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Abstract

This paper analyzes a generalized class of flat-top realized kernels for estimation of the quadratic
variation spectrum, i.e. the decomposition of quadratic variation into integrated variance and jump
variation, when the underlying, efficient price process is contaminated by additive noise. The addi-
tive noise consists of two orthogonal components, which allows for α-mixing dependent exogenous
noise and an asymptotically non-degenerate endogenous correlation structure, respectively. Both
components may exhibit polynomially decaying autocovariances. In the absence of jumps, the class
of flat-top estimators are shown to be consistent, asymptotically unbiased, and mixed Gaussian
at the optimal rate of convergence, n1/4. Exact bounds on lower order terms are obtained using
maximal inequalities and these are used to derive a conservative, MSE-optimal flat-top shrinkage.
Additionally, bounds on the optimal bandwidth is provided for noise models of varying complex-
ity. In theoretical and numerical comparisons with alternative estimators, including the realized
kernel, the two-scale realized kernel, and a proposed robust pre-averaging estimator, the flat-top
realized kernels are shown to have a higher-order advantage in terms of bias reduction. Extending
the analysis to accommodate jumps in the underlying price process, the flat-top realized kernels
are used to propose two classes of (medium) blocked realized kernels, which produce consistent,
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1 Introduction

The study of high-frequency financial data during the last decade has led to dramatic improvements

in the understanding of financial market volatility and to an impressive development of econometric

techniques to handle an array of problems when sampling at the highest frequencies. Three well-

established facts from a vast literature seem to establish a general framework for return volatility

estimation. First, quadratic variation is a measure of ex-post return variation, and its increments

may be estimated efficiently by realized variance in a continuous semimartingale framework.1 Second,

the observable logarithmic asset prices are comprised of a signal, the efficient price process, and an

additive noise caused by a host of market microstructure (MMS) issues.2 Third, the underlying price

process may have a discontinuous, or jump, part.3

The important role of asset return volatility in finance is indisputable, be it in e.g. derivative pricing,

hedging, portfolio allocation or more recently as a separately traded asset, and for its study, it has been

common practice to adopt a continuous semimartingale framework, which implies absence of arbitrage

opportunities and nests most continuous time models in financial economics. In this stylized setting,

the realized variance estimator, tracing its roots back to Merton (1980), estimates the ex-post variance

over a given period, i.e. increments of quadratic variation, perfectly if prices are observed continuously

and without measurement errors. However, when working with high-frequency data, the notion of

MMS noise, which summarizes a diverse array of market imperfections such as bid-ask bounce effects,

asymmetric information and strategic learning, and execution of block trades, causes deviations from

the no-arbitrage semimartingale framework. It is key to realize that MMS noise introduces autocor-

relations in the observable log-returns, leading standard volatility estimators such as realized variance

to diverge. So far, most theoretical developments of robust estimation techniques has maintained a

working hypothesis of exogenous and i.i.d. noise dependence (see footnote 2), effectively introducing

an MA(1) unit root in the observable log-returns. Hansen & Lunde (2006) show that this assumption

is not too damaging if sampling occurs around every minute (or every 15 ticks). However, Diebold

& Strasser (2012), in a comprehensive econometric analysis of theoretical MMS models, show that a

general noise model, allowing for both exogenous and endogenous noise components with polynomially

decaying autocovariances, is needed to avoid concerns about the underlying MMS mechanisms. These

1See the early work by Andersen, Bollerslev, Diebold & Labys (2001), Barndorff-Nielsen & Shephard (2002), Comte &
Renault (1998), and see Andersen, Bollerslev & Diebold (2008) and Barndorff-Nielsen & Shephard (2007) for reviews.

2See Hansen & Lunde (2006) and Bandi & Russell (2008) for analyses of MMS noise and its impact on realized variance,
and the work on robust estimation techniques such as the two- and multi-scale realized variance, Zhang, Mykland &
Aı̈t-Sahalia (2005) and Zhang (2006), the realized kernel of Barndorff-Nielsen, Hansen, Lunde & Shephard (2008), and the
pre-averaging estimator of Jacod, Li, Mykland, Podolskij & Vetter (2009), who either assume the noise to be exogenous
and i.i.d. or conditionally (on the efficient price process) independent.

3See the work on bipower variation by Barndorff-Nielsen & Shephard (2004, 2006) and Huang & Tauchen (2005), threshold
realized variance by Mancini (2009) and Aı̈t-Sahalia & Jacod (2009, 2011), and nearest neighborhood truncation by
Andersen, Dobrev & Schaumburg (2013). While none of this work is designed to alleviate the impact of MMS noise,
the work on pre-averaged bipower variation by Podolskij & Vetter (2009), pre-averaged realized quantile estimation by
Christensen, Oomen & Podolskij (2010), and pre-averaged threshold realized variance by Aı̈t-Sahalia, Jacod & Li (2012)
extend the analysis to accommodate an exogenous and i.i.d., or conditionally independent, additive noise component.
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conjectures are supported by the empirical findings of Hansen & Lunde (2006), Kalnina & Linton

(2008), Ubukata & Oya (2009), Aı̈t-Sahalia, Mykland & Zhang (2011), Kalnina (2011), Ikeda (2013),

and Varneskov (2013) when sampling beyond the one-minute mark, thus leaving room for desirable

extensions of existing estimation methods to utilize all available observations.

A second deviation from the continuous semimartingale setting is the presence of large discontinuous

movements, or jumps, in the underlying prices. If the log-price process is allowed to follow more general

jump-diffusions, its quadratic variation decomposes into variation stemming from its continuous and

discontinuous parts. This decomposition has spurred a literature on disentangling the quadratic vari-

ation spectrum (Aı̈t-Sahalia & Jacod 2012) into its contribution from separate risk sources, volatility

and jumps, and its implications for e.g. volatility forecasting (Andersen, Bollerslev & Diebold 2007),

option pricing (Andersen, Fusari & Todorov 2012), and the characterization of investor equity, variance

and jump risk premia (Bollerslev & Todorov 2011). While the econometric techniques to robustify

against MMS noise and to segregate volatility and jump variation, respectively, have largely developed

separately, the aim of this paper is to provide a unified, rate-optimal methodology based on realized

kernels to characterize the quadratic variation spectrum under weak assumptions on the MMS noise

to accommodate a wide variety of empirical regularities.

There are multiple contributions of this paper. First, in the absence of jumps, a generalized class

of flat-top realized kernels is discussed and its asymptotic properties are established in a general

additive noise setting with two orthogonal noise components that accommodates α-mixing dependent

exogenous noise and asymptotically non-degenerate endogenous correlations through a local linear

model, respectively. Both components may exhibit polynomially decaying autocovariances. Here, the

class of flat-top estimators are shown to be consistent, asymptotically unbiased, and mixed Gaussian at

the optimal rate of convergence, n1/4. Relative to the realized kernels of Barndorff-Nielsen et al. (2008,

2011a), the estimators are specified with a slowly shrinking flat-top support that exactly eliminates the

leading noise-induced bias along with a data-driven choice of lower order bias terms, enabling optimal

asymptotic properties. The fact that the flat-top support is shrinking separates the estimators from

the strictly less efficient fixed flat-top kernel functions analyzed by Politis (2011) in the context of

spectral density estimation. Further, Ikeda (2011, 2013) introduces a two-scale realized kernel, which

may be interpreted as a realized kernel with a generalized jack-knife kernel function and establishes

its asymptotic properties under an exponential α-mixing assumption on the MMS noise. He also

briefly discusses and conjectures asymptotic equivalence of the two-scale realized kernel and generally

specified flat-top realized kernels. The second contribution is to show a higher-order advantage of

the flat-top realized kernels in the present paper over the former in terms of bias reduction and the

existence of cases where the distributions of the two estimators are not asymptotically equivalent, i.e.

where the conjecture does not hold. Taken together, the seemingly small flat-top tweak of existing

estimation methods makes a big difference in terms asymptotic properties.

Third, by using maximal inequalities to obtain exact bounds on lower order terms, a conservative

mean-squared error optimal flat-top shrinkage is derived. Fourth, bounds are provided on the optimal
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bandwidth for noise models of varying complexity. Fifth, in addition to relaxing assumptions on the

MMS noise, sharpened end-point conditions are provided for all realized kernel-based estimators.

The implications of the present additive noise model on the pre-averaging approach, e.g Jacod et al.

(2009) and Podolskij & Vetter (2009), is also discussed. The latter, similar to the realized kernels of

Barndorff-Nielsen et al. (2008, 2011a), is either inconsistent or suffers from an asymptotic bias and

a suboptimal rate of convergence for consistency when the MMS noise is serially dependent. Hence,

to complete exposition, and of separate interest, a robust pre-averaging estimator is discussed in the

Appendix along with its asymptotic theory. Interestingly, the robust pre-averaging estimator behaves

like the two-scale realized kernel in terms of bias and variance.

Their attractive bias properties make the flat-top realized kernels particularly well-suited for ex-

tending the realized kernel theory to accommodate jumps, since this extension relies on a zero-mean

martingale property of the estimation error. Hence, the seventh contribution comes from using the

flat-top realized kernels to propose two classes of (medium) blocked realized kernels, which produce con-

sistent, non-negative estimates of integrated variance in the presence of a finite activity jump process,

building on the work of Mykland & Zhang (2009) and Mykland, Shephard & Sheppard (2012). The

two classes of blocked estimators use local flat-top realized kernel estimates in conjunction with either

power variation or the medium realized variance estimator (Andersen, Dobrev & Schaumburg 2012).

The blocked estimators are shown to have either no loss of asymptotic efficiency or in the rate of

consistency relative to the flat-top realized kernels when jumps are absent. However, only the medium

blocked realized kernels achieves the optimal rate of convergence under the jump alternative.

