 
Exchange of India

India VIX NIFTY 1 month Jul 2010 VIX

Japan CSFI, Univ. of Osaka CSFI - VXJ Nikkei 225 1 month Jul 2010 VIX
Mexico Mexican Derivatives 

Exchange
VIMEX Mexican Stock Exchange Price and 

Quotation Index (IPC)
3 months Apr 2006 Fleming and Whaley (1995)

Netherlands Euronext VAEX AEX 1 month Sep 2007 VIX
South Africa Johannesburg Stock 

Exchange
New SAVI FTSE/JSE Top40 3 months 2010 (previously SAVI, 

2007-)
VIX

South Korea Korea Exchange V-KOSPI KOSPI200 1 month Apr 2009 VIX
Switzerland Six Swiss Exchange VSMI SMI 1 month Apr 2005 VIX
UK Euronext VFTSE FTSE 100 1 month Jun 2008 VIX

Table 2: Volatility Indexes Around the World



Authors Year Market Predictor To Predict Method Conclusion
Fackler and King 1990 Commodity Mean, vol Mean, vol Average of just OTM put and call IV Corn and live cattle reliable, but overstate volatility of soybean 

and understate location of hog prices
Kroner, Kneafsey, 
and Claessens

1995 Commodity Vol Vol Barone-Adesi and Whaley (87) Combination of IV and historical outperform

Jorion 1995 Currency Vol Vol Black (76) at the money IV outperform historical, but biased
Taylor and Xu 1995 Currency Vol Vol Barone-Adesi and Whaley (87) IV outperform historical
Pong, Shackleton, 
Taylor, and Xu

2004 Currency Vol Vol OTC quotes IV as accurate as historical at 1 and 3 month horizons, but not 
better

Christoffersen and 
Mazzotta

2005 Currency Vol, density, 
interval 

Vol, density, interval Malz (97) Unbiased and accurate forecast

Day and Lewis 1992 Equity Vol Vol Dividend adjusted BS + Whaley (82) Add IV to GARCH and EGARCH. Both are unbiased, but 
inconclusive as for the relative performance.

Harvey and Whaley 1992 Equity Vol Vol Cash-dividend adjusted binomial IV predicts, but arbitrage profits are not possible, thus 
consistent with market efficiency

Canina and 
Figlewski

1993 Equity Vol Vol Binomial tree adjusting for dividends and early exercise IV does not predict

Fleming, Ostdiek, 
and Whaley

1995 Equity Vol Vol Cash-dividend adjusted binomial, old VIX (Whaley (93)) Biased, but useful for forecasting

Christensen and 
Prabhala

1998 Equity Vol Vol BS Outperform historical

Fleming 1998 Equity Vol Vol Modified binomial model of Fleming and Whaley (94) IV is an upward biased forecast, but contains relevant 
information.

Blair, Poon, and 
Taylor

2001 Equity Vol Vol VIX VIX forecasts best and high-frequency intraday returns add no 
incremental information.

Poon and Granger 2003 Equity Vol Vol N/A Review of volatility forecasting, table with summary of 
literature

Jiang and Tian 2005 Equity Vol Vol Britten-Jones et al. cubic spline Model-free IV subsumes all info in BS IV and historical 
volatility.

Ang, Hodrick, Xing, 
and Zhang

2006 Equity Vol Cross-section of stock returns VIX Innovation in VIX is a priced risk factor with a negative price 
of risk.

Andersen and 
Bondarenko

2007 Equity Vol Vol Corridor implied volatility (CIV) Broad CIV related to model-free IV. narrow CIV related to BS 
IV. narrow IV is a better volatility predictor than model-free 
IV or BS IV.

Bollerslev, Tauchen, 
and Zhou

2009 Equity Variance risk 
premium

Equity risk premium VIX VRP predicts stock market return

Bekaert, Hoerova, 
and Lo Duca 

2010 Equity Variance risk 
premium

Equity risk premium VIX A lax monetary policy decreases risk aversion after about five 
months. Monetary authorities react to periods of high 
uncertainty by easing monetary policy.

