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Abstract

The four equity market factors from Fama and French (1993) and Carhart (1997) are perva-

sive in academic empirical asset pricing studies and in applied portfolio allocation. However,

the joint distributional dynamics of the factors are rarely studied. For investors basing strate-

gies on the factors or using them to model the returns of a wider set of assets, proper risk

management requires knowing the joint factor dynamics which we model. We find striking ev-

idence of asymmetric tail dependence across the factors. While the linear factor correlations

are small and even negative, the extreme correlations are large and positive, so that the linear

correlations drastically overstate the benefits of diversification across the factors. We model

the nonlinear factor dependence and explore its economic importance in a portfolio allocation

experiment which shows that significant economic value is earned when acknowledging the

nonlinear dependence.
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1 Introduction

Establishing a manageable set of factors that capture a substantial share of the cross-sectional

variation in equity returns is a core pursuit in empirical asset pricing. In their seminal contribution

Fama and French (1993) find that the cross section of stock returns is well explained by a simple

linear three-factor model comprised of a broad market premium, the spread between small and

big market capitalization stocks, and the spread between value and growth stocks. In addition,

Jegadeesh and Titman (1993) and Carhart (1997) point to the importance of a momentum factor

in explaining observed stock returns. The momentum factor consists of the returns realized by

buying a portfolio of stocks that have performed well during the past year and selling a portfolio of

stocks that performed poorly during the same period. We will refer to the four factors as market,

size, value and momentum.

A number of other factors have been proposed. For example, Pastor and Stambaugh (2003)

suggest a specific measure of market liquidity influencing the cross-section of average returns,

and Vassalou (2003) constructs a mimicking portfolio for news related to future GDP growth.

Ang, Hodrick, Xing, and Zhang (2006) examine the role of aggregate and idiosyncratic volatility

in expected returns while Zhang et al. (2009) extend this analysis in an international context.

Similarly, Fu (2009) finds a positive relation between expected return and conditional idiosyncratic

risk. Following Ang, Hodrick, Xing, and Zhang (2006) and Engle and Lee (1999), Adrian and

Rosenberg (2008) show that cross-sectional average returns are related to a short-run and a long-

run volatility component in market returns. Other recent contributions include Boudoukh et al.

(2007) who explore the role of payouts (dividends and stock repurchases) as a contemporaneous

risk factor and predictive variable for stock returns. While we focus on the standard four factors

it is important to note that our analysis is applicable to a much larger number of factors as well.

Beside their usefulness in cross-sectional asset pricing, factor models are used for risk man-

agement and portfolio optimization, see for example Chan et al. (1998), Chan et al. (1999) and

Briner and Connor (2008). Excellent textbook treatments of standard approaches in portfolio

management can be found in L’Habitant (2004), Connor et al. (2010), and Brandt (2010).

Spread portfolios such as value, size and momentum are popular not just because they help

explain the cross-sectional variation in returns but also because they are nearly orthogonal to each
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other and to the market factor. Therefore, when used as regressors in a factor model, they lead to

more precise loading estimates than would an alternative set of highly correlated factors. While

having orthogonal factors is clearly beneficial, our main contribution is to show that focusing

solely on linear dependence is perilous. We show that nonlinear factor dependence is important

empirically, and when ignored it will lead to underestimation of extreme risks and suboptimal

portfolio allocations.

The clear presence of nonlinear dependence necessitates a detailed investigation of the dynamics

and the distributional properties of the factors. Consider, for example, portfolio optimization

involving a large set of stocks. In such applications, a linear factor approach is desirable because

it reduces significantly the dimension of the risk model. By estimating each asset’s loadings on the

set of factors, the covariance matrix of the assets can be expressed as the sum of the idiosyncratic

risks and the quadratic form of the factor loadings and the factors’covariance matrix. However,

if the joint distribution of the factors is not normal then the distribution of the assets and the

portfolio will not be normal either. Proper modeling of the joint factor distribution is essential. If

either the marginal distribution of each factor or their joint distribution are not properly modeled

then the factor model will lead to erroneous conclusions regarding the portfolio return distribution.

While a linear four factor model may offer a good description of the cross-sectional distribution

of expected returns, a normally distributed four-factor model does not offer a good description

of the joint distribution of returns. We suggest instead dynamic non-normal models which can

accurately capture nonlinear factor dependence and thus portfolio tail risk.

Nonlinear risk in factor models is related to the literature on asymmetric correlation in equity

returns. Building on Longin and Solnik (2001) and Ang and Bekaert (2002), Ang and Chen (2002)

show that the correlation between domestic equity portfolios and the aggregate market are greater

in downside markets than in upside markets. For example, a portfolio comprised of small, value or

loser stocks have greater correlation asymmetries. These findings are important in an asset-pricing

context. Measuring asymmetric correlation as measured by downside beta, Ang, Chen, and Xing

(2006)find a positive relation between downside risk and expected returns that is not explained by

other traditional risk factors. In order to examine the importance of univariate and multivariate

asymmetry on an optimal allocation between a small and a large cap portfolio, Patton (2004)

uses a rotated Gumbel copula that is able to produce asymmetric correlation. Furthermore, Hong
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et al. (2007) find that incorporating asymmetric dependence is important for portfolio selection

for investors with disappointment aversion preferences.1

Our main contributions are as follows:

First, we extend the bivariate analysis in Ang and Chen (2002) to the four standard equity

market factors. Modeling directly the four factors presents an interesting econometric challenge.

We find striking evidence of nonlinear dependence for daily, weekly and monthly returns that

is much stronger than implied by the conventional linear correlation coeffi cients, especially since

those are in most cases close to zero. We focus on weekly returns and find that an asymmetric

Student t copula is able to capture the factor asymmetry and dependence in a parsimonious way.

Importantly, it can produce strong asymmetric tail dependence in virtually uncorrelated factors.

Second, we present evidence that the nonlinear dependence between the four factors has eco-

nomic value for risk-averse investors who allocate capital using the factor model. The investor

takes positions directly in the four factor portfolios, can take on leverage, but is subject to margin

requirements. With 27 years of weekly out-of-sample portfolio returns, we show that the annual-

ized improvement in certainty equivalence (versus a normal factor model) can reach 1.17% when

using an asymmetric copula model instead of the multivariate normal distribution. The statisti-

cal significance of these results are verified by bootstrapping the difference in realized certainty

equivalence.

Third, we show that our findings lead to different risk estimates from the ones based on the

multivariate normality assumption. During the 2006-2010 period the expected shortfall for an

equally weighted portfolios of the four factors is 20% to 50% higher when using the asymmetric

copula for risk management, and this difference is robust to allowing for time-varying correlations.

Applications of copulas in finance typically restrict attention to the two-dimensional case which

is motivated for example by a single-factor model. While many types of asymmetric copulas are

not tractable in dimensions higher than two, ours on the other hand is parsimonious and workable

for many more than four factors. We focus on the standard four factor model in this paper because

it is so widely used in academia and practice.

Our results show that the evidence for univariate as well as multivariate non-normality is strong

1Other important contributions related to asymmetric dependence include Poon et al. (2004), Tsafack (2009),
Sancetta and Satchell (2007), Xu and Li (2009), Mazzotta (2008), Campbell et al. (2002), Okimoto (2008) and
Hatherly and Alcock (2007).
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but also that the dependence across factors is dynamic. The joint non-normality and intricate

dynamics of the four standard factors came on display during the so-called quant meltdown of

August 2007. Khandani and Lo (2007) and Khandani and Lo (2011) investigate the extent to

which the meltdown was caused by equity hedge funds massively exiting certain strategies, thereby

producing increased correlations between value, size and momentum returns. Our model allows

for dynamic correlations which presents an additional source of risk. Asness et al. (2009) find that

value and momentum strategies are positively related across markets and asset classes and that

value and momentum factors are negatively related within and across markets and asset classes.

Not surprisingly, these correlations are found to rise considerably during extreme market events.

Once again, a properly specified factor model requires correlation dynamics which we estimate

and apply in a portfolio allocation context.

Our paper proceeds as follows. Various descriptive statistics including threshold correlations of

the factor returns are reported in Section 2 which also models dynamics in factor return mean and

volatility. Section 3 introduces copula models that can capture nonlinear and dynamic dependence

across factors. Section 4 considers the economic importance of the non-linear dependence from

a portfolio allocation and risk management perspective. Section 5 presents reverse threshold

correlations for weekly returns, threshold correlations for daily and monthly returns, and discusses

alternative copulas. Section 6 concludes.