The outline of the paper is as follows. Section 2 introduces a continuous semimartingale framework

and the MMS noise. Section 3 describes the flat-top realized kernels, their asymptotic theory, and

theoretical comparisons with alternative estimators. Section 4 extends the analysis to accommodate

jumps, while Section 5 provides some simulation results. Last, Section 6 concludes. The appendix

contains additional theory, proofs, and lemmas. The following notation is used throughout: R, Z, and N
denote the set of real numbers, integers, and natural numbers; N+ = N\{0} and R+ = {x ∈ R : x > 0};
1{·} denotes the indicator function; O(·), o(·), Op(·), and op(·) denote the usual (stochastic) orders of

magnitude; “−→”, “
P−→”, “

d−→” and “
ds−→” indicate the limit, the probability limit, convergence in law, and

stable convergence in law, respectively.4

2 A Semimartingale Setup and Assumptions

The fundamental theory of asset pricing suggests that the efficient logarithmic asset price, p∗t , follows

a semimartingale process defined on some filtered probability space
(
O,F , (Ft)t∈[0,1],P

)
, where O is

the set of possible scenarios equipped with a σ-algebra F , and P is the probability measure. The

information filtration, Ft ⊆ F is an increasing family of σ-fields satisfying P-completeness, right

4For details on the concept of stable convergence consult e.g. Jacod & Protter (1998), Appendix A of Barndorff-Nielsen
et al. (2008), Mykland & Zhang (2009) or Podolskij & Vetter (2010).
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continuity and is assumed to be generated by other filtrations Pt = σ(p∗s, s ∈ [0, t]), Ht = σ(pcs, s ∈
[0, t]) for pct = (p∗t , p̆t)

′ where Cov(p∗t , p̆s) = 0 ∀(t, s) ∈ [0, 1]2, and Gt where Ht ⊥⊥ Gs ∀(t, s) ∈ [0, 1]2 as

Ft = Ht ∨ Gt such that Pt ⊂ Ht ⊂ Ft. The restriction t ∈ [0, 1] is without loss of generality and may

correspond to the asset price movements during one (trading) day. Let N + 1 transaction prices be

observed on an equally partitioned grid ti ∈ [0, 1], i = 0, . . . , N , then the observable logarithmic asset

price is related to its efficient counterpart by the signal-plus-noise model,

pti = p∗ti + Uti , Uti = eti + uti i = 0, . . . , N, (1)

where Uti denotes the MMS noise term, which is comprised of an endogenous and an exogenous

component, eti and uti , respectively, to summarize a vast array of market imperfections.

2.1 The Efficient Price Process

The efficient price process, p∗t , is, initially, restricted to a class of continuous Brownian semimartingales

with stochastic volatility,

p∗t = p∗0 +

∫ t

0
µudu+

∫ t

0
σudWu (2)

where µt ∈ R is an (Pt)-predictable stochastic process satisfying ∀(t, w) ∈ [0, 1]×O ∃Λ1 > 0 : |µt(w)| ≤
Λ1, Wt ∈ R is a standard Brownian motion, and the stochastic volatility, σt, follows:

Assumption 1. Let σt ∈ R+ be an (Pt)-adapted stochastic process, which follows a continuous time

Brownian semimartingale of the form

σt = σ0 +

∫ t

0
µ#
u du+

∫ t

0
σ#
u dWu +

∫ t

0
v#
u dVu

where Vt ∈ R is a standard Brownian motion independent of Wt, µ
#
t ∈ R is an (Pt)-predictable

cádlág process, and both σ#
t ∈ R+ and v#

t ∈ R+ are (Pt)-adapted and cádlág processes. Additionally,

∀(t, w) ∈ [0, 1]×O ∃Λ2 > 0 : |µ#
t (w)|+ σt(w) + σ#

t (w) + v#
t (w) ≤ Λ2.

This setup follows its counterparts in the literature, see e.g. Zhang et al. (2005), Barndorff-Nielsen

et al. (2008, 2011a) and Ikeda (2011, 2013). It allows p∗t to evolve continuously in accordance with the

no-arbitrage principle. Similarly, σt is assumed to be driven by two standard Brownian motions, one

being the same driving p∗t to accommodate both common and idiosyncratic uncertainty and leverage

effects. The analysis is extended to allow for the possibility of price-jumps in Section 4. In this setting,

however, quadratic variation of (2) is defined as

[p∗, p∗] ≡ plim
N→∞

N∑
i=1

(p∗ti − p
∗
ti−1

)2 =

∫ 1

0
σ2
t dt (3)

for any set of deterministic partitions 0 = t0 < t1 < · · · < tN = 1 with supi{ti+1 − ti} = 0 as N →∞,
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see e.g. (Jacod & Shiryaev 2003, pp. 51-53) for details.

2.2 The Noise Process

Let L and ∆ = (1−L) denote the usual lag and first difference operators, and let the two components

of Uti = eti + uti ∈ R satisfy the following conditions:

Assumption 2. ∃re ∈ N+ such that αe(g) = O(1)1{|g|≤1} + O
(
|g|−(1+re+ε)

)
1{|g|>1} ∈ R+ for some

ε > 0. Further, define the functions θt(g) : t ∈ [0, 1]→ R and the standard Brownian motion, W̃t ∈ R.

Then, eti, i = 1, . . . , N , has representation

eti =
∞∑

g=−∞
θ(ti, g)(∆ti−g)

−1/2∆W̃ti−g ,

which satisfies the following conditions: (1) d[W, W̃ ]t = Υtdt where Υt ∈ R is continuous and ∀(t, w) ∈
[0, 1]×O ∃Λ3 > 0 : |Υt(w)| ≤ Λ3, (2) supti∈[0,1] |θ(ti, g)| ≤ αe(g), (3) supt∈[0,1] |θt(g)| ≤ αe(g), (4) for

some Λ4 ∈ (0,∞), supg
∑N

i=1 |θ(ti, g) − θti(g)| ≤ Λ4, (5)
∑N

i=1

∣∣θti(g)− θti−1(g)
∣∣ ≤ αe(g), and (6) Υt

is Ht-adapted, and θ(t, g), and θt(g) are both H1-measurable for all g.

Assumption 3. uti is a strictly stationary, (Gti)-measurable α-mixing sequence of random variables

with mixing coefficient defined by

αu(h) = sup
i∈N

sup
E1∈Gi,E2∈G∞i+h

|P(E1 ∩ E2)− P(E1)P(E2)| → 0

as h→∞ where G∞i+h = G∞\Gi+h−1. Further, ∀i = 1, . . . , N : E[uti ] = 0, ∃v > 4 : supti∈[0,1] E[|uti |v] <
∞, and ∃ru ∈ N+ :

∑∞
j=1 j

ruαu(j) < ∞. Last, denote the h-th autocovariance Ω(uu)(h), the long run

variance Ω(uu) =
∑

h∈Z Ω(uu)(h) and for j, k, l ∈ Z, let the third and fourth order cumulants, κ3(0, j, k)

and κ4(0, j, k, l), respectively, satisfy
∑

j,k∈Z |κ3(0, j, k)| <∞ and
∑

j,k,l∈Z |κ4(0, j, k, l)| <∞.

Assumption 4. Let n,m ∈ N+, with n − 1 + 2m = N , and redefine the sample as pti = ptm+i for

i ∈ [1, n− 1], pt0 = 1
m

∑m
i=1 pti−1 and ptn = 1

m

∑m
i=1 ptN−m+i, where m ∝ nξ for ξ ∈ (1/4, 1) such that

pti = p∗ti + Uti , i = 0, . . . , n.

Assumption 4 is common to kernel-based estimators of quadratic variation, since they require jit-

tering at the end-points to eliminate end-effects. While this is important for the theoretical analysis,

Barndorff-Nielsen et al. (2008, 2011a) show that this may be disregarded in practice. Assumption

2-3, which share features with (Ikeda 2011, Assumption 5) and (Barndorff-Nielsen, Hansen, Lunde &

Shephard 2011a, Assumption U), requires a detailed discussion. The additive noise consists of two

orthogonal components, an endogenous and an exogenous, which captures MMS features such as asym-

metric information and strategic learning, Glosten & Milgrom (1985) and Diebold & Strasser (2012),

5



and bid-ask bounce effects (Roll 1984), among others, and taken together may describe the gradual

jump model of (Barndorff-Nielsen, Hansen, Lunde & Shephard 2009, p. C25). See also Hasbrouck

(2007) for a textbook treatment of the MMS literature.

While Assumption 3 is standard in the spectral density estimation literature, Assumption 2 is

inspired the work of Dahlhaus & Polonik (2009) and Dahlhaus (2009) on spectral analysis of locally

stationary processes, noticing (∆ti−g)
−1/2∆W̃ti−g

d
= N(0, 1), but with the addition of allowing for

asymptotically non-degenerate correlation between W and W̃ . Its peculiar construction with θ(ti, g)

and θti(g) reflects the need to impose certain smoothness in the time direction, condition (5), while

allowing the class to be sufficiently broad to cover interesting cases such as e.g. time-varying ARMA

models. Hence, even in the case where W and W̃ are uncorrelated, Assumption 2 allows for diurnal

heteroskedasticity in MMS noise. A feature, which is emphasized by Kalnina & Linton (2008).

Definition 1. Ω
(ee)
t (h) =

∑∞
j=−∞ θt(h+ j)θt(j), Ω(ee)(h) =

∫ 1
0 Ω

(ee)
t (h)dt, Ω

(ee)
t =

∑
h∈Z Ω

(ee)
t (h), and

Ω(ee) =
∑

h∈Z Ω(ee)(h) are the local and average h-th autocovariance and long run variance of et.