Zhou 2010 Equity Variance risk 
premium

Equity risk premium VIX VRP predicts a significant positive risk premium across 
equity, bond, and credit markets in the short-run (1-4 months)

Table 3:  Forecasting with Option-Implied Volatility



Bakshi, Panayotov, 
Skoulakis

2011 Equity Forward 
variances

(i) Growth in measures of real 
economic activity, (ii) 
Treasury bill returns, (iii) 
stock market returns, and (iv) 
changes in variance swap rates

Forward variances extracted from the prices of exponential 
claims of different maturities (Carr and Lee (08))

The forward variances predict (i) growth in measures of real 
economic activity, (ii) Treasury bill returns, (iii) stock market 
returns, and (iv) changes in variance swap rates

Fenou, Fontaine,  
Taamouti, and 
Tedongap

2011 Equity Term 
structure of 
implied 
voaltility

Equity risk premium, variance 
risk premium

VIX Term structure of implied volatility predicts both equity risk 
premium and variance risk premium

DeLisle, Doran, and 
Peterson

2011 Equity Vol Cross-section of stock returns VIX Result in Ang et al. (2006) holds when volatility is rising, but 
not when volatility is falling.

Latane and 
Rendleman

1976 Equity 
(individual)

Vol Vol Vega-weighted average of individual stock option BS IVs Outperform historical

Chiras and Manaster 1978 Equity 
(individual)

Vol Vol BS Risk-free return using option trading strategies

Beckers 1981 Equity 
(individual)

Vol Vol Weighted average BS Ivs vs. at-the-money BS IV At-the-money BS IV predicts better than weighted average of 
BS Ivs.

Sheikh 1989 Equity 
(individual)

Vol Split announcement and ex-
dates

Roll (1977), American option with dividends No relative increase in IV of stocks announcing splits, but 
increase is detected at the ex-date.

Lamoureux and 
Lastrapes

1993 Equity 
(individual)

Vol Vol Hull and White (87), stochastic volatility option pricing 
model

IV contains incremental information to historical

Swidler and Wilcox 2002 Equity 
(individual)

Vol Bank stock volatility Old VIX Outperform historical

Banerjee, Doran, 
and Peterson

2007 Equity 
(individual)

Vol Return of characteristic-based 
portfolios

VIX Strong predictive ability

Diavatopoulos, 
Doran, and Peterson

2008 Equity 
(individual)

Idiosyncratic 
volatility

Future cross-sectional stock 
returns

Strong positive link

Doran, Fodor, and 
Krieger

2010 Equity 
(individual)

Vol Abnormal return after analyst 
recommendation change

Simulate Bates (1996) model of SVJ Information in option markets leads analyst recommendation 
changes

Demiguel, Plyakha, 
Uppal, and Vilkov

2011 Equity 
(individual)

Vol, skew, 
correlation, 
variance risk 
premium

Portfolio selection Bakshi, Kapadia, Madan (2003) for volatility and skew, 
Driessen, Maenhout, and Vilkov (2009) for correlation, 
Bollerslev, Gibson,  Zhou (2004) for VRP

Exploiting information contained in the volatility risk 
premium and option-implied skewness increases substantially 
both the Sharpe ratio and certainty-equivalent return

Amin and Ng 1997 FI Vol Volatility of interest rate HJM (92) Predicts well. show how to combine IV with historical.
Busch, Christensen, 
and Nielsen

2011 FI, equity, 
currency

Vol Realized volatility, jump Numerical inversion of Black (76) Prediction in all three markets

Table 3 (continued):   Forecasting with Option-Implied Volatility



Authors Year Market Predictor To Predict Method Conclusion
Siegel 1997 Currency Correlation Correlation: 

USD/DM/pound
Garman and Kohlhagen (83) Outperform historical

Campa and Chang 1998 Currency Correlation Correlation between 
USD/DM and USD/YEN

From relationship between implied 
volatilities of three exchange rates

Outperforms forecast based on historical correlation

Walter and Lopez 2000 Currency Correlation Correlation: 
USD/DEM/JPY, 
USD/DEM/JPY

From relationship between implied 
volatilities of three exchange rates

Useful for USD/DEM/JPY, not for USD/DEM/JPY, 
so may not be useful in general

Skintzi and Refenes 2005 Equity 
(individual)

Correlation Correlation Implied correlation based on IV of index 
and individual stocks

Although the implied correlation index is a biased 
forecast of realized correlation, it has a high 
explanatory power, and it is orthogonal to the 
information set compared to a historical forecast.

