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Abstract

Stock return predictability is subject to great uncertainty. In this paper we use
the model confidence set approach to quantify uncertainty about expected utility
from investment, accounting for potential return predictability. For monthly US
data and six representative return prediction models, we find that confidence sets
are very wide, change significantly with the predictor variables, and frequently
include expected utilities for which the investor prefers not to invest. The latter
motivates a robust investment strategy maximizing the minimal element of the
confidence set. The robust investor allocates a much lower share of wealth to
stocks compared to a standard investor.
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1 Introduction

There is substantial disagreement regarding existence, stability, specification, and eco-

nomic significance of stock return predictability. The large literature on return pre-

dictability documents that certain variables, for example valuation ratios, help pre-

dicting stock market excess returns (see, e.g., Fama and French, 1988; Barberis, 2000;

Lettau and Ludvigson, 2001; Lewellen, 2004; Ang and Bekaert, 2007, among many

other studies). Strongly supportive evidence of predictive power mostly stems from

in-sample analysis. Robustness, stability, and economic significance of predictability is

still disputed, as out-of-sample result are much less conclusive (Timmermann, 2008).

For example, Welch and Goyal (2008) find that forecasts based on the historical average

(HA) are not consistently outperformed by a wide range of predictor variables in uni-

variate predictive regression, and that the performance of predictive regressions changes

over time. In some periods certain variables seems to predict excess returns, while in

other periods return prediction models perform poorly.

The evidence on return predictability is not only sensitive to whether we look at in-

sample or out-of-sample performance, but also to the measure by which return forecasts

are evaluated (see, e.g., Pesaran and Timmermann, 1995). Kandel and Stambaugh

(1996) use an economic measure based on the real-time performance of an investor, which

provides a more relevant performance measure than statistical criteria. Cenesizoglu and

Timmermann (2012) document that statistical measures are not very informative about

the performance with economic measures.

Several empirical studies accounted for model uncertainty, rather than investigating

return predictability for single model specifications. Cremers (2002) documents that

even when taking model uncertainty into account by Bayesian model averaging, re-

turn prediction models are superior to unconditional forecasts. Using Bayesian model

2



averaging followed by optimal investment within the average model, Avramov (2002)

finds that the Bayesian investor successfully uses return prediction models for portfolio

choice. Wachter and Warusawitharana (2009) consider a Bayesian investor who puts

low prior probability on return predictability. Even though this investor is skeptical

about return predictability, the data are strong enough that investment decisions are

influenced by the predictor variables. Aiolfi and Favero (2005) document that asset

allocation based on multiple models, rather than a single model, can increase investors’

utility. Using forecast combination, Rapach et al. (2010) find that the historical average

can be significantly outperformed, even when the individual forecasts perform poorly.

Overall, there is evidence that return prediction models can benefit investors, even

when the investment decision takes into account model uncertainty. However, previous

approaches do not exploit the implications of the resulting investment decision for the

individual return prediction models. In particular, it is ignored how the resulting in-

vestment performs within the individual return prediction models, and thus what the

range of possible expected utilities under different models is. The range of expected

utilities reflects the relevant uncertainty from potential return predictability.

In this paper we use the model confidence set approach of Hansen et al. (2011) to

quantify the uncertainty stemming from potential return predictability. In particular, we

construct confidence sets for the expected utility from investment. For this, we consider

a small investor with CRRA utility, who allocates wealth to stocks and the risk-free asset.

The confidence sets contain expected utility under return models which are not rejected

by the data for a given confidence level. Return predictability implies that expected

utility, and thus the confidence sets, depend on the conditioning variables of the return

prediction models. First, we construct such confidence sets for a standard investor who

does not use a return prediction model, but relies on the historical average (HA) of
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returns to estimate expected returns. Second, we consider an investment strategy that

is designed to reduce uncertainty about expected performance for a given confidence set

of models. This robust strategy chooses investment such that the minimal element of

the confidence set is maximized. This investment corresponds to an robust investor who

maximizes to minimal expected utility over all models in the confidence set. The robust

investment gives insight into how the uncertainty regarding expected utility depends on

the investment.