Definition 2. For (i, h) ∈ {1, . . . , n} × Z, S+
h = max(h, 0), and S−h = min(h, 0) such that for

{1, . . . , n}∩{1+S+
h , . . . , n+S−h } 6= ∅, Ω

(ep)
ti

(h) = θti(h)Υti−h−1
σti−h−1

is the local covariance between eti
and ∆p∗ti−h. As n → ∞, Ω(ep)(h) =

∫ 1
0 Ω

(ep)
t (h)dt, Ω

(ep)
t =

∑
z∈Z Ω

(ep)
t (h), and Ω(ep) =

∑
z∈Z Ω(ep)(h)

are the corresponding average h-th covariance and local and average long run covariance.

Definition 3. Ωt(h) = Ω(uu)(h)+Ω
(ee)
t (h), Ω(h) =

∫ 1
0 Ωt(h)dt, Ωt =

∑
h∈Z Ωt(h), and Ω =

∑
h∈Z Ω(h)

are the local and average h-th autocovariance and long run variance of Ut.

To quantify the impact of Assumption 2 and 3 on the summability of Ω and the persistence of

Ω(h), let α(h) = max(αe(h), αu(h)) and r = min(re, ru) ∈ N+, then supt∈[0,1] |Ωt(h)| ≤ α(h) and

supt∈[0,1]

∑
h∈Z |h|r|Ωt(h)| < ∞. Hence, the MMS noise is allowed to exhibit polynomially decaying

autocovariances, which is required to capture a variety of MMS mechanisms, see e.g. (Diebold &

Strasser 2012, Table 3). Together with absolute summability of the third and fourth cumulants,

this enables the derivation of the asymptotic mean and variance of the estimator in Section 3. In

addition to its implications for autocovariances, the mixing property of uti and the implied polynomial

mixing rate αu(h) = O
(
h−(1+ru+ε)

)
are used to derive marginal central limit theorems for all terms

involving uti conditional on the orthogonal filtration, H1. The polynomial mixing rate is weaker than

the exponential mixing rates assumed in Aı̈t-Sahalia et al. (2011) and Ikeda (2011, 2013), and the

local linear endogenous noise specification generalizes other endogenous noise models in Kalnina &

Linton (2008), Barndorff-Nielsen et al. (2011a), and Ikeda (2011) by not only allowing for increased

persistence, but also in terms of flexibility of the data generating process.

Remark 1. The stylized assumption of an equally spaced sampling grid may be relaxed following

the work of e.g. Phillips & Yu (2008), Barndorff-Nielsen et al. (2011a), and Li, Mykland, Renault,

Zhang & Zheng (2012) to allow for both random and endogenous durations between observations.

While not the emphasis of the present study, a multivariate companion paper with empirical emphasis,
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Varneskov (2013), shows that exogenous, but random durations increases both the bias and variance of

the realized kernel estimator when endogenous MMS noise is present, whereas Li et al. (2012) shows

that endogenous sampling leads to an asymptotic bias even in the absence of MMS noise.

3 The Realized Kernel Approach

The building blocks of the realized kernel approach are the realized autocovariances of any two processes

X and Z, defined as

Γh(X,Z) =

n+S−h∑
i=1+S+

h

∆Xti∆Zti−h ∀h = −(n− 1), . . . ,−1, 0, 1, . . . , n− 1, (4)

where Γh(X,X) = Γh(X). The first (and still predominant) high-frequency estimator ex-post return

variation is the realized variance, defined as RV = Γ0(p). In the absence of MMS noise, RV
P−→∫ 1

0 σ
2
t dt almost by definition in (3) and its asymptotic properties are established in Barndorff-Nielsen

& Shephard (2002). If MMS noise is present, RV
P−→∞ since the signal, ∆p∗ti = Op(1/

√
n), is swamped

asymptotically by the noise, ∆Uti = Op(1). However, the higher-order realized autocovariances, Γh(p)

h 6= 0, may be used to offset the impact of ∆Uti , thereby achieving consistent estimators if their

inclusion reduces the noise-induced bias and variance sufficiently.

The realized kernels, advanced by Barndorff-Nielsen et al. (2008, 2011a), utilize this idea and

reduces the impact of ∆Uti by weighting the realized autocovariances, Γh(p), appropriately as

RK(p) = Γ0(p) +
n−1∑
h=1

k

(
h

H

)
{Γh(p) + Γ−h(p)} (5)

where k(·) is a kernel function and H ∝ nν , ν ∈ (0, 1), is the bandwidth. By design, the realized

kernels are related to HAC and spectral density estimators, see e.g. Andrews (1991), Priestley (1981),

and Politis (2011), but the lack of scaling with 1/n in Γh(p) and the use of variables in first differences,

separating realized autocovariances from standard autocovariances, creates technical subtleties. In the

realized kernel framework, this estimation design works, however, since Uti is (locally) stationary and

has a transitory rather than permanent effect on the price. This implies that ∆Uti is over-differenced

and has an average long-run variance of zero, which is not the case for ∆p∗ti in (3).

Definition 4. K is a set of functions k: R → [−1, 1]. Define k(j)(x) = ∂jk(x)/∂xj, k
(2)
ã =

limx→0 |x|−ã(k(2)(0) − k(2)(x)) < ∞, ∃ã ≥ 1, q = maxã∈N+{ã ≥ 1 : k
(2)
ã ∈ (−∞, 0)}, and let

k(x) satisfy the following conditions: (a) k(x) is twice continuously differentiable, k(2)(x) is dif-

ferentiable at all but a finite number of points, (b) k(x) = k(−x), (c) k(0) = 1, k(1)(0) = 0,

k(2)(0) < 0, (d) k(jj) ≡
∫∞

0 [k(j)(x)]2dx < ∞ for j = 0, 1, 2, and for j = 3 almost everywhere,

and (e)
∫∞
−∞ k(x)e−ixλ ≥ 0, ∀λ ∈ R.
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This class of kernel functions is analyzed for HAC estimators in Andrews (1991) and for realized

kernels in Barndorff-Nielsen et al. (2011a). The second order smoothness condition (a) excludes the

Bartlett kernel, which is analyzed in Hansen & Lunde (2005), and this is crucial for obtaining rate-

optimal estimators. Note that q measures the smoothness of k(2)(x) around the origin, rather than

that of k(x), and together with (c), condition (a) guarantees q ∈ N+. Conditions (c) and (e) guarantee

RK(p) to be non-negative. To highlight some important properties of RK(p) with k(x) ∈ K, the

following Lemma is stated without proof as this may be proved using Theorem 1.

Lemma 1. Let Assumptions 1-4 hold with q ≤ r ∈ N+, k(x) ∈ K, and H ∝ nν , ν ∈ (1/3, 1),

RK(p) =

∫ 1

0
σ2
t dt+ Bn + En + Z(1 + op(1)), Z ds(H1)→ MN

(
0, lim
n→∞

Vn(k)
)
,

Bn = nH−2
∣∣∣k(2)(0)

∣∣∣Ω + nH−(2+q)k(2)
q

∑
h∈Z
|h|qΩ(h) + 2n1/2H−2

∣∣∣k(2)(0)
∣∣∣∑
h∈Z
|h|Ω(ee)(h),

En = Op
(
m2n−1

)
+Op

(
H1/2mn−1

)
+Op

(
m−1

)
+Op

(
H1/2(nm)−1/2

)
+Op

(
m(Hn)−1/2

)
,

Vn(k) = 4Hn−1k(00)

∫ 1

0
σ4
t dt+ 4nH−3k(22)

∫ 1

0
Ω2
tdt+ 8H−1k(11)

∫ 1

0

(
Ωtσ

2
t + 2

(
Ω

(ep)
t

)2
)
dt.

Lemma 1 generalizes (Ikeda 2011, Lemma 1) and (Barndorff-Nielsen et al. 2011a, Theorem 2) by

relaxing the MMS noise assumption and by strengthening the results on end-effects, leading to specific

bounds on the required jittering. Besides this, there are three important points embedded in this

result. First, the realized kernel is consistent if ν ∈ (1/2, 1). Second, since it relies on over-smoothing

to eliminate the leading bias term it cannot achieve the optimal rate of convergence, n1/4, derived by

Gloter & Jacod (2001a, 2001b), which requires setting ν = 1/2. Third, while the noise-induced bias

is eliminated asymptotically when ν > 1/2, the discretization term in Vn(k) of order Op(Hn
−1) term

becomes dominant, which leads to a bias-variance tradeoff that is balanced by the mean-squared error

(MSE) optimal choice ν = 3/5 resulting in a suboptimal rate of convergence, n1/5, and a bias in the

asymptotic distribution.

Remark 2. The end-point results, En, sharpens the jittering bounds put forth by Barndorff-Nielsen

et al. (2008, 2011a) and Ikeda (2011, 2013) who do not treat ∆p∗t1 and ∆p∗tn as triangular arrays.

3.1 Flat-Top Realized Kernels

The suboptimal accuracy of kernel-based HAC estimators is also noted in the context of spectral

density estimation by e.g. Politis & Romano (1995) and Politis (2001, 2011), who discuss the notions of

trapezoidal, infinite-order and flat-top kernel functions as remedies for bias-correcting spectral density

estimates and thereby achieving higher-order accuracy. The idea of tuning the shape of the kernel

function around the origin may also be utilized in this setting. To see this, write the contribution of
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the MMS noise on the asymptotic distribution as

n−1∑
h=−n+1

k

(
h

H

) n+S−h∑
i=1+S+

h

∆Uti∆Uti−h =
n

H2

n−1∑
h=−n+1

a

(
|h|
H

)
1

n

n−1+S−h∑
i=1+S+

h

UtiUti−h +Op(m
−1) (6)

where a(h/H) is the finite sample analogue of −k(2)(h/H). Clearly, (6) illustrates how higher-order

accuracy of the realized kernel estimators depends on the smoothness of k(2)(h/H) and its shape

around the origin.