Driessen, Maenhout 
and Vilkov

2009 Equity 
(individual)

Correlation Correlation Stock prices follow a geometric Brownian 
motion with constant drift and possibly 
stochastic diffusion. Assume that a single 
state variable drives all pairwise 
correlations

The entire index variance risk premium can be 
attributed to the high price of correlation risk.

Buss and Vilkov 2011 Equity 
(individual)

Correlation and 
factor betas

Factor betas Stock prices follow a multifactor model. 
Assume that a single state variable drives all 
pairwise correlations

Most efficient and unbiased predictor of beta

Chang, Christoffersen, 
Jacobs, and Vainberg

2011 Equity 
(individual)

Beta, moments Beta Formula based on implied vol and skew of 
index and individual stocks

Forecast future beta

Demiguel, Plyakha, 
Uppal, and Vilkov

2011 Equity 
(individual)

Vol, skew, 
correlation, 
variance risk 
premium

Portfolio selection Bakshi, Kapadia, Madan (2003) for 
volatility and skew, Driessen, Maenhout, 
and Vilkov (2009) for correlation, 
Bollerslev, Gibson,  Zhou (2004) for VRP

Exploiting information contained in the volatility risk 
premium and option-implied skewness increases 
substantially both the Sharpe ratio and certainty-
equivalent return

Longstaff, Santa-Clara, 
and Schwartz

2003 FI Correlation Correlation Caps and swaptions Implied correlation is lower than historical 
correlation. Significant mispricings detected.

De Jong, Driessen, and 
Pelsser

2004 FI Correlation Correlation Caps and swaptions Implied correlation is different from historical 
correlation. Significant mispricings detected.

Table 4: Forecasting with Option-Implied Correlation



Authors Year Market Predictor To Predict Method Conclusion
Bates 1996 Currency Skew, kurt Skew, kurt of 

USD/DM, USD/YEN, 
1984-1992

Jump diffusion The implicit abnormalities (e.g. moments) predict 
future abnormalities in log-differenced $/DM futures 
prices, but not S/yen.

Bates 1991 Equity Skew premium, jump-
diffusion parameters

Crash of 1987 Jump diffusion RND negatively skewed one year before the crash, 
but no strong crash fears during 2 months 
immediately preceding the crash

Navatte and 
Villa

2000 Equity Vol, skew, kurt Moments of CAC 40 
(Jan95-May97)

Gram-Charlier Implied moments contain substantial amount of 
information, which decreases with the moment's 
order

Doran, Carson, 
and Peterson

2006 Equity Skew Crash Barone-Adesi and Whaley (87) Implied volatility skew has significant forecast 
power for assessing the degree of market crash risk

Agarwal, Bakshi, 
and Huij

2009 Equity Vol, skew, kurt Cross-section of hedge 
fund returns

Bakshi, Kapadia, Madan (03) Innovations in implied market vol, skew, kurt are all 
priced risk factors for hedge fund returns.

Chang, 
Christoffersen, 
and Jacobs

2011 Equity Vol, skew, kurt Cross-section of stock 
returns

Bakshi, Kapadia, Madan (03) RND negatively skewed one year before the crash, 
but no strong crash fears during 2 months 
immediately preceding the crash

Doran, Peterson 
and Tarrant

2007 Equity 
(individual)

Skew Crash and spikes 
upward

Barone-Adesi and Whaley (87) Reveal crashes and spikes with significant 
probability, but not economically significant 

Diavatopoulos, 
Doran, Fodor, 
and Peterson

2008 Equity 
(individual)

Skew, kurt prior to 
earnings announcements

Stock and option 
returns

Bakshi, Kapadia, Madan (03) Both have strong predictive power

Bali and 
Hovakimian

2009 Equity 
(individual)

Realized-implied 
volatility, call-putIV 
spread

Cross-section of stock 
returns

Negative relationship with realized-implied 
volatility. positive relationship with call-put IV 
spread.