The methodology described above is applied to monthly returns on the US stock

market for 1945:12-2011:12. The potential predictors are 14 variables in the data set

of Welch and Goyal (2008), which we group into valuation, financial market, corporate

finance, and bond market variables. The candidate models are based on either or all

of these four groups of variables and are in addition compared to the unconditional

HA model. Forecasts of expected returns from each model are constructed using the

Rapach et al. (2010) forecast combination approach. For the valuation variables the

sum-of-part forecasting approach of Ferreira and Santa-Clara (2011) is also considered

as an alternative. Conditional variances are modeled as GARCH(1,1).

Even for this small set of six models, the resulting model uncertainty is overwhelming:

No model can be rejected in real-time at common confidence levels in any month in

our out-of-sample period 1966:1-2011:12. Thus, the model confidence set contains all

models considered at all times, and their implied expected utilities enter the confidence

set of expected utilities. The large model uncertainty translates into large economic

uncertainty regarding expected utility. The magnitude of uncertainty, measured by

width of confidence sets, changes significantly with the predictor variables. Thus, it

is important for investors to look at conditional uncertainty. In particular, we find

that during recessions, when return predictability is strongest, uncertainty is very high.
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Frequently, the confidence sets for the standard investor contain expected utilities lower

than utility from holding the risk-free asset only. The robust investment strategy leads

to investments that are much lower than for the standard investor, and frequently to

holding only the risk-free asset. A range of modifications is considered, and we conclude

that the above findings are not sensitive to specification of investors, estimation strategy

or model confidence set construction.

Our findings add to the literature on model uncertainty in stock return prediction.

The magnitude of uncertainty from potential return predictability in economic terms and

the strong dependence on the predictor variables have not been documented before. It is

statistically impossible to discriminate between different models for stock returns from

the available data, as the model confidence set approach reveals. This model uncertainty

translates into uncertainty about expected utility from investing in stocks. Our findings

show that expected utility from investment is subject to large model uncertainty, even

if the investment decision is based on multiple models.

The remainder of the paper is structured as follows. In Section 2 we present the

investment problem, the econometric approach for constructing confidence sets, and the

robust investment strategy. Section 3 discusses data and models used in the empirical

analysis. Section 4 presents the empirical results. The sensitivity analysis in Section 5

shows that our findings are robust to modifications of investor and models. Concluding

remarks are given in Section 6.

2 Investment and Confidence Sets

This section sets up the investment problem, presents the econometric methodology for

confidence set construction, and introduces robust investment.
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2.1 The Investment Problem

We study the real-time investment decisions of an small investor in the spirit of Kandel

and Stambaugh (1996). The investor faces a one-period portfolio selection problem. The

return on the risk-free asset is rft+1 and the excess return on stocks, the risky asset, is

rt+1. Returns are continuously compounded. At time t the risk free rate rft+1 is known,

while the excess stock return rt+1 is uncertain. The investor has initial wealth of 1 to

invest at every time t. At time t the investor has to decide what share of wealth θt to

invest in stocks. The remaining wealth 1−θt is held in the risk free asset. The investor’s

final wealth at time t+ 1 is

Wt+1 = θt exp(rft+1 + rt+1) + (1− θt) exp(rft+1). (1)

The investor’s utility for wealth level W is given by constant relative risk aversion

(CRRA) utility,

U(W ) = W 1−γ

1− γ , (2)

with constant relative risk aversion coefficient γ > 1. As a function of investment and

excess return, the utility is U(θt,rt+1) = 1
1−γ (θt exp(rft+1 + rt+1) + (1− θt) exp(rft+1))1−γ.

In order to calculate expected utilities, the investor needs a model for rt+1. Given a

model of conditional returns the investor can maximize expected utility. The expected

utility from investing θt in stocks, is

Et [U(θt,rt+1)] = 1
1− γEt

[
(θt exp(rft+1 + rt+1) + (1− θt) exp(rft+1))1−γ

]
. (3)
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The investor maximizes his expected utility in period t by investing

θt = arg max
θ∈[0,1]

Et [U(θt,rt+1)] . (4)

We impose the standard restriction θ ∈ [0,1], such that the investor can neither short-sell

nor borrow.