2 Factor Returns and Residuals

We study weekly equity factor returns observed from July 5, 1963 to December 31, 2010. Market,

size, and value factors are constructed as in Fama and French (1993).2 The market factor is the

value weighted return on all NYSE, AMEX and NASDAQ stocks less the one-month Treasury

bill rate. Every June, the median size of NYSE stocks is used to split the stocks into two size

portfolios. The 30th and the 70th percentiles of NYSE stocks’book-to-market ratios are used to

sort stocks into three book-to-market portfolios. All portfolios are value-weighted. The size factor

is obtained by computing the spread between the average return of the three small capitalization

portfolios and the average return of the three large capitalization portfolios. The value factor is

2We rely on the factor data available from Kenneth French’s data library.
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the average return of the two value portfolios less the average return on the two growth portfolios.

Each month, the 30th and the 70th percentiles of NYSE stocks’returns from month t − 12 to

t − 2 are used to construct three prior return sorted portfolios containing all stocks that have

suffi cient history. Stocks are also separated into two size portfolios using the NYSE median

market capitalization. Value-weighted portfolios are used to construct the momentum factor as

the difference between the average return on the two high prior return portfolios and the mean

return on the two low prior return portfolios.

2.1 Factor Returns

The top four panels in Figure 1 plots the times series of returns for each factor, and summary

statistics are provided in Table 1. Table 1 shows that all factors exhibit a high degree of volatility

around the mean at the weekly frequency.

The market, size and momentum factor distributions are highly asymmetric as evident by the

large negative skewness in Table 1. The value factor distribution on the other hand is close to

symmetric.

All four factor distributions have fat tails as captured by the large excess kurtosis estimates in

Table 1. Figure 2 provides further evidence of the non-normality in weekly factor returns: The

empirical factor quantiles are plotted against the quantiles from a normal distribution so that

deviations from the 45 degree line signals non-normality. Figure 2 clearly shows that both tails

are fat in all four factor returns. Part of the large excess kurtosis found in the factor return series

is likely driven by volatility dynamics which we therefore model below in Section 2.3.

As a measure of linear dependence Table 1 reports the sample correlations across the factor

returns. Note that the correlations are close to zero or even negative. The largest positive cor-

relation is +0.05 between the market and size factors, while the largest negative correlation is

-0.31 between the market and value factors. This near orthogonality is part of the reason for the

widespread use of these factors in portfolio management.

The bottom row of panels in Figure 1 provides a complementary picture of the relationship

between the factors. The left panel depicts the cumulative log returns during the period 1963-2010.

The long-term returns on momentum are quite striking. Note also that the size factor accumulated

losses during the period 1995-2000 while the market rallied significantly. The bottom right panel in
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Figure 1 depicts the cumulative log returns on the factors since 2006 and shows how the momentum

factor crashed in the early part of 2009 while the overall market was recovering. This apparent

lack of dependence between the factors is of course interesting from a diversification perspective.

2.2 Factor Return Threshold Correlations

It is only in the case of the multivariate normal distribution that simple linear correlations fully

characterize the dependence across returns. The strong evidence of non-normality we have found

in the individual factor returns suggests that the simple correlations reported in Table 1 could be

concealing nonlinear dependencies across factors.

In order to explore dependence further we rely on the threshold (or exceedance) correlations

previously applied by Longin and Solnik (2001) and Ang and Bekaert (2002) to country indexes,

by Ang and Chen (2002) to various equity portfolios, and by Patton (2004) to large-cap and

small-cap portfolios.

Following Patton (2004) we define the threshold correlation ρ̄ij(u) with respect to the quantiles

of the empirical univariate distribution of factor i and j by

ρ̄ij(u) =

 Corr(ri, rj | ri < F−1
i (u), rj < F−1

j (u)) when u < 0.5

Corr(ri, rj | ri ≥ F−1
i (u), rj ≥ F−1

j (u)) when u ≥ 0.5,

where u is a threshold between 0 and 1, and F−1
i (u) is the empirical quantile of the univariate

distribution of ri. Thus the threshold correlation reports the linear correlation between two assets

for the subset of observations lying in the bottom-left or top-right quadrant defined by the two

univariate quantiles.

In the bivariate normal distribution the threshold correlation approaches zero as the threshold

approaches 0 or 1. The empirical threshold correlations can therefore be used as a benchmark for

the bivariate distribution of each pair of factor returns.

The left panels of Figures 3a and 3b show the scatter plots of standardized weekly returns for

the six possible pairs of factor returns. A remarkable feature of these returns is that even a factor

pair with a relatively large negative correlation such as market versus value contains many outliers

in the bottom left and top right quadrants of the scatter.
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Regions A and B in each panel of Figure 3 correspond to the 25th and 75th percentiles of weekly

returns. Regions A and B are thus examples of subsets of returns used to compute the empirical

threshold correlation in the right panels of Figure 3.3

The empirical threshold correlations in the right panels of Figure 3 is compared to the one

implied by a bivariate normal distribution fitted on each pair of factors.4 The differences between

the empirical (solid lines) and normal (dash-dots) threshold correlations are striking. For example,

while the unconditional correlation between the market and size factor in Table 1 indicates near

independence under the bivariate normality assumption, the threshold correlation in the top-right

panel of Figure 3a is positive and clearly larger below the median than above. Also, the market-

value pair in the middle-right panel of Figure 3a exhibits large and positive threshold correlations

while its unconditional correlation from Table 1 is slightly negative.

While the simple linear correlations in Table 1 are close to zero and often negative, the threshold

correlations in Figure 3 are virtually always positive and very often large. In some cases the

threshold correlations are even increasing as the thresholds get more extreme. This is evident

for example in the middle right panel of Figure 3b where the threshold correlation for size versus

momentum increases when the threshold decreases below the median. The implications for a fund

manager holding a portfolio that is long small stocks and long momentum are serious: The simple

correlation is low suggesting that diversification is high, but when both value and momentum

perform poorly then their correlation is in fact very high.

Hong et al. (2007) propose a model-free test for symmetric threshold correlations. We do not

report the actual test statistics but we find that correlation symmetry is rejected for all factor

pairs at the 1% significance level.

2.3 Factor Return Dynamics

Table 1 shows that the returns on the size, value and momentum factors contain some serial

correlation for the first three weekly lags. The dashed lines in Figure 4 show the empirical au-

tocorrelation function for the four factors for lags up to 100 weeks. The horizontal lines denote

3Threshold correlations are computed only for threshold values for which there are at least 20 pairs of returns
available.

4The analytical expression for the exceedance correlation for a bivariate normal distribution can be found in the
appendix of Ang and Chen (2002).
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the 95% confidence bands around zero and suggest that the short-lag autocorrelations are indeed

significant for the size, value and momentum factors. The p-values obtained from a Ljung-Box

test (not reported) suggest that serial correlation is marginally significant in the market factor

also.

Financial assets typically display much stronger serial correlation in return magnitudes (mea-

sured by squares or absolutes) compared with the serial correlation in returns themselves. The

solid lines in Figure 4 show that the weekly factor returns follow this pattern. All four factors

display strong persistence in absolute returns.

We proceed by modeling the dynamics evident in Figures 4 using standard univariate AR-

GARCH processes. We estimate the conditional mean using a simple AR(3) specification

rj,t = φ0,j + φ1,jrj,t−1 + φ2,jrj,t−2 + φ3,jrj,t−3 + σj,tεj,t (1)

where rj,t is the return of factor j at time t. We hasten to add that the AR(3) specification is not

meant to replace an economic model of expected returns—rather it is needed to ensure consistent

estimation of the second and higher order moments. Our analysis focuses on higher-order moments

and we do not attempt to explicitly model risk premia in the factor returns.

The conditional variance of daily returns is modeled using a GARCH model of the form

σ2
j,t = ωj + βjσ

2
j,t−1 + αjσ

2
j,t−1 (εj,t−1 − θj)2 . (2)

The θj parameter captures the so-called leverage effect which appears when a negative innovation

has a stronger impact on the conditional variance than a positive shock of same magnitude. Several

specifications to incorporate the leverage effect have been proposed. We rely on the NGARCH

model suggested by Engle and Ng (1993). Notice that as is typical in a GARCH model, σ2
j,t is

observed at the end of day t− 1 which makes the model very tractable and maximum likelihood

estimation easy.

Based on previous studies we expect the leverage parameter to be positive for the market factor.

But as the three other factors contain both long and short equity positions the expected sign of

θj is much less clear for those.

Panel A of Table 2 presents the AR-GARCH estimates and diagnostics when ε is assumed to
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follow a normal distribution. As expected the variance persistence implied by the model is close to

1. The leverage effect parameter θj is significantly positive for the market factor as expected but

it is much smaller for size and insignificant for value. Note that the leverage effect is significantly

negative for momentum: A positive return on the momentum factor increases momentum volatility

more than a negative return of the same magnitude.

Figure 5 shows the autocorrelation functions for residuals and absolute residuals from the AR-

GARCH model. Comparing the autocorrelation functions in Figure 5 with those found in Figure

4 strongly suggests that the AR-GARCH model has picked up the expected return and volatility

dynamics in returns. This observation is confirmed by the p-values obtained from a Ljung-Box

(L-B) test on the residuals and absolute residuals as reported among the diagnostics in Table 2

which indicate that serial correlations have been removed.

