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Abstract

This paper develops a general, multivariate additive noise model for synchronized asset prices
and provides a multivariate extension of the generalized flat-top realized kernel estimators, ana-
lyzed in Varneskov (2013), to estimate its quadratic covariation. The additive noise model allows
for α-mixing dependent exogenous noise, random sampling, and an endogenous noise component
that encompasses synchronization errors, lead-lag relations, and diurnal heteroskedasticity. The
various components may exhibit polynomially decaying autocovariances. In this setting, the class
of estimators is consistent, asymptotically unbiased, and mixed Gaussian at the optimal rate of
convergence, n1/4. A simple finite sample correction based on projections of symmetric matrices
ensures positive definiteness without altering the asymptotic properties of the estimators. The fi-
nite sample correction admits non-linear transformations of the estimated covariance matrix such
as correlations and realized betas, which inherit the desirable asymptotic properties of the flat-top
realized kernels. An empirically motivated simulation study assesses the choice of sampling scheme
and projection rule, and it shows that flat-top realized kernels have a desirable combination of ro-
bustness and efficiency relative to competing estimators. Last, an empirical analysis of correlations
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1 Introduction

The covariation of asset returns is central to many aspects of financial economics such as, e.g., correla-

tion analysis, portfolio selection, and risk management. Hence, with the availability of high-frequency

financial data, the literature has seen a surge in the development of various econometric techniques,

in particular a shift from parametric, conditional covariance estimation based on lower frequency ob-

servations (e.g. daily) towards virtually model-free measures and realized estimators, to extract gains

from the vast amount of intra-daily information. The underlying idea is to use quadratic covariation

as an ex-post covariance measure, whose increments can be studied to learn about of the dependence

of asset returns. Andersen, Bollerslev, Diebold & Labys (2003) and Barndorff-Nielsen & Shephard

(2004) pioneered the work on non-parametric estimation of quadratic covariation by introducing the

realized covariance estimator, which in a Brownian semimartingale setting with synchronous trading is

both a consistent and efficient estimator of quadratic covariation as the sampling interval progressively

shrinks. Two empirical phenomena, however, render sampling at the highest frequencies undesirable

and complicate inference about the covariance of asset returns. First, tick-by-tick trading of various

assets occur randomly and non-synchronously. Second, the observed prices are affected by market mi-

crostructure (MMS) noise, which summarizes an array of market imperfections such as bid-ask bounce

effects, asymmetric information and strategic learning, execution of block trades, etc.

Since the comprehensive study of stock returns by Epps (1979), non-synchronous trading has been

recognized to bias empirical correlation statistics towards zero when sampling beyond the intra-hour

level, the so-called Epps effect. Large (2007), however, provides a simple model showing that part

of this bias may be due to delayed information transmission in financial markets, causing temporal

lead-lag relations among correlated assets, and that this may be interpreted as a source of additive,

endogenous MMS noise. Hence, when Martens (2004) and Hayashi & Yoshida (2005) propose refresh

time sampling and a pseudo-aggregation algorithm of non-synchronous observations, respectively, to

correct the realized covariance estimator for the Epps effect, they are, first of all, only accounting for

one potential source of the bias, and secondly, they do not consider other forms of MMS noise.

Several recent papers have proposed techniques for simultaneously dealing with non-synchronicity

and MMS noise models of varying complexity. These include non-parametric estimators such as

the inconsistent, but bias-corrected Hayashi-Yoshida estimator in Voev & Lunde (2007), the two-

scale realized covariance (TSRC) estimator in Zhang (2011), the realized kernel in Barndorff-Nielsen,

Hansen, Lunde & Shephard (2011), the pre-averaged realized covariance estimator in Christensen,

Kinnebrock & Podolskij (2010), and the parametric quasi maximum likelihood (QML) estimators in

Aı̈t-Sahalia, Fan & Xiu (2010) and Shephard & Xiu (2013). Among these, the pre-averaged realized

covariance estimator and the QML estimators are shown to be consistent, asymptotically unbiased,

and mixed Gaussian at the optimal rate convergence, n1/4, n being the number of synchronized

observations, whereas the TSRC estimator is consistent at the suboptimal rate n1/6. However, these

estimators all rely on high-level MMS noise assumptions, cf. exogenous and i.i.d., to achieve their

asymptotic properties. Hansen & Lunde (2006) show that this is not too damaging if sampling occurs
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around every minute (or every 15 ticks), but they also stress that the high-level noise assumption

is violated for tick-by-tick data where the MMS noise is characterized by being serially dependent,

endogenous, and exhibiting diurnal heteroskedasticity. Similar findings have been made by de Jong

& Nijman (1997), Large (2007), Voev & Lunde (2007), Kalnina & Linton (2008), Ubukata & Oya

(2009), Aı̈t-Sahalia, Mykland & Zhang (2011), and Kalnina (2011). Diebold & Strasser (2012), in a

comprehensive econometric analysis of MMS models, further argue that a general noise model, allowing

for both exogenous and endogenous components with polynomially decaying autocovariances, is needed

to avoid concerns about the underlying MMS mechanisms. Aware of these empirical regularities

at tick-by-tick frequencies, the realized kernel is the first consistent estimator that allows for both

non-synchronous trading and general assumptions on the MMS noise. However, the estimator also

suffers from a bias in the asymptotic distribution and a suboptimal rate of convergence n1/5. This is

unfortunate as it implies a bias in non-linear transformations of the estimated covariance matrix, e.g.

realized correlations and regression coefficients, and moreover, since Laurent, Rombouts & Violante

(2012) show that consistent ranking of multivariate volatility models requires an unbiased estimate

of the asset return covariance matrix, thus limiting the potential applications of the realized kernel.

Hence, in its present state, there is room in the literature for an asymptotically unbiased and rate-

optimal estimator of quadratic covariation, which accounts for non-synchronous trading and is valid

under general MMS noise assumptions such that it may utilize all available high-frequency observations.

In a contemporaneous paper, Varneskov (2013) analyzes a generalized class of univariate flat-top

realized kernels under weak assumptions on the MMS noise and equally spaced observations, and he

establishes optimal asymptotic properties such as consistency, asymptotic unbiasedness, and mixed

Gaussianity at the optimal rate of convergence, n1/4. If optimally designed, the estimators are also

efficient in a Cramér-Rao sense. This paper extends the analysis to a multivariate setting where it

provides the following incremental theoretical contributions in addition to the simulation study and

empirical analysis: (1) It develops a general, multivariate additive noise model for synchronized asset

prices, which allows for α-mixing dependent exogenous noise, random sampling, and an endogenous

noise component that encompasses synchronization errors, asymmetric lead-lag relations, and diurnal

heteroskedasticity. The various components may exhibit polynomially decaying autocovariances. (2)

It extends the generalized class of univariate flat-top realized kernels to the multivariate case and

establishes similar optimal asymptotic properties in the present setting. (3) It analyzes element-wise

estimation of the covariance matrix using various synchronization schemes, and the impact of the

latter on the properties of the noise process. (4) It proposes a matrix regularization technique to

ensure positive definiteness in finite samples, which affects neither consistency nor the asymptotic

distribution. (5) It considers non-linear transformations of the estimated covariance matrix.

Ikeda (2011, 2013) analyzes a two-scale realized kernel, which may be interpreted as a realized kernel

estimator with a generalized jack-knife kernel function. Under general conditions on the MMS noise,

though stronger than in the present paper, the two-scale realized kernel is shown to posses first-order

asymptotic properties similar to those of the flat-top realized kernels. The latter, however, has a higher-
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order advantage in terms of bias reduction. Inspired by the underlying jack-knife bias-correction, a

new bias-corrected pre-averaged realized covariance estimator is proposed, which is robust to serial

dependence in the MMS noise. The finite sample performance of the flat-top realized kernels relative

to these two robust competitors and the realized kernel is studied in a three-asset simulation setup,

which is inspired by the high-frequency data used in the empirical analysis. Though not uniformly

efficient for all combinations of noise, non-synchronicity, and transformations of the covariance matrix,

the flat-top realized kernel is uniformly efficient for estimators that offer a stable bias control for all

data generating processes, thus showing a desirable combination of robustness and efficiency, which

illustrates both its optimal asymptotic properties and higher-order advantage. An empirical analysis

of correlations and market beta estimates for a portfolio of six stocks with varying liquidity and size

shows exactly the same pattern as the simulation study, thus reinforcing the conclusions.

The paper proceeds as follows. Section 2 develops the additive noise model. Section 3 analyzes

the theoretical properties of flat-top realized kernels, and Section 4 studies a finite sample correction

and non-linear transformations. Section 5 and 6 contain the simulation and empirical study, respec-

tively. Last, Section 7 concludes. The appendix contains additional mathematical details and proofs.

Furthermore, the following notation is used throughout: R, Z and N denote the set of real numbers,

integers and natural numbers; N+ = N \ {0} and R+ = {x ∈ R : x > 0}; 1{·} denotes the indicator

function; ‖·‖ denotes the Euclidean (matrix) norm; ⊗ denotes the Kronecker product; O(·), o(·), Op(·)
and op(·) denote the usual (stochastic) orders of magnitude; “−→”, “

P−→”, “
d−→” and “

ds−→” indicate the

limit, the probability limit, convergence in law and stable convergence in law, respectively.

2 Theoretical Setup

This section develops the additive noise model and provides the necessary assumptions to conduct the

theoretical analysis. Moreover, the MMS noise specification is motivated by interpreting synchroniza-

tion errors as additive noise.

2.1 The Semimartingale Process

Let a finite, d-dimensional vector of no-arbitrage logarithmic asset prices, p∗, be defined on some

filtered probability space (O,F , (Ft),P), where (Ft) ⊆ F is an increasing family of σ-fields satisfying

P-completeness, right continuity and is assumed to be generated by other filtrations Pt, the σ-algebra

generated by p∗t , Ht, the σ-algebra generated by pct = (p∗t , p̆t)
′ where p∗t and p̆t are uncorrelated such

that Pt ⊂ Ht, and Gt where Ht ⊥⊥ Gs ∀t, s as Ft = Ht ∨ Gt, the smallest σ-field containing Ht ∪ Gt.
The triplet (Pt,Ht,Gt) is used to define a space for observable prices that allows an efficient price

process to be contaminated by both endogenous and exogenous MMS noise components, defined on

Ht and Gt, respectively. Throughout the remainder of the paper, and without loss of generality, let

t ∈ [0, 1], which can be thought of as the passing of an economic event, e.g. a trading day. Formally,

and following literature standards, let p∗ follow a continuous time Brownian semimartingale process

3



of the form

p∗t = p∗0 +

∫ t

0
µsds+

∫ t

0
Σ1/2
s dWs (1)

where Wt ∈ Rk is a vector of independent standard Brownian motions, µt ∈ Rd×1 is a (Pt)-predictable

stochastic process, and Σ
1/2
t ∈ Rd×k is a (Pt)-adapted matrix-valued stochastic volatility process. The

theoretical analysis requires the following additional structure on (1):

Assumption 1. Let vec(Σ
1/2
t ) ∈ Rdk×1 follow a continuous time Brownian semimartingale process

of the form vec(Σ
1/2
t ) = vec(Σ

1/2
0 ) +

∫ t
0 µ̃sds +

∫ t
0 Σ̃

1/2
s dWs where µ̃t ∈ Rdk×1 is (Pt)-predictable,

Σ̃
1/2
t ∈ Rdk×k is (Pt)-adapted, and both µ̃t and Σ̃

1/2
t are càdlàg processes.

Assumption 2. ∀(t, w) ∈ [0, 1]×O ∃Λ1 > 0 : ‖µt(w)‖+ ‖µ̃t(w)‖+ ‖Σ1/2
t (w)‖+ ‖Σ̃1/2

t (w)‖ ≤ Λ1.

This setup follows recent contributions in the literature such as Barndorff-Nielsen et al. (2011),

Christensen et al. (2010), and Ikeda (2011), and it nests most continuous time models in financial

economics, see Andersen & Benzoni (2012) for a review. The Brownian semimartingale model admits

the presence of leverage effects, i.e. correlations between the no-arbitrage vector price process and

the matrix-valued stochastic volatility process, but excludes discontinuous movements, or (co-)jumps,

in either. Including the latter is an interesting direction for further research, see e.g. the analyses in

Jacod & Todorov (2009) and Mancini & Gobbi (2012) in a noiseless setup with synchronous prices, but

this is beyond the scope of this paper. The aim here is to estimate the quadratic covariation matrix

of the d-valued no-arbitrage asset return vector,

[p∗] =

∫ 1

0
Σtdt ∈ Rd×d, Σt = (Σ

1/2
t )(Σ

1/2
t )′, (2)

accounting for empirical regularities at tick-by-tick frequencies such as MMS noise and non-synchronous

trading, formally introduced in the next subsections.

2.2 Synchronization Schemes

The individual observable prices for assets q = 1, . . . , d are recorded irregularly and non-synchronously

at times t
(q)
i ∈ [0, 1], i = 0, . . . , N(1, q), where N(t, q) is the counting process of asset q. They are

comprised of a signal, the no-arbitrage price process, and an additive noise ũ
q,t

(q)
i

, which summarizes

an array of market imperfections and is formally defined later. Hence, the model reads

p
q,t

(q)
i

= p∗
q,t

(q)
i

+ ũ
q,t

(q)
i

, i = 0, . . . , N(1, q), q = 1, . . . , d. (3)

This signal-plus-noise model involves two challenges. First, non-synchronously observed prices create

problems for high frequency estimators of the covariance of asset returns, since they induce stale prices

and lead-lag relations among correlated assets, two recognized sources of the Epps effect. Second, the

inclusion of MMS noise in the model leads to explosive behavior (will be formalized later) in the
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estimated (co)variances when the sampling frequency increases unless properly accounted for, see e.g.

Hansen & Lunde (2006), Voev & Lunde (2007), and Zhang (2011). There are two main approaches

of dealing with non-synchronous observations. (1) Apply a synchronization scheme and estimate all

elements of the covariance matrix jointly, e.g. Barndorff-Nielsen et al. (2011) and Ikeda (2011). (2)

Align the observations by a pseudo-aggregation algorithm and estimate the covariance matrix element-

wise, e.g. Hayashi & Yoshida (2005) and Voev & Lunde (2007). As such, both paradigms may be

interpreted as pseudo-alignment of the observations and, as illustrated below, both may be analyzed

within the same signal-plus-noise framework for the synchronized price (or equivalently, return) vector,

provided that the MMS noise is specified appropriately. Following the aforementioned literature, the

preferred synchronization scheme is refresh time sampling, since it includes the largest amount of data

among all generalized sampling schemes, see Aı̈t-Sahalia et al. (2010).

Definition 1 (Refresh Time Sampling). The refresh time common to all security prices is defined

by: (1) t0 = maxq=1,...,d t
(q)
0 , if i = 0. (2) ti = maxq=1,...,d t

(q)

N(t
(q)
i−1,q)+1

, if i ≥ 1.