The optimal portfolio requires a model for the conditional expectation as input.

Given the high uncertainty regarding existence and form of return predictability, the

investor might be unable to specify a unique conditional model for returns. Therefore,

we next consider confidence sets for return models.

2.2 Confidence Sets of Expected Utility

Assume there is a setMt = {1, . . . ,m} of potential return prediction models, including

the unconditional HA model. Every model specifies a conditional density for return

rt+1, and thus a conditional expectation. Let Et,i be the conditional expectation under

model i ∈ Mt. For such a set of models Mt, we construct the model confidence set

(MCS) at every time t. We denote the MCS byM∗
t .

Loosely speaking, the MCS of Hansen et al. (2011) is a subset of the models,M∗
t ⊆

Mt, which contains the best model with 1−α confidence. The best model is the one with

highest expected utility in our setting. The MCS is constructed using past observation

on outcomes (returns) and past predictions (in our case, optimal investments) from all

models inMt. The confidence level 1 − α controls how strong the statistical evidence

against a model needs to be in order to exclude it from the MCS. The MCS approach

captures statistical model uncertainty. The harder it is to identify the best model, the

more models are included in the MCS. If one model performs significantly better than

all competitors, then it becomes the only element ofM∗
t . Details on the implementation
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of the MCS approach are given in Section 3.3.

Based on model confidence set M∗
t we can construct a confidence set for expected

utility from investment θt as

Ct(θt) = {Et,i[U(θt,rt+1)] : i ∈M∗
t}. (5)

The confidence set Ct(θt) is a measure of uncertainty about expected utility for invest-

ment θt. It contains the expected utility for all models that cannot be excluded from

the model confidence set. As the expected utility depends on investment θt, so does the

confidence set.

For easier interpretation, we transform expected utilities to the corresponding cer-

tainty equivalent returns. The certainty equivalent return (CER) under model i at time

t for investment θt is

CERi,t(θt) = ((1− γ)Et,i[U(θt,rt+1)])1/(1−γ) .

Calculating the CER for all elements of Ct(θt) we get a time t confidence set for the

CER of investment θt.

The confidence set presented above is a tool to quantify uncertainty regarding ex-

pected utility associated with a certain investment strategy. It allows us to quantify

uncertainty for a standard investor who uses the historical mean to guide his invest-

ment decision. Beyond this, we are interested in characterizing investment for which

the uncertainty is lower, in a way that we shall discuss in the next section.
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2.3 Robust Investment

The confidence sets for expected utility are a functions of investment θt. We use this to

explore how the investor needs to set investment in order to reduce uncertainty. Specif-

ically, we construct a robust investment strategy that maximizes the lowest expected

utility in the confidence set.

At every time t we obtain a confidence set of expected utility Ct(θ), for each possible

investment θ. We want to find the investment θRt ∈ [0,1] for which the minimal element

of the resulting confidence set, min Ct(θRt ), is as high as possible:

θRt = arg max
θ∈[0,1]

(min Ct(θ)) . (6)

The investment θRt is the robust investment. By construction, θRt has (weakly) higher

expected utility than holding the risk free asset under all models in the MCS, because

we can always set θt = 0 to get the same expected utility under all models. The robust

investment only allocates wealth to the risky asset if expected utility increases under all

models compared to setting θt = 0.

The robust investment in equation (6) is a special version of maxmin investment.

Maxmin investment rules have drawn some attention in the portfolio choice literature

(see, e.g., Epstein and Wang, 1994; Maenhout, 2004; Garlappi et al., 2007). Maxmin

rules reflect an extreme attitude toward model uncertainty, i.e., they reflect model un-

certainty aversion (see, e.g., Gilboa and Schmeidler, 1989; Hansen and Sargent, 2001).

Our robust investment strategy applies the maxmin rule over the model confidence set,

such that it can be interpreted as an investor who is averse to uncertainty over the set

of models, that are not rejected by the data.
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3 Models and Data

This section discusses models, data, estimation, and model confidence set construction.