The normal distribution assumption implies that the model-based skewness and excess kurtosis

of ε is zero. The diagnostics in Table 2 show that the empirical skewness of ε is negative for

market, size and momentum and slightly positive for value. The asymmetric GARCH model has

removed some of the skewness from the factor returns found in Table 1 but some still remains.

Excess kurtosis is zero in the normal distribution but the empirical ε still contain positive excess

kurtosis. The GARCH model has also removed much of the excess kurtosis found in Table 1 but

some still remains.

The inability of the normal distribution to match skewness and kurtosis in the factor residuals

leads us to consider the skewed t distribution of Hansen (1994). We denote the skewed t probability

density function of factor j by fj (εj,t;κj, vj) and define it in the appendix. The parameter κj is

related to skewness and vj is related to kurtosis. The distribution of returns will be dynamic due

to the AR-GARCH model and we can write

fj,t (rj,t+1) = σ−1
j,t+1fj (εj,t+1;κj, vj) .

Panel B of Table 2 presents the estimation results for the skewed t distribution. When com-

paring the residuals’skewness and kurtosis to the ones implied by a skewed t distribution using

the estimated parameters we see that a much better fit is obtained. The skewed t specification is

also preferred to the normal AR-GARCH based on the likelihood values.
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Figure 6 presents the quantile-quantile plots of the AR-GARCH residuals against the skewed

t distribution. Figure 6 shows that the skewed AR-GARCH model delivers shocks that are very

close in distribution to the assumed skewed t distribution. Below we will rely on the skewed t

version of the AR-GARCH model when modeling factor dependence.

3 Modeling Factor Dependence

In the analysis so far we have found clear evidence of non-normality in the marginal distribu-

tions as well as clear evidence of asymmetry in the threshold correlations. Together, these results

strongly suggest non-normality in the multivariate distribution of factor returns. Fortunately, cop-

ula models provide a powerful and flexible framework for linking non-normal marginal distributions

allowing for non-normality in the multivariate distribution.

Patton (2006) builds on Sklar (1959) and shows that the joint conditional distribution of N fac-

tors, ft(r1,t+1, ..., rN,t+1), can be decomposed into the marginal distributions and a copula function

as follows

ft(r1,t+1, ..., rN,t+1) = ct(η1,t+1, ..., ηN,t+1)
N∏
j=1

fj,t(rj,t+1)

where ct(η1,t+1, ..., ηN,t+1) is the conditional copula density function,

ηj,t+1 = Fj,t(rj,t+1) ≡
∫ rj,t+1

−∞
fj,t(r)dr

is the marginal probability for factor j and fj,t(rj,t+1) is the univariate conditional density function

from above.

While we have already modelled the univariate distributions, fj,t(rj,t+1), we now need to decide

on an appropriate functional form for the copula function ct(F1,t(r1,t+1), ..., FN,t(rN,t+1)). We will

first consider constant copula functions and then dynamic copulas.

3.1 Constant Copula Models

From the asymmetric threshold correlations obtained above we know that an asymmetric copula

function is required. Upon an extensive copula model selection study (detailed in Section 5.3
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below) we have settled on a copula model built from the multivariate skewed t distribution in

Demarta and McNeil (2005).

The multivariate skewed t distribution provides a parsimonious specification in which univariate

and multivariate asymmetry are driven by an N dimensional vector of parameters λ. In the skewed

t copula the univariate skewness is captured by the univariate distributions modeled above and

the vector λ only has to capture multivariate asymmetry. We denote the skewed t copula density

function by c(η1, ..., ηN ;λ, vc,Ψ) where vc denotes the scalar degree-of-freedom parameter and Ψ

denotes the copula correlation matrix. Further details on the skewed t copula function are provided

in the appendix.

The copula parameters are estimated by maximizing
∑T

t=1 ln c(η1,t, ..., ηN,t;λ, vc; Ψ). Standard

errors are computed using Chen and Fan (2006).5

Panel A of Table 3 reports the estimates for three different constant copulas: the skewed t

copula described above, the symmetric t copula special case where λj → 0 for all four factors, and

the normal copula special case where further vc →∞. From the log-likelihood values we see that

moving from left to right, the greatest improvement in likelihood comes from using the symmetric

t rather than normal copula even though only one parameter is added in this case. The λs are

generally significant suggesting that the skewed t copula offers additional improvements in fit.

3.2 Dynamic Copula Models

Following Christoffersen et al. (2011) and Jin (2009), we now allow the conditional copula cor-

relation matrix of the normal, t, and skewed t copulas to evolve through time. We rely on the

dynamic conditional correlation (DCC) model of Engle (2002) where the correlation matrix dy-

namic is generated via

Qt = Q (1− βc − αc) + βcQt−1 + αczt−1z
>
t−1.

In Engle’s dynamic linear correlation model we have zt−1 = εt−1 so that the correlation dynamics

are updated using the vector of standardized returns. But in our copula application of the DCC

5When estimating the copula parameters we use the empirical distribution of the residuals to construct ηj,t.
This increases effi ciency and ensures the validity of the Chen and Fan (2006) standard errors.
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model, zj,t instead denotes the standardized version of the fractile F−1
c (ηj,t), where F

−1
c is the

inverse univariate CDF from the specific copula.6 The matrixQ is defined as the sample correlation

of zt.7 The dynamic correlations are obtained using the following normalization of the elements

of the matrix Qt

ρij,t = [Ψt]i,j =
[Qt]i,j√

[Qt]i,i [Qt]j,j

Panel B of Table 3 provides the estimates of the dynamic copula models. Note that the dynamic

copula log-likelihoods in Panel B are significantly higher than their constant versions in Panel A.

Figure 7 plots the elements of Ψt over time from the skewed t copula model. We restrict

attention to the 2006-2010 period. The variation in correlation across time is striking. For instance,

the conditional copula correlation between the market and momentum factor ranges from −0.5 to

0.5 during this period. Consider also the correlation between value and momentum which increases

from −0.8 to +0.7 during a very short period in late 2009 and early 2010. These rapid reversals

in correlation show that standard risk management techniques based on constant correlations are

dangerous.

Although not shown, the dynamic correlation patterns are quite similar across the copula

models. Allowing for time-varying correlation in the factors appears to be crucial in properly

capturing equity factor interdependence.

3.3 Copula Threshold Correlations

At this point it is natural to ask if the estimated copula models are able to capture the asymmetric

threshold correlations found in Figure 3. Given the variance dynamics in factor returns, we need

to assess the cross-sectional dependence in factor residuals, ε, rather than in the factor returns,

r. The empirical threshold correlations of ε are shown in thick solid lines in Figure 8. When

comparing the weekly threshold correlations for returns in Figure 3 with those for the return

residuals in Figure 8 it appears that the univariate dynamic models have removed some of the

threshold correlation but clearly much is still left. Just as the AR-GARCH models have removed

some skewness and kurtosis from the univariate factor returns and make the factor residuals closer
6See the appendix for the details of this standardization.
7We implement the modified DCC model in Aielli (2009) but the differences between this and Engle’s original

model are very small.
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to normal than the factor returns, so too have they made the factor residuals closer to multivariate

normal than were the original factor returns.

When comparing the empirical threshold correlations of ε in Figure 8 with the threshold corre-

lations implied by the copula models it appears that the skewed t copula (lines marked with ‘+’)

is able to produce the asymmetric threshold correlations required by the data. The additional

flexibility introduced by the asymmetry parameters can be observed especially for the following

factor pairs: market vs momentum (middle left panel) and size vs momentum (bottom left panel).

Not surprisingly, the copula threshold correlations in Figure 8 do not match up perfectly with

their empirical counterparts. Two remarks are in order in this regard. First, the empirical thresh-

old correlations are estimated with uncertainty—especially in the extremes. Second, the copula

models are estimated by maximizing the likelihoods and not by directly fitting the empirical

threshold correlation patterns. The ultimate test of the models is in their economic relevance for

portfolio allocation and risk management. This is the topic to which we now turn.

4 Economic Implications

We have found rather striking statistical evidence of non-linear dependence between the market,

size, value and momentum factors and we now examine if these findings are important in economic

terms. In particular we want to assess the economic cost of ignoring nonlinear dependence between

the factors when using the factors for portfolio allocation.

In order to address this issue, we consider expected constant relative risk aversion (CRRA)

utility maximizing investors. CRRA utility functions are widely used for studying portfolio choice

in finance (see for example Aït-Sahalia and Brandt (2001)) partly for their analytical tractability.