Definition 2 (Hayashi-Yoshida Sampling). For two assets a, b ∈ 1, . . . d, denote the sets Πa = {t(a)
i :

i = 0, . . . , N(1, a)} and Πb = {t(b)i : i = 0, . . . , N(1, b)}, respectively, and for N(1, a) ≤ N(1, b) denote

t
(b)
i−1 = max{t ∈ Πb : t ≤ t

(a)
i−1} and t

(b)
i = min{t ∈ Πb : t ≥ t

(a)
i }. Define the set of overlapping return

times as Πa,b = {ti − ti−1 : t
(b)
i − t

(b)
i−1 > 0}. Now, for Πa,b 6= ∅, the common sample of asset returns is

defined:

∆pa,ti = p
a,t

(a)
i

− p
a,t

(a)
i−1

, ∆pb,ti = p
b,t

(b)
i

− p
b,t

(b)
i−1

for ∆ti ∈ Πa,b.

Let the synchronized sample size of returns be denoted by N regardless of sampling scheme. Refresh

time sampling adjust to the trading frequency of the assets by sampling at times where all assets have

been traded at least once. It facilitates direct estimation of the whole covariance matrix, but as the

sampling scheme is universe-dependent, i.e. adapting to the underlying frequency of the slowest traded

asset and depending on the degree of non-synchronous trading, the information loss is potentially great

for heterogeneous assets. Contrary, the Hayashi-Yoshida sampling scheme only permits element-wise

analysis of the covariance matrix, but as it operates with a 2-dimensional return vector, the pseudo-

aggregation algorithm guarantees that the pairwise synchronized sample size is

Na,b = iN (a, b)− i1(a, b) + 1 for any a, b ∈ 1, . . . , d,

where i1(a, b) and iN (a, b) are two functions defined as

i1(a, b) = 1{t(a)0 ≥t
(b)
0 }

+N(t
(b)
0 , a)1{t(a)0 <t

(b)
0 }

,

iN (a, b) = N(1, a)1{t(a)
N(1,a)

≤t(b)
N(1,b)

} +N(t
(b)
N(1,b), a)1{t(a)

N(1,a)
>t

(b)
N(1,b)

}.

The functions i1(a, b) and iN (a, b) state that the (potential) loss of information occurs only when one

asset, the fastest trading asset in this case, is not trading in the beginning and/or in the end of a
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trading day. All relevant information about the covariance between the two assets is, however, kept,

which may be interpreted as a maximum likelihood property, see Mykland (2010).

2.3 An Encompassing Additive Noise Model

The additional error induced by irregularly spaced and non-synchronous observations takes the fol-

lowing form for the refresh time sampling scheme:

∆pq,ti = ∆p∗q,ti + ũ
q,t

(q)
i

+ p∗
q,t

(q)
i

− p∗q,ti︸ ︷︷ ︸
uq,ti

− ũ
q,t

(q)
i−1

+ p∗q,ti−1
− p∗

q,t
(q)
i−1︸ ︷︷ ︸

uq,ti−1

(4)

where t
(q)
i ≤ ti ∀q, i, and a similar form for the Hayashi-Yoshida sampling scheme with uq,ti and uq,ti−1

defined slightly differently for the two assets a and b, respectively. As the synchronization error may

be treated as an additional source of MMS noise, the vector noise component of the synchronized

price vector must be specified to capture (cross) temporal dependence in the noise along with (cross)

contemporaneous and serial correlation with p∗ such that itself and additional microstructure features,

e.g. bid-ask bounce effects (Roll 1984), asymmetric information (Glosten & Milgrom 1985), and lead-

lag information transmission (Large 2007), are accounted for.

Assumption 3. Let the synchronized and jittered d-dimensional return vector be defined by the signal-

plus-noise model

∆pti = ∆p∗ti +Uti −Uti−1 , i = 1, . . . , n

where n,m ∈ N+ with n− 1 + 2m = N and m ∝ nξ, ξ ∈ (1/4, 1), the sample end-points are redefined

as pt0 = m−1
∑m

i=1 pti−1 and ptn = m−1
∑m

i=1 ptN−m+1, and pti = ptm+i for i ∈ [1, n− 1]. Further, let

Uti ∈ Rd be defined by the component model: Uti = eti + uti.

Assumption 4. ∃re ∈ N+ such that αe = O(1)1{|g|≤1}+O(|g|−(1+re+ε))1{|g|>1} ∈ R+ for some ε > 0.

Further, define the matrix of functions Θt(g) : t ∈ [0, 1]→ Rd×k and the vector of standard Brownian

motions, Bt ∈ Rk. Then, eti, i = 1, . . . , N , has representation

eti =
∞∑

g=−∞
Θ(ti, g) (∆ti−g)

−1/2 ∆Bti−g ,

which satisfies the following conditions: (1) d[W ,B]t = Υtdt where Υt ∈ Rk×k is continuous and

∀(t, w) ∈ [0, 1]×O ∃Λ2 > 0 : ‖Υt(w)‖ ≤ Λ2, (2) supti∈[0,1] ‖Θ(ti, g)‖ ≤ αe(g), (3) supt∈[0,1] ‖Θt(g)‖ ≤
αe(g), (4) for some Λ3 ∈ (0,∞), supg

∑N
i=1 ‖Θ(ti, g)−Θti(g)‖ ≤ Λ3, (5)

∑N
i=1

∥∥Θti(g)−Θti−1(g)
∥∥ ≤

αe(g), and (6) Υt is Ht-adapted, and Θ(t, g), and Θt(g) are both H1-measurable for all g.

Assumption 5. uti is a strictly stationary, (Gti)-measurable α-mixing sequence of random vectors with

mixing coefficient αu(h) such that ∃ru ∈ N+ :
∑∞

j=1 j
ruα(j) < ∞. Further, ∀i = 1, . . . , N : E[ui] = 0

and ∃v > 4 : supi E[‖ui‖v] <∞. Last, denote the h-th autocovariance Ω(uu)(h), the long run variance
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Ω(uu) =
∑

h∈Z Ω(uu)(h) and for j, k, l ∈ Z, let the third and fourth order cumulants, κ3(0, j, k) and

κ4(0, j, k, l), respectively, satisfy
∑

j,k∈Z |κ3(0, j, k)| <∞ and
∑

j,k,l∈Z |κ4(0, j, k, l)| <∞.

Assumption 6. The durations between observation times are defined as ti − ti−1 = Dn,i/n ∀i =

1, . . . , N , where Dn,i ∈ R+ satisfies: (1) Dn,i ⊥⊥ (etj ,p
∗
tk

)′ ∀j, i, k ∈ 1, . . . , N . (2) E[Ds
n,i|H1]

P−→ χs(ti),

0 < s ≤ 2 as n→∞, where χs(t) ∈ R+ is càdlàg, (Ht)-adapted and bounded. (3) V[Dn,i|H1]
P−→ %(ti) ∈

R+, which is càdlàg, (Ht)-adapted and bounded. (4) maxi=1,2,...,nDn,i = op(n
δ) for δ ∈ (0, 1).

Assumption 3 formalizes the synchronized return vector, the additive structure of the MMS noise

model, and defines the (for kernel-based estimators) well-known jittering of the end-points to avoid

end-effects influencing the asymptotic distribution. Assumption 4-5 is related to their counterparts

in Barndorff-Nielsen et al. (2011) and Ikeda (2011), and they are multivariate generalizations of the

framework in Varneskov (2013). The MMS noise is comprised of an exogenous component, uti , which

captures α-mixing dependence in the noise, and an endogenous component, eti , that allows for a

two-sided, non-degenerate endogenous correlation structure to capture, among others, asymmetric

lead-lag relations, de Jong & Nijman (1997), Voev & Lunde (2007) and Griffin & Oomen (2011), and

the correlations caused by sampling errors in (4) and/or its Hayashi-Yoshida sampling equivalent.

Even in the case where W and B are uncorrelated, Assumption 4 allows the noise to exhibit diurnal

heteroskedasticity, e.g. Kalnina & Linton (2008). Clearly, (4) and Assumption 4 illustrate that the

treatment of non-synchronicity related challenges is embedded in the problem of accounting for MMS

noise in a synchronized sample. Relative to the work of Barndorff-Nielsen et al. (2011) and Ikeda

(2011), the polynomial mixing rate is milder than the exponential mixing rate in Ikeda (2011), and the

endogenous noise model, which is inspired by the work of Dahlhaus & Polonik (2009) and Dahlhaus

(2009) on spectral analysis of locally stationary processes, generalizes the endogenous noise models

of the former two by allowing for increased persistence and greater flexibility in the noise generating

process. Assumption 6 is inspired by Phillips & Yu (2008). Instead of making explicit statements

about the arrival times of individual observations, it imposes a mild structure on the durations between

synchronized observations. The durations are allowed to be random, but exogenous, and they nest

exogenous Poisson arrivals as the latter implies maxi=1,2,...,nDn,i = Op(ln(n)). Note that the exogeneity

assumption is not strict as any endogenous effects are picked up by Assumption 4.

Remark 1. Let Ω
(ee)
t (h) =

∑∞
j=−∞Θt(j + h)Θt(j) and Ω

(ee)
t =

∑
h∈Z Ω

(ee)
t (h) denote the local

h-th autocovariance and long run covariance of et. Similarly, let Ω
(ep)
t (h) = Θt(h)Υt(Σ

1/2
t )′ and

Ω
(ep)
t =

∑
h∈Z Ω

(ep)
t (h) be the corresponding covariance quantities for et and ∆p∗t . Assumptions 1 and

4, then, imply supt∈[0,1] ‖Ω
(ee)
t (h)‖ ≤ O(αe(h)) and supt∈[0,1] ‖Ω

(ep)
t (h)‖ ≤ O(αe(h)), thereby ensuring∑

h∈Z |h|re‖Ω
(ee)
t (h)‖ <∞ and

∑
h∈Z |h|re‖Ω

(ep)
t (h)‖ <∞ such that the asymptotic mean and variance

of the estimators may be established. Note that none of these quantities are progressively measurable

with respect to Ht, but they are, however, measurable with respect to H1.

Remark 2. Preliminary bounds have been imposed on the jittering rate, ξ ∈ (1/4, 1), and the random

duration between observations, δ ∈ (0, 1). Both will be strengthened to derive the asymptotic results.
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Remark 3. From Definitions 1-2, it is apparent that refresh time samples and Hayashi-Yoshida sam-

ples are constructed similarly. The latter differs from the former, however, by replacing previous-tick

interpolation with next-tick interpolation at the end-points of observation increments. This impacts

the persistency of the MMS noise for the leading asset in Definition 2 as ∆pb,ti+1
and ∆pb,ti will be

positively correlated by construction. Depending on the strength of this correlation, the difference in

sample scheme may have detrimental finite sample effects on realized kernel estimators.

3 Flat-Top Realized Kernel Estimation

The generic structure of the proposed estimators follows the realized kernel framework,

RK(p) = Γ0(p) +

n−1∑
h=1

k

(
h

H

)
{Γh(p) + Γ−h(p)} (5)

where k(·) is a weighting function, H is the bandwidth, and Γh(·) is the realized covariation, which

for any two equally dimensioned vector processes X and Z is defined as

Γh(X,Z) =
n∑

i=|h|+1

∆Xti∆Z
′
ti−h

for h ≥ 0, (6)

Γh(X,Z) = Γ−h(X,Z)′ for h < 0, and Γh(X,X) = Γh(X). The realized covariance estimator

is defined within the realized autocovariation structure as RC = Γ0(p). In a continuous Brownian

semimartingale model, RC
P−→
∫ 1

0 Σtdt as supi ∆ti → 0 for n → ∞, and its asymptotic distribution

theory is studied in Barndorff-Nielsen & Shephard (2004). When MMS noise is included in the model,

RC = Γ0(p∗) + Γ0(U) + Γ0(p∗,U) + Γ0(U ,p∗) = Op(1) +Op(n) +Op(n
1/2),

using the Cauchy-Schwartz inequality. Hence, as the sampling frequency increases, the estimated

(co)variances explode. To circumvent this problem, the realized kernel estimators use appropriate

weighting of higher-order realized autocovariations Γh(p) h 6= 0 to reduce the MMS noise-induced

bias and variance, including the implicit effects of non-synchronicity, sufficiently to achieve consistent

estimators. The asymptotic and finite sample properties of the estimators in (5), however, are greatly

dependent on the choice of k(·). Consider the following two classes of kernel functions:

Definition 3. K is a set of functions k: R → [−1, 1]. Define k(j)(x) ≡ ∂jk(x)/∂xj, k
(2)
ã =

limx→0 |x|−ã(k(2)(0) − k(2)(x)) < ∞, ∃ã ≥ 1, q̃ = maxã∈N+{ã ≥ 1 : k
(2)
ã ∈ (−∞, 0)}, and let k(x)

satisfy the following five regularity conditions: (1) k(x) is twice continuously differentiable, k(2)(x)

is differentiable at all but a finite number of points. (2) k(x) = k(−x). (3) k(0) = 1, k(1)(0) = 0,

k(2)(0) < 0. (4) k(jj) ≡
∫∞

0 [k(j)(x)]2dx < ∞ for j = 0, 1, 2, and for j = 3 almost everywhere. (5)∫∞
−∞ k(x)e−ixλ ≥ 0, ∀λ ∈ R.
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Definition 4. Let c = H−γ for some γ ∈ [0, 1] and λ(x) ∈ K and define K∗ as the set of functions k:

R→ [−1, 1] characterized by k(x) = 1{|x|≤c} + λ(|x| − c)1{|x|>c}.

Barndorff-Nielsen et al. (2011) analyze realized kernels using the K class of kernel functions. These

are characterized by being second-order smooth, condition (1), where q̃ measures the smoothness

around the origin of k(2)(x). This excludes the Bartlett kernel, which, as Barndorff-Nielsen, Hansen,

Lunde & Shephard (2008) show, cannot achieve consistency faster than the suboptimal rate n1/6.

Conditions (3) and (5) guarantee the class of estimators to be positive semi-definite. The class of

flat-top realized kernels, K∗, differs from K by having a shrinking flat-top support [−c, c] in the

neighborhood of the origin, which, as will be laid out in the next subsections, is crucial for obtaining

rate-optimal estimators.

3.1 Motivation for Flat-Top Kernels

The choice of kernel function impacts the asymptotic distribution of the realized kernels. To see

this, define α(h) = max(αe(h), αu(h)) and r = min(re, ru) ∈ N+, and consider, initially, the first two

H1-conditional moments for k(x) ∈ K.

Lemma 1. Let Assumptions 1-6 be satisfied and let H ∝ nν , ν ∈ (1/3, 1), δ ∈ (0, 1 − ν), ξ ∈
(1/4, 1/(2 + δ)), and k(x) ∈ K with q̃ ≤ r, then the first two H1-conditional moments are:

E[RK(p)|H1] =

∫ 1

0
Σtdt+ nH−2|k(2)(0)|Ω + nH−(2+q̃)k

(2)
q̃

∑
h∈Z
|h|q̃Ω(h) +Op

(
n1/2H−2

)
+ op(1),

V[RK(p)|H1] = 4Hn−1k(00)Q + 4nH−3k(22)N + 8H−1k(11)C + op(1),

where, if Nd is the symmetrizer matrix (see Appendix A.1), Ω(h) = Ω(uu)(h) +
∫ 1

0 Ω
(ee)
t (h)χ−1

1 (t)dt

and Ω =
∑

h∈Z Ω(h) is the h-th average autocovariance and long run variance of U , and

Q =

∫ 1

0
(Σt ⊗Σt)χ2(t)χ−1

1 (t)dt,

N = Ω(uu) ⊗Ω(uu) +

∫ 1

0

(
Ω

(ee)
t ⊗Ω

(ee)
t

)
χ−1

1 (t)dt+ 2Nd

(
Ω(uu) ⊗

∫ 1

0
Ω

(ee)
t χ−1

1 (t)dt

)
,

C = Nd

(∫ 1

0

(
Σt ⊗

(
Ω(uu) + Ω

(ee)
t

)
χ1(t) + 2Ω

(ep)
t ⊗Ω

(ep)
t

)
χ−1

1 (t)dt

)
.