Definition 5. Let c = H−γ ∝ n−γν for some γ ∈ [0, 1], λ(x) ∈ K and define K∗ as the set of functions

k: R→ [−1, 1] characterized by

k(x) =

1 if |x| ≤ c

λ(|x| − c) otherwise.

The difference between kernel functions from K and K∗ is the shrinking flat-top region [−c, c] in

the neighborhood of the origin, which (6) shows will eliminate the bias from the dominant MMS

noise autocovariances. K∗ is similar to the flat-top kernel functions analyzed by Politis (2011) in the

context of bias-correcting spectral density estimates, but there is one important difference: In K∗,
c = H−γ → 0 as n → ∞ for γ ∈ (0, 1], whereas (Politis 2011, (4)) fixes c ∈ (0, 1]. Note also that

the use of flat-top kernel functions in the realized kernel setting is not entirely new. Barndorff-Nielsen

et al. (2008) designed a flat-top realized kernel with γ = 1, i.e. imposing unit weight on the first

realized autocovariance, which leads to an exact bias-correction in the i.i.d noise case. However, as

shown in (Barndorff-Nielsen et al. 2011a, Table 8), flat-top realized kernels with γ = 1 are highly

sensitive to deviations from i.i.d. noise. Denote the realized kernels with k(x) ∈ K∗ by RK∗(p), then

their asymptotic properties are formally established in the following theorem.

Theorem 1. Let Assumptions 1-4 be satisfied.

(1) Further, let H ∝ nν , ν ∈ (1/3, 1) and ξ ∈ (1/4, 1/2), then

E[RK∗(p)|H1] =

∫ 1

0
σ2
t dt+Op

(
nH−2α(cH)

)
+Op

(
n1/2H−1αe(cH)

)
,

V[RK∗(p)|H1] = Vn(λ) + 4Hn−1c

∫ 1

0
σ4
t dt+ op(Hn

−1) + op(nH
−3) + op(H

−1).

(2) For H = an1/2 denote V(λ, a) = limn→∞ n
1/2Vn(λ) and let ξ ∈ (1/4, 3/8) and γ ∈ (0, (1/2 +

r)/(1 + r)), then

n1/4

(
RK∗(p)−

∫ 1

0
σ2
t dt

)
ds(H1)→ MN (0,V(λ, a)) .
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Theorem 1 reveals several features of the flat-top realized kernel approach. First, under weak

conditions on the flat-top shrinkage, the estimator is consistent, asymptotically unbiased, and mixed

Gaussian with the optimal rate of convergence, n1/4. Such desirable asymptotic properties have already

been established for the multi-scale realized variance estimator by Aı̈t-Sahalia et al. (2011) and the

two-scale realized kernel (TSRK) by Ikeda (2011, 2013) under stronger assumptions on the MMS noise.

However, as noted by Barndorff-Nielsen et al. (2008), the multi-scale realized variance estimator with

optimally selected scale weights is asymptotically equivalent to a realized kernel with a cubic kernel

function, λ(x) = 1 − 3x2 + 2x3, which is strictly less efficient than realized kernels using, e.g., the

Parzen kernel or a class of modified Tukey-Hanning kernel functions. A more elaborate discussion of

the asymptotic similarities between the flat-top realized kernels and the TSRK is provided in Section

3.4. Second, the characteristic parameters of λ(x) appear in V(λ, a) instead of those of k(x) since

c = H−γ → 0 as n → ∞, implying that once c have been tuned to eliminate the noise-induced bias,

the intrinsic efficiency of λ(x) controls the asymptotic efficiency of RK∗(p). Hence, it is apparent

from Theorem 1 (1) that the Politis (2011) class of flat-top kernels inflate the asymptotic variance by

4ac
∫ 1

0 σ
4
t dt, which makes it strictly less efficient than flat-top kernels from K∗. Similar consideration

may be given to the asymptotic variance of a spectral density estimate due its well-known dependence

on the characteristic parameter k(00). Third, while having no effect on the asymptotic distribution,

Theorem 1 (1) shows that c may be chosen to balance a finite sample bias-variance tradeoff, which

is discussed in Section 3.3. Fourth, Theorem 1 (1) also demonstrates why the parsimonious choice

γ = 1 of Barndorff-Nielsen et al. (2008) leads to an inconsistent estimator unless ν > 1/2, similar to

Lemma 1. Finally, using his class of flat-top kernels, (Politis 2011, Theorem 2.1) show that both the

rate of convergence and the asymptotic bias of spectral density estimates depend on the underlying

smoothness of the data, which is not the case in Theorem 1 (2) above. When the flat-top shrinkage is

chosen suitably, the flat-top realized kernels are asymptotically unbiased and consistent at the optimal

rate of convergence regardless of noise dependence.

Remark 3. Barndorff-Nielsen, Hansen, Lunde & Shephard (2011b) shows that subsampling a discon-

tinuous kernel function increases efficiency and eventually results in n1/6-consistency by reshaping the

kernel into the flat-top trapezoidal kernel of Politis & Romano (1995). However, the trapezoidal kernel

does not belong to K∗ since k
(2)
ã = 0 for λ(x) over the domain x ∈ {x ∈ R : |x| > c}. Furthermore,

they find that subsampling members of K leads to efficiency losses that are strictly increasing in the

number of subsamples, since it destroys the smoothness of λ(x).

Remark 4. Ikeda (2011) briefly discusses flat-top realized kernels as an alternative to the TSRK, and

conjectures that they are asymptotically equivalent. Similarly, (Barndorff-Nielsen et al. 2008, Propo-

sition 4) notes that designing a kernel with k(2)(0) = 0 and |k(3)(0)| < ∞ leads to an asymptotically

unbiased and rate-optimal estimator for an exogenous and stationary AR(1) noise component. Given

the latter, the conjecture in Ikeda (2011) is not surprising since both kernels are designed such that

k(2)(0) = 0 and q ∈ N+ over the domains x ∈ R \ {0} (for the TSRK) and x ∈ {x ∈ R : |x| > c} (for

the flat-top realized kernel), which is sufficient for |k(3)(0)| <∞.
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Given Remarks 3-4 and the class of flat-top kernel functions in Politis (2011), it is clear that the

formalization of K∗ builds on these ideas. However, as Theorem 1 shows, the seemingly small tweak

makes a big difference in terms of asymptotic properties compared with RK(p), in addition to analyze

a different estimation problem, it provides efficiency gains over the class of flat-top kernel functions in

Politis (2011), and, as will become apparent in the remainder of the paper, it provides higher-order

advantages over the TSRK, which justify the full asymptotic analysis. Further, Theorem 1 offers

refinements in end-point conditions and weaker assumptions on the MMS noise.

3.2 Asymptotic Variance and Optimal Bandwidth Selection

One of the most important issues regarding implementation of realized kernels, in general, is the

selection of bandwidth. It is, thus, instructive to define the noise-to-signal ratio ψ2 = Ω/(
∫ 1

0 σ
4
t dt)

1/2,

a measure of heteroskedasticity ρ =
∫ 1

0 σ
2
t dt/(

∫ 1
0 σ

4
t dt)

1/2 ≤ 1, 1 = (
∫ 1

0 Ω2
tdt)/Ω

2 ≥ 1, and finally

2 = (
∫ 1

0 Ωtσ
2
t dt)/(Ω

∫ 1
0 σ

2
t dt) ≤ 

1/2
1 /ρ where the three bounds follows by the Cauchy-Schwarz and

Jensen inequalities. Then, V(λ, a) may be rewritten as

V(λ, a) = 4

∫ 1

0
σ4
t dt

[
aλ(00) + a−3λ(22)ψ41 + 2a−1λ(11)ρψ22 + 4a−1λ(11)

∫ 1
0 (Ω

(ep)
t )2dt∫ 1

0 σ
4
t dt

]
,

where the decomposition resembles that of Barndorff-Nielsen et al. (2008) and Ikeda (2013) with excep-

tion of 1, 2, and (
∫ 1

0 (Ω
(ep)
t )2dt)/(

∫ 1
0 σ

4
t dt), which capture the effects of time-varying and endogenous

MMS noise. The optimal bandwidth may be found as H = a∗n1/2, where a∗ = b∗ψ and b∗ minimizes

V(λ, a) conditional on ρ, 1, 2, and (
∫ 1

0 (Ω
(ep)
t )2dt)/(

∫ 1
0 σ

4
t dt).

Corollary 1. Under the conditions of Theorem 1 (2) and 2 = 
1/2
1 /ρ, let b̂∗ be the optimal bandwidth

conditional on Υt = 0 ∀t ∈ [0, 1] and Ω
(ee)
t (h) = Ω(ee)(h) ∀(t, h) ∈ [0, 1] × Z, let b̃∗ be the optimal

bandwidth conditional on Υt = 0 ∀t ∈ [0, 1], let b∗ be the optimal bandwidth, and let b̌∗ be the optimal

bandwidth conditional on Υt 6= 0 for some t ∈ [0, 1], then

b̂∗ =

√√√√ρ
λ(11)

λ(00)

{
1 +

√
1 +

3λ(00)λ(22)(
ρλ(11)

)2
}
, and b̂∗ ≤ b̃∗ ≤ b∗ < b̌∗.