3.1 Variables and Data

A large portion of the uncertainty regarding return predictability stems from uncertainty

regarding which variables should be used as predictors. The benchmark model, over

which the investor wishes to improve expected utility, is the unconditional model:

• Using no predictor variables yields the historical average (HA) model, which spec-

ifies expected excess returns as a constant.

We consider predictors from the popular data set1 of Welch and Goyal (2008). Stock

returns are calculated from Center for Research in Security Prices (CRSP) data on the

S&P 500 index. We follow Welch and Goyal (2008) in the construction of the variables

from this data set. The variables are grouped in four categories for the further analysis:

• Financial Market (fin): Long-Term Rate of Return (ltr) and the variance of stock

returns computed from daily returns (vars).

• Corporate Finance (cor): Dividend-earnings ratio (d/e), ratio of 12-month net

equity issues over end-of-year market capitalization (ntis).

• Bond market (bond): Default yield spreads (dfy) measured by yield difference

between AAA and BAA -rated corporate bonds, term spread between long-term

bond and Treasury bill yields (tms), default return spread (dfr) between long-

term corporate bonds and long term government bonds, long-term yields (ltr),

and inflation (inf ).
1 An updated data set until end of 2011 is available from Amit Goyal’s homepage http://www.hec.

unil.ch/agoyal/.
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• Valuation ratios (val): Two methods are considered for forecasting with valua-

tion ratios, for which different variables are used. For the sum-of-parts forecast-

ing method of Ferreira and Santa-Clara (2011) we use earnings per share (e/s)

and dividend-price ratio (d/p). When the sum-of-parts forecasting method is

not used, then the valuation ratios are the ones considered by Welch and Goyal

(2008): dividend-price ratio (d/p), dividend yield (d/y), 10-year moving average

of earnings-price ratio (e10/p), and the book-to-market ratio (b/m).

Additionally, we consider a model with all variables:

• All of the above 13 variables as predictors.

In total this gives six candidate model that can be used to predict returns by the investor,

including the unconditional HA model.

3.2 Return Prediction Models and Forecasts

In this next section we discuss the estimation and forecasting approach taken to turn

the groups of variables into return prediction models. We use normal densities to model

the conditional distribution of monthly excess returns,

rt+1|t ∼ N(µt+1,σ
2
t+1),

where conditional mean and conditional variance are functions of the predictor variables.

For the conditional mean, linear models are considered. In the context of predictive

regression, multivariate least-squares regression is known to produce noisy estimates,

and very poor out-of-sample performance (see, e.g., the kitchen sink model in Welch

and Goyal, 2008). To deal with this problem, we follow Rapach et al. (2010) by using

combinations of univariate forecasts for the conditional mean. For every variable xv we
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estimate a univariate linear model,

rt+1 = cv + β′vxv,t + εv,t+1, (7)

where cv is the intercept, βv is the slope parameter, and εv,t+1 are zero mean error terms.

For the HA model, equation (7) only features a constant and no predictors. Using

data up to time t, we get the least-squares estimates ĉv,t and β̂v,t using an expanding

estimation window. From this estimated model, we get the conditional mean forecast,

µ̂v,t+1 = ĉv,t + β̂v,txv,t,

for the univariate predictive regression with variable v. The conditional mean forecast

for a group of variables v = 1, . . . ,j, for example the five bond variables, is the simple

average of the univariate conditional mean forecasts from each variable in the group:

µ̂t+1,c = 1
j

j∑
k=1

µ̂t+1,k.

Other weights than uniform weights could be applied, in particular weights could be

made data-dependent. Using equal weighting avoids additional estimation error and

has been found to perform well for predictive regression (see Rapach et al., 2010).

For valuation ratios (val) we do not use the forecast combination approach described

above. Instead we use the sum-of-part (SOP) forecasting approach of Ferreira and Santa-

Clara (2011), which does not require parameter estimation. This method exploits the

time series characteristics of three return components (dividend-price ratio, earnings

growth rate, and price-earnings ratio growth rate) to obtain return forecasts. The SOP
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conditional mean forecast is given by

µ̂t+1,SOP = µ̂ge + µ̂dp − rft+1.