From Lemma 1, it follows that the MMS noise biases the realized kernel estimator of Barndorff-

Nielsen et al. (2011) such that its bandwidth cannot be set H ∝ n1/2, which otherwise balances the

contributions from discretization (Q), MMS noise (N ), and cross-products (C) to the asymptotic

covariance matrix, thus preventing the estimator from achieving the optimal rate of convergence, n1/4.

Instead, the bandwidth must be over-smoothened (ν > 1/2) to eliminate the dominant bias component,

which, as a consequence, leads to the bias-variance balancing choice H ∝ n3/5 and a suboptimal rate
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of convergence, n1/5. Non-synchronicity related problems such as lead-lag relations, sampling errors,

etc. impact both the bias and variance of the realized kernels through Ω
(ee)
t , Ω

(ep)
t , and χs(t). Thus,

an estimator which corrects the leading (and smaller order) bias will simultaneously account for both

MMS noise and non-synchronicity. To motivate the flat-top correction, rewrite the contribution of U

on the asymptotic distribution as

n∑
i=1

∆Uti∆U
′
ti +

n−1∑
h=1

k

(
h

H

) n∑
i=h+1

(
∆Uti∆U

′
ti−h

+ ∆Uti−h∆U ′ti

)

≈ n

H2
a(0)

n∑
i=1

UtiU
′
ti +

n

H2

n−1∑
h=1

a

(
h

H

)
1

n

n∑
i=h+1

(
UtiU

′
ti−h

+Uti−hU
′
ti

)
(7)

where a(h/H) is the finite sample analog of −k(2)(h/H) and the approximation error is due to end-

effects of order Op(m
−1). Clearly, (7) shows that the problem of estimating quadratic covariation

resembles that of spectral analysis (or HAC estimation), and, more importantly, that extending the

flat-top region of the kernel function by c = H−γ exactly eliminates the bias-contribution from the

first H1−γ autocovariances, Ω(h), whose implications are formalized in the following lemma:

Lemma 2. Let Assumptions 1-6 be satisfied and let H ∝ nν , ν ∈ (1/3, 1), δ ∈ (0, 1 − ν), ξ ∈
(1/4, 1/(2 + δ)), and k(x) ∈ K∗, then the first two H1-conditional moments are:

E[RK(p)|H1] =

∫ 1

0
Σtdt+Op

(
α
(
H1−γ)nH−2

)
+Op

(
αe
(
H1−γ)n1/2H−1

)
,

V[RK(p)|H1] = 4Hn−1
(
λ(00) +H−γ

)
Q + 4nH−3λ(22)N + 8H−1λ(11)C + op(1).

Lemma 2 shows that if γ ∈ (0, 1), the flat-top realized kernels may have H ∝ n1/2 and still

eliminate both the dominant and smaller order bias components asymptotically with no implications

for the asymptotic variance, thus enabling consistency at the optimal rate, n1/4. The finite sample

bias and variance, however, depends on the choice of γ and, r, the smoothness of the MMS noise.

Remark 4. The bounds on jittering ξ ∈ (1/4, 1/(2 + δ)) and the random duration δ ∈ (0, 1 − ν)

sharpen similar bounds in Barndorff-Nielsen et al. (2011) and Ikeda (2011), who do not treat the end-

averaged no-arbitrage returns, ∆p∗t1 and ∆p∗tn as triangular arrays, and they prevent end-effects from

impacting the asymptotic distribution. While jittering and end-effects are important for the theoretical

analysis, (Barndorff-Nielsen et al. 2011, Section 6.4) dismiss their practical relevance.

Remark 5. The flat-top kernel functions in K∗ are subtly different from the flat-top kernels analyzed

by Politis (2011) in the context of spectral analysis, who fixes c ∈ (0, 1]. As seen from Lemma 2,

fixing c leads to a strictly larger asymptotic variance of RK(p). Furthermore, Barndorff-Nielsen et al.

(2008) consider kernel functions from K∗ with γ = 1 under the assumption that the MMS noise is

i.i.d. and exogenous. However, as seen from Lemma 2, these are inconsistent in the present setting

unless ν > 1/2, similar to kernel functions from K.
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3.2 Central Limit Theory

The asymptotic elimination of the dominant bias in Lemma 1 has great implications for the statistical

properties of the flat-top realized kernels, which are summarized in the following theorem, where, to

avoid confusion from this point on, RK∗(p) is used to denote (flat-top) realized kernels with k(x) ∈ K∗.

Theorem 1. Let Assumptions 1-6 be satisfied and let H = κn1/2 where κ > 0, δ ∈ (0, 1/2), ξ ∈
(1/4, (3/8)/(1 + δ/2)), and γ ∈ (0, (1/2 + r)/(1 + r)), and define B(λ, κ) = limn→∞ n

1/2V[RK∗(p)|H1],

then

n1/4

(
RK∗(p)−

∫ 1

0
Σtdt

)
ds(H1)→ MN (0,B(λ, κ)) .

Here,
ds(H1)→ stands forH1-stable convergence and“MN”abbreviates a mixed Gaussian distribution,

see Appendix A.1 for a definition and, e.g., (Barndorff-Nielsen et al. 2008, Appendix A) and Podolskij

& Vetter (2010) for details. Theorem 1, and similarly for Lemmas 1-2, generalizes the univariate

result in (Varneskov 2013, Theorem 1) to a multivariate setting, which allows for non-synchronous

trading, random durations between observations and asymmetric lead-lag dependencies that impact

the asymptotic variance of the estimators through Q, N , and C. It shows that by imposing suitable

conditions on the flat-top shrinkage, γ, the flat-top realized kernels are consistent, asymptotically

unbiased and mixed Gaussian at the optimal rate of convergence, n1/4. The lower bound, γ > 0,

prevents the asymptotic variance from being inflated (see Lemma 2), while the upper bound, γ < (1/2+

r)/(1 + r), which follows from scaling the remaining bias of order α
(
H(1−γ)

)
= O

(
H−(1+r+ε)(1−γ)

)
by n1/4, guarantees the flat-top realized kernels to be asymptotically unbiased and consistent at the

optimal rate. It is exactly the slower flat-top shrinkage relative to the realized kernels in Barndorff-

Nielsen et al. (2008, 2011), which provides the stronger theoretical result, n1/4 vs. n1/5-consistency.

The decomposition of the asymptotic variance, B(λ, κ), is similar to the decomposition in (Barndorff-

Nielsen et al. 2008, Theorem 4), who consider the special case with d = 1, and i.i.d. and exogenous

MMS noise. This implies that bandwidth selection (see Section 5.2 for details) and efficiency analysis

of the flat-top realized kernels mimics its counterparts in (Barndorff-Nielsen et al. 2008, Sections 4.3-

4.5), see also (Ikeda 2013, Section 3.3) and (Varneskov 2013, Section 3.2). Most importantly, B(λ, κ)

illustrates that the intrinsic efficiency of λ(x) controls the asymptotic efficiency of the flat-top realized

kernels, and for the parametric version of the univariate problem (d = 1, constant volatility and i.i.d.

MMS noise), setting λ(x) = (1 + x)e−x in conjunction with an optimally selected bandwidth allows

the flat-top realized kernels to achieve the Cramér-Rao efficiency bound.

Remark 6. Ikeda (2011) provides an inference strategy for the two-scale realized kernel (discussed in

Section 5.5) based on the subsampling scheme of Kalnina (2011), which is also applicable for flat-top

realized kernels: (1) Divide the n synchronized observations into Ln = bn/Mnc subsamples of successive

observations with size Mn, where the l-th subsample is given by observations i = (l − 1)Mn, · · · , lMn.

(2) Let lJn denote a smaller, centered subsample of lMn, and define the flat-top realized kernel for

subsample l of size kn as RK∗(p, l, kn) for k = (J,M) where the bandwidth is selected as H = κk
1/2
n .
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(3) Let ∆l,k = n−1
∑kn

i=1Dn,(l−1)kn+i be the time span covered by a given subsample and define the

d2 × d2 flat-top asymptotic variance (FTAV) estimator as

FTAV (p) = J1/2
n

Ln∑
l=1

{Vl,n ⊗ Vl,n}∆l,M , Vl,n = ∆−1
l,JRK

∗(p, l, Jn)−∆−1
l,MRK

∗(p, l,Mn).

If the conditions of Theorem 1 are satisfied, where the jittering mk ∝ kξn occurs in all subsamples,

Mn → ∞, Jn → ∞, Jn/Mn = o(1), (JnMn)/n = o(1), then FTAV (p)
P−→ B(λ, κ) for some κ > 0

follows from (Ikeda 2011, Proposition 1), providing a feasible central limit theory.

3.3 Element-wise Estimation of the Covariance Matrix

The theoretical results presented so far are valid for any finite d in a synchronized sample. However, the

Hayashi-Yoshida sampling scheme is no longer valid when d > 2. Additionally, the loss of information

from refresh time sampling may potentially be great when d is large. Hence, an alternative strategy

is to estimate the d(d + 1)/2 unique elements of the covariance matrix separately. Let na,b, Ha,b

and RK∗a,b(p) denote the (jittered) synchronized sample size, bandwidth and flat-top realized kernel,

respectively, for any pair a, b ∈ 1, . . . d, and define the element-wise flat-top realized kernel estimator

as

ERK∗(p) =


RK∗1,1(p) RK∗1,2(p) . . . RK∗1,d(p)

RK∗1,2(p) RK∗2,2(p) . . . RK∗2,d(p)
...

...
. . .

...

RK∗1,d(p) RK∗2,d(p) . . . RK∗d,d(p)

 . (8)

The element-wise flat-top realized kernels, using pair-wise refresh time sampling, is similar to the

composite realized kernels of Lunde, Shephard & Sheppard (2011). They differ, however, by not

splitting covariance estimation into separate estimation of volatilities and correlations and by using

flat-top realized kernels, k(x) ∈ K∗, instead of realized kernels, k(x) ∈ K.

Corollary 1. Let the conditions of Theorem 1 hold, n/na,b → k2
a,b ∈ (0, 1], Ha,b = κa,bn

1/2
a,b , and

Ba,b(λ, κa,b) ∈ R+ be the asymptotic variance, defined via B(λ, κ), whose exact form is provided in

Appendix A.2, then the (a, b)-th element of ERK∗(p) has the following marginal distribution

n1/4

(
RK∗a,b(p)−

∫ 1

0
Σa,b
t dt

)
ds(H1)→ MN (0, ka,bBa,b(λ, κa,b)) .

Proof. Follows directly from Theorem 1.

Corollary 1 shows that all estimated elements have optimal asymptotic properties (asymptotically

unbiased, consistent at the optimal rate, and reaches the Cramér-Rao efficiency bound for the para-

metric problem) as a consequence of using k(x) ∈ K∗, which is not the case for the composite realized

kernels, whose elements have asymptotic properties characterized by Lemma 1. Furthermore, the
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element-wise flat-top realized kernel estimator may potentially have two sources of finite sample ef-

ficiency gains relative to the flat-top realized kernels. The first is through element-wise tailoring of

the bandwidth (hence through κa,b, see Section 5.2 for details). The second is from the additional

information maintained by doing pair-wise synchronization instead of global synchronization (hence

through ka,b). In fact, the diagonal elements are estimated using all available observations.

4 Finite Sample Adjustments and Applications

Despite their attractive asymptotic properties, neither the flat-top realized kernels nor the element-

wise version are guaranteed to produce positive semi-definite estimates of quadratic covariation, which,

in its strict form, is important for many non-linear transformations, see e.g. Section 4.2. As this is

a recurring problem among rate-optimal estimators, cf. the bias-corrected pre-averaging estimator

in Christensen et al. (2010) and the two-scale realized kernel in Ikeda (2011), Section 4.1 provides a

simple correction to ensure positive definiteness of such estimators.

4.1 A Positive Definite Projection

The positive definite projection is based a unitary decomposition RK∗(p) = M ′KM where M is

a matrix of orthonormal eigenvectors and K = diag(k1, . . . , kd) is a diagonal matrix of eigenvalues.

Let K̂ = diag(k̂1, . . . , k̂d) where k̂q = max(kq, εn), q = 1, . . . , d, for some εn = o(n−1/4) ∈ R+ be a

diagonal matrix of truncated eigenvalues, and use this to define a positive definite flat-top realized

kernel estimator as RKε(p) = M ′K̂M . The optimal asymptotic properties of RK∗(p) comes with

the sacrifice of the positive semi-definiteness, and while incidents of negative definite estimates may

be rare due to the fast rate of convergence, n1/4, the use of K̂ provides an easy fix of this event.

Theorem 2. Let the conditions of Theorem 1 hold and assume
∫ 1

0 Σtdt is positive definite, then

RKε(p) = RK∗(p) + op(n
−1/4).

Theorem 2 differs notably from (Politis 2011, Corollary 4.1), who studies a similar eigenvalue

truncation for spectral estimates and shows that while the truncation does not alter the rate of con-

sistency, it may change the asymptotic distribution, i.e. his result replaces op(n
−1/4) with Op(n

−1/4).

The stronger result in Theorem 2 is attributed to the flat-top realized kernels being asymptotically

unbiased, which is not the case in Politis (2011). In fact, Theorem 2 may be generalized:

Theorem 3. Under the conditions of Theorem 2, let V ∈ Rd×d be an estimator satisfying n1/4(V −∫ 1
0 Σtdt)

ds(H1)→ MN(0,B(V )) where B(V ) ∈ R+ is H1-measurable and bounded, and let V ε differ

from V only by having its eigenvalues truncated by εn = o(n−1/4) ∈ R+, then V ε = V + op(n
−1/4).

Proof. Same as for Theorem 2.
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Theorems 2-3 show that asymptotically unbiased and rate-optimal estimators of quadratic covari-

ation may also enjoy positive definiteness via a simple asymptotically negligible correction of the

eigenvalues. Hence, the conjecture of (Ikeda 2011, p. 15) that (Politis 2011, Corollary 4.1) may be

applied directly in the context of quadratic covariation estimation overstates the impact of eigenvalue

truncation. While the selection of εn = o(n−1/4) ∈ R+ is asymptotically irrelevant, it may have fi-

nite sample implications not only for the estimates of quadratic covariation, but also for non-linear

transformations thereof, and its impact is, thus, analyzed in the simulation study.

4.2 Non-Linear Transformations

Two applications in financial economics that depend on transformations of quadratic covariation esti-

mates are the realized correlation and realized regression coefficients, respectively,

ρab =

(∫ 1

0
Σa,a
t dt

∫ 1

0
Σb,b
t dt

)−1/2 ∫ 1

0
Σa,b
t dt, βab =

(∫ 1

0
Σa,a
t dt

)−1 ∫ 1

0
Σa,b
t dt.