Conrad, Dittmar 
and Ghysels

2009 Equity 
(individual)

Vol, skew, kurt Cross-section of stock 
returns

Bakshi, Kapadia, Madan (03) Negative relationship between volatility and skew 
with future return, and positive relationship between 
kurt and future return

Cremers and 
Weinbaum

2010 Equity 
(individual)

Call-putIV spread Cross-section of stock 
returns

BS IV Positive relationship

Doran and 
Krieger

2010 Equity 
(individual)

Volatility skew Return Five skew measures based on ATM, ITM, 
OTM IV and traded volume

Discourage the use of skew-based measures for 
forecasting equity returns without fully parsing the 
skew into its most basic portions.

Rehman and 
Vilkov

2010 Equity 
(individual)

Skew Return Bakshi, Kapadia, Madan (03) Positive relationship

Xing, Zhao and 
Zhang

2010 Equity 
(individual)

Volatility skew Cross-section of stock 
returns

OTM put IV - ATM call IV (highest 
volume, highest open-interest, or volume or 
open-interest weighted)

Stocks with steepest smirks underperform stocks 
with least pronounced smirks

Demiguel, 
Plyakha, Uppal, 
and Vilkov

2011 Equity 
(individual)

Vol, skew, correlation, 
variance risk premium

Portfolio selection Bakshi, Kapadia, Madan (2003) for 
volatility and skew, Driessen, Maenhout, 
and Vilkov (2009) for correlation, 
Bollerslev, Gibson,  Zhou (2004) for VRP

Exploiting information contained in the volatility 
risk premium and option-implied skewness increases 
substantially both the Sharpe ratio and certainty-
equivalent return

Table 5: Forecasting with Option-Implied Skewness and Kurtosis



Authors Year Market Predictor To Predict Method Conclusion
Silva and Kahl 1993 Commodity PDF PDF of soybean, corn Log-normal VS. linear 

interpolation of cdf
Corroborate Fackler and King (90)

Melick, Thomas 1997 Commodity PDF from 
American options

Crude oil price during gulf 
crisis

Mixture of two & three 
lognormals

Option prices were consistent with the market commentary. Use 
of lognormal model would have overestimated the prob. and price 
impact of major disruption.

Hog and Tsiaras 2010 Commodity PDF PDF and various intervals and 
regions of interest of crude oil

Generalized Beta of the 
second kind (GB2), Q to P 
using statistical recalibration 
(param. and non-param.)

Outperform historical

Leahy, Thomas 1996 Currency PDF from 
American options

Canadian dollar around 
Quebec referendum

Mixture of three lognormals Option prices were consistent with the market commentary.

Campa, Chang 1996 Currency PDF, Intensity of 
realignment and 
credibility measures

ERM target-zone credibility 
and devaluation

Arbitrage bounds Devaluation predicted with different time lags from a week to a 
year

Malz 1996 Currency PDF from 
American options

PDF and realignment prb. of 
sterling/DM

Jump diffusion Useful for defense of target zones against speculative attack

Malz 1997 Currency PDF, moments Excess return puzzle in 
currency markets

IV in function of ATM IV, 
risk reversal price, strangle 
price, etc.

Tests International CAPM using RN moments as explanatory 
variables and show that they have considerably greater 
explanatory power for excess returns in currency markets.

Campa, Chang, 
Reider

1998 Currency PDF from 
American options

PDF of USD/DM and 
USD/YEN

Compare cubic splines, 
Implied binomial tree, 
mixture of normals

Use trimmed binomial tree

Bodurtha and 
Shen

1999 Currency PDF of corr Covariance VaR of mark and 
yen

Whaley (82) Implied correlation provides incremental explanatory power over 
historical-based correlation estimates