The first component µ̂ge is the average growth in earnings per share over the past 20

years, estimating the expected earnings growth. The second component µ̂dp is the time

t dividend-price ratio, which is the forecast of the dividend price-ratio under a random

walk model. For the price-earnings ratio this forecast implies no growth.

The conditional variance, σ2
t+1, is modeled as GARCH(1,1), such that

εt+1 ∼ N(0,σ2
t+1),

σ2
t+1 = ω + γ1ε

2
t + γ2σ

2
t ,

where ω, γ1, and γ2 are parameters. An estimated GARCH(1,1) model based on the

residuals of the univariate regressions with variable v gives a variance forecast σ̂2
v,t+1. For

the density forecast based on a group of variables, we construct a variance forecast as the

simple average of variance forecasts based on residuals from the univariate regressions:

σ̂2
t+1,c = 1

j

j∑
v=1

σ̂2
v,t+1.

The volatility forecasts based on different residuals are very similar, such that the results

are not sensitive to the way we construct the volatility forecast.

3.3 Model Confidence Set Construction

Next we discuss the exact implementation of the model confidence set (MCS) procedure

of Hansen et al. (2011) used in this paper. The MCS is a subset ofMt that contains the
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best model with 1−α confidence level. The best model is the one with lowest expected

loss for a given loss function. The MCS at time t is denoted by M∗
t , suppressing the

dependence on the confidence level 1 − α. To construct M∗
t , a sample of E losses up

to time t for each model inMt is needed. The MCS algorithm uses sequential testing

of equal predictive ability. At every step of the sequential testing, critical values are

obtained using a moving-block bootstrap. Based on this sequential testing a p-value for

each model is obtained. These p-values tell us whether a certain model is member of

the MCS for a given confidence level.

The investor’s relevant loss function, here taken as the negative of his CRRA utility,

is used to obtain the sample of E losses for each model. Results from forecast comparison

for models of financial returns and volatility depend on the loss function and can, e.g.,

differ between utility-based and statistical loss functions (see, e.g., West et al., 1993;

Gonzàlez-Rivera et al., 2004; Skouras, 2007; Cenesizoglu and Timmermann, 2012). The

investor’s realized losses are based on forecasts, and thus cannot be computed from the

beginning of the available sample. We therefore reserve the first M observations for

initial parameter estimation, such that when we have a sample of N observations at

time t, the MCS is based on E = N −M losses:

M︷ ︸︸ ︷
t−N + 1, . . . ,t− E,

E︷ ︸︸ ︷
t− E + 1, . . . ,t− 1,t︸ ︷︷ ︸
N

.

Later in the sample more data are available to construct the MCS. We consider both

expanding sample and rolling windows approaches to construct the MCS. A larger sam-

ple will give the MCS more power to exclude models. If, however, the performance of

models varies over time, having a longer history of past losses is not necessarily more

informative regarding expected performance.
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4 Empirical Results

Our sample spans the period 1946:1 to 2011:12 (N = 792). All variables are at monthly

frequency. The first 120 observations are reserved for initial estimation (M = 120).

Another 120 observations are used for construction of the first model confidence set.

The model confidence sets are constructed from a rolling window of fixed length 120

in this section. Thus, the out-of-sample period, for which we observe investments and

confidence sets, is 1966:01-2011:12 (552 observations). All results in this section are for

a risk aversion parameter γ = 5.

Return predictability appears to interact strongly which the business cycle. There

is evidence that expected excess returns are higher during recessions (see, e.g., Fama

and French, 1989; Henkel et al., 2011). We therefore identify NBER recessions in the

results.

Before looking at the confidence sets, we consider the performance of the return

prediction models in our sample. For this purpose the certainty equivalent return relative

to the historical average investment, ∆CER, is computed for the return prediction

models. For model i, ∆CER is given by

∆CERi =
(

(1− γ) 1
S

S∑
t=1

U(θi,t,rt+1)
)1/(1−γ)

−
(

(1− γ) 1
S

S∑
t=1

U(θAt rt+1)
)1/(1−γ)

, (8)

where θAt is the time t investment based on the HA model, θi,t is the investment for

model i, and S = 552 is the number of observations.