In Corollary 1, b̂∗ correspond to the bandwidth selected by Barndorff-Nielsen et al. (2008) and Ikeda

(2013), b̃∗ to the case when the MMS noise may exhibit diurnal heteroskedasticity, b∗ additionally allows

for endogeneity in the noise, and b̌∗ sharpens the latter bound. In the special case with b̂∗, selecting

an optimally designed kernel function, λ(x) = (1 + x)e−x allows the flat-top realized kernels to reach

the parametric efficiency bound, (Barndorff-Nielsen et al. 2008, Proposition 1). However, Corollary 1

illustrates that b̂∗ may be interpreted as a lower bound on the bandwidth if the MMS noise is allowed to

be time-varying and/or endogenous. Thus, if a feasible version of the existing bandwidth selection rule

is to accommodate more realistic empirical features in the noise, one alternative is use b̂∗, but estimate
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ψ2 and ρ conservatively to balance its negative bias. Hence, Corollary 1 provides some theoretical

justification for the empirical recommendation of “making errors on the large side of a bandwidth”,

see e.g. Barndorff-Nielsen et al. (2009).

3.3 Optimal Flat-top Shrinkage

While optimal bandwidth selection has previously been discussed in the literature, the optimal choice

of flat-top region remains to be determined. (Politis 2011, Sections 5 and 6) consider bandwidth

selection conditional on a flat-top region, c, but his choice of c ∈ (0, 1] is ad-hoc and varies with kernel

function. Since c is a shrinking function of H and due to the tight bound on the finite sample bias, it

is feasible to derive a simple, conservative MSE-optimal choice of γ.

Corollary 2. Under the conditions of Theorem 1, if H ∝ n1/2, α(h) = O
(
h−(1+r+ε)

)
for some ε > 0

and q = r ∈ N+, then limε→0 γ(q) = (1/2 + q)/(3/2 + q) ∈ (0, (1/2 + q)/(1 + q)) is the MSE-optimal

flat-top shrinkage.

Corollary 2 illustrates how to select γ, or equivalently c, to balance the finite sample bias-variance

tradeoff in Theorem 1 (1) when the persistence of the noise is characterized as α(h) = O
(
h−(1+q+ε)

)
for q ∈ N+. Kernel functions such as Parzen kernel, the cubic kernel and the modified Tukey-Hanning

kernel (Barndorff-Nielsen et al. 2008) all have q = 1, implying that the noise is assumed to have

polynomially decaying autocovariances. As this is the strongest allowed persistence in Assumptions

2-3, γ(q) = (1/2 + q)/(3/2 + q) may be interpreted as a conservative rule-of-thumb, rather than the

optimal choice of flat-top region for all noise generating processes.

3.4 Relation to Jack-Knife Kernels

As an alternative strategy to eliminate the leading bias in Lemma 1, Ikeda (2011, 2013) proposes the

TSRK, which may be interpreted as a realized kernel with a generalized jack-knife kernel function

k(x, τ) =
(
1− τ2

)−1 {
λ(x)− τ2λ(x/τ)

}
for λ(x) ∈ K where τ = G/H, H = an1/2 and G = ng for g ∈

[
(2q + 1)−1, 1/2

]
. To characterize

the TSRK, define the characteristic parameters of k(x, τ) as Φ(jj)(τ) = λ(jj) + fj(τ) j = 0, 1, 2 where

fj(τ) ∈ R+ and fj(τ) = O(τ2), see (Ikeda 2011, Lemma 9). Careful inspection of (Ikeda 2011,

Lemmas 4-9) shows that his results for the TSRK can accommodate the weaker noise Assumption 2-3

as long as q ≤ r ∈ N+, which implies for ζ ∈ (1/4, 3/8),

n1/4

(
TSRK(p)−

∫ 1

0
σ2
udu

)
ds(H1)→ MN

(
lim
n→∞

Op

(
n−qg+1/4

)
, lim
n→∞

V(Φ, a)
)
.

The Op
(
n−qg+1/4

)
finite sample bias is limited by the characteristic parameter, q, and does not

adapt to the underlying smoothness of the noise, measured by r ≥ q. In contrast, the finite sample
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bias of RK∗(p) in Theorem 1 (2) is of order Op
(
n−(1−γ)(1+r+ε)+1/4

)
. Hence, if γ is chosen suitably,

the flat-top realized kernels offer higher-order advantages in terms of bias reduction, which are strictly

increasing in r. This is elaborated upon by relating the TSRK with g = {(2q + 1)−1, 1/2}, i.e. the

MSE optimal and the maximum bias reducing choices of g, respectively, to flat-top realized kernels.

For this purpose, denote the bias of the two estimators as B[TSRK(p)|H1] and B[RK∗(p)|H1].

Proposition 1. Let the conditions of Theorem 1 (2) hold, g = 1/2, α(h) = O
(
h−(1+r+ε)

)
for some

ε > 0 and q ≤ r ∈ N+. If γ ∈ (0, (1 + r − q)/(1 + r)), then (1) B[RK∗(p)|H1] = op
(
n−1/2q

)
, and (2)

V(λ, a) < limn→∞ V(Φ, a).

Proposition 2. Let the conditions of Theorem 1 (2) hold, g = 1/(2q + 1), α(h) = O
(
h−(1+r+ε)

)
for

some ε > 0 and q ≤ r ∈ N+. If γ(q) = (1/2 + q)/(3/2 + q), then (1) B[RK∗(p)|H1] = op
(
n−q/(2q+1)

)
,

and (2) V[RK∗(p)|H1]/V[TSRK(p)|H1] = vn(q, ψ2, ρ), where vn(·) satisfies ∂vn(·)
∂q > 0, ∂vn(·)

∂ψ2 < 0,
∂vn(·)
∂ρ < 0, and plimn→∞ vn(·) = 1.

Propositions 1-2 (1) show the higher-order advantages of the flat-top realized kernels in terms

of bias reduction. Further, Proposition 1 (2) shows that for the maximum bias reducing choice of

g, these advantages come with no cost in relative asymptotic efficiency and it reveals the existence

of cases where the conjecture of asymptotic equivalence of flat-top realized kernels and the TSRK,

(Ikeda 2011, Section 2.7.1), does not hold. This occurs for all cases of γ when g = 1/2 and also

for g ∈
[
(2q + 1)−1, 1/2

]
when γ = 0. For the MSE optimal choice of g, however, Proposition 2 (2)

shows that the relative finite sample variance of the two estimators depends on q, the noise-to-signal

ratio ψ2, and the degree of heteroskedasticity, ρ. Hence, it is unclear whether or not the higher-order

advantages of the flat-top realized kernels adversely impact its relative finite sample efficiency in this

case, and the finite sample properties of the two estimators are, thus, elaborated upon in Section 5.

3.5 Relation to the Pre-Averaging Approach

The pre-averaging approach is an alternative to the realized kernels that is gaining increased attention

in the literature. Let M = θnκ, where θ > 0 and κ ∈ (0, 1), be a sequence of integers and define the

modulated realized variance as

MRV (p) =
n−M∑
i=0

p̄2
ti , p̄ti =

M∑
j=1

g

(
j

M

)
∆pti+j

where g(x) is a non-zero real-valued function g : [0, 1]→ R, which is continuous, piecewise continuously

differentiable with a piecewise Lipschitz derivative g(1)(x) with g(0) = g(1) = 0. The modulated

realized variance is based on local averages of observable log-returns to balance the asymptotic orders

of ∆p∗ti and ∆Uti . As a result, MRV (p) has to be combined with a bias-correction to obtain consistency,

which depends on the properties of Uti . To clarify this point and make consistency feasible, define the
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constants φ1(s) =
∫ 1
s g

(1)(x)g(1)(x− s)dx, φ2(s) =
∫ 1
s g(x)g(x− s)dx for s ∈ [0, 1],

ψ1 = φ1(0), ψ2 = φ2(0), Φi,j =

∫ 1

0
φi(s)φj(s)ds, i, j = 1, 2,

and make the following strengthening of Assumption 2:

Assumption 2∗. Let eti = 0 ∀ti ∈ [0, 1].

Lemma 2. Let Assumptions 1, 2∗, 3 and 4 hold and set κ = 1/2, then

1

ψ2θn1/2
MRV (p)

P−→
∫ 1

0
σ2
udu+

ψ1

θ2ψ2
Ω.

Lemma 2 relaxes the noise assumption of (Hautsch & Podolskij 2013, Lemma 3.1) and illustrates

some similarities between the pre-averaging approach and the realized kernels of Barndorff-Nielsen

et al. (2008, 2011a) with general noise dependence. First, it shows the need for a bias correction of the

long-run MMS noise variance. As noted by Jacod et al. (2009), when correcting (ψ2θn
1/2)−1MRV (p)

with the factor ψ1/(2θ
2ψ2n)Γ0(p), as (2n)−1Γ0(p)

P−→ Ω(0), i.e. correcting by the short-run variance,

there is a one-to-one correspondence between pre-averaging approach and the flat-top realized kernel

with γ = 1, which, then, leads to an inconsistent estimator. Second, unless a suitable estimator of Ω

is available, it is necessary to choose κ ∈ (1/2, 1) to achieve consistency. This corresponds to over-

smoothing the bandwidth and results in a sub-optimal rate of convergence along with an asymptotic

bias, see (Christensen, Kinnebrock & Podolskij 2010, Theorem 4). Third, relaxing exogeneity, as in

Assumption 2, will lead to a more complicated bias correction that depends on Ω(ep).

The pre-averaging approach needs a generalized bias correction to accommodate more general

forms of MMS noise. Thus, to complete the exposition, a robust pre-averaging estimator is presented

in Appendix A along with its asymptotic theory.5 The robust estimator is shown to behave similar

to the TSRK in terms of bias and variance, implying that slight modifications of Proposition 1 and 2

apply. Due to these similarities, the estimator will not be treated separately in the simulation study.