But as CRRA are locally mean-variance preferences they will most likely yield conservative (i.e.

low) estimates of the economic cost of ignoring non-normality in the factors. Hong et al. (2007)

and Ang et al. (2005) use disappointment aversion preferences instead because they are better

suited to take into account asymmetric correlation, but they are less tractable analytically.
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4.1 Portfolio Selection Framework

Consider an investor who directly takes positions in the four factor portfolios. As in Jagannathan

and Ma (2003), we constrain the weights to be positive to prevent them from taking on extreme

values. Note that this constraint does not prohibit short sales in our application, as three out of

four factors involve short positions. To further restrict the set of admissible portfolio investors

can choose from, we follow Pastor and Stambaugh (2000) and impose the margin requirement

customers of U.S. broker-dealers face under the Federal Reserve’s Regulation T. Regulation T

imposes an upper limit of 2 to the ratio of total position to capital corresponding to a 50%

minimum margin.

Investing in the four factors can be viewed as a hedge fund employing quantitative equity

strategies. While Regulation U states that the margin requirement applies not only to broker-

dealers’s customers, but to any U.S. investors, there are several ways for hedge funds to circumvent

the 50% limit. First, broker-dealers are granted looser restrictions for their own accounts, and so

some hedge funds have registered as broker-dealers. Second, a joint back offi ce operation can be

established between a fund and its broker. Third, a fund managed in the US can register offshore

and limit its financing to offshore broker-dealers. Fourth, higher level of leverage can be obtained

by using over-the-counter derivatives such as total return swaps.8 We therefore also consider

investors who can lever itself more than Regulation T allows. We impose a margin requirement

(MR) of either 20% or 50% of the fund’s exposure, that is we impose

wmarket + 2 (wsize + wvalue + wmomentum) ≤ 1/MR

where all weights are non-negative and the weights for the spread portfolios are multiplied by 2

as they involve both short and long positions.

We are now ready to describe the real-time implementation of the investment problem.

4.2 Implementing Real-Time Investing

We begin the real-time investment process by estimating the skewed t AR-GARCH model on

each factor using the first 20 years of weekly returns spanning 1963-1983. We then estimate the

8See McCrary (2002) for details on how hedge funds can create leverage.
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constant and dynamic copula models in Table 3 on the 20 years of AR-GARCH residuals. In

addition, we implement the multivariate standard normal distribution with constant and dynamic

correlations as benchmarks. Note that both benchmark models allow for dynamic variances in the

individual factors.

We re-estimate the models once a year using all the data available up to that point in time.

While the parameter estimates are updated annually, the conditional factor means, variances and

correlations are updated weekly. In all models we set the factor’s expected return to the average

return computed over the previous 2 years. This enables us to focus attention on the impact of

higher moments on portfolio selection.

Once the conditional one-week-ahead multivariate distribution, ft(rt+1), is constructed, we find

the optimal portfolio weights by maximizing the one week expected CRRA utility

max
wt

= Et
[
U(1 + rf,t+1 + w>t rt+1)

]
=

∫ (
1 + rf,t+1 + w>t rt+1

)1−γ

(1− γ)
ft(rt+1)drt+1 (3)

where rf,t+1 is the weekly return of the one-month Treasury bill, and rt+1 is the vector of returns

for the 4 factors. For simplicity, we ignore intertemporal hedging demands.

The integrals are solved by simulating 100, 000 variates for the 4 factors from the multivariate

conditional return distribution ft(rt+1). The ex-post investment performance is computed from

the first week of July 1983 until the end of December 2010, thus producing 1,436 real-time or

out-of-sample returns.

4.3 Investment Results

The real-time investment results are shown in Table 4 for the investors with a margin requirement

of 20% and in Table 5 we report on MR = 50%. We consider three different levels of relative risk

aversion, namely γ = 3 in Panel A, γ = 7 in Panel B, and γ = 10 in Panel C. Various standard

statistics including mean, volatility, skewness, and excess kurtosis are computed for the ex-post

realized portfolio returns in Tables 4 and 5.

In order to compare the economic value of the different dependence models, we compute the
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certainty equivalent (CE) of the average realized utility computed using the T = 1, 436 out-of-

sample weekly returns. The CE for each model is computed as

CE = U−1

(
1

T

T∑
t=1

(1 + rp,t)
1−γ

1−γ

)
=

(
1

T

T∑
t=1

(1 + rp,t)
1−γ

) 1
1−γ

where the argument of the inverse utility function U−1 in the first equality is the realized average

utility and where

rp,t = rf,t + w>t−1rt

are the out-of-sample portfolio returns.

We also report the difference in realized certainty equivalent between each model and the

multivariate normal benchmark model, and we annualize the measure for ease of presentation.

As we normalize the initial wealth to be $1 each period, the difference in CE measures between

two models can be seen as the proportion of wealth the investor would be willing to forego to be

indifferent ex-post between the portfolio allocations from the alternative model and the benchmark

model. For example, an investor with MR = 20% and a relative risk aversion of 7 realizes a gain

of 1.068%
52

= 0.0205% or 2.05 basis point per week if she uses the constant skewed-t copula instead

of the multivariate normal model.

The CE results in Tables 4 and 5 are quite striking. First, all three copulas always improve upon

the normal distribution. This is true both for the constant as well as dynamic copulas. Second, the

skewed t copula performs the best in all but one case across constant and dynamic models. Third,

each dynamic dependence model always dominate its constant counterpart in terms of certainty

equivalent. This is true for the copula models as well as the normal distribution.

One may wonder whether richer models lead to better performance by generating more trading,

and that accounting for transaction costs would lower the realized return on those portfolios. We

argue that this is not the case by reporting the turnover for each model defined as the percentage

change in weights averaged across time and factors

Average turnover (%) =
100

4T

T∑
t=1

4∑
i=1

|wi,t − wi,t−1|.
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Average turnover values range from around 4% to 13% depending on risk aversion. More impor-

tantly, they do not vary much within each of the panels, which suggests that improvements in

realized utility across models are not driven by higher turnover.

The improvements found in the alternative non-normal models, especially the ones using a

skewed t copula, are large in economic terms. Next section examines if these differences are

statistically significant.

4.4 Significance of Results

In order to assess the statistical differences between the performances of the CRRA investors’

portfolios, we use the method of Politis and Romano (1994) to bootstrap the difference in realized

certainty equivalent of each copula with respect to the multivariate normal benchmark model.

This yields a distribution of differences in realized certainty equivalents, and we can infer whether

the actual differences presented in Tables 4 and 5 are significantly larger than zero. We compute in

each case the bootstrap p-value which represents the proportion of bootstrapped differences that

fall below zero. A small p-value indicates that the difference in certainty equivalent realized by

this specification is significant, while a value near 1 suggests that the specification is worse than

the benchmark model. The bootstrap p-values are computed in each case using 100, 000 bootstrap

replications.

The p-values against the benchmark normal model are presented for each level of risk aversion,

and for either the constant or the dynamic copula models. The results in Table 4 for MR = 20%

are quite striking. The p-values for the skewed t copulas are smaller than 5% in all six cases.

When leverage is large, the non-normal risk models offer important economic benefits.

The analysis is repeated on the results in Table 5 for MR = 50%. In this case, the skewed t

copulas has p-values smaller than 5% in four of six cases. When margin requirement is larger and

investors are able to take on less leverage, then the importance of careful risk management is still

important.
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4.5 Implications for Risk Management

The portfolio allocation experiment above is of course quite specific in nature. However, our

findings of variance dynamics and dynamic non-linear dependence across factors have important

implications for risk measurement more generally. The broader risk management implications are

relevant for investors investing in the four factors, as in the previous section, as well as for investors

using the factors to model a wider set of assets.

To assess the broader implications of the models we now investigate the effect of the different

models on a generic portfolio risk measure, namely expected shortfall. The 1% expected shortfall

is defined as the expected loss when the loss is in the 1% tail of the distribution

ES0.01
t+1 = −Et

[
rp,t+1|rp,t+1 < F−1

p,t (0.01)
]

Expected shortfall is preferable to the more conventional Value-at-Risk measure because expected

shortfall emphasizes the magnitude of large losses, see for example Basak and Shapiro (2001).

Figure 9 presents the 1% weekly expected shortfall for an equal-weighted four-factor portfolio

rebalanced weekly during the dramatic period from January 2006 through December 2010. The top

panels show the expected shortfall from the benchmark constant correlation normal distribution

(left graph) and for the DCC normal distribution (right graph). Expected shortfall increases during

market turmoils, for instance during the financial crisis of 2007-2008. Perhaps surprisingly, the

expected shortfall based on dynamic correlation in the right panel is significantly lower during the

fall 2008 compared to the one based on constant correlation in the left panel. This is a reflection

of the lower dynamic correlation between momentum and the other factors during that period, as

was evident in Figure 7.