If asset a is the market portfolio, then βab measures the average market beta over a period [0, 1],

e.g. a trading day, and may be used to price risk in a one-factor conditional CAPM model, whose

importance in financial economics has been highlighted by Ferson & Harvey (1991), Jagannathan &

Wang (1996), and Andersen, Bollerslev, Diebold & Wu (2006). Define RKε
ab as the (a, b)-th element

of RKε(p), then ρab and βab may be estimated robustly against non-synchronicity and MMS noise as

ρRK
ε

ab = (RKε
aaRK

ε
bb)
−1/2RKε

ab and βRK
ε

ab = (RKε
aa)
−1RKε

ab, respectively.

Corollary 2. Under the conditions of Theorem 2, then for a, b ∈ 1, . . . d,

n1/4
(
ρRK

ε

ab − ρab
) ds(H1)→ MN(0,Bρab(λ, κ)),

n1/4
(
βRK

ε

ab − βab
) ds(H1)→ MN(0,Bβab(λ, κ)),

where Bρab(λ, κ) and Bβab(λ, κ) are provided in Appendix A.3.

Proof. Follows by Theorems 1-2 in conjunction with the delta method.

The realized correlation and regression coefficient estimates inherit optimal asymptotic properties

from the flat-top realized kernels, thereby highlighting the importance of correcting for the bias caused

by MMS noise and non-synchronicity when estimating quadratic covariation to avoid (Epps 1979)-type

biases in non-linear transformations thereof as the sampling interval progressively shrinks. A feasible

inference strategy for these quantities is directly available by applying the procedure in Remark 6.

5 Simulation Study

This section presents a simulation study to uncover how the choice of sampling scheme, refresh time

sampling vs. Hayashi-Yoshida sampling, impacts the properties of the MMS noise in a synchronized
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sample, which sampling scheme to choose when implementing the element-wise flat-top realized kernel,

how eigenvalue truncation impacts non-positive semi-definite estimators, and, finally, it studies the

relative finite sample performance of the flat-top realized kernels in comparison with other rate-optimal

estimators in the literature and the realized kernel.

5.1 Simulation Design

The simulation design follows Barndorff-Nielsen et al. (2011) and Christensen et al. (2010). A standard

6.5-hour trading day on the NYSE is normalized to the unit interval, t ∈ [0, 1], such that 1 second

corresponds to an increment of size 1/23400. The efficient price diffusion is, then, simulated by a

d-variate stochastic volatility model,

dp∗q,t = µ1dt+ σq,tdVq,t, where σq,t = exp(β0 + β1fq,t),

dfq,t = µ2fq,tdt+ dWq,t, dVq,t = ϕdWq,t +
√

1− ϕ2dBt and Wq,t ⊥⊥ Bt,

for q = 1, . . . , d. Here, Bt and Wq,t captures common and idiosyncratic uncertainty, respectively,

and ϕ measures the leverage between p∗q,t and fq,t. The parameter values are set in accordance with

the literature as (µ1 = 0.03, β1 = 0.125, µ2 = −0.025, ϕ = −0.3, β0 = β2
1/(2µ2))′, and the process

is restarted on each “trading day” by drawing the initial observation from its stationary distribution

fq,t ∼ N(0,−1/(2µ2)). To capture the effects of non-synchronicity, the observation times t
(q)
i , i =

1, . . . , N(1, q), are modeled by q independent Poisson processes with ζ = (ζ1, . . . , ζd)
′ controlling the

average duration between observations. Further, let η̃
q,t

(q)
i

∼ N(0, ωq,η), ωq,η = ψ2(N−1
∑N

i=1 σ
4
q,t)

1/2,

be a sequences of i.i.d. normal variables, whose variance is determined by the noise-to-signal ratio, ψ2,

formally introduced in the next subsection. For all simulations, however, ψ2 = 0.005 is fixed, which

is consistent with the noise-to-signal ratios measured in Hansen & Lunde (2006) for DJIA stocks and

in the empirical analysis below. The MMS noise is added through (3) using three data generating

processes: (DGP 1) ũ
q,t

(q)
i

= φqũq,t(q)i−1

+ η̃
q,t

(q)
i

where φq < 0 ∀q, (DGP 2) ũ
q,t

(q)
i

= η̃
q,t

(q)
i

+ θqη̃q,t(q)i−1

where θq < 0 ∀q, and (DGP 3) is similar to DGP 1 with φq > 0 ∀q. Negative AR(1) processes are

consistent with the findings of (Aı̈t-Sahalia et al. 2011, Figure 4) and (Ikeda 2013, Figure 2), positive

AR(1) processes with the strategic learning models discussed and analyzed in Diebold & Strasser

(2012) and/or clustering of order flow, see the discussions in Bandi & Russell (2006) and Ubukata &

Oya (2009), and, finally, the impact of negative MA(1) and AR(1) processes is similar, but the former

has shorter lasting effects on the efficient prices process, see also the discussion in Hansen, Large &

Lunde (2008). The three DGP’s generate non-trivial dependence in the observable log-returns, which

is consistent with the empirical study. All simulations are performed using 1000 replications.

5.2 The Choice of Kernel and Tuning Parameters

Optimal bandwidth selection has been studied in the univariate case for asymptotically unbiased and

rate-optimal kernel-based estimators with variance of the form (8) and MMS noise models of varying
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complexity, see Barndorff-Nielsen et al. (2008), Ikeda (2013), and Varneskov (2013). Inspired by this,

the advocated bandwidth selection method is of the form, H = κ∗n1/2,

κ∗ = f (ψq)

√√√√λ(11)

λ(00)

(
1 +

√
3λ(00)λ(22)

(λ(11))2

)
, ψ2

q =
Ωq,q∫ 1

0 Σq,q
t dt

, (9)

where, e.g., f (ψq) = minq=1,...,d ψq, f (ψq) = maxq=1,...,d ψq or f (ψq) = d−1
∑d

q=1 ψq, i.e. the

global bandwidth is a function of the univariate mean squared error (MSE) optimal bandwidths

using two approximations Q =
∫ 1

0 Σtdt ⊗
∫ 1

0 Σtdt and eti = 0, ∀i. The first approximation pro-

vides an upward Jensen’s inequality bias in the noise-to-signal ratio, ψ2
q , while the second, exclud-

ing diurnal heteroskedasticity and endogeneity in the MMS noise, provides a downward bias in κ∗,

(Varneskov 2013, Corollary 1). To accommodate these features, and following the empirical recommen-

dations of Barndorff-Nielsen et al. (2009, 2011), Ωq,q and
∫ 1

0 Σq,q
t dt may, then, be estimated conserva-

tively to balance the negative bias. Hence, Ωq,q is estimated using the upward biased, n1/3-consistent

estimator Ω̂(p, q) = (|λ(2)|nG−2)−1RKq,q(p) of Ikeda (2013) where G = n1/3 is the bandwidth, and a

pilot estimate of
∫ 1

0 Σq,q
t dt is provided by the 20-minute sampled, subsampled and averaged realized

variance estimator RCsub20,q(p, 1), which, in the d-variate case may be written as

RCsub20 (p, d) =
1

K

K∑
k=1

18∑
i=1

∆ptk+K(i−1)
∆p′tk+K(i−1)

(10)

where K = 1200 ensures the maximal degree of subsampling. Sparse sampling ameliorates the effects

of MMS noise, and subsampling increases efficiency of the estimator. Additionally, the rule f (ψq) =

maxq=1,...,d ψq is selected along with the Parzen kernel,

λ(x) = (1− 6x2 + 6|x|3)1{0≤|x|≤1/2]} + 2(1− |x|)31{1/2≤|x|≤1]},

for all kernel-based estimators. Last, γ, is fixed to balance the bias-variance tradeoff in Lemma 2.

If r = q̃, (Varneskov 2013, Corollary 2) shows that γ = (1/2 + q̃)/(3/2 + q̃) = 3/5 is a conservative

MSE optimal flat-top shrinkage, which will be used throughout along with γ = 2/5 for robustness.

The latter places higher emphasis on bias-reduction. Notice, the Parzen kernel has finite support on

x ∈ [−1, 1], which implies the support of the flat-top realized kernel is x ∈ [−(1 + c), 1 + c].

5.3 Synchronization Effects and Return Autocorrelation

The impact of applying either refresh time sampling or Hayashi-Yoshida sampling to synchronize the

“raw”series is assessed by examining the properties of the synchronized time series for the leading asset

using the configuration, d = 2, ζ = (5, 30)′, and letting all persistence parameters in the noise DGP’s

1-3 be ±1/2. The choice of ζ corresponds to observing the two assets every 5, respectively, 30 seconds

on average, suggesting that the properties of the synchronized series for the slowest trading asset are
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almost unaffected by scheme since all observations are kept (on average). The time series properties

for the leading asset is examined by estimating the autocorrelation function (ACF), the short-run

variance of the MMS noise as ω̂ = (2n)−1
∑n

i=1 ∆p2
1,ti

, and the long run variance by Ω̂(p, 1) = Ω̂. As

the latter is an upward biased estimator, the long run variance of the MMS noise is also estimated by

a bias-corrected version Ω̂BC(p, 1) = Ω̂BC , (Ikeda 2011), which in the multivariate case is defined as

Ω̂BC(p, d) = (1− τ2)−1
(
|λ(2)(0)|nG−2

)−1
(RK(p, G)−RK(p, H)) (11)

where τ = G/H, H = κn1/2 and G = nν̃ for ν̃ ∈
[
(2q̃ + 1)−1, 1/2

]
. Here, ν̃ = 1/2 is selected to

emphasize bias reduction. The ACF’s and MMS noise-variance estimates are presented in Figure 1

and the top three rows of Table 1, respectively.

(Figure 1 and Table 1 around here)

A distinct pattern emerges in Figure 1. Both synchronization schemes seem to add positive persis-

tence to the series, which is especially pronounced for Hayashi-Yoshida sampling. When compared

to the properties of a raw series with AR(1) noise and increasing, positive persistence parameters, a

similar pattern emerges as φ approaches unity. The patterns are not expected to perfectly coincide

as synchronization errors is a form of endogenous MMS noise, while the latter is exogenous, but the

comparison merely serves as an illustration. As alluded to in Remark 3, the stronger persistence

pattern for the Hayashi-Yoshida sampling scheme is not surprising as next-tick interpolation at the

end-points generates positive persistence by construction. The long run noise-variance estimates in

Table 1 elaborate on these results by showing extremely upward biased estimates from Ω̂ and unsta-

ble, even negative, estimates from Ω̂BC when the series have been synchronized using Hayashi-Yoshida

sampling, suggesting it may be favorable to use refresh time sampling for kernel-based estimators.

To validate this conjecture, the remaining parts of Table 1 show the relative bias and root mean

squared error (RMSE) of the estimated covariance between asset 1 and 2, Σ12 =
∫ 1

0 Σ1,2
t dt, using flat-

top realized kernels in conjunction with either refresh time sampling or Hayashi-Yoshida sampling.

Further, it shows the relative bias and RMSE of Σε
12, the off-diagonal element from a correspond-

ing element-wise estimate of the whole covariance matrix whose eigenvalues have been truncated by

εn = n−1/2 to ensure positive definiteness. The specific choice of εn preludes the conclusion from the

next subsection. A few remarks before describing the results. First, bandwidth selection for the diag-

onal elements of an element-wise covariance matrix estimator collapses to a univariate selection rule.

Second, the bandwidth for Hayashi-Yoshida sampled series is selected using f (ψq) = minq=1,...,d ψq

since Ω̂ is extremely upward biased thereby suggesting that f (ψq) = maxq=1,...,d ψq may suffer from

similar distortions. Changing f (ψq), however, does not alter the conclusions. Last, eigenvalues are only

truncated for negative semi-definite estimates. This is a special case of the truncation rule in Section

4.1, which will be used throughout. Table 1 shows that refresh time sampling delivers the best results,

thus verifying the conjecture made above and in Remark 3 that the positive persistence generated by

Hayashi-Yoshida sampling has detrimental finite sample effects on kernel-based estimators.
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5.4 The Impact of Truncating Eigenvalues

While Section 4.1 provides a simple correction to ensure positive definiteness of asymptotically unbiased

and rate-optimal estimators, the choice of truncation level εn = o(n−1/4) ∈ R+ offers little guidance

for practical implementation. To investigate said choice, the simulation study is expanded to three

assets, d = 3, where DGP’s 1 and 3 are implemented with persistence parameters (±0.3,±0.4,±0.5)′

and DGP 2 with (−0.4,−0.5,−0.7)′. This setup is fixed in the remaining parts of the simulation study

whereas the level of non-synchronicity, ζ = (ζ1, ζ2, ζ3)′, is varied. Here, ζ = (5, 10, ζ3)′, ζ3 = (20, 30)′,

to vary the fraction of kept data, ϑ. From the comparison of estimators in Section 5.6, the element-wise

flat-top realized kernel with γ = 3/5, ERK∗3/5, shows by far the most occurrences of negative semi-

definite estimates, and is, thus, used as the subject for this investigation. Table 2 shows the number

of binding eigenvalue truncations for ERK∗3/5, the mean relative RMSE of the unique elements of the

quadratic covariation matrix for various choice of εn, and similarly for four non-linear transformations

thereof, namely the correlations and betas fixing asset 1 as the base asset.

(Table 2 around here)

Table 2 shows that the mean relative RMSE of the unique elements of the quadratic covariation matrix

are decreasing as εn decreases, whereas it starts to increase for the non-linear transformations when

εn = o(n−1/2) since the matrix becomes exceedingly unstable as its smallest eigenvalue approaches

zero. Hence, the preferred truncation rule is εn = n−1/2, which seems to strike a balance between the

two counteracting effects.

5.5 Related and Competing Estimators

The class of flat-top realized kernel estimators provides efficiency gains relative to the realized kernels.

However, there are other noteworthy alternatives in the rapidly expanding literature, which provide

interesting comparisons. Two of these are the two-scale realized kernel (Ikeda 2011) and the pre-

averaged realized covariance estimator (Christensen et al. 2010) where a new bias-correction is proposed

for the latter to accommodate more general forms of MMS noise (than i.i.d. dependence).

5.5.1 The Two-Scale Realized Kernel

The two-scale realized kernel (TSRK) shares the generic structure of the realized kernels, but uses a

generalized jack-knife kernel function,

k(x, τ) =
(
1− τ2

)−1 {
λ(x)− τ2λ(x/τ)

}
,

for λ(x) ∈ K, where, again, τ = G/H, H = κn1/2 and G = nν̃ for ν̃ ∈
[
(2q̃ + 1)−1, 1/2

]
. The

asymptotic similarities and differences between the TSRK and flat-top realized kernels are studied by

Varneskov (2013) in the univariate case for the selections ν̃ =
(
(2q̃ + 1)−1, 1/2

)′
, which emphasizes
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MSE and bias reduction, respectively. More generally, the former is conveyed by a conditional moment

comparison of Lemma 2 against (under Assumptions 1-6 and q̃ ≤ r)

E[TSRK(p)|H1] =

∫ 1

0
Σtdt+ nH−2G−q̃k

(2)
q̃

∑
h∈Z
|h|q̃Ω(h) + op(1)

plim
n→∞

n1/2V[TSRK(p)|H1] = lim
n→∞

B(Φ, κ)

where Φ(jj)(τ) = λ(jj) + fj(τ), j = 0, 1, 2, fj(τ) ∈ R+ and fj(τ) = O(τ2). Hence, the two estimators

differ in terms of finite sample bias and variance, and potentially even in terms of asymptotic variance.