Campa, Chang, 
Refalo

2002 Currency PDF, Intensity and 
credibility measure 
of CC96

PDF and realignment prob. of 
Brazilian Real/USD, 1991-
1994

Shimko (93) IV in quadratic 
function of strike

Anticipate realignments of exchange rate bands

Haas, Mittnik, 
and Mizrach

2006 Currency PDF PDF, central bank credibility 
during ERM crisis

Mixture of normals Both historical and option based forecasts are useful

Gemmill and 
Saflekos

2000 Equity PDF PDF, four crashed, three 
British elections

Mixture of two lognormals Little forecasting ability

Mizrach 2006 Equity PDF Enron's collapse Mixture of lognormals Market remained too optimistic until just weeks before the 
collapse

Shackleton, 
Taylor, Yu

2010 Equity PDF PDF, S&P 500 index return Calibration of jump-diffusion 
model, statistical 
transformation from RN to 
physical

Compare historical, risk-neutral, and risk-transformed physical 
PDF. Performance depends on the forecast horizon.

Kostakis, 
Panigirtzoglou, 
Skiadopoulos

2010 Equity PDF Portfolio selection Smoothed IV smile + Barone-
Adesi and Whaley (87)

Improved portfolio

Table 6: Forecasting using Option-Implied Densities



Authors Year Market Predictor To Predict Method Conclusion
Melick, Thomas 1997 Commodity PDF from American 

options
Crude oil price during 
gulf crisis

Mixture of two & three 
lognormals

Option prices were consistent with the market commentary. 
Use of lognormal model would have overestimated the prob. 
and price impact of major disruption.

Leahy, Thomas 1996 Currency PDF from American 
options

CDN Mixture of three lognormals Option prices were consistent with the market commentary.

Campa, Chang 1996 Currency PDF, Intensity of 
realignment and 
credibility measures

ERM target-zone 
credibility and 
devaluation

Arbitrage bounds Devaluation predicted with different time lags from a week to 
a year

Malz 1996 Currency PDF from American 
options

PDF and realignment 
prb. of sterling/DM

Jump diffusion Useful for defense of target zones against speculative attack

Campa, Chang, Refalo 2002 Currency PDF, Intensity of 
realignment and 
credibility measures

PDF and realignment 
prob. of Brazilian 
Real/USD, 1991-1994

Shimko (93) IV in 
quadratic function of strike

Anticipate realignments of exchange rate bands

Haas, Mittnik, and 
Mizrach

2006 Currency PDF PDF, central bank 
credibility during ERM 

i i

Mixture of normals Both historical and option based forecasts are useful

Bates 1991 Equity Jump-diffusion 
parameters

Crash of 1987 Jump diffusion RND negatively skewed one year before the crash, but no 
strong crash fears during 2 months immediately preceding 
the crash

Gemmill and Saflekos 2000 Equity PDF PDF, four crashed, three 
British elections

Mixture of two lognormals Little forecasting ability

Doran, Carson, and 
Peterson

2006 Equity Skew Crash Baron-Adesi and Whaley 
(87)

Implied volatility skew has significant forecast power for 
assessing the degree of market crash risk

Mizrach 2006 Equity PDF Enron's collapse Mixture of lognormals Market remained too optimistic until just weeks before the 
collapse

Sheikh 1989 Equity 
(individual)

Vol Split announcement and 
ex-dates

Roll (1977), American 
option with dividends

No relative increase in IV of stocks announcing splits, but 
increase is detected at the ex-date.

Jayaraman, 
Mandelker, and 
Shastri

1991 Equity 
(individual)

Premia on call options Information leakage prior 
to merger announcement

BS Implied volatility increases prior to the announcement of the 
first bid for the target firm and decrease significantly at the 
announcement date.

Barone-Adesi, Brown 
and Harlow

1994 Equity 
(individual)

Probability and timing 
of acquisitions

Probability and timing of 
acquisitions

Propose model of 
probability weighted IV

Cannot predict success or timing of acquisition

Cao, Chen, and Griffin 2005 Equity 
(individual)

Call volume imbalance Takeover announcement 
day return

N/A Takeover targets with the largest preannouncement call-
volume imbalance increases experience the highest 
announcement day returns

Bester, Martinez, and 
Rosu

2008 Equity 
(individual)

Merger success 
probability

Merger success 
probability

New option pricing model 
with merger

Better prediction compared to naive method

Table 7: Forecasting with Option-Implied Event Probabilities
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