The bottom panels of Figure 9 report the relative difference in expected shortfall between the

normal distribution models and the t and skewed t copulas. The difference between the constant

skewed t copula and the normal distribution ranges from 20% to 50%. This difference is robust to

allowing for time-varying correlations. We conclude that ignoring the multivariate non-normality

in equity factors leads to a large underestimation of portfolio risk.
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5 Further Analysis

In this section, we present additional results of our analysis. First, we check that the deviations

from normality are also present when short positions in the factors are considered. Then we verify

the robustness of our results by examining the threshold correlation for daily and monthly returns.

Finally, we discuss the copula specification search that has lead us to favor the t and skewed t

copula with DCC dynamics.

5.1 Reverse Threshold Correlations

We first examine the dependence structure in weekly factor returns from a different perspective.

So far in the literature, threshold correlations have mainly been used to inspect the dependence

in highly correlated equity portfolios, for which it was natural to look at bivariate returns falling

in the bottom left or top right quadrants. For uncorrelated or even negatively correlated returns,

it is relevant to look at the top left or bottom right quadrants as well. To this end, we define the

reverse threshold correlation ρ̃ij(u) as

ρ̃ij(u) =

 Corr(ri, rj | ri < F−1
i (u), rj > F−1

j (1− u)) when u < 0.5

Corr(ri, rj | ri ≥ F−1
i (u), rj ≤ F−1

j (1− u)) when u ≥ 0.5.

Figure 10 reports the empirical reverse threshold correlation for weekly returns as well as the

ones implied by the bivariate normal distribution. Again, the empirical threshold correlation pat-

terns are markedly different from normality. We thus conclude that deviations from multivariate

normality in factor returns is not limited to the cases when two factor returns are of the same

sign.

5.2 Daily and Monthly Returns

So far we have solely focused attention on weekly factor returns. Given the dynamics found in the

variances and correlations of the weekly returns, the temporal aggregation of factor returns is not

obvious and we therefore briefly study factor returns at two other frequencies as well.

In particular, we examine the presence of non-linear dependence between equity market factors
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on a daily and monthly basis. Table 6 presents the descriptive statistics for daily return in the

first panel and for monthly return in the bottom panel for the period July 1963 to December 2010.

Daily returns for the market, size and momentum factors exhibit negative skewness, and all factors

display significant excess kurtosis. Monthly returns for the market and momentum factors still

display negative skewness, and the excess kurtosis for size and momentum are large suggesting

that the univariate non-normality in factor return is persistent as the investor-horizon increases.

The correlation between the market and size factors varies from −0.18 to 0.05 to 0.31 when

going from daily to weekly to monthly returns. However, the linear correlations between the other

factors are remarkably stable across return horizons.

Figures 11 presents the threshold correlation for daily (continuous line) and monthly returns

(dotted line). Not surprisingly, there are some differences between the patterns for weekly returns

in Figures 3a and 3b and those in Figure 11, but threshold correlations for both daily and monthly

returns remain markedly different from the ones implied by the normality assumption: Daily

and monthly factor returns exhibit strong tail dependence which is crucial for portfolio and risk

management and which is not captured by the normal distribution. We thus conclude that the

multivariate non-normality in factor return is also persistent as the investor horizon increases.

5.3 Alternative Copula Functions

In order to fit the factor return data we need copulas that can capture multivariate fat tails which

is often measured in terms of tail dependence. The lower and upper tail dependence coeffi cients

are defined respectively as

LTD (ri, rj) = lim
u→0

Pr
[
rj ≤ F−1

j (u) |ri ≤ F−1
i (u)

]
UTD (ri, rj) = lim

u→1
Pr
[
rj > F−1

j (u) |ri > F−1
i (u)

]
.

Tail dependence and threshold correlation are related concepts. Most importantly, a copula having

zero tail dependence will generate correlations approaching zero as the threshold nears zero or one.

The normal copula has zero lower and upper tail dependence, the t copula has non-zero and

symmetric lower and upper tail dependence coeffi cients. The skewed t copula we use allows for

non-zero tail dependence coeffi cients which in turn differ between the upper and lower tails.
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Before settling on the t and skewed t copulas as our favored alternative to the normal copula

specification we investigated several copulas from the Archimedean family detailed in Joe (1997)

and Patton (2009). For example, we considered in detail the Clayton and Gumbel copulas. Along

with the normal and t, they are arguably some of the most often used copulas in the financial

literature. The Clayton and Gumbel copulas have non-zero lower and upper tail dependence,

respectively. Moreover, these copulas are potentially able to produce asymmetric threshold cor-

relation patterns. However, the Clayton or Gumbel are not capable of capturing asymmetric

threshold correlations while keeping the linear correlation close to zero. Unfortunately this is the

empirically relevant case for factor returns as we saw above.

The Clayton and Gumbel copula are defined with only one parameter, and the range of de-

pendence they can generate is limited to positive levels. These asymmetric copulas have stronger

dependence in the lower left quadrant or in the upper right quadrant. This means that they will

produce few observations lying in the upper left or lower right quadrants. This limitation leads to

very low levels of likelihood when we estimate the models on the factor return data.

We have also considered rotated (survival) versions of these copulas as in Patton (2004), and

mixtures with the normal copula as in Hong et al. (2007). However, the likelihood levels favored

the t and skewed t copulas and we relied on these models instead.

5.4 Alternative Copula Dynamics

Regime-switching models are arguably the main alternative to the dynamic conditional correlation

for modeling time-varying dependence we use in our analysis. For the use of regime-switching

models, see among others Ang and Bekaert (2002), Pelletier (2006), and Garcia and Tsafack

(2008). In these models, each regime has a different level of dependence, and the choice of regime

in each period is governed by an unobservable Markov chain.

Asymmetric copulas such as the Clayton, Gumbel, or Joe-Clayton are diffi cult to generalize in

higher dimension because they are defined with either one or two parameters. Chollete et al. (2009)

recently proposed a regime-switching copula with two regimes in which one regime is characterized

by a normal copula and the other by a canonical vine copula. Canonical vine copulas alleviate the

dimensionality problem by decomposing a multivariate distribution into a hierarchy of bivariate

functions, which offers an ingenious and very flexible way to model asymmetric dependence in
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multivariate contexts.

We have estimated a model in which one regime is specified as a normal copula and the other

as a t copula, and another model in which both regimes are characterized by t copulas. Note that

in these two models, much modeling flexibility is gained because the second regime’s distribution

is a series of t copulas each having its different correlation and degree of freedom. Finally, we

have combined a normal copula with rotated Gumbel copulas. Such a specification is interesting

because of its ability to capture asymmetry in dependence.

When estimating the three regime-switching models and comparing them with the DCC copulas

in Table 3 we found that the DCC copulas provided a better fit and did so with fewer parameters.

We therefore did not include the estimation results in the paper.9

6 Conclusion

The large-scale nature of equity portfolio selection and risk management often requires a factor

approach. The Fama-French and momentum factors are pervasive in cross-sectional asset pricing

and are also increasingly used in portfolio allocation. We have therefore studied their dynamic

and distributional properties in detail.

Our analysis shows that the conditional variance of all four factor returns is dynamic, persistent,

and well captured by an asymmetric GARCH model. We also find that the skewed t distribution

provides a good fit to the factor residuals.

There is strong evidence of nonlinear dependence across factors which we model using the copula

implied by a skewed version of the multivariate t distribution. This copula model is capable of

generating the strongly asymmetric patterns in non-linear dependence observed across factors

while preserving the relatively modest linear correlations found in the returns data.

We use the new copula models to investigate the economic importance of modeling the non-

linear and dynamic dependence between the factors. Using a real-time portfolio selection exper-

iment, we find strong economic gains from modeling non-linear factor dependence. The skewed

t copula leads to higher realized investor utility than other dependence models. Dynamic corre-

lations offer large economic benefits as well. In a more generic risk management application, we

9All estimation results are available from the authors upon request.
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show that the non-normal factor model has important implications for portfolio risk measurement.

Several important challenges are left for future research. First, we have only studied the four-

factor model in this paper. Clearly, extending our analysis beyond the four-factor model would be

interesting. It would also be interesting to investigate which economic variables drive the level of

factor variance, correlation and asymmetry. In this regard, this analysis could be conducted using

the methodology of Engle and Rangel (2008) and Engle and Rangel (2011).
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A Appendix

We first define the univariate skewed t distribution from Hansen (1994) as

f (ε;κ, v) =

 bc
(

1 + 1
v−2

(
bε+a
1−κ
)2
)− v+1

2
if ε < −a

b

bc
(

1 + 1
v−2

(
bε+a
1+κ

)2
)− v+1

2
if ε ≥ −a

b

where

a = 4κc
v − 2

v − 1
, b2 = 1 + 3κ2 − a2, c =

Γ
(
v+1

2

)√
π(v − 2)Γ

(
v
2

) .
The skewed t distribution has zero mean, unit variance, and its skewness and kurtosis are

E
[
ε3
]

=
m3 − 2am2 + 2a3

b3
,

E
[
ε4
]

=
m3 − 4am3 + 6a2m2 − 3a4

b4
,

where

m2 = 1 + 3κ2,

m3 = 16cκ(1 + κ2)
(κ− 2)2

(κ− 1)(κ− 3)
, if κ > 3,

m4 = 3
κ− 2

κ− 4
(1 + 10κ2 + 5κ4), if κ > 4.