By selecting the flat-top shrinkage suitably as γ ∈ (0, (1 + r − 2ν̃q̃)/(1 + r)), the flat-top realized

kernels achieve a higher-order advantage in terms of bias reduction. The difference in terms of finite

sample variance, however, depends on the finite sample inflation of the characteristic parameters of

orders O(n−γ/2), see Lemma 2, O(n2(ν̃−1/2)), and on the relative weights of Q, N , and C. However,

if ν̃ = 1/2 such that the TSRK places maximal emphasis on bias reduction, fj(τ) = O(1) ∀j = 0, 1, 2,

implying that the flat-top realized kernels have a strictly lower asymptotic variance.

5.5.2 Pre-averaged Realized Covariance

Following Christensen et al. (2010), let M = θ̄nν̄ , ν̄ ∈ (0, 1), be a sequence of integers, g(x) =

min(x, 1− x) a non-zero weight function, and define the modulated realized covariance estimator,

MRC(p) =
n−M∑
i=0

p̄ti p̄
′
ti , p̄ti =

M∑
j=1

g

(
j

M

)
∆pti+j .

Then, under Assumptions 1-3, 5, 6, and eti = 0 ∀i, it follows by (Varneskov 2013, Lemma 2) in

conjunction with the Cramér-Wold Theorem, e.g. (Davidson 2002, Theorem 25.6), that for ν̄ = 1/2

1

$2θ̄n1/2
MRC(p)

P−→
∫ 1

0
Σtdt+

$1

θ̄2$2
Ω, Ω = Ω(uu), (12)

where $1 =
∫ 1

0 [g(1)(x)]2dx and $2 =
∫ 1

0 [g(x)]2dx. The modulated realized covariance estimator

successfully balances the asymptotic orders of ∆p∗ and ∆U such that its consistency at the optimal

rate, the choice of ν̄ = 1/2 is analogous to ν = 1/2, depends only on a bias-correction. Now, careful

inspection of (Ikeda 2011, Lemmas 4-9) shows that under the same conditions and as long as q̃ ≤ r,

the bias-corrected estimator of the long-run MMS noise-variance has the following properties

Ω̂BC(p, d) = Ω +Op(G
−q̃) + ZN (1 + op(1)) (13)

where ZN
ds(H1)→ MN(0, limn→∞B(N )), B(N ) = Op(Gn

−1) + Op(HG
4n−3) + Op(G

3n−2). Hence, a

generally corrected pre-averaged realized covariance estimator, PARC(p), readily follows by combining
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(12) and (13). Since it is based on a similar jack-knife bias-correction as the TSRK and since the weight

function g(x) = min(x, 1− x) is equivalent to using a Parzen kernel, see Christensen et al. (2010), the

finite sample performances of PARC(p) and TSRK(p) are expected to be similar. Note, however, that

(12) excludes an endogenous noise component. Including the latter will necessitate a more complicated

bias-correction that depends on Ω(ep).

5.6 Estimates of Quadratic Covariation and Non-linear Transformations

The class of (element-wise) flat-top realized kernel estimators is compared to the subsampled realized

covariance estimator using 20-minute intervals, RCsub20 (p, 3), the realized kernel with a bandwidth

H = 3.51f(ψ)n3/5 where f(ψ) is computed as in Section 5.2, the TSRK, which is implemented with

bandwidths H = max(κ∗n1/2, G+1), G = nν̃ , ν̃ = (1/3, 1/2)′, and the pre-averaged realized covariance

(PARC) estimator using θ̄ = 1 and the same configuration as the TSRK for the jack-knife bias-

correction. This follows along the lines of the respective authors. Neither the TSRK nor the PARC

estimator is guaranteed to be positive semi-definite. However, Theorem 3 shows that the advocated

truncation rule of Section 5.4 may be applied. The relative bias and RMSE of the estimated elements

of the quadratic covariation matrix are shown for two non-synchronous configurations, ζ = (5, 10, 20)′

and ζ = (3, 3, 30)′ in Tables 3 and 4. Note that the liquidity and data loss for the two portfolios

resemble the empirical analysis below.

(Tables 3 and 4 around here)

Tables 3 and 4 feature several noteworthy observations. First, RCsub20 (p, 3) performs worst by all

measures. Second, Table 3 shows that both flat-top realized kernels estimate all elements of the

covariance matrix with smaller bias and RMSE compared to the realized kernel, and that the biggest

efficiency gains are from the specification with γ = 3/5. This illustrates the gains from the flat-top

bias-correction, thus complementing the asymptotic results in Lemmas 1-2 and Theorem 1. Table 4

shows similar results, though slightly worse for the shrinkage γ = 2/5. The relative emphasis on bias

and variance for flat-top realized kernels with γ = 3/5 and γ = 2/5 are as expected from Lemma 2.

Third, the TSRK and the PARC estimator perform similarly. When placing maximal emphasis on

bias reduction, ν̃ = 1/2, both estimators successfully eliminates the MMS noise-induced bias, but at

the expense of a variance inflation. In fact, both estimators have higher RMSE’s than the realized

kernel. For the MSE optimal choice, ν̃ = 1/3, the PARC estimator performs slightly better than the

TSRK in terms of bias and vice versa for RMSE’s. This difference is potentially caused by fixing

θ̄ = 1, as Christensen et al. (2010) suggest, instead of selecting it optimally. Both estimators, however,

provide efficiency gains relative to the realized kernel, but their performance is also unstable as none

of the two are able to control the bias for DGP 3, showing biases in the 7-15% range. Fourth, the

difference between the rate-optimal estimators is quite suggestive. The flat-top realized kernel with

γ = 3/5 places itself between the MSE optimal TSRK and PARC estimators in terms of RMSE,

and it performs well for all DGP’s. Hence, among estimators who offer stable bias control, counting
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the two flat-top realized kernels and the TSRK and PARC estimators with ν̃ = 1/2, the flat-top

realized kernel with γ = 3/5 is the most efficient, illustrating the higher-order advantage of the flat-

top approach. Finally, the element-wise flat-top realized kernel offer efficiency gains for some elements

of the covariance matrix by utilizing more observations. However, the estimator displays by far the

most occurrences of negative semi-definite estimates, illustrating potential matrix instability problems.

To see the potential implications of these results for applications, Table 5 shows the relative bias

and RMSE of four non-linear transformations of the covariance matrix, namely the correlations and

betas fixing asset 1 as the base.

(Table 5 around here)

Once again, RCsub20 (p, 3) performs worst for all transformations, and the flat-top realized kernel with

γ = 3/5 performs better than the realized kernel in terms of both bias and RMSE. After the realized

covariance estimator, the realized kernel has the largest bias among the estimators, except for a few

cases where it is surpassed by the element-wise flat-top realized kernel, which, not surprisingly, delivers

unstable results. The MSE optimal TSRK cannot control the bias for DGP 3, and while the PARC

counterpart performs better, it still shows signs of unstable bias control for DGP 3 when the data loss

is large. In terms of RMSE’s, the flat-top realized kernel with γ = 3/5 is comparable to the MSE

optimal TSRK and performs slightly better than TSRK emphasizing bias reduction. It has slightly

higher RMSE’s than both PARC estimators when estimating correlations, but its performance is on

par with the MSE optimal PARC estimator and slightly better than the PARC estimator emphasizing

bias reduction when estimating betas. Hence, it offers a desirable combination of robustness and

efficiency across a variety of noise models.

Finally, note that synchronization errors is the only source of endogenous noise in the present

simulation setup, and it is even an order of magnitude lower than the exogenous noise component. As

noted in Section 5.5.2, if an endogenous noise component of the same order of magnitude is present in

the DGP, the bias-correction for the PARC estimator may be insufficient, thus potentially leading to

larger distortions than shown in Tables 3-5.

6 Empirical Analysis

To illustrate the relevance of the theoretical results, an empirical analysis of correlations and market

betas is performed for a portfolio of six stocks using tick-by-tick trade data from 2007. A special

thanks goes to Asger Lunde for providing the cleaned high-frequency data. The six stocks are: In-

ternational Business Machines (IBM), Exxon Mobil (XOM), Intel (INTC), Microsoft (MSFT), Total

System Services (TSS), an IT firm from Georgia, and Standard & Poor’s Depository Receipt (SPY),

an exchange traded fund that tracks the S&P 500. The portfolio is heavy on IT stocks of varying

liquidity and size, and individual summary statistics are presented in Table 6.

(Table 6 around here)
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Table 6 shows that the TSS stock is 5-10 times less liquid than the remaining stocks, and its inclusion in

the portfolio leads to a dramatic data loss. Further, the estimated noise-to-signal ratios for refresh time

sampled data illustrate how false reliance on an i.i.d. noise assumption understates the magnitude of

the noise by an approximate factor 5 relative to using the bias-corrected long-run MMS noise-variance

estimator (11), and that the selected noise-to-signal ratio ψ2 = 0.005 in the simulation study seems

appropriate. Additionally, Table 6 shows that the estimated 97.5% and 2.5% quantiles for the first five

lags of the individual ACF’s of intra-daily log-returns are much wider than a corresponding conservative

confidence band under a white-noise null hypothesis, which is approximately ±1/900 ≈ ±0.0011 on

average, thereby suggesting the presence of a MMS noise component with non-trivial dependence.

The signs of the respective quantiles also suggest that the noise should allow for a sign-alternating

autocorrelation pattern on some trading days and positive persistence on others. Last, Figure 2 displays

the 97.5% and 2.5% quantiles for the first ten lags of the cross-autocorrelation function between the

pairs (IBM, TSS) and (SPY, TSS) where both stocks have been used as the base asset.

(Figure 2 around here)

Figure 2 shows a pronounced asymmetric lead-lag dependence pattern where TSS is led by IBM and

the market proxy, SPY, similar to the findings of Large (2007), Voev & Lunde (2007), and Griffin &

Oomen (2011) for London Stock Exchange and DJIA stocks.

The Brownian semimartingale plus i.i.d. noise model cannot explain the higher noise-to-signal

ratios for long run noise-variance estimators, the wide confidence bands for the log-return ACF’s, nor

the asymmetric lead-lag patterns, thus motivating the development of a general additive noise model

for asset prices and asymptotically unbiased and rate-optimal estimators of its quadratic covariation.

6.1 Correlation Analysis

Table 6 shows that the actual high-frequency data is similar to the simulated data in Section 5. There

are large variations in liquidity of the six stocks, the data loss is substantial, the noise-to-signal ratio

is comparable, and the MMS noise component is non-trivial. Hence, Table 7 shows the unconditional

average of daily correlation estimates from the flat-top realized kernels with γ = (2/5, 3/5)′ and the

biases and RMSE’s of the 20-minute subsampled realized covariance estimator, the realized kernel, the

TSRK with ν̃ = (1/3, 1/2)′, the PARC estimator with ν̃ = 1/3, and the outer product of open-to-close

returns (OTOC) using the flat-top realized kernel with γ = 3/5 as a proxy for the true quadratic

covariation matrix to analyze the relative performance of the estimators. The PARC estimator with

ν̃ = 1/2 and the element-wise flat-top realized kernel are excluded since they do not provide positive

definite estimates of quadratic covariation on all trading days.

(Table 7 around here)

The stocks are positively correlated with magnitudes that seem divided into three tiers. The strongest

and weakest correlations are between the SPY and TSS, respectively, and the remaining stocks. The
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latter illustrates the potential diversification benefits of including an asset outside of the DJIA in

the portfolio. Table 7 also shows that the relative magnitudes of the biases and RMSE’s for the

various estimators are in line with the simulation results, which suggests that the flat-top realized

kernels provide accurate information about the correlation structure of asset returns since they offer

a desirable combination of robustness and efficiency. Two noteworthy features from Table 7 require a

deeper investigation, however. These are the upward bias for OTOC and both the bias and relatively

high RMSE for the PARC estimator. Hence, Table 8 shows the average quadratic covariation estimates

of the two estimators in comparison with those from the flat-top realized kernel and the TSRK.

(Table 8 around here)

The average off-diagonal elements for the three high-frequency estimators are highly similar and the

deviations from the OTOC equivalents are also relatively minor. The biggest difference comes from

the average estimates of the diagonal elements where both the OTOC and the PARC estimators have

pronounced negative biases. The OTOC estimates are very noisy and may not adequately capture

intra-daily variation. The negative bias for the PARC estimator, on the other hand, may be caused

by negative correlation between the efficient prices and the MMS noise, features which have already

been documented by (Hansen & Lunde 2006, Fact I) and Diebold & Strasser (2012), and which the

generalized bias-correction in (12)-(13) is unable to account for.

6.2 Realized Market Beta Estimation

As a second application, this subsection analyzes daily market beta estimates for TSS using SPY as

a proxy of the market portfolio. Note, however, that even though TSS is used as an example, almost

identical results are obtained for the other stocks in the portfolio. Figure 3 shows the estimated market

betas for the flat-top realized kernel with γ = 3/5 along with a smoothed series from an ARMA(1,1)

filter with estimated intercept µ = 0.84 and persistence parameters (φ, θ)′ = (0.90,−0.79)′ that are

consistent with the findings of Barndorff-Nielsen et al. (2011) and Christensen et al. (2010). Further,

it shows scatterplots of the market beta estimates from the flat-top realized kernel against equivalent

ones from the remaining high-frequency estimators of the previous subsection.

(Figure 3 around here)

Figure 3 illustrates that that the daily market beta is time-varying, predictable, and it exhibits sta-

tionary fluctuations around its unconditional mean µ = 0.84. Further, it shows that, except for the

MSE optimal TSRK, the remaining estimators provide noisy estimates of the market betas, and that

the 20-minute subsampled realized covariation estimator suffers from the largest dispersion. These

results are elaborated upon in Table 9 by running the regressions corresponding to the scatterplots.

(Table 9 around here)
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Table 9 confirms the visual analysis by showing the largest dispersion for the 20-minute subsampled

realized covariation estimator, followed by the TSRK emphasizing bias reduction, the realized kernel,

and the PARC estimator. With exception of the latter, this exact pattern is observed in Table 5.

However, as explained previously, endogenous noise may distort the PARC estimator, potentially

causing this dispersion. Last, Table 9 shows a strong coherence between the flat-top realized kernel

and the MSE optimal TSRK. The Wald test of an unbiased estimator, however, is strongly rejected.

Similarly, by subtracting the two beta series, i.e. by imposing a unity slope, the estimated difference

in mean is positive, β0 = 0.0357, and significant with a HAC robust t-statistic of tHAC = 5.59. Hence,

in conjunction with Table 5, this illustrates the higher-order advantage of the flat-top realized kernels

over the TSRK. The former is able to maintain a small variance while still providing (asymptotically)

unbiased estimates, thus illustrating the theoretical results in Sections 3 and 4.2.