Table 1 shows that the considered return prediction models do produce higher CER

than for the HA investment, with the exception of the model that only uses the corporate

finance (cor) variables. The improvements are of economically significant magnitude.

Consistent with previous studies, we find that this predictability is concentrated on re-
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cession times. Even though the return prediction models seem to improve the investor’s

performance, the improvement might not be statistically significant, such that we can-

not conclude from Table 1 that there is return predictability. For statistical inference

regarding performance of the models, we apply the model confidence set approach in

the following.

Table 1: Annualized ∆CER in percentage

1966:01 1976:01 2000:01 Recession No Recession

All 1.86 2.07 4.09 9.06 0.54
Val 1.37 1.82 4.71 6.91 0.36
Fin 1.65 1.21 1.15 9.46 0.23
Cor -0.29 -0.25 -1.34 -1.39 -0.08
Bon 1.36 0.47 -1.02 6.54 0.41

Note: Annualized certainty equivalent return difference to historical average investment
(∆CER) in percentages. First column identifies the group of predictor variables used. The

dates indicate the starting date for the (sub-)sample. End date is 2011:12 for all
(sub-)samples.

4.1 Confidence Sets and Investment

First we look at the evidence of real-time model uncertainty by computing series of

model confidence sets for different confidence levels 1− α. For every month in the out-

of-sample period, Figure 1 shows which models are included in the MCS. For α = 0.25 in

Panel (a), and thus a confidence level of 0.75, the HA model and all five return prediction

models are included in the MCS every single month. This suggests that real-time model

uncertainty is very high, and that investors could not reject any of the models based

on past performance. Also, it is not possible to infer from the data whether returns

are predictable or not. For lower confidence level, with α = 0.4 and α = 0.5 in Panel

(b) and (c), resp., models start getting excluded from the MCS. However, this does not

correspond to common confidence levels. Therefore we will in the following focus on
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α = 0.25. Any other α < 0.25 will give identical results by construction, as the MCS

will also contain all models every month.

(a) α = 0.25:

HA

All

Val

Fin

Cor

Bon

1970 1980 1990 2000 2010

(b) α = 0.40:

HA

All

Val

Fin

Cor

Bon

1970 1980 1990 2000 2010

(c) α = 0.50:

HA

All

Val

Fin

Cor

Bon

1970 1980 1990 2000 2010

Figure 1: Inclusion in Model Confidence Set for different α. A dot indicates that the model
is included in the real-time MCS for this month. Model confidence set are constructed with
rolling window of 120 observations. Sample period is 1966:1-2011:12. Loss is based on risk
aversion of γ = 5. Dashed red lines indicate start- and end-dates of NBER recessions.

Figure 2 shows the series of investments in stocks for the HA model and the model

using all variables, as well as the robust investments. The HA investment series is more

stable than the other two series. The upper bound of 1 is binding during some periods,

while investment is always above the lower bound of zero. Investment based on all
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variables is more volatile, and both lower and upper bound on investment are binding

during some periods. This can be explained by the fact that return prediction model can

produce negative forecasts for expected excess returns (see, e.g., Campbell and Thomp-

son, 2008). The robust investment is much lower than the other two investment series,

as we can see from Panel (d), where all three investment series are shown. Frequently

the robust investment is zero.

In Table 2 the certainty equivalent return gains, as defined in equation (8), are shown

for the robust investment. Like the return prediction models, the robust investment

strategy achieves a higher CER than the HA model. During recessions, however, the

CER gain is much smaller than for the return prediction models.

Table 2: Robust Investment annualized ∆CER in percentage

1966:01 1976:01 2000:01 Recession No Recession

α = 0.25 1.30 1.53 0.81 0.57 1.42
α = 0.4 1.27 1.72 1.182 2.12 1.12
α = 0.5 0.92 0.94 −0.72 0.58 0.98

Note: Annualized certainty equivalent return difference to historical average investment
(∆CER) in percentages. The dates indicate the starting date for the (sub-)sample. End date

is 2011:12 for all (sub-)samples.