The following sections contain the probability density functions for the t copulas used.

A.1 t Copula

The cumulative distribution function of the t copula with correlation matrix Ψ and scalar degree

of freedom νc is given by

Ct
Ψ,νc(η) = TΨ,νc

(
T−1
νc (η1), . . . , T−1

νc (ηN)
)
,

where TΨ,νc(·) is the multivariate t CDF and T−1
νc (·) is the univariate t inverse CDF.

29



The probability density function is

ctΨ,νc(η) =
tΨ,νc

(
T−1
νc (η1), . . . , T−1

νc (ηN)
)∏N

j=1 tνc
(
T−1
νc (ηj)

)
where tΨ,νc(·) and tνc(·) are respectively the multivariate t PDF, and the univariate t PDF.

When standardizing the fractiles zj = T−1
νc (ηj) used in the dynamic conditional correlations

specification, we use the fact that the covariance of the fractiles is given by νc
νc−2

Ψ.

A.2 Skewed t Copula

The probability density function of the skewed t copula defined from the asymmetric t distribution

is given by

cstΨ,vc,λ(η) =

2
(vc−2)(N−1)

2 K vc+N
2

(√
(vc + z>Ψ−1z)λ>Ψ−1λ

)
ez
>Ψ−1λ

Γ
(
vc
2

)1−N |Ψ| 12
(√

(vc + z>Ψ−1z)λ>Ψ−1λ

)− vc+N
2 (

1 + 1
vc
z>Ψ−1z

) vc+N
2

×
N∏
j=1

(√(
vc + z2

j

)
λ2
j

)− vc+1
2
(

1 +
z2j
vc

) vc+1
2

K vc+1
2

(√(
vc + z2

j

)
λ2
j

)
ezjλj

(4)

where K(·) is the modified Bessel function of the third kind. We define zj = ST−1
vc,λj

(ηj) where

ST−1
vc,λj

(ηj) is the skewed t univariate quantile function which is constructed via simulation.

When simulating we rely on the following stochastic representation of the skewed t distribution

X =
√
WY + λW (5)

where W is an inverse gamma variable, W ∼ IG
(
vc
2
, vc

2

)
, Y is a vector of correlated normal

variables, Y ∼ N (0,Ψ), and Y and W are independent. zj is now found from the empirical

quantile function of a large number of simulated Xj values.

To standardize the z fractiles used in the dynamic conditional correlation specification, note
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that the expected value is given by

E [X] = E (E [X|W ]) = E [W ]λ =
vc

vc − 2
λ

and the covariances of the fractiles are given by

Cov (X) = E (V ar [X|W ]) + V ar (E [X|W ])

=
vc

vc − 2
Ψ +

2v2
cλλ

>

(vc − 2)2(vc − 4)
. (6)

Note that as λ → 0 element-wise, we obtain the symmetric t copula, and if we further let

vc →∞, then we have the normal copula.
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Figure 1: Time Series of Returns and Cumulative Returns
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Notes to Figure: The top and middle panels show the time series of weekly returns for each factor

for the period July 5, 1963 to December 31, 2010. The bottom panel shows the cumulative log

returns for each factor for the periods July 5, 1963 to December 31, 2010 (left panel) and January

5, 2006 to December 31, 2010 (right panel).
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Figure 2: Quantile-Quantile Plots for Returns from July 5, 1963 to December 31, 2010
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Notes to Figure: For each observation we scatter plot the empirical quantile on the vertical axis

against the corresponding quantile from the standard normal distribution on the horizontal axis.

If returns are normally distributed, then the data points will fall randomly around the 45◦ line

which is marked by dashes.
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Figure 3a: Scatter Plots and Threshold Correlations for Each Factor Pair
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Notes to Figure: This figure presents scatter plots in the left panels and threshold correlations

in the right panels between the market premium and the 3 other factors. Our sample consists of

weekly returns from July 5, 1963 to December 31, 2010. The linear correlations are provided in

the titles of the left panels. The continuous line in the right panels represents the correlation when

both variables are below (above) a threshold when this threshold is below (above) the median.

The dash-dot line represents the threshold correlation function for a bivariate normal distribution

using the linear correlation coeffi cient from the data.
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Figure 3b: Scatter Plots and Threshold Correlations for Each Factor Pair
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Notes to Figure: This figure presents scatter plots in the left panels and threshold correlations in

the right panels between factors pairs not involving the market premium. Our sample consists of

weekly returns from July 5, 1963 to December 31, 2010. The linear correlations are provided in

the titles of the left panels. The continuous line in the right panels represents the correlation when

both variables are below (above) a threshold when this threshold is below (above) the median.

The dash-dot line represents the threshold correlation function for a bivariate normal distribution

using the linear correlation coeffi cient from the data.
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Figure 4: Autocorrelation Functions of Returns and Absolute Returns
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Notes to Figure: Autocorrelation of weekly returns (dashed line) and absolute returns (solid line)

from July 5, 1963 to December 31, 2010. The horizontal dotted lines provide a 95% confidence

interval around zero.
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Figure 5: Autocorrelation Functions of AR-GARCH Residuals and Absolute Residuals
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Notes to Figure: Autocorrelation of AR-GARCH inferred residuals (dashed line) and absolute

residuals (solid line) from July 5, 1963 to December 31, 2010. The horizontal dotted lines provide

a 95% confidence interval around zero.
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Figure 6: Quantile-Quantile Plots for the Skewed t AR-GARCH Residuals
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Notes to Figure: For each observation we scatter plot the empirical quantile on the vertical axis

against the corresponding quantile from the skewed t distribution on the horizontal axis. If the

AR-GARCH residuals adhere to the skewed t distribution then the data points will fall on the 45◦

line which is marked by dashes. The parameters for the skewed t distribution are from Table 2.
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Figure 7: Dynamic Copula Correlations, 2006-2010
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Notes to Figure: We report dynamic conditional copula correlation for each pair of factors from

January 2006 to December 2010. The correlations are obtained by estimating the dynamic skewed

t copula model on the factor return residuals from the AR-GARCH model. The entire 1963-2010

sample is used in estimation of the models.
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Figure 8: Threshold Correlations for Factor Residuals and Copula Models

0 0.25 0.5 0.75 1
­0.2

0

0.2

0.4

0.6

Th
re

sh
ol

d 
Co

rr
ela

tio
n

Market vs Size
Correlation = 0.01

Empirical

Normal

t

Skewed t

0 0.25 0.5 0.75 1
­0.2

0

0.2

0.4

0.6

Market vs Value
Correlation = ­0.35

0 0.25 0.5 0.75 1
­0.2

0

0.2

0.4

0.6

Market vs Mom entum
Correlation = 0.13

Th
re

sh
ol

d 
Co

rr
ela

tio
n

0 0.25 0.5 0.75 1
­0.2

0

0.2

0.4

0.6

Size vs Value
Correlation = ­0.05

0 0.25 0.5 0.75 1
­0.2

0

0.2

0.4

0.6

Quantile

Size vs Mom entum
Correlation = 0.03

Th
re

sh
ol

d 
Co

rr
ela

tio
n

0 0.25 0.5 0.75 1
­0.2

0

0.2

0.4

0.6

Quantile

Value vs Mom entum
Correlation = ­0.09

Notes to Figure: We present threshold correlations computed on AR-GARCH residuals from July

5, 1963 to December 31, 2010. The thick continuous line represents the empirical correlation.

The linear sample correlations are provided in the titles for each pair of factors. The threshold

correlation functions are computed for thresholds for which there are at least 20 data points

available. We compare the empirical correlations to those implied by the normal copula, the

constant t and skewed t copulas.
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Figure 9: Expected Shortfall for Equally-Weighted Portfolios of Factors
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Notes to Figure: We report in the top panels the 1% weekly expected shortfall measure for an

equally-weighted portfolio of the four factors from January 2006 to December 2010. The top left

panel presents the risk measure for the normal distribution with constant correlation and the top

right panel for the DCC normal distribution. The bottom panels shows the relative difference in

expected shortfall implied by the either the t or the skewed t copulas. The expected returns and

volatilities are from the AR-GARCH model in all cases.
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Figure 10: Reverse Threshold Correlation on Weekly Returns
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Notes to Figure: This figure presents the reverse threshold correlations of weekly returns from

July 5, 1963 to December 31, 2010. The linear correlations are provided in the titles of the panels.