7 Conclusion

The paper develops a general, multivariate additive noise model for synchronized asset prices and

extends the generalized class of univariate flat-top realized kernels, analyzed in Varneskov (2013),

to estimate its quadratic covariation. The noise model allows for α-mixing dependent exogenous

noise, random sampling, and an endogenous noise component that encompasses synchronization er-

rors, asymmetric lead-lag relations, and diurnal heteroskedasticity, thus accommodating a wide variety

of empirical regularities at tick-by-tick frequencies. The flat-top realized kernels are shown to be con-

sistent, asymptotically unbiased, and mixed Gaussian at the optimal rate of convergence, n1/4. A

simple eigenvalue correction guarantees the class of estimators to be positive definite without altering

its asymptotic properties. This allows the computation of non-linear transformations of the estimated

covariance matrix where the two leading examples in this paper are the realized correlation and re-

gression coefficient. However, other potential applications include ranking of multivariate volatility

models, Laurent et al. (2012), and dynamic mean-variance analysis in the spirit of Chiriac & Voev

(2011) and Varneskov & Voev (2013). An empirically motivated simulation study shows that refresh

time sampling is preferable to Hayashi-Yoshida sampling for kernel-based estimators, it provides em-

pirical guidelines for eigenvalue truncation, and it shows that flat-top realized kernels have a desirable

combination of robustness and efficiency relative to competing estimators in the literature. The latter

is reinforced by an empirical analysis of correlations and market betas for a portfolio of six stocks of

varying size and liquidity.
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DGP 1 DGP 2

DGP 3 Positive AR Dynamics

Figure 1: Panels 1-3 show the autocorrelation function (ACF) of the most liquid of two non-synchronously

observed assets using three DGP’s for observable returns, non-synchronous configuration ζ = (5, 30) and three

synchronized series: The raw data (dashed, dotted), refresh time sampling (dotted), and Hayashi-Yoshida (HY)

sampling (dashed). DGP 1 models the MMS noise as a negative AR(1) process, DGP 2 as a negative MA(1), and

DGP 3 as a positive AR(1). All persistence parameters are ±1/2. Panel 4 shows the ACF of the raw return series

where MMS is modeled as a positive AR(1) process with persistence parameters φ = (0.5, 0.7, 0.9)′.

Impact of Synchronization Scheme

RTS HYS No Synchronization
DGP 1 DGP 2 DGP 3 DGP 1 DGP 2 DGP 3 DGP 1 DGP 2 DGP 3

ω̂ 0.72 0.68 0.70 0.73 0.69 0.72 1.00 0.88 0.34

Ω̂BC 0.63 0.60 0.70 -0.46 -0.50 0.64 0.27 0.18 1.82

Ω̂ 1.65 1.62 1.67 14.57 13.02 6.30 0.75 0.69 1.99
Bias: Σ12 -1.57 -1.60 -1.68 13.98 14.33 13.67 - - -
Bias: Σε

12 -2.48 -2.46 -2.23 2.88 3.80 5.91 - - -
RMSE: Σ12 21.10 20.96 23.02 58.30 55.28 46.44 - - -
RMSE: Σε

12 19.88 19.78 22.40 45.07 42.39 37.08 - - -
Ptr 13.4 12.7 8.80 52.4 53.0 51.0 - - -

Table 1: Estimates of the MMS noise-variance (scaled by 100) by the short run variance estimator ω̂ and the
two long run variance estimators Ω̂ and Ω̂BC using the series for the leading asset after refresh time sampling
(RTS), Hayashi-Yoshida sampling (HYS), or without synchronization. Moreover, the relative bias and RMSE (in
percentages) of Σ12 shows the properties of a flat-top realized kernel estimate with γ = 3/5. The corresponding
results for Σε

12 is for the off-diagonal element of an element-wise flat-top realized kernel estimate with γ = 3/5,
ERK∗3/5, whose eigenvalues are truncated by εn = n−1/2 to ensure positive definiteness. Ptr denotes the percentage
of binding eigenvalue truncations, i.e. Ptr = #(eig ≤ 0)/1000%.
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Impact of Eigenvalue Truncation

DGP 1 DGP 2 DGP 3
ζ3 = 20 Ptr M1 M2 Ptr M1 M2 Ptr M1 M2

ε = n−1/4 19.1 29.52 13.19 16.1 26.40 12.66 15.2 30.16 13.76

ε = n−1/3 19.1 21.54 10.80 16.1 19.97 10.44 15.2 23.19 11.82

ε = n−1/2 19.1 16.22 9.15 16.1 15.76 9.08 15.2 18.87 10.56

ε = n−2/3 19.1 15.34 9.04 16.1 15.05 9.11 15.2 18.22 10.49
ε = n−1 19.1 15.17 9.16 16.1 14.90 9.25 15.2 18.10 10.60

DGP 1 DGP 2 DGP 3
ζ3 = 30 Ptr M1 M2 Ptr M1 M2 Ptr M1 M2

ε = n−1/4 26.7 33.02 15.01 23.4 32.08 14.84 22.1 30.52 15.77

ε = n−1/3 26.7 24.39 12.34 23.4 23.78 12.32 22.1 24.32 13.29

ε = n−1/2 26.7 18.18 10.25 23.4 17.87 10.38 22.1 20.31 11.57

ε = n−2/3 26.7 16.98 10.04 23.4 16.74 10.20 22.1 19.59 11.50
ε = n−1 26.7 16.70 10.18 23.4 16.48 10.33 22.1 19.41 11.66

Table 2: Mean relative RMSE of the unique individual elements
∫ 1

0
Σijt dt, denoted M1, and of four non-linear

transformations (the correlations and betas using asset 1 as the base asset), denoted M2, for the element-wise flat-
top realized kernel for γ = 3/5, ERK∗3/5. The simulations are performed using the non-synchronous configuration

ζ = (5, 10, ζ3)′, ζ3 = (20, 30)′ and noise-to-signal ratio ψ2 = 0.005. Ptr denotes the percentage of binding eigenvalue
truncations, i.e. Ptr = #(eig ≤ 0)/1000%. Note that for ζ3 = (20, 30)′, (n, ϑ)′ ≈ {(1170, 0.43), (780, 0.30)}′. All
numbers are in percentages.

26



Estimation of Quadratic Covariation for n ≈ 1170 and ϑ ≈ 0.43

Relative Bias Relative RMSE
Ptr Σ11 Σ12 Σ22 Σ13 Σ23 Σ33 Σ11 Σ12 Σ22 Σ13 Σ23 Σ33

DGP 1
RCsub20 - 11.79 -8.62 14.01 -9.72 -8.97 16.63 27.96 27.78 29.18 28.15 28.23 30.95
RK - 3.04 -1.88 4.13 -1.84 -1.45 1.86 20.94 21.02 21.14 21.17 21.06 20.67
TSRK1 0.10 0.99 -1.12 1.68 -0.96 -0.83 0.08 17.02 16.96 16.98 16.98 16.73 16.26
TSRK2 0.00 -0.10 -0.76 0.92 -0.85 -0.31 1.02 24.42 25.24 24.27 25.35 25.26 24.50
PARC1 0.00 -0.71 -0.69 0.32 -0.71 -0.21 -0.37 19.62 20.20 19.69 20.34 20.32 19.65
PARC2 0.10 -1.36 -0.81 -0.26 -0.92 -0.28 -0.18 24.75 25.59 24.59 25.61 25.65 24.77
RK∗3/5 0.30 -0.50 -1.35 0.44 -1.25 -0.97 0.44 18.06 18.39 18.22 18.54 18.31 17.58

RK∗2/5 0.40 -0.85 -1.56 0.34 -1.54 -1.07 0.46 20.22 20.94 20.60 20.94 20.84 20.27

ERK∗3/5 19.1 1.66 -0.93 1.12 -1.94 -1.35 1.21 12.58 13.92 13.89 17.56 17.91 21.47

DGP 2
RCsub20 - 12.91 -8.62 15.09 -9.76 -9.01 19.43 28.44 27.76 29.69 28.14 28.23 32.48
RK - 3.32 -1.86 3.99 -1.86 -1.41 1.05 20.98 20.95 20.98 21.06 20.95 20.36
TSRK1 0.20 1.11 -1.07 1.39 -0.98 -0.77 -2.14 17.09 16.91 16.78 16.80 16.54 15.85
TSRK2 0.00 -0.04 -0.77 1.08 -0.89 -0.31 1.15 24.46 25.22 24.21 25.31 25.21 24.46
PARC1 0.00 -0.72 -0.69 0.14 -0.74 -0.21 -1.48 19.63 20.20 19.62 20.28 20.24 19.45
PARC2 0.00 -1.39 -0.82 -0.25 -0.96 -0.30 -0.41 24.78 25.57 24.52 25.60 25.60 24.66
RK∗3/5 0.20 -0.46 -1.29 0.69 -1.27 -0.88 0.75 18.07 18.33 18.08 18.38 18.12 17.43

RK∗2/5 0.30 -0.82 -1.51 0.60 -1.53 -0.98 0.67 20.19 20.87 20.42 20.76 20.68 19.90

ERK∗3/5 16.1 1.40 -1.02 0.99 -1.86 -1.15 2.28 11.26 13.71 13.49 17.52 17.79 20.79

DGP 3
RCsub20 - 11.73 -8.63 14.02 -9.60 -8.86 16.78 27.99 27.86 29.30 28.28 28.36 31.43
RK - 2.31 -1.74 4.87 -1.89 -1.44 10.58 22.15 22.46 22.63 22.86 22.81 26.45
TSRK1 0.10 0.79 -1.19 3.22 -1.10 -0.96 14.51 17.48 17.65 18.27 18.73 18.91 26.33
TSRK2 0.40 -0.07 -0.66 1.20 -0.73 -0.10 2.63 24.48 25.28 24.42 25.64 25.59 25.86
PARC1 0.00 -0.65 -0.64 1.25 -0.66 -0.11 7.23 19.77 20.31 19.98 21.04 21.06 23.16
PARC2 1.30 -1.32 -0.70 0.01 -0.81 -0.13 1.29 24.78 25.61 24.73 25.91 25.93 26.00
RK∗3/5 1.70 -0.46 -1.35 0.47 -1.45 -1.10 4.66 18.89 19.36 19.42 20.31 20.32 23.48

RK∗2/5 7.10 -0.39 -1.55 0.46 -1.98 -1.30 1.31 22.13 22.13 21.84 22.72 22.71 24.57

ERK∗3/5 15.2 1.53 -1.29 1.87 -1.85 -1.13 5.93 14.28 15.56 16.97 19.85 20.34 26.20

Table 3: Relative bias and RMSE of the individual elements of Σij =
∫ 1

0
Σij
t dt for six competing estimators of

quadratic covariation: Realized covariance with 20-minute sampling and subsampling, RCsub20 , the realized kernel,
RK, the two-scale realized kernel, TSRKj , where j = (1, 2)′ correspond to choosing ν̃ = (1/3, 1/2)′, pre-averaged
realized covariance estimator with a jack-knife bias-correction, PARCj , the flat-top realized kernel, RK∗γ , with
γ = (2/5, 3/5)′, and the element-wise flat-top realized kernel, ERK∗3/5. The simulations are performed using the

non-synchronous configuration ζ = (5, 10, 20)′ and noise-to-signal ratio ψ2 = 0.005. Ptr denotes the percentage of
binding eigenvalue truncations, i.e. Ptr = #(eig ≤ 0)/1000%. All numbers are in percentages.
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Estimation of Quadratic Covariation for n ≈ 780 and ϑ ≈ 0.15

Relative Bias Relative RMSE
Ptr Σ11 Σ12 Σ22 Σ13 Σ23 Σ33 Σ11 Σ12 Σ22 Σ13 Σ23 Σ33

DGP 1
RCsub20 - 11.82 -8.10 14.05 -11.04 -10.70 16.48 27.97 27.72 29.15 28.42 28.57 30.91
RK - 3.05 -1.93 3.98 -1.88 -1.45 1.73 23.39 23.58 23.71 23.72 23.91 23.32
TSRK1 0.10 0.79 -1.26 1.66 -1.14 -0.83 0.02 19.27 19.29 19.30 19.17 19.42 18.67
TSRK2 0.00 0.35 -0.69 0.99 -0.70 -0.17 1.12 27.26 28.19 27.47 28.34 28.54 27.55
PARC1 0.00 -0.22 -0.59 0.59 -0.80 -0.28 -0.33 21.88 22.43 21.87 22.51 22.69 21.78
PARC2 0.00 -0.67 -0.63 0.01 -0.85 -0.24 -0.02 27.44 28.33 27.43 28.53 28.63 27.59
RK∗3/5 0.60 -0.66 -1.60 0.15 -1.49 -1.09 -0.29 20.76 21.24 20.90 21.09 21.41 20.28

RK∗2/5 0.60 -0.96 -1.92 -0.13 -1.88 -1.40 0.11 23.35 24.15 23.80 23.94 24.40 23.27

ERK∗3/5 27.1 2.38 0.24 2.69 -2.70 -2.61 2.85 11.28 10.48 11.53 19.50 19.74 28.45

DGP 2
RCsub20 - 12.93 -8.11 15.11 -11.02 -10.69 19.34 28.45 27.72 29.67 28.41 28.55 32.50
RK - 3.33 -1.93 4.20 -1.88 -1.49 0.99 23.49 23.64 23.80 23.70 23.91 23.13
TSRK1 0.40 0.91 -1.31 1.67 -1.18 -0.90 -2.00 19.44 19.40 19.36 19.17 19.37 18.42
TSRK2 0.00 0.44 -0.67 1.08 -0.70 -0.20 1.21 27.28 28.24 27.52 28.27 28.49 27.40
PARC1 0.00 -0.18 -0.59 0.58 -0.80 -0.32 -1.50 21.93 22.48 21.89 22.47 22.64 21.65
PARC2 0.00 -0.64 -0.60 0.05 -0.83 -0.26 -0.23 27.45 28.37 27.44 28.45 28.58 27.40
RK∗3/5 0.60 -0.58 -1.64 0.12 -1.52 -1.16 0.62 20.90 21.35 20.96 21.10 21.40 20.43

RK∗2/5 0.60 -0.87 -1.92 -0.13 -1.89 -1.48 0.31 23.43 24.26 23.87 23.92 24.39 23.23

ERK∗3/5 24.0 2.04 0.07 2.01 -2.53 -2.45 4.45 10.27 10.13 10.59 19.62 19.77 28.04

DGP 3
RCsub20 - 11.83 -8.06 14.09 -11.11 -10.76 16.37 28.04 27.75 29.24 28.64 28.80 31.36
RK - 2.31 -1.89 3.33 -2.09 -1.52 10.37 24.43 24.80 24.57 25.38 25.50 28.75
TSRK1 0.00 0.56 -1.25 1.64 -1.54 -1.12 13.69 19.70 19.94 19.88 20.59 21.01 27.36
TSRK2 0.90 0.22 -0.77 1.03 -0.77 -0.04 3.11 27.34 28.13 27.24 28.93 28.99 29.31
PARC1 0.00 -0.29 -0.63 0.67 -0.87 -0.24 7.95 22.05 22.54 21.93 23.25 23.39 25.39
PARC2 1.20 -0.79 -0.74 0.02 -0.93 -0.14 1.95 27.51 28.28 27.25 29.13 29.09 29.30
RK∗3/5 1.00 -0.74 -1.58 0.39 -1.93 -1.37 4.42 21.59 22.16 21.68 22.75 23.04 25.15