Figure 3 shows confidence sets for certainty equivalent returns that are constructed

from model confidence sets. For HA investment, the size of the confidence sets varies

considerably over time, and exhibits persistence. Potential predictor variables matter

tremendously for the size of the confidence sets and thus for the uncertainty that in-

vestors face. During some periods, confidence sets are narrow and all elements imply a

CER higher than the risk free rate. During other periods, the lowest CER in the con-

fidence set is below the risk free rate. NBER recessions fall into latter category. This

is interesting, because return predictability is strongest during recession, when also un-

certainty is very high. Before 1990, both lowest and highest element of the confidence
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set are more stable than after 1990. For robust investment, the confidence set do not

go below the risk free rate by construction.

The empirical findings can be summarized as follows. Model uncertainty is very

high. At no point in our sample can any return prediction model be excluded from the

MCS for α = 0.25. This model uncertainty translates into very wide confidence sets for

expected utility for the standard investors who uses the HA model. The uncertainty,

measured by width of the confidence sets, shows large variations over time. During

recessions, when return prediction models perform best, uncertainty about expected

utility is high. A robust investment strategy maximizing the minimal element of the

expected utility confidence set leads to much lower investment in stocks and frequently

to holding only the risk free asset.

5 Sensitivity Analysis

We investigate the sensitivity of the empirical findings in three directions. First, the

the risk aversion γ of the investor is varied. Second, changes to parameter estimation

of the prediction models are considered. Third, model confidence sets are constructed

with an expanding rather than rolling windows. Finally, we discuss likely consequences

of parameter uncertainty, which we have ignored so far.

5.1 Risk Aversion

To assess the sensitivity to changes in the specification of the investor, we repeat the

analysis for different values of the risk aversion parameter γ. Changing γ affects the

utility and loss function. Thus, the series of optimal investments changes. Therefore,

the MCS and CER confidence set are potentially affected as well, as they are based on

a different loss function. In Figure 4 results for a less risk averse investor with γ = 2 are
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shown. For this loss function the model based on the val variables is excluded from the

MCS during the early to mid-90s. The bounds of the CER confidence sets still show

the same characteristics. For investment based on HA investment, the no-borrowing

restriction is binding most of the time for the investors. The robust investment strategy

fluctuates strongly and still sets investment to zero frequently. For a higher risk aversion

of γ = 10, shown in Figure 5, it is also the model based on val that is excluded from the

MCS for certain periods, but now earlier in the sample than for γ = 2. The dynamics of

the CER confidence sets for HA investment do not change. The HA investment series is

much smoother, and the short-selling and borrowing constraints are never binding. The

robust investment is also smoother than for lower risk aversion, but still sets investment

to zero frequently.

5.2 Estimation and MCS construction

We repeat the analysis with all models estimated by multiple least-squares regression

instead of the forecast combination from univariate regressions. This approach is applied

for all groups of variables, including valuation ratios. Figure 6 shows that with the

multiple regression approach, all models except the cor model get excluded during

certain periods. The CER confidence sets have changed significantly. Both the lower

and upper bound fluctuate much more over time. Also, the lower bound is below the

risk-free rate more frequently. As a consequence, the robust investment is very low on

average.

As an additional robustness check we replace the sum-of-parts (SOP) forecast method

for valuation variables with forecast combination of univariate regressions, just as for

the other groups of variables. The val variables used for this are dividend-price ratio

(d/p), dividend yield (d/y), 10-year moving average of earnings-price ratio (e10/p), and
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the book-to-market ratio (b/m). Figure 7 shows that the performance of the val model

deteriorates significantly, compared the the SOP method. The val model is excluded

from the MCS during 1996:10 to 2005:10. This does have a strong effect on the CER

confidence sets. The bounds fluctuate much less than when SOP forecasts are used for

the val model. Thus, the val forecast must have been behind these large fluctuations,

because all other models remain unchanged. The impact on robust investment is that

investment is now positive most of the time, and zero investments are very infrequent.