The continuous line below the median represents the correlation when the first variable is below

its pth quantile and the second above its (1− p)th quantile. The continuous line above the median

represents the correlation when the first variable is above its pth quantile and the second below its

(1− p)th quantile. The dashed line represents the analytical reverse threshold correlation function

for a bivariate normal distribution using the linear correlation coeffi cient from the data.
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Figure 11: Threshold Correlation Functions on Daily and Monthly Returns
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Notes to Figure: We show threshold correlation functions computed on daily returns (continuous

line) and monthly returns (dotted line) from July 5, 1963 to December 31, 2010. Returns are

standardized by their unconditional mean and standard deviation. The lines represent the cor-

relation when both returns are below (above) the threshold when the threshold is below (above)

the median. The linear correlations are provided in the titles for each pair of factors. The thresh-

old correlation functions are computed for thresholds for which there are at least 20 data points

available.
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Market Size Value Momentum
      

Annualized mean 3.63% 1.81% 4.30% 7.55%
Annualized volatility 15.95% 8.54% 8.73% 13.56%
Skewness - 0.75 - 0.44 0.18 - 1.44
Excess Kurtosis 7.01 5.04 5.16 12.38

Autocorrelations
  First-order 0.61% 11.20% 11.29% 9.91%
  Second-order 4.37% 10.25% 8.38% 8.41%
  Third-order 0.87% 10.57% 6.67% 5.23%

      
Cross Correlations       
Market  - 4.76% -30.56% -11.01%
Size  -  - -12.77% 3.90%
Value  -  -  - -19.04%

Notes to Table: We report sample moments, autocorrelations, and cross correlations for weekly log returns of
the 4 factors. The sample period is from July 5, 1963 to December 31, 2010.

Table 1: Descriptive Statistics of Weekly Factor Returns, 1963-2010.



Parameter Estimates Market Size Value  Momentum Market Size Value  Momentum 
φ0 6.30E-4 1.51E-4 5.41E-4 1.55E-3   7.26E-4 1.41E-4 4.78E-4 1.58E-3
  (3.34E-4) (2.04E-4) (1.83E-4) (1.87E-4)  (2.90E-4) (2.03E-4) (1.83E-4) (2.22E-4)
φ1 0.030 0.086 0.137 0.107   0.012 0.101 0.147 0.102
 ( 0.020) ( 0.021) ( 0.019) ( 0.019)   ( 0.021) ( 0.021) ( 0.020) ( 0.019)

φ2 0.052 0.108 0.037 0.007  0.045 0.124 0.042 0.012
 ( 0.021) ( 0.021) ( 0.022) ( 0.020)   ( 0.021) ( 0.021) ( 0.021) ( 0.019)

φ3 0.022 0.073 0.069 - 0.004  0.024 0.076 0.076 0.006
 ( 0.019) ( 0.019) ( 0.021) ( 0.020)   ( 0.020) ( 0.020) ( 0.021) ( 0.020)
β 0.752 0.849 0.862 0.831  0.794 0.849 0.877 0.830
 ( 0.018) ( 0.017) ( 0.011) ( 0.011)   ( 0.020) ( 0.022) ( 0.015) ( 0.016)
α 0.127 0.113 0.119 0.114  0.105 0.109 0.106 0.119
 ( 0.012) ( 0.012) ( 0.009) ( 0.008)   ( 0.014) ( 0.015) ( 0.013) ( 0.013)
θ 0.757 0.125 - 0.059 - 0.638  0.796 0.152 - 0.076 - 0.585
 ( 0.091) ( 0.048) ( 0.051) ( 0.056)   ( 0.131) ( 0.086) ( 0.077) ( 0.079)
ν  -  -  -  - 10.047 8.827 8.425 7.478

                   ( 1.593) ( 1.319) ( 1.311) ( 1.082)
κ  -  -  -  -  - 0.221 - 0.061 0.021 - 0.161

                   ( 0.027) ( 0.029) ( 0.029) ( 0.029)
Diagnostics         
Log-likelihood 6,291 7,715 7,862 7,099 6,357 7,753 7,892 7,165
Variance Persistence 0.951 0.963 0.981 0.991  0.965 0.961 0.983 0.989
L-B(20) p -value 0.26 0.50 0.72 0.44  0.22 0.49 0.79 0.46
Abs L-B(20) p -value 0.37 0.74 0.39 0.13  0.65 0.74 0.40 0.18
Empirical skewness -0.56 -0.26 0.10 -0.56  -0.59 -0.26 0.11 -0.56
Model skewness 0.00 0.00 0.00 0.00  -0.52 -0.16 0.06 -0.46
Empirical excess kurtosis 1.61 1.42 1.08 1.51 1.73 1.48 1.14 1.53
Model excess kurtosis 0.00 0.00 0.00 0.00 1.26 1.27 1.36 1.96

Table 2: AR-GARCH Models of Individual Factor Returns, 1963-2010

Notes to Table: We report parameter estimates and model diagnostics for the AR-GARCH model with normal shocks (Panel A) and skewed t shocks (Panel
B). Standard errors (in parentheses) are calculated from the outer product of the gradient at the optimum parameter values. The model estimated is rt = φ0 + φ1 

rt−1 + φ2 rt−2 + φ3 rt−3 + σt εt, where σ2
t = ω + β σ2

t−1 + α σ2
t−1(εt−1−θ)2. ω is fixed by variance targeting. The p -values for a Ljung-Box (L-B) test on the

residuals and the absolute residuals are provided. The number of lags for both tests is 20. The empirical skewness and excess kurtosis of the residuals are
compared to the model-implied levels from the normal and asymmetric models. 

 Panel A: Normal Distribution  Panel B: Skewed t Distribution



Normal 
Copula

Symmetric t 
Copula

 Skewed t 
Copula  

Normal 
Copula

Symmetric t 
Copula

 Skewed t 
Copula

Parameter Estimates
νc 4.520 4.740 9.070 8.940

( 0.272) ( 0.002) ( 0.906) ( 0.025)
λMarket -0.019 -0.055

( 0.010) ( 0.003)
λSize -0.069 -0.111

( 0.015) ( 0.001)
λValue 0.036 0.030

( 0.031) ( 0.001)
λMomentum -0.161 -0.115

( 0.044) ( 0.003)
βc 0.886 0.884 0.885

( 0.025) ( 0.008) ( 0.010)
αc 0.089 0.073 0.092

( 0.020) ( 0.005) ( 0.008)
ρMarket,Size - 1.47% 0.01% - 0.16% 1.28% 3.87% 3.74%
ρMarket,Value -35.58% -35.20% -34.91% -37.77% -37.91% -37.56%

ρMarket,Momentum 10.68% 11.57% 11.34% 8.28% 9.03% 9.03%
ρSize, Value - 4.66% - 4.62% - 3.83% - 8.67% -10.87% -10.72%

ρSize,Momentum 1.27% 2.29% - 1.73% 3.19% 4.03% 3.46%
ρValue,Momentum - 7.66% - 9.42% - 7.98% -10.98% -13.89% -13.83%

Model Properties
Correlation Persistence 0 0 0 0.975 0.957 0.977
Log-likelihood 188.4 433.7 448.8 1,052.1 1,152.1 1,161.3
Number of Parameters 6 7 11 8 9 13

Table 3: Estimation Results for Factor Dependence Models, 1963-2010 

Panel A: Constant Correlation Panel B: Dynamic Correlation

Notes to Table: This table presents the estimates for the different dependence models considered. All models are estimated by
maximum likelihood. Standard errors (in parentheses) are computing using the methodology of Chen and Fan (2006).  