RK∗2/5 4.20 -1.08 -1.98 0.30 -2.41 -1.64 1.09 24.62 25.32 25.00 25.95 26.11 27.48

ERK∗3/5 22.0 2.08 -0.14 2.47 -2.73 -2.31 7.34 12.32 11.87 13.70 21.70 21.83 31.46

Table 4: Relative bias and RMSE of the individual elements of Σij =
∫ 1

0
Σij
t dt for six competing estimators of

quadratic covariation: Realized covariance with 20-minute sampling and subsampling, RCsub20 , the realized kernel,
RK, the two-scale realized kernel, TSRKj , where j = (1, 2)′ correspond to choosing ν̃ = (1/3, 1/2)′, pre-averaged
realized covariance estimator with a jack-knife bias-correction, PARCj , the flat-top realized kernel, RK∗γ , with
γ = (2/5, 3/5)′, and the element-wise flat-top realized kernel, ERK∗3/5. The simulations are performed using the

non-synchronous configuration ζ = (3, 3, 30)′ and noise-to-signal ratio ψ2 = 0.005. Ptr denotes the percentage of
binding eigenvalue truncations, i.e. Ptr = #(eig ≤ 0)/1000%. All numbers are in percentages.
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Summary Statistics

n̄ ϑ(q) ψ2
1 ψ2

2 ψ2
3 ACF(1) ACF(2) ACF(3) ACF(4) ACF(5)

IBM 6560 0.14 0.09 0.41 1.29 (-0.01,-0.22) (0.09,-0.05) (0.06,-0.05) (0.05,-0.05) (0.05,-0.05)
XOM 10380 0.09 0.09 0.43 1.28 (0.06,-0.21) (0.12,-0.06) (0.08,-0.08) (0.05,-0.06) (0.04,-0.05)
INTC 5173 0.19 0.11 0.64 1.34 (0.01,-0.42) (0.05,-0.03) (0.04,-0.04) (0.03,-0.04) (0.03,-0.03)
MSFT 5277 0.19 0.10 0.62 1.37 (0.03,-0.38) (0.06,-0.05) (0.04,-0.05) (0.04,-0.04) (0.04,-0.04)
SPY 9573 0.10 0.08 0.39 1.20 (0.13,-0.19) (0.07,-0.02) (0.04,-0.04) (0.03,-0.04) (0.02,-0.03)
TSS 908 1.00 0.12 0.30 1.32 (0.05,-0.35) (0.14,-0.12) (0.16,-0.12) (0.13,-0.12) (0.11,-0.11)

Table 6: Summary statistics for six stocks over the 251 trading days in 2007. Here, n̄ denotes the average number
of observations, ϑ(q) denotes the average fraction of kept data for asset q, ψ2

j , j = 1, 2, 3, corresponds to the average

noise-to-signal ratio using ω̂, Ω̂BC , and Ω̂, respectively, to estimate the noise-variance and RCsub20,q(p, 1) to proxy
the integrated quarticity. All noise-to-signal ratios have all been scaled by 100. ACF(j), j = 1, . . . , 5 shows the
estimated 97.5% and 2.5% quantiles of the autocorrelation function.

Lead-lag Correlations: IBM and TSS Lead-lag Correlations: SPY and TSS

Figure 2: 97.5% and 2.5% quantiles of the first ten lags of the cross-autocorrelation function for the two pairs

(IBM, TSS) and (SPY, TSS). Both assets have been used as the base asset. When TSS is the base asset, the 97.5%

quantile is (dotted, frequent) and the 2.5% quantile is (dashed, dotted). When (IBM, SPY) is the base asset, the

97.5% quantile is (dotted, sparse) and the 2.5% quantile is (dashed).
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Correlation Analysis

RK∗3/5 \RK
∗
2/5 Bias: Open-to-close Covariance \RCsub20

IBM XOM INTC MSFT SPY TSS IBM XOM INTC MSFT SPY TSS

IBM 0.34 0.38 0.38 0.55 0.24 -1.92 -0.92 -1.50 -1.89 -3.37
XOM 0.33 0.33 0.34 0.62 0.22 12.54 -3.57 -4.14 -6.19 -1.46
INTC 0.37 0.33 0.40 0.57 0.23 18.68 15.43 0.32 0.80 -2.11
MSFT 0.38 0.34 0.39 0.57 0.25 9.53 13.27 14.66 -0.20 -4.40
SPY 0.55 0.62 0.57 0.57 0.40 9.53 12.38 10.31 6.39 -5.18
TSS 0.23 0.22 0.23 0.24 0.39 2.44 14.21 8.03 10.52 12.14

Bias: RK \ PARC1 Bias: TSRK1 \ TSRK2

IBM XOM INTC MSFT SPY TSS IBM XOM INTC MSFT SPY TSS

IBM 1.90 1.09 1.18 1.72 1.45 1.28 0.85 0.12 0.32 0.10
XOM 0.66 1.28 0.67 2.06 2.43 -0.34 0.28 -0.46 -0.26 0.44
INTC 0.20 0.08 0.89 1.45 1.75 -0.56 -0.12 0.21 0.72 0.45
MSFT -0.27 -0.41 -0.14 1.18 1.76 -0.25 0.18 -0.13 -0.51 -0.09
SPY -0.07 -0.14 0.21 -0.53 1.78 -0.26 0.26 -0.45 0.13 0.45
TSS -0.56 -0.11 -0.16 -0.68 -0.53 -0.91 -0.55 -0.57 -0.85 -1.27

RMSE: RK \ PARC1 RMSE: TSRK1 \ TSRK2

IBM XOM INTC MSFT SPY TSS IBM XOM INTC MSFT SPY TSS

IBM 7.86 7.72 7.54 4.89 8.79 7.96 8.31 8.00 6.66 8.64
XOM 5.54 7.73 6.62 5.43 8.83 2.85 8.05 7.87 5.60 8.03
INTC 5.37 5.52 6.35 4.83 7.55 3.21 3.18 7.98 5.70 8.64
MSFT 5.56 5.08 5.13 5.42 8.37 3.13 3.14 3.19 5.75 8.76
SPY 4.55 3.84 3.64 3.80 5.61 2.76 2.35 2.55 2.61 7.91
TSS 5.88 5.37 6.09 5.92 5.55 3.22 3.47 3.32 3.23 3.09

Table 7: Panel 1 shows the average correlation matrix for the flat-top realized kernel, RK∗γ , with γ = (2/5, 3/5)′.
Panels 2-4 show the estimated bias of the open-to-close covariance estimator, the 20-minute subsampled realized
covariance estimator, RCsub20 , the realized kernel, RK, the two-scale realized kernel, TSRKj , where j = (1, 2)′

correspond to ν̃ = (1/3, 1/2)′, and the pre-averaged realized covariance estimator with a jack-knife bias-correction,
PARC1. Panels 5-6 show the estimated RMSE of the last four (consistent) estimators. The bias and RMSE’s have
been computed using RK∗3/5 as a proxy for the true ex-post covariance matrix and both have been scaled by 100.
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Covariance Analysis

RK∗3/5 \ TSRK1 Open-to-close Covariance \PARC1

IBM XOM INTC MSFT SPY TSS IBM XOM INTC MSFT SPY TSS

IBM 0.58 0.63 0.55 0.52 0.43 0.57 0.61 0.54 0.52 0.44
XOM 0.57 0.71 0.63 0.73 0.53 0.61 0.68 0.60 0.72 0.55
INTC 0.63 0.70 0.70 0.65 0.53 0.75 0.77 0.68 0.64 0.54
MSFT 0.55 0.62 0.69 0.57 0.47 0.57 0.67 0.77 0.56 0.49
SPY 0.52 0.72 0.65 0.56 0.52 0.49 0.76 0.68 0.57 0.53
TSS 0.44 0.53 0.53 0.48 0.53 0.38 0.65 0.55 0.55 0.58

Diagonal Diagonal - diag(RK∗3/5)

IBM XOM INTC MSFT SPY TSS IBM XOM INTC MSFT SPY TSS

TSRK1 1.30 1.82 1.87 1.43 0.62 2.88 0.35 2.43 3.65 2.34 0.62 -1.82
PARC1 1.22 1.70 1.74 1.33 0.61 2.57 -7.83 -9.92 -9.61 -7.25 -0.56 -32.29
OTOC 1.14 1.59 1.60 1.27 0.65 2.00 -16.18 -21.18 -24.19 -13.54 2.78 -89.06

Table 8: Panel 1-2 shows the average estimated off-diagonal elements of the quadratic covariance matrix for the
flat-top realized kernel with γ = 3/5, RK∗3/5, the two-scale realized kernel and pre-averaged realized covariance
estimator with ν̃ = 1/3, TSRK1 and PARC1, respectively, and an open-to-close covariance estimator (OTOC).
Panels 3-4 show the average estimated diagonal elements and their bias using RK∗3/5 as a proxy for the true ex-post
covariance matrix. The bias has been scaled by 100.

Realized Beta Regressions

β0 β1 R2 Wald AR1 AR2 AR3

RCsub20 0.4304∗∗
(0.0423)

0.5848∗∗
(0.0525)

0.4398 51.70∗∗ 4.1118∗ 6.1973∗ 12.033∗∗

RK 0.1337∗∗
(0.0343)

0.8583∗∗
(0.0388)

0.8834 7.649∗∗ 0.0167 5.2590 5.2806

TSRK1 −0.0337∗∗
(0.0098)

1.0861∗∗
(0.0115)

0.9725 35.72∗∗ 22.98∗∗ 29.94∗∗ 35.36∗∗

TSRK2 0.2173∗∗
(0.0398)

0.7322∗∗
(0.0431)

0.8154 19.82∗∗ 1.3207 8.9466∗ 9.0691∗

PARC1 0.0089
(0.0324)

0.9820∗∗
(0.0362)

0.8977 0.4579 3.6595 4.2035 5.0445

Table 9: Estimates of the constant, β0, and slope, β1, from univariate regressions of the market beta estimates from
the flat-top realized kernel with γ = 3/5 on equivalent estimates from the 20-minute subsampled realized covariance
estimator, RCsub20 , the realized kernel, RK, the two-scale realized kernel, TSRKj , where j = (1, 2)′ correspond to
ν̃ = (1/3, 1/2)′, and the pre-averaged realized covariance estimator with a jack-knife bias-correction, PARC1. Wald
is a test of the joint hypothesis β0 = 0 and β1 = 1. Both inference and hypothesis testing is based on Andrews (1991)
HAC standard errors. ARj , j = 1, 2, 3 is an LM test (with j lags) of the null hypothesis of no serial correlation.
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β
RK∗

3/5 estimates RK∗3/5vs. RCsub20

RK∗3/5 vs. RK RK∗3/5 vs. TSRK1

RK∗3/5 vs. TSRK2 RK∗3/5 vs. PARC1

Figure 3: Panel 1 shows the estimated time series of market betas for TSS using the flat-top realized kernel with

γ = 3/5, RK∗3/5, and a smoothed series using an ARMA(1,1) filter. Panels 2-6 shows scatter plots of the market

beta estimates using RK∗3/5 (on the y-axis) against equivalents from the 20-minute subsampled realized covariance

estimator, RCsub20 , the realized kernel, RK, the two-scale realized kernel, TSRKj , where j = (1, 2)′ correspond to

ν̃ = (1/3, 1/2)′, and the pre-averaged realized covariance estimator with a jack-knife bias-correction, PARC1.
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A Additional Theory

A.1 Matrix Concepts

The exhibition in the main part of the paper requires the definition of some matrix-valued concepts.

Definition A.1. Let X ∈ Rd×k be a mixed Gaussian distributed random variable for ex-ante random

variables A ∈ Rd×k and covariance matrix B ∈ Rdk×dk, denoted by X
ds(X)→ MN(A,B). Then,

X is characterized by the following properties: (1) vec(X) follows a dk × 1-variate mixed gaussian

distribution. (2) E[vec(X)|X] = vec(A). (3) For any four vectors a, c ∈ Rd and b,d ∈ Rk

Cov(a′Xb, c′Xd|X) = v′abBvcd, vab = vec([ab′ + ba′]/2) ∈ Rdk×1.

Definition A.2. The symmetrizer matrix of (Abadir & Magnus 2005, Section 11.2) is defined as

Nd = 1
2 (Id2×d2 +Kd2), Kd2 =

∑d
i=1

∑d
j=1 xix

′
j ⊗xjx′i where xi is the i-th d-dimensional elementary

vector.

A.2 Variance of the Element-wise Flat-top Realized Kernel

First, for the exact expression of Ba,b(λ, κa,b) in Corollary 1, let 2Z = (Z̃ab,a′bl′)a,b,a′,b′∈1...,d for Z =

(Q,N ,C) where

Q̃ab,a′b′ =

∫ 1

0

(
Σa,a′

t Σb,b′

t + Σa,b′

t Σb,a′

t

)
χ2(t)χ−1

1 (t)dt,

whose exact form follows from definition A.1, and Ñ ab,a′b′ and C̃ab,a′b′ are defined with a simi-

lar element-wise decomposition of the different Kronecker products Ω(uu) ⊗ Ω(uu), Ω
(ee)
t ⊗ Ω

(ee)
t ,

Nd

(
Ω(uu) ⊗

∫ 1
0 Ω

(ee)
t χ−1

1 (t)dt
)

, Nd

(
Σt ⊗

(
Ω(uu) + Ω

(ee)
t

))
and Nd

(
Ω

(ep)
t ⊗Ω

(ep)
t

)
of N and C, re-

spectively. The exact form of Ba,b(λ, κa,b) is then

Ba,b(λ, κa,b) = 2κa,bλ
(00)Q̃ab,a′b′ + 2κ−3

a,bλ
(22)Ñ ab,a′b′ + 4κ−1

a,bλ
(11)C̃ab,a′b′ .

A.3 The Exact Form of Bρab(λ, κ) and Bβab(λ, κ)

Let B[ab](λ, κ) be the asymptotic covariance matrix of the 3 × 1 vector (RKε
aa, RK

ε
ab, RK

ε
aa)
′ and

Σab =
∫ 1

0 Σa,b
t dt, then Bρab(λ, κ) = f ′abB[ab](λ, κ)fab and Bβab(λ, κ) = g′abB[ab](λ, κ)gab where fab and

gab are 3× 1 gradient vectors defined as

fab =

−Σ
−3/2
aa ΣabΣ

−1/2
bb /2

Σ
−1/2
aa Σ

−1/2
bb

−Σ
−1/2
aa ΣabΣ

−3/2
bb /2

 , gab =

−Σ−2
aa Σab

Σ−1
aa

0

 .
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B Proofs

In the following, K, k, and ε denote generic constants where K, k ∈ (0,∞) and ε ∈ (0, 1) unless

specified otherwise, and they may take different values in different places. Furthermore, (stochastic)

orders are sometimes referring to scalars, vectors, and matrices. All convergence results are for n→∞.

B.1 Proofs of Lemmas 1-2 and Theorem 1

Following along the lines of Barndorff-Nielsen et al. (2011), the proofs are provided for the univariate

case since the Cramér-Wold Theorem, e.g. (Davidson 2002, Theorem 25.6), will, then, deliver the

multivariate result. (Varneskov 2013, Sections B.1 and C), provides a detailed proof of three similar

results for the univariate case with equally spaced observations. Hence, the proof of the three results

in the present setting is completed by providing the remaining arguments in the form of auxiliary

lemmas. Let the boldface notation be dropped for the d = 1 case, and write the decomposition of

RK∗(p),

RK∗(p) = RK∗(p∗) +RK∗(U) +RK∗(p∗, U) +RK∗(U, p∗). (B.1)

Lemma B.1 provides two approximations that will be used throughout without explicit reference,

Lemma B.2 provides bounds on end-effects, Lemma B.3 provides a result for convergence of moments

with random durations, Lemma B.4 on the bias of RK∗(p∗, U) +RK∗(U, p∗), and, finally, Lemma B.5

provides a central limit theorem for products of orthogonal variables.