However, the robust investment is still much lower than HA investment. Overall, it

appears that the valuation variable group, and the way it is used for prediction, is

very important for uncertainty about expected utility. With the SOP approach, the

model is quite influential, but the SOP model performs better, as the model used in this

modifications leads to frequent exclusion from the MCS.

In the previous analysis, model confidence sets are based on a fixed window of 10 year

of past data (120 observation). This approach is motivated by time-varying performance

of the models documented in the literature. The costs of limiting the sample size with

a fixed window is that the MCS will have low power to reject models. To investigate

whether the high model uncertainty we found above comes from low power of the MCS,

we consider estimating the MCS based on all available past data at every time t, i.e.,

using an expanding window to construct the MCS. The finding is that the MCS for

α = 0.25 still contains all six models in all months in our sample, like in the case of

rolling windows. Thus, the confidence sets and investment series remain unchanged and

we therefore do not report the results for this case.

The focus of our analysis is on model uncertainty, and parameter uncertainty is

ignored completely. Additionally accounting for parameter uncertainty by, for example,

considering confidence intervals for model parameters, would increase the uncertainty
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regarding return predictions for the individual models. Confidence sets for expected

utility would be even wider. For the robust investment for the case allowing also for

parameter uncertainty would even be higher.

Overall, we conclude that the empirical findings presented in Section 4 are not sensi-

tive to the specification of the investor, model confidence sets, and forecast construction.

6 Conclusion

We have used the model confidence set approach to describe the uncertainty from poten-

tial return predictability. We found that this uncertainty is substantial both in statistical

and economic terms. Uncertainty varies with potential predictor variables. Reducing the

uncertainty requires lowering investment substantially compared to investment based on

expected return forecasts from historical averages.

Our findings add to the literature by providing a new view on model uncertainty in

return predictability. Rather that considering investment decisions based on multiple

models, which is how previous studies dealt with the model uncertainty, we quantify

the uncertainty for a given investment decision. This shows that potential return pre-

dictability entails large uncertainty regarding expected performance, even if the invest-

ment decision is based on multiple models.

Our result are obtained for a given set of models using common predictor variables,

which is motivated be previous findings in the literature. Indeed, the models considered

produce economic gains from return prediction in our sample. Modifications to the

investor, model confidence sets, and model estimation have been shown not to change the

empirical findings. We have ignored parameter uncertainty, but taking this into account

would lead to more uncertainty, such that the findings could not change qualitatively.

One possibility how a different set of models could change the results qualitatively
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is if a model is included which significantly outperforms other models, such that they

are excluded from the model confidence set. This would reduce model uncertainty and

thus potentially the uncertainty regarding expected utility. At this point, however, no

such model seems to be available for the prediction of stock returns.
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Figure 2: Investment in stocks, θt, for model with all variables, historical average HA, and
robust investment. Robust investment for γ = 5. Dashed red lines indicate start- and end-dates
of NBER recessions.
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(a) CER confidence sets for HA investment:
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Figure 3: CER confidence sets and risk free rate. γ = 5. Confidence sets are constructed with
rolling window of 120 observations. α = 0.25. Dashed red lines indicate start- and end-dates
of NBER recessions.
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Figure 4: Results for lower risk aversion, γ = 2. MCS for α = 0.25 and rolling window.
Dashed red lines indicate start- and end-dates of NBER recessions.
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Figure 5: Results for higher risk aversion, γ = 10. MCS for α = 0.25 and rolling window.
Dashed red lines indicate start- and end-dates of NBER recessions.
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(a) Model inclusion:
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Figure 6: Multiple regressions with for γ = 5 and α = 0.25. Dashed red lines indicate start-
and end-dates of NBER recessions.
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Figure 7: Valuation variable (val) based forecast with average of univariate regression, follow-
ing Rapach et al. (2010), instead of sum-of-parts approach. Risk aversion γ = 5, and MCS
for α = 0.25 with rolling window. Dashed red lines indicate start- and end-dates of NBER
recessions.
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