Panel A: γ = 3
Normal 

Distribution
Normal 
Copula

Symmetric 
t Copula

 Skewed t 
Copula  

Normal 
Distribution

Normal 
Copula

Symmetric t 
Copula

 Skewed t 
Copula

Annualized mean (%)          19.549 19.494 19.659 19.724 21.095 21.195 21.287 20.481
Annualized volatility (%)    32.208 31.857 31.958 31.730 31.123 30.584 30.715 28.473
Skewness                       - 1.248 - 1.299 - 1.222 - 1.184 - 0.894 - 0.906 - 0.896 - 0.980
Excess kurtosis                8.472 8.778 7.917 7.438 4.972 4.670 4.589 5.178
Average turnover (%)          12.707 12.301 12.397 12.417 13.129 12.854 12.900 13.115
( Certainty Equivalent - 1 ) x 104 16.808 17.129 17.372 17.823 21.435 22.297 22.318 23.387
Annualized diff. in CE (%)                              -    0.167 0.293 0.528     -    0.448 0.459 1.015
     p -value     -    0.031 0.051 0.034     -    0.001 0.019 0.016

               

Panel B: γ = 7
Normal 

Distribution
Normal 
Copula

Symmetric 
t Copula

 Skewed t 
Copula  

Normal 
Distribution

Normal 
Copula

Symmetric t 
Copula

 Skewed t 
Copula

Annualized mean (%)          17.158 17.189 17.145 17.326  19.726 19.712 19.709 19.124
Annualized volatility (%)    20.201 19.997 19.855 19.547  19.005 18.649 18.701 17.605
Skewness                       - 0.968 - 0.969 - 0.936 - 0.924  - 0.745 - 0.737 - 0.740 - 0.775
Excess kurtosis                4.017 3.973 3.734 3.599  2.724 2.576 2.581 2.561
Average turnover (%)          9.311 8.954 9.016 9.005  10.396 10.170 10.203 9.625
( Certainty Equivalent - 1 ) x 104 7.946 8.527 8.862 10.000 16.181 16.996 16.867 18.162
Annualized diff. in CE (%)                                  -    0.302 0.476 1.068      -    0.424 0.357 1.030
     p -value     -    0.015 0.014 0.007      -    0.003 0.037 0.020

               

Panel C: γ = 10 
Normal 

Distribution
Normal 
Copula

Symmetric 
t Copula

 Skewed t 
Copula  

Normal 
Distribution

Normal 
Copula

Symmetric t 
Copula

 Skewed t 
Copula

Annualized mean (%)          16.375 16.297 16.248 16.498 18.120 18.076 18.085 17.808
Annualized volatility (%)    16.315 16.143 15.993 15.754 15.526 15.235 15.284 14.517
Skewness                       - 0.816 - 0.829 - 0.805 - 0.794 - 0.715 - 0.707 - 0.718 - 0.708
Excess kurtosis                2.953 2.913 2.786 2.735 2.291 2.209 2.227 2.199
Average turnover (%)          7.931 7.605 7.653 7.576 9.072 8.913 8.914 8.535
( Certainty Equivalent - 1 ) x 104 6.936 7.304 7.719 8.941 12.885 13.655 13.519 15.134
Annualized diff. in CE (%)                                -    0.191 0.407 1.043     -    0.400 0.330 1.170
     p -value     -    0.055 0.026 0.023     -    0.009 0.060 0.021

Table 4: Out-of-sample Results for the Investor with Margin Requirement of 20%

 Panel A: Constant Correlation Models Panel B: Dynamic Correlation Models

Notes to Table: The table shows out-of-sample results for the investor investing with 20% margin requirement in the 4 factors. The out-of-
sample period is from July 1, 1983 to December 31, 2010 for a total of 1,436 weekly returns. For each level of relative risk aversion, the
performance of the three copulas are compared to the benchmark normal distribution. The top, middle and bottom panels show the results
for relative risk aversion coefficients of 3, 7 and 10 respectively. We report the realized moments of the portfolio returns, the average
turnover, as well as the certainly equivalent (CE). The annualized differences in certainty equivalent is the difference between the CE for
each model and the normal benchmark multiplied by 52. We also report bootstrap p-values testing the significance of the differences in
certainty equivalents. We test each of the three alternative models against the normal benchmark.



Panel A: γ = 3
Normal 

Distribution
Normal 
Copula

Symmetric 
t Copula

 Skewed t 
Copula  

Normal 
Distribution

Normal 
Copula

Symmetric t 
Copula

 Skewed t 
Copula

Annualized mean (%)          11.759 11.875 11.866 11.948 11.949 12.091 12.064 11.749
Annualized volatility (%)    18.745 18.655 18.726 18.648 18.354 18.251 18.296 17.406
Skewness                       - 1.127 - 1.123 - 1.126 - 1.154 - 1.132 - 1.133 - 1.126 - 1.256
Excess kurtosis                7.439 7.345 7.340 7.594 7.198 7.137 7.106 8.340
Average turnover (%)          4.903 4.827 4.810 4.812 4.684 4.613 4.584 5.480
( Certainty Equivalent - 1 ) x 104 15.729 16.021 15.949 16.162 16.384 16.733 16.648 16.658
Annualized diff. in CE (%)                              -    0.151 0.114 0.225     -    0.181 0.137 0.142
     p -value     -    0.050 0.103 0.012     -    0.040 0.119 0.269

               

Panel B: γ = 7
Normal 

Distribution
Normal 
Copula

Symmetric 
t Copula

 Skewed t 
Copula  

Normal 
Distribution

Normal 
Copula

Symmetric t 
Copula

 Skewed t 
Copula

Annualized mean (%)          10.807 10.799 10.854 10.885 11.357 11.421 11.440 11.383
Annualized volatility (%)    13.352 13.252 13.304 13.217 12.914 12.758 12.815 12.116
Skewness                       - 1.285 - 1.343 - 1.264 - 1.217 - 0.909 - 0.924 - 0.913 - 0.824
Excess kurtosis                9.197 9.617 8.688 8.113 5.139 4.941 4.845 6.140
Average turnover (%)          5.154 5.011 5.045 5.055 5.281 5.205 5.212 5.562
( Certainty Equivalent - 1 ) x 104 9.908 10.031 10.093 10.323 11.869 12.234 12.186 13.156
Annualized diff. in CE (%)                                  -    0.064 0.096 0.216     -    0.190 0.165 0.670
     p -value     -    0.101 0.113 0.046     -    0.017 0.096 0.032

               

Panel C: γ = 10 
Normal 

Distribution
Normal 
Copula

Symmetric 
t Copula

 Skewed t 
Copula  

Normal 
Distribution

Normal 
Copula

Symmetric t 
Copula

 Skewed t 
Copula

Annualized mean (%)          10.239 10.239 10.244 10.259 11.272 11.327 11.342 11.383
Annualized volatility (%)    11.071 10.995 11.021 10.929 10.594 10.433 10.470 9.979
Skewness                       - 1.179 - 1.215 - 1.173 - 1.151 - 0.836 - 0.846 - 0.838 - 0.517
Excess kurtosis                6.606 6.808 6.360 6.074 4.200 4.036 3.971 5.628
Average turnover (%)          4.677 4.512 4.572 4.567 4.967 4.838 4.856 5.055
( Certainty Equivalent - 1 ) x 104 8.390 8.527 8.515 8.753 11.555 11.974 11.936 13.040
Annualized diff. in CE (%)                                -    0.071 0.065 0.189     -    0.218 0.198 0.772
     p -value     -    0.091 0.216 0.061     -    0.003 0.042 0.043

Table 5: Out-of-sample Results for Investor with Margin Requirement of 50%

 Panel A: Constant Correlation Models Panel B: Dynamic Correlation Models

Notes to Table: The table shows out-of-sample results for the investor investing with 50% margin requirement in the 4 factors. The out-of-
sample period is from July 1, 1983 to December 31, 2010 for a total of 1,436 weekly returns. For each level of relative risk aversion, the
performance of the three copulas are compared to the benchmark normal distribution. The top, middle and bottom panels show the results
for relative risk aversion coefficients of 3, 7 and 10 respectively. We report the realized moments of the portfolio returns, the average
turnover, as well as the certainly equivalent (CE). The annualized differences in certainty equivalent is the difference between the CE for
each model and the normal benchmark multiplied by 52. We also report bootstrap p-values testing the significance of the differences in
certainty equivalents. We test each of the three alternative models against the normal benchmark.



      
Market Size Value Momentum

      
Annualized mean 5.32% 1.88% 4.82% 8.20%
Annualized volatility 15.62% 8.07% 7.78% 11.14%
Skewness                          - 0.53 - 1.21 0.08 - 1.06
Excess Kurtosis                   17.13 27.26 8.25 16.49

Autocorrelations
  First-order 6.87% 5.24% 16.54% 23.04%
  Second-order - 3.31% 2.40% 3.35% 5.83%
  Third-order 1.64% 4.19% 2.47% 3.81%

   
Cross Correlations           
Market  - -17.97% -30.52% -12.55%
Size  -  - - 4.88% 6.76%
Value  -  -  - -19.07%

   

      
Market Size Value Momentum

      
Annualized mean 5.35% 3.25% 4.80% 8.61%
Annualized volatility 15.71% 11.00% 10.19% 15.06%
Skewness                          - 0.56 0.53 - 0.02 - 1.43
Excess Kurtosis                   1.99 5.56 2.43 10.81

Autocorrelations
  First-order 8.96% 5.86% 15.61% 6.27%
  Second-order - 3.68% 3.87% 3.67% - 6.39%
  Third-order 2.25% - 8.20% 3.90% 1.68%

   
Cross Correlations           
Market  - 30.67% -30.38% -12.57%
Size  -  - -23.52% - 0.30%
Value  -  -  - -15.97%

       

Notes to Table: We report descriptive statistics for daily returns in Panel A and for monthly returns in Panel B from
July 1963 to December 2010. 

Panel B: Monthly returns

Table 6: Descriptive Statistics for Daily and Monthly Factor Returns

Panel A: Daily returns
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