4 Robustness Against Jumps

Extending the realized kernel theory to estimate and disentangle variation stemming from continuous

and discontinuous parts of more general jump-diffusions is not straightforward. However, such exten-

sions are feasible using a blocking strategy, which has been advanced by Mykland & Zhang (2009) and

Mykland et al. (2012) in different contexts. As this theory relies on a zero-mean martingale represen-

tation of the estimation error within each block, the higher-order advantage of the flat-top realized

kernels in terms of bias reduction makes them excellent candidates for application.

5Hautsch & Podolskij (2013) generalize the pre-averaging theory to accommodate an m-dependent MMS noise. In general,
however, m is unknown, implying that their noise correction requires prior knowledge of the noise dependence or that
some pre-testing must be conducted. This is not the case for the suggested correction in Appendix A.
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4.1 The Observable Price Process with Jumps

To set the stage, let y∗t = p∗t + Jt be a jump-diffusion where Jt =
∑Nt

s=1 ∆Js is an (Pt)-adapted finite

activity jump process, Nt is a counting process with E[Nt] <∞ and mins=1,...,Nt |∆Js| ∈ (0,∞) almost

surely. This setup follows e.g. Barndorff-Nielsen & Shephard (2004), Andersen, Dobrev & Schaumburg

(2012) and Mykland et al. (2012). It admits a wide variety of finite activity jump processes, including

the commonly used compound Poisson process. The inclusion of jumps has implications on risk

measurement, since the quadratic variation of the underlying log-price, y∗t , over a period t ∈ [0, 1]

decomposes as

[y∗, y∗] =

∫ 1

0
σ2
t dt+

∑
0≤t≤1

|∆Jt|2, (7)

While (7) provides intriguing opportunity to dissect the quadratic variation spectrum, the observable

log-prices, yti = y∗ti + Uti , i = 1, . . . n, whose composition is an immediate result of (1), remain

contaminated by MMS noise, corrupting the statistical properties of various jump-robust estimators

of integrated variance (see footnote 3), similar to the description in the previous section.

4.2 Block Sampling and Estimation

So far, flat-top realized kernel estimation has been carried out using all available observations in

[0, 1], and the asymptotic results have been derived using the approximation ∆p∗ti ≈ σti−1∆Wti , ∀i =

1, . . . , n, i.e. that the volatility is constant over a time increment ∆ti. The main idea is to extend this

approximation to intervals of length ∆τi = L/n by equally partitioning the observations as τi ∈ [0, 1],

i = 0, 1, . . . , nL, where nL = bn/Lc and L is a sequence satisfying L = bn1−β with β ∈ (0, 1) and

b > 0, and use local flat-top realized kernel estimates to proxy return variance within each block. The

resulting sequence of local estimates may, then, be used in conjunction with either power variation

(Barndorff-Nielsen & Shephard 2004) or the medium realized variance estimator (Andersen, Dobrev

& Schaumburg 2012) to estimate integrated variance robustly against MMS noise. However, before

defining the estimators, the following lemma ensures non-negativity of the local inputs.

Lemma 3. Under the conditions of Theorem 1 (2), let RKT (p) = max(RK∗(p), 0), then

RKT (p) = RK∗(p) + op(n
−1/4).

Proof. See the proof of (Ikeda 2013, Proposition 1 (a)).

Formally, let RKT
i (p) be a local, non-negative flat-top realized kernel estimate using only observa-

tions from the i-th block, tj ∈ (τi−1, τi], then its asymptotic properties using Theorem 1 and Lemma

3 in conjunction with Itôs formula may be represented as

RKT
i (p) = σ2

τi−1
∆τi +

∫ τi

τi−1

(t− τi−1)dσ2
t + ∆M̃τi , i = 1, . . . , nL, (8)
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where the estimation error, M̃τi , is an asymptotically zero-mean and bounded sequence of contin-

uous martingales, whose variance depends on the instantaneous asymptotic variance V(λ, a, t) =

∂V(λ, a)/∂t. Here, the two sources of error lead to a trade-off in block-size, i.e. the selection of

β, between the biases due to MMS noise (requires large blocks) and stochastic volatility (requires

small blocks). Similar to log-returns in the absence of MMS noise, the sequence of local estimates (8)

may be used to design two classes of estimators, the (medium) blocked realized kernels,

BRK∗(p,B) =
L

(µL,2/B)B

nL∑
i=B

B−1∏
j=0

(RKT
i−j(p))

1/B, (9)

MBRK∗(p) =

nL−1∑
i=2

med
(
RKT

i−1(p), RKT
i (p), RKT

i+1(p)
)
, (10)

where µL,2/B = E
[
(χL)2/B

]
and χL ∼

∣∣χ2
L

∣∣1/2. However, when L → ∞, then L/
(
µL,2/B

)B → 1 and

a simplified version of BRK∗(p,B) may be implemented without the scale, see (Mykland et al. 2012,

(B.20)). While (9) bridges the blocked power variation estimators in Mykland et al. (2012) with

the flat-top realized kernel approach, the proposed class (10) extends the medium realized variance

estimator in Andersen, Dobrev & Schaumburg (2012) by combining it with a blocking scheme and

flat-top realized kernels such that the resulting estimators are robust against MMS noise.

Theorem 2 (Blocked Realized Kernels). Let the conditions of Theorem 1 (2) hold.

(1) Let y∗t = p∗t ∀t ∈ [0, 1]: (1) For β ∈ (1/4, 1), BRK∗(p, 1) = RK∗(p) + op(n
−1/4). (2) For β = 1/4

and B ≥ 2, BRK∗(p,B) = RK∗(p) +Op(n
−1/4). (3) For β ∈ (0, 1/2), β̂ = min(1/2− β, β) and

B ≥ 2, BRK∗(p,B) = RK∗(p) +Op(n
−β̂).

(2) Let y∗t = p∗t + Jt ∀t ∈ [0, 1]: (1) For β = B/(4B − 2) and B ≥ 2, BRK∗(y,B) = RK∗(p) +

Op(n
−1/2+B/(4B−2)). (2) For β = (0, 1/2), β̂ = min(1/2−β, β(B−1)/B) and B ≥ 2, BRK∗(y, 2) =

RK∗(p) +Op(n
−β̂).

Theorem 3 (Medium Blocked Realized Kernels). Let the conditions of Theorem 1 (2) hold. If β ∈
(1/4, 1), MBRK∗(y) = RK∗(p) +Op(n

−1/4) for both y∗t = p∗t and y∗t = p∗t + Jt ∀t ∈ [0, 1].

In absence of jumps and if β is chosen suitably, the blocked realized kernels with B = 1 provide

non-negative estimates of integrated variance that are without loss of asymptotic efficiency relative to

the flat-top realized kernels, whereas the bi- and multi-power versions are consistent at the optimal

rate if β = 1/4. Under the jump alternative, however, the consistent estimators, B ≥ 2, suffer

from slower rates of convergence, which for the leading cases B = 2 and B = 3 are n1/6 and n1/5,

respectively. In contrast, the medium blocked realized kernels are consistent at the optimal rate of

convergence in both the absence and presence of a finite activity jump process if β ∈ (1/4, 1). The

stronger asymptotic result for the latter is obtained since the bias incurred by jumps is an order of

magnitude smaller than the corresponding bias for the blocked realized kernels, namely Op(n
−β) vs.
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Op(n
−β(B−1)/B), and since the blocked realized kernels additionally suffer from a noise-induced bias

of order Op(n
−1/2+β), imposing an upper bound β < 1/2. In the absence of MMS noise, (Andersen,

Dobrev & Schaumburg 2012, (5)) show that the medium realized variance estimator has a higher-

order advantage over power variation estimators under the jump alternative. In the present setting,

however, the differences are much more pronounced, impacting the rate of consistency. These results

imply that jump variation may be estimated consistently at the optimal rate, n1/4, by subtracting

the medium blocked realized kernels from the flat-top realized kernels. Finally, note that, due to

their attractive bias reduction properties, the use of flat-top realized kernels in (9) and (10) implies

that higher emphasis may be placed on reducing the bias caused by stochastic volatility/jumps, i.e.

selecting smaller blocks, and that the class (9) increases the rate of consistency relative to the use

of realized kernels from K in defining a similar class, (Mykland et al. 2012, Example 2), whose best

attainable rates are n1/6 and n1/3−B/(6B−3) in the absence and presence of jumps, respectively.

5 Simulations Study

This section provides some numerical results to complement the theoretical analysis by studying the

choice of flat-top shrinkage, the finite sample performance of flat-top realized kernels relative to alter-

native estimators, and finally, it illustrates robustness of the blocked estimators against jumps.

5.1 Simulation Design

The simulation design follows Huang & Tauchen (2005) and Barndorff-Nielsen et al. (2008, 2011a).

The unit interval of a trading day is partitioned into N = 23400 seconds.6 The efficient log-price

process is simulated by a one-factor stochastic volatility model:

dp∗t = µ1dt+ σtdWt, where σt = exp(β0 + β1ft),

dft = µ2ftdt+ dVt, dVt = ϕdWt +
√

1− ϕ2dBt and Wt ⊥⊥ Bt,

where ϕ measures the leverage effect, and the parameter values are set in accordance with the literature

(µ1 = 0.03, β1 = 0.125, µ2 = −0.025, ϕ = −0.3) and β0 = β2
1/(2µ2) where the last condition ensures

E[
∫ 1

0 σ
2
t dt] = 1. The process is restarted on each trading day by drawing the initial observation

from its stationary distribution ft ∼ N(0,−1/(2µ2)). The MMS noise is added through (1), where the

observable sampling grids are based on equidistant observations and sample sizes n = {390, 1560, 4680},
corresponding to calendar time sampling with 1-minute, 15-second, and 5-second intervals, respectively.