Definition B.1. b(h/H) = H∆k(h/H) is the sample analog of k(1)(h/H).

Definition B.2. For h ∈ Z, denote S+
h = max(h, 0), and S−h min(h, 0), S(2,h) = {1 + S+

h , . . . , n −
1 + S−h }, and S(1,h) = S(2,h) \ {1}. Further, denote Zk = {−k, . . . ,−1, 0, 1, . . . , k} for k ∈ N and

ZKk+1 = ZK \ Zk for K − k ∈ N.

Lemma B.1 (Jacod (2009), 6.23 and Ikeda (2011), Lemma 6). Under Assumptions 1-2, 4, and 6, let

∆Υti =
∫ ti
ti−1

Υtdt, then for i ≥ 2,

E
[
(∆ti)

−1/2
∣∣∣∆p∗ti − Σ

1/2
ti−1

∆Wti

∣∣∣s |Hti−1

]
≤ KsE

[
(∆ti)

min(1,s/2)|Hti−1

]
,

E
[
(∆ti)

−1/2
∣∣∆Υti −Υti−1∆ti

∣∣s |Hti−1

]
≤ KsE

[
(∆ti)

min(1,s/2)|Hti−1

]
.

Lemma B.2 (Jittered End-points). Under Assumptions 1-6,

(a) ∆p∗t1 + ∆p∗tn ≤ op
(
m1+δ/2n−1/2

)
.

(b) (∆p∗t1)2+(∆p∗tn)2+2
∑n−1

h=1 k
(
h
H

) (
∆p∗th+1

∆p∗t1 + ∆p∗tn∆p∗tn−h

)
≤ op

(
m2+δn−1

)
+op

(
H1/2m1+δ/2n1/2δ−1

)
.

(c) U2
t0 + U2

tn − 2
∑n−1

h=1

(
k
(
h
H

)
− k

(
h−1
H

)) (
Ut0Uth + UtnUtn−h

)
= Op

(
m−1

)
.

(d) 2
∑n−2

h=1 k
(
h
H

) (
Utn∆p∗n−h − Ut0∆p∗h+1

)
+ 2
H

∑n−1
h=1 b

(
h
H

) (
∆p∗nUtn−h −∆p∗1Uth

)
+k(0)(Utnr

∗
n−Ut0r∗1)+

k((n−1)/H)(Utnr
∗
1−Ut0r∗n) ≤ op

(
(H/m)1/2n(δ−1)/2

)
+op

(
mH−1/2n(δ−1)/2

)
+op(m

(1+δ)/2n−1/2).
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Proof. (a) Recall the definition of the jittered end-point returns ∆p∗t1 = p∗tm − m
−1
∑m

i=1 pti−1 and

∆p∗tn = m−1
∑m

i=1 p
∗
tN−m+1

− p∗tn−1
. The result is derived for ∆p∗t1 , since the symmetric result for ∆p∗tn

follows immediately. Using the telescoping sum property of returns, write

∆p∗t1 =
1

m

m∑
i=1

(p∗tm − p
∗
ti−1

) =
1

m

m∑
i=1

i∑
j=1

∆p∗tm+1−j =
1

m

m∑
i=1

Op

(
i
√
Dn,i/n

)

≤ max
i=1,...,m

Op

(
m
√
Dn,i/n

)
= op

(
m1+δ/2n−1/2

)
which provides the first result. (b) The probabilistic order of the first two terms follows by (a).

The order of the third term follows by calculating the mean and variance of, given h > 0, two

conditionally independent variables and noticing (∆p∗th+1
)2 ≤ maxi=1,...,nOp(Dn,i/n) = op

(
nδ−1

)
for

h > 0. The boundary terms for h = n − 1 are of order Op(H
−1/2) smaller than the first two terms.

(c) follows by (Barndorff-Nielsen et al. 2011, Propositions A.1-A.2), since Assumptions 4-5 ensures∑
h∈Z(|

∫ 1
0 Ω

(ee)
t (h)dt| + |Ω(uu)(h)|) < ∞. (d) Using the bounds in (a) and (c) along with ∆p∗th+1

≤
op
(
n(δ−1)/2

)
for h > 1 to describe the probabilistic orders of Utn∆p∗n−h and ∆p∗nUtn−h , the result

follows by the same derivations as for (Varneskov 2013, Lemma C.3 (d)).

Remark B.1. Lemma B.2 (b), (c) and (d) correspond to the contribution from the end-points of

RK∗(p∗), RK∗(U) and RK∗(p∗, U) +RK∗(U, p∗), respectively. Algebraic manipulation of the powers

shows that δ ∈ (0, 1 − ν) guarantees the Op
(
m−1

)
term to provide the lower bound on jittering, and

in conjunction with ξ > 1/4 that the op
(
m2+δn−1

)
term in (b) provides the upper bound.

Lemma B.3 (Moments with Random Duration). Let f(t) be H1-measurable, bounded, càdlàg, inde-

pendent of ∆t, and
∑n

i=1 f(ti−1)∆ti
P−→
∫ 1

0 f(t)dt. Under Assumption 6, then Dβ
n,i = 1 for β = 0,

trivially, and n−α
∑n

i=1 E[f(ti−1)(∆ti)
β|H1] = n1−α−β ∫ 1

0 f(t)
χβ(t)
χ1(t)dt(1 + op(1)).

Proof. Define g(ti−1) = f(ti−1)E[Dβ
n,i|H1]/E[Dn,i|H1], then

n−α
n∑
i=1

E[f(ti−1)(∆ti)
β|H1] = n(1−α−β)

n∑
i=1

g(ti−1)∆ti − n(1−α−β)
n∑
i=1

g(ti−1) (∆ti − E[∆ti|H1]) .

For the second term,
∑n

i=1 g(ti−1) (∆ti − E[∆ti|H1]) ≤ Op(1)
∑n

i=1 (∆ti − E[∆ti|H1]) since f(t) is

bounded. Let xi = ∆ti − E[∆ti|H1], then
∑n

i=1 E
[
xi|Hti−1

]
= 0 by the law of iterated expectations,

and
∑n

i=1 E
[
|xi|2|Hti−1

]
= Op(n

−1) by Assumption 6 (3). Hence, by (Jacod 2009, Lemma 4.1),∑n
i=1 xi = op(1). The final result, then, follows by Lebesque integration in conjunction with the

continuous mapping theorem.

Remark B.2. Lemma B.3 is similar to (Ikeda 2011, Lemma 2), but differs subtly with respect to

its treatment of filtrations H1, respectively, Ht. The difference arises as the second moment of the

endogenous noise component in Assumption 4 is not progressively measurable with respect to Ht.
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Lemma B.4 (Bias of RK∗(p∗, U) + RK∗(U, p∗)). Let Assumptions 1-6 hold. Apart from the end-

point in Lemma B.2 (d), the remainder of RK∗(p∗, U) + RK∗(U, p∗) may be written as B(r∗, U) =

B1(r∗, U) +B2(r∗, U) where

B1(r∗, U) =
2

H

∑
h∈ZcH−1

b

(
|h|
H

) ∑
i∈S(1,h)

r∗iUti−h , B2(r∗, U) =
2

H

∑
h∈Zn−1

cH

b

(
|h|
H

) ∑
i∈S(1,h)

r∗iUti−h .

Then, E[B(r∗, U)|H1] = Op
(
n1/2H−1αe(cH)

)
.

Proof. The representation follows straightforwardly. As E[B(r∗, U)|H1] = E[B2(r∗, U)|H1], it follows

E[B2(r∗, U)|H1] =
2

H

∑
h∈Zn−1

cH

b

(
|h|
H

) ∑
i∈S(1,h)

θ(ti−h, h)Υti−1Σ
1/2
ti−1

E
[
(∆ti)

1/2|H1

]
(1 + op(1))

=
2

H

∑
h∈Zn−1

cH

b

(
|h|
H

) ∑
i∈S(1,h)

θti−h(h)Υti−1Σ
1/2
ti−1

E
[
(∆ti)

1/2|H1

]
(1 + op(1))

+
2

H

∑
h∈Zn−1

cH

b

(
|h|
H

) ∑
i∈S(1,h)

(
θ(ti−h, h)− θti−h(h)

)
Υti−1Σ

1/2
ti−1

E
[
(∆ti)

1/2|H1

]
(1 + op(1)).

Then, as

∑
i∈S(1,h)

θti−h(h)Υti−1Σ
1/2
ti−1

E
[
(∆ti)

1/2|H1

]
= n1/2

∫ 1

0
Ω

(ep)
t (h)χ1/2(t)χ−1

1 (t)dt(1 + op(1)),

∑
i∈S(1,h)

(
θ(ti−h, h)− θti−h(h)

)
Υti−1Σ

1/2
ti−1

E
[
(∆ti)

1/2|H1

]
≤ n−1/2 sup

t∈[0,1]

∣∣∣ΥtΣ
1/2
t χ1/2(t)

∣∣∣ k ≤ n−1/2K,

using Lemma B.3 and Assumption 4 (4), the final bound is established using suph∈Zn−1
cH

b(|h|/H) ≤ k,

supt∈[0,1] Ω
(ep)
t (h) ≤ O(αe(h)), and (Varneskov 2013, Lemma C.4).

Lemma B.5 (CLT for Orthogonal Variables). Let Assumption 5 hold and suppose {xt}t∈[0,1] is an

X1-measurable, bounded random variable where Xt ⊂ Ft is a σ-algebra on (O,F , (Ft),P) satisfying

Xt ⊥⊥ Gs ∀(t, s) ∈ [0, 1]2. Further, suppose ∃(b1, b2) ∈ R2 such that

∑
h∈Zn−1

1

nb1

∑
i∈S(1,h)

xtixti−h
P−→
∑
h∈Z

∫ 1

0
ct(h)dt = Ω(xx) (B.2)

where ct(h) is X1-measurable ∀h ∈ Z, P-uniformly bounded ∀(h, t) ∈ Z × [0, 1] and Ω(xx) ∈ (0,∞)

P-almost surely. Define the realized kernel estimator

RK(f, x, u) =
1

nb2

∑
h∈Zn−1

f

(
h

H

) ∑
i∈S(1,h)

xtiuti−h
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where H ∝ nν and f(x) : R → [−1, 1] is a weight function, which is differentiable at all but a finite

number of points and f (jj) =
∫∞
−∞[f (j)(x)]2dx < ∞ for j = 0 and j = 1 almost everywhere. Last,

suppose n2b2−b1H−1V[RK(f, x, u)|H1]
P−→ V(f, x, u) where V(f, x, u) is measurable with respect to X1

and V(f, x, u) ∈ (0,∞) P-almost surely. Then, if 2b2 − b1 ∈ (ν + 1/(2 + ru), 1 + ν],

n(2b2−b1)/2H−1/2RK(f, x, u)
ds(X1)→ MN (0,V(f, x, u)) .

Proof. First, E[RK(f, x, u)|X1] = 0 is immediate. Next, rewrite RK(f, x, u) as

RK(f, x, u) =
∑

i∈S(1,0)

utiw̄n,i, w̄n,i =
1

nb2

∑
h∈S(1,0)

f

(
h− i
H

)
xth

and define the sequences (K̄n, L̄n) ∈ R+ × R+ where K̄n = O(nk̄) and L̄n = O(nl̄) for 0 < k̄ <

l̄ < 1. The stable central limit theorem follows by the central limit theorem for weighted α-mixing

processes from (Yang 2007, Theorem 3.1) X1-conditionally in conjunction with (Barndorff-Nielsen

et al. 2008, Lemma 1), since: (1) w̄n = maxi∈S(1,0) |w̄n,i| ≤ Op(
∑

i∈S(1,0) w̄2
n,i) = Op(V[RK(f, x, u)|X1]),

(2) nL̄−1
n αu(K̄n) = o(1), (3) nK̄nL̄

−1
n w̄2

nV[RK(f, x, u)|X1]−1 = op(1), and (4) L̄n
∑

i∈S(1,0) w̄2
n,i = op(1).

(1) The last equality is immediate as uti ⊥⊥ w̄n,j ∀i, j and Assumption 5 implies
∑

h∈Z |Ω(uu)(h)| <
∞. The first inequality follows using

∑
i∈S(1,0) w̄2

n,i = Op(Hn
−(2b2−b1)) and (B.2) to infer w̄n =

Op(H
1/2n−(1+2b2−b1)/2). Then, Op(H

1/2n−(1+2b2−b1)/2) ≤ Op(Hn−(2b2−b1)) when 2b2 − b1 ≤ 1 + ν. (2)

is satisfied by having 0 < (1 − l̄)/(1 + ru + ε) < k̄ < l̄ < 1 for ru ∈ N+. (3) Using the results in (1),

nK̄nL̄
−1
n w̄2

nV[RK(f, x, u)|X1]−1 = nK̄nL̄
−1
n Op(n

−1)
P−→ 0. (4) As L̄n

∑
i∈S(1,0) w̄2

n,i = Op(n
l̄+ν−(2b2−b1)),

2b2 − b1 > l̄ + ν must hold. From (2), select l̄ such that l̄ > (1− l̄)/(1 + ru + ε) or l̄ > 1/(2 + ru + ε).

Choosing l̄ = 1/(2 + ru) satisfies this condition, thus providing the lower bound on 2b2 − b1.

Remark B.3. Lemma B.5 generalizes (Varneskov 2013, Lemma C.5) to allow for arbitrarily scaled

convergence in (B.2) provided 2b2− b1 ∈ (ν+ ru/(2+ ru), 1+ν]. In Theorem 1, ν = 1/2, implying that

the scale coefficients for products of uti and etj in RK∗(U) are b1 = 1 and b2 = 2ν = 1, respectively,

while they for products of uti and ∆ptj in RK∗(p∗, U) +RK∗(U, p∗) are b1 = 1 and b2 = 1/2 + ν = 1.

The latter follows by ∆p∗ti = (1 + op(1))σti−1(∆ti)
1/2εti, εti ∼ i.i.d.N(0, 1), and Lemma B.3.

B.2 Proof of Theorem 2

Write RKε(p) − RK∗(p) = M ′(K̂ −K)M = M ′ZM where Z is a d-dimensional diagonal matrix

with entries zq = k̂q − kq = max(0, εn − kq), q = 1, . . . , d. Let σq be the q-th eigenvalue of
∫ 1

0 Σtdt,

then from Theorem 1, it follows kq = σq + n−1/4ηq where ηq
ds(H1)∼ MN(0,Bσq(κ)) and M = Op(1).

Thus, it suffices to prove that zq = op(n
−1/4) ∀q = 1, . . . , d. Let ‖ · ‖1 = E[| · |], then

‖zq‖1 ≤ (‖εn‖1 + ‖kq‖1)‖1{εn−kq>0}‖1
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by the triangle inequality. As ‖1{εn−kq>0}‖1 = P[εn − kq > 0], the Markov inequality may be use to

write,

P[εn − kq > 0] = P[εn − n−1/4ηq > σq] ≤
εn − E[n−1/4ηq]

σq
= Op(εn).

Hence, ‖zq‖1 ≤ Op(εn), which implies zq ≤ Op(εn). This provides the final result.
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