The MMS noise is modeled through two different processes, Uti = φuUti−1 +ηti and Uti = ηti +θuηti−1 ,

where φu = {−0.5, 0, 0.5}, θu = {−0.5, 0.5}, and ηti ∼ N(0, ωη) where ωη = ψ2
√
N−1

∑N
i=1 σ

4
ti

and the

noise-to-signal ratio is fixed at ψ2 = {0.001, 0.005, 0.01}. The various MMS noise specifications follow

(Barndorff-Nielsen et al. 2011a, Section 6.1.2) and are consistent with the findings in Ubukata & Oya

6Corresponding to a regular trading day on the New York Stock Exchange with 6.5 hours of trading.
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(2009), Aı̈t-Sahalia et al. (2011), Diebold & Strasser (2012), Ikeda (2013), and Varneskov (2013). All

simulations are performed with 1000 replications.

5.2 Selecting Bandwidth and Flat-top Shrinkage

The bandwidth is selected conservatively, following the advice in Section 3.2, despite the absence of

an endogenous noise component. This entails approximating a∗ through ρ ≈ 1 and ψ2 ≈ Ω/
∫ 1

0 σ
2
t dt,

thereby settling for a Jensen’s inequality bias. The approximation implies that tabulated values of b∗

may be found in (Barndorff-Nielsen et al. 2008, Table 2) for several well-known kernel functions. The

noise-to-signal ratio is estimated by Ω̂(p) = (|λ(2)(0)|nH−2)−1RK(p) with H = n1/3, as this is shown

in Ikeda (2013) to be an upward biased, n1/3-consistent estimator of Ω, and the realized variance

estimator with 20-minute sparse sampling, subsampling and averaging

RV sub
20min(p) =

1

Ks

Ks∑
k=1

18∑
i=1

(
ptk+Ks(i−1)

− ptk−1+Ks(i−1)

)2
, (11)

where Ks = 1200, as a pilot estimate of
∫ 1

0 σ
2
t dt. The subsampled realized variance estimator relies

on the maximal degree of subsampling to utilize all available information, 20-minute intervals to

ameliorate the effects of MMS noise, and averaging to increase efficiency of the estimator.7

Corollary 2 provides some theoretical guidance on the choice of flat-top shrinkage, γ. However, to

determine the finite sample sensitivity to this choice, the relative bias and root mean squared error

(RMSE) of the flat-top realized kernels, in percentages, are depicted as a function of γ in Figure 1 for

the serially dependent MMS noise specifications and (n, ψ2) = (1560, 0.005).

[Figure 1 around here]

The sensitivity study is conducted for three different kernel functions, the Parzen kernel, the modified

Tukey-Hanning kernel (Barndorff-Nielsen et al. 2008), and the cubic kernel, which share a common,

conservative MSE-optimal flat-top shrinkage, γopt = 3/5. Figure 1 illustrates the bias-variance tradeoff,

which accompanies the selection of γ; selecting γ too high leads to a finite sample bias, selecting γ too

low increases the finite sample variance. However, the finite sample properties of the flat-top realized

kernels seem fairly stable, and γopt seems to provide useful guidance for all kernel functions.

5.3 Relative Finite Sample Performance of Realized Estimators

The relative finite sample performance of the flat-top realized kernels is compared to that of alternative

estimators such as the subsampled realized variance estimator using 5-minute and 20-minute intervals,

the realized kernel and the two-scale realized kernel. All kernel-based estimators are implemented

with the Parzen kernel. The flat-top realized kernel is configured with γ = {γopt, 2/5, 4/5, 1} where

7The value of 18 comes from b23400/1200c − 1 = 18, where 1200 (seconds) correspond to 20-minute intervals. Note also
that the Parzen kernel is chosen for Ω̂(p).
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γ = 1 corresponds to the realized kernel of Barndorff-Nielsen et al. (2008), which, as emphasized

previously, is inconsistent when the noise deviates from the i.i.d. case. The realized kernel and the

two-scale realized kernel are implemented with bandwidths H = 3.51ψ4/5n3/5 and H̃ = max{Ĥ,G+1},
respectively, where G = ng for g = {1/3, 1/2} and Ĥ is the conservatively selected bandwidth described

above, see Barndorff-Nielsen et al. (2011a) and Ikeda (2013) for details. Notice that the choices of g

emphasize MSE and bias reduction, respectively, and that neither the flat-top realized kernel nor the

two-scale realized kernel are guaranteed to produce non-negative estimates of quadratic variation.8 The

relative bias and RMSE of the estimators are presented in Tables 1 and 3 for the pairs n = 1560 and

ψ2 = {0.001, 0.005, 0.01} and in Tables 2 and 4 for the combinations of ψ2 = 0.005 and n = {390, 4680}.

[Tables 1-4 around here]

The general trends from Tables 1-4 are as follows. The realized variance-based estimators are adversely

affected by MMS noise in all cases. The realized kernel and the MSE-optimal two-scale realized kernel

are often biased in finite samples. The bias is particularly pronounced for a positive AR(1) noise

process, being in the 10%-range and sometimes higher, and it persists when the sample size is increased

to n = 4680. The flat-top realized kernel with γ = 1 is clearly centered around the wrong quantity

when the noise deviates from the i.i.d. case, illustrating its inconsistency. The flat-top realized kernels

with γ = {γopt, 2/5} has biases, which are of the same order of magnitude as the bias of the two-scale

realized kernel emphasizing bias reduction and often smaller when ψ2 = 0.01. The stable bias control

illustrates the higher-order advantage of the flat-top approach in terms of bias reduction.

In terms RMSE’s, Tables 3-4 show that the realized kernel is uniformly dominated by the flat-

top realized kernels with γ = {γopt, 4/5}, thus complimenting the asymptotic results in Lemma 1 and

Theorem 1. Similarly, and as Proposition 1 (b) suggests, the two-scale realized kernel emphasizing bias

reduction suffers from higher RMSE’s relative to the flat-top realized kernels for almost all cases. The

MSE-optimal two-scale realized kernel, on the other hand, has slightly smaller finite sample RMSE’s

compared with the flat-top realized kernels using γ = {γopt, 4/5, 1}, but the differences are disappearing

in ψ2 and n as Proposition 2 (b) suggests. However, as the former is unable to control the bias for all

data generating process, the flat-top realized kernels seem to provide the most desirable combination

of robustness and efficiency.

5.4 Finite Sample Behavior of BRK∗ and MBRK∗

This subsection illustrates that the (medium) blocked realized kernels are robust against jumps, how-

ever, leaving a detailed characterization of their finite sample properties for further research. The

simulations are implemented as in Section 5.1 with ψ2 = 0.001 and n = {4680, 7800}, and in a similar

setup where a finite activity jump process is added to dp∗t . Following Mykland et al. (2012), the jump

8The two-scale realized kernel is, thus, truncated at zero by the realized kernel, following Ikeda (2013), whereas the flat-top
realized kernel is truncated at zero, see Lemma 3. Neither of these transformations impacts the asymptotic distribution
and neither was binding in the simulations.
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process consists of a single jump, which is uniformly distributed on i = 1, . . . , 23400 and whose size

is drawn from the distribution ∆Js ∼ N
(

0, 0.1N−1
∑N

i=1 σ
2
ti

)
, implying that jump variation is 10%

of integrated variance on average. The blocked realized kernels are implemented for B = {2, 3} with

the number of blocks being nL = {(16, 18), (18, 20)} for n = {4680, 7800} and the medium blocked

realized kernels with nL = {16, 20} for n = {4680, 7800}. As the elimination of any within-block

systematic finite sample noise-induced bias is crucial, the flat-top shrinkage γ = 2/5 is selected over

the conservative, MSE-optimal choice. Furthermore, due to the large block sizes, the scale in (9) is

excluded for simplicity, but the estimates for B = 3 and the medium blocked realized kernels are scaled

with nL/(nL − 1) for finite sample comparability with the B = 2 case. The relative bias and RMSE

of the estimators are presented in Tables 5 and 6.

[Tables 5 and 6 around here]

Tables 5 and 6 show that the (medium) blocked realized kernel, in general, provide accurate estimates

of integrated variance. As expected from Theorems 2 and 3, the medium blocked realized kernels has

the smallest bias in both the absence and presence of jumps, and it has the smallest RMSE across all

noise specifications under the jump alternative, thus illustrating its faster rate of convergence.

6 Conclusion

This paper analyzes a generalized class of flat-top realized kernel estimators of the quadratic variation

spectrum when the underlying price process is contaminated additive MMS noise, which is comprised

of an endogenous and exogenous component to accommodate a variety of empirical regularities. In

the absence of jumps, the class of flat-top estimators are shown to be consistent, asymptotically

unbiased, and mixed Gaussian with the optimal rate of convergence, n1/4. The optimal asymptotic

properties are attributed to a slowly shrinking flat-top support, which exactly eliminates the leading

noise-induced bias along with a data-driven choice of lower order bias terms. In theoretical and a

numerical comparison with alternative estimators such as the realized kernel, the two-scale realized

kernel, and a proposed robust pre-averaging estimator, the seemingly small flat-top tweak is shown to

have a big impact on the relative asymptotic and finite sample properties.

The analysis is extended by allowing for finite activity jumps in the underlying price process.

The favorable bias properties of the flat-top realized kernels are utilized in proposing two classes of

(medium) blocked realized kernels, which produce consistent, non-negative estimates of integrated

variance. The estimators are shown to have either no loss of asymptotic efficiency or in the rate of

consistency relative to the flat-top realized kernels when jumps are absent. However, only the medium

blocked realized kernels achieves the optimal rate of convergence under the jump alternative.
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AR(0.5) AR(−0.5)

MA(0.5) MA(−0.5)

Figure 1: Finite sample sensitivity to the choice of flat-top shrinkage, γ, for the Parzen, modified Tukey-Hanning,

and the cubic kernel when the MMS noise is serially dependent and using equidistant observations. The simulations

are implemented with the pair (n, ψ2) = (1560, 0.005).
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Finite Sample Relative Bias with Varying Noise-to-Signal Ratio
RV sub

20min RV sub
5min RK TSRK1 TSRK2 RK∗

opt RK∗
2/5 RK∗

4/5 RK∗
1

ψ2 = 0.001
AR(0) -9.46 12.56 -0.48 -0.29 -0.25 -0.98 -1.24 -0.86 -0.82
AR(-0.5) -8.32 17.65 -0.81 -0.60 -0.18 -0.76 -1.12 -0.04 -1.65
AR(0.5) -8.36 17.67 1.48 3.28 0.03 -0.13 -1.17 1.88 4.27
MA(-0.5) -8.59 16.38 -0.94 -0.95 -0.18 -0.87 -1.11 -0.81 -2.60
MA(0.5) -8.62 16.39 0.43 0.54 -0.18 -0.95 -1.23 -0.79 0.80
ψ2 = 0.005
AR(0) 4.17 73.81 3.58 1.76 0.96 0.24 -0.00 0.38 0.39
AR(-0.5) 9.85 99.33 2.49 0.43 1.26 1.37 0.52 4.27 -3.57
AR(0.5) 9.77 99.17 9.66 13.54 2.41 2.38 0.16 8.53 16.53
MA(-0.5) 8.47 92.98 1.90 -1.30 1.30 0.81 0.65 0.70 -8.29
MA(0.5) 8.40 92.82 6.50 4.67 1.41 0.39 0.08 0.58 5.89
ψ2 = 0.01
AR(0) 21.22 150.29 7.94 4.14 2.53 1.79 1.57 1.95 1.92
AR(-0.5) 32.58 201.38 6.46 1.66 3.09 4.06 2.45 9.38 -5.83
AR(0.5) 32.46 200.94 17.28 22.48 5.42 4.76 2.01 14.05 26.68
MA(-0.5) 29.81 188.68 5.36 -1.77 3.16 2.82 2.78 2.54 -15.25
MA(0.5) 29.70 188.27 12.43 8.78 3.45 2.16 1.84 2.38 10.61
ψ2 = 0
No noise -12.85 -2.83 -1.67 -0.88 -0.53 -1.30 -1.55 -1.19 -1.15

Table 1: Relative bias of five competing estimators, realized variance with 20-minute sparse, subsampling
and averaging, RV sub20min, realized variance with 5-minute sparse, subsampling and averaging, RV sub5min, the
realized kernel, RK, the two-scale realized kernel, TSRKj j = {1, 2} corresponding to g = {1/3, 1/2}, and
RK∗γ with γ = {γopt, 2/5, 4/5, 1}. For all combinations, n = 1560. All numbers are in percentages.

Finite Sample Relative Bias with Varying Sample Size
RV sub

20min RV sub
5min RK TSRK1 TSRK2 RK∗

opt RK∗
2/5 RK∗

4/5 RK∗
1

n = 390
No noise -12.86 -2.85 -2.02 -1.91 -0.44 -2.44 -2.39 -2.35 -2.28
AR(0) 4.02 73.99 2.69 0.10 0.75 -1.31 -1.13 -1.26 -1.21
AR(-0.5) 9.84 102.57 1.53 -0.75 0.93 -1.80 -0.95 1.74 -3.38
AR(0.5) 9.49 96.26 9.46 11.26 2.90 1.19 -0.30 5.20 10.00
MA(-0.5) 8.45 93.15 1.17 -2.23 0.95 -0.60 -0.55 -0.99 -5.69
MA(0.5) 8.17 93.24 6.05 2.93 1.34 -1.17 -0.73 -0.97 2.66
n = 4680
No noise -12.86 -2.83 -1.09 -0.68 -0.23 -0.85 -0.96 -0.80 -0.77
AR(0) 4.21 73.49 4.15 1.79 1.40 0.69 0.72 0.69 0.66
AR(-0.5) 9.89 98.90 3.16 0.52 1.76 1.62 1.14 3.84 -4.86
AR(0.5) 9.88 98.93 9.06 11.34 2.42 2.26 1.05 8.73 18.85
MA(-0.5) 8.48 92.57 2.49 -1.23 1.77 1.16 1.22 1.17 -12.14
MA(0.5) 8.46 92.57 6.66 4.22 1.80 0.97 0.96 0.93 7.13

Table 2: Relative bias of five competing estimators, realized variance with 20-minute sparse, subsampling
and averaging, RV sub20min, realized variance with 5-minute sparse, subsampling and averaging, RV sub5min, the
realized kernel, RK, the two-scale realized kernel, TSRKj j = {1, 2} corresponding to g = {1/3, 1/2}, and
RK∗γ with γ = {γopt, 2/5, 4/5, 1}. For all combinations, ψ2 = 0.005. All numbers are in percentages.
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Finite Sample Relative RMSE with Varying Noise-to-Signal Ratio
RV sub

20min RV sub
5min RK TSRK1 TSRK2 RK∗

opt RK∗
2/5 RK∗

4/5 RK∗
1

ψ2 = 0.001
AR(0) 26.83 18.00 17.69 13.35 21.87 15.57 17.97 14.17 13.37
AR(-0.5) 26.44 21.82 17.39 13.09 21.87 15.28 17.69 13.97 13.12
AR(0.5) 26.52 22.11 18.77 14.92 22.11 16.58 18.97 15.46 15.34
MA(-0.5) 26.53 20.79 17.34 13.05 21.84 15.27 17.62 13.86 13.16
MA(0.5) 26.57 20.97 18.24 13.90 21.97 16.05 18.51 14.66 14.01
ψ2 = 0.005
AR(0) 25.52 75.09 19.43 15.06 22.29 16.89 19.34 15.52 14.77
AR(-0.5) 27.00 100.34 18.25 13.92 22.42 15.92 18.33 15.49 14.05
AR(0.5) 27.31 100.49 24.51 23.73 23.66 20.56 22.65 21.44 25.69
MA(-0.5) 26.49 93.99 17.98 13.69 22.38 15.78 18.08 14.37 15.65
MA(0.5) 26.67 94.04 21.99 17.68 22.89 18.64 21.18 17.25 18.00
ψ2 = 0.01
AR(0) 33.01 151.10 22.24 17.48 23.36 18.67 21.13 17.31 16.59
AR(-0.5) 41.21 202.15 20.55 15.64 24.00 17.78 21.13 18.94 16.18
AR(0.5) 41.59 202.03 30.93 32.84 26.34 24.25 26.08 27.22 35.68
MA(-0.5) 39.00 189.38 20.10 15.34 24.17 17.46 19.77 15.97 21.33
MA(0.5) 39.20 189.18 26.60 21.99 24.62 21.28 23.86 19.94 22.47
ψ2 = 0
No noise 28.20 13.04 17.38 13.03 21.88 15.31 17.68 13.88 13.06

Table 3: Relative RMSE of five competing estimators, realized variance with 20-minute sparse, subsampling
and averaging, RV sub20min, realized variance with 5-minute sparse, subsampling and averaging, RV sub5min, the
realized kernel, RK, the two-scale realized kernel, TSRKj j = {1, 2} corresponding to g = {1/3, 1/2}, and
RK∗γ with γ = {γopt, 2/5, 4/5, 1}. For all combinations, n = 1560. All numbers are in percentages.

Finite Sample Relative RMSE with Varying Sample Size
RV sub

20min RV sub
5min RK TSRK1 TSRK2 RK∗

opt RK∗
2/5 RK∗

4/5 RK∗
1

n = 390
No noise 28.17 13.16 26.01 21.77 31.90 26.67 30.46 24.14 22.54
AR(0) 25.54 75.81 27.55 23.42 32.62 26.84 30.62 25.45 23.86
AR(-0.5) 27.14 104.27 26.36 22.45 32.45 26.84 30.62 24.78 22.95
AR(0.5) 27.72 98.69 31.66 29.57 34.08 31.03 34.47 29.37 29.45
MA(-0.5) 26.53 94.66 26.32 22.36 32.43 26.98 30.72 24.38 23.18
MA(0.5) 26.81 95.39 29.75 25.55 33.31 29.53 33.41 27.07 25.96
n = 4680
No noise 28.20 13.02 12.65 8.72 16.34 9.76 11.24 8.96 8.53
AR(0) 25.46 74.64 15.35 10.92 16.98 11.72 13.40 10.92 10.51
AR(-0.5) 26.97 99.76 14.27 10.00 17.29 11.21 12.57 11.16 10.74
AR(0.5) 27.06 99.92 20.07 18.55 18.05 15.15 16.64 17.20 24.34
MA(-0.5) 26.49 93.47 14.00 9.88 17.43 10.87 12.44 10.08 15.47
MA(0.5) 26.53 93.54 17.81 13.27 17.45 13.41 15.20 12.58 14.53

Table 4: Relative bias of five competing estimators, realized variance with 20-minute sparse, subsampling
and averaging, RV sub20min, realized variance with 5-minute sparse, subsampling and averaging, RV sub5min, the
realized kernel, RK, the two-scale realized kernel, TSRKj j = {1, 2} corresponding to g = {1/3, 1/2}, and
RK∗γ with γ = {γopt, 2/5, 4/5, 1}. For all combinations, ψ2 = 0.005. All numbers are in percentages.
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Finite Sample Relative Bias of Blocked Realized Kernels
Nt = 0 Nt = 1

AR(0) AR(-0.5) AR(0.5) MA(-0.5) MA(0.5) AR(0) AR(-0.5) AR(0.5) MA(-0.5) MA(0.5)
n = 4680
BRK∗

2,16 -6.46 -5.50 -3.94 -5.14 -5.38 -0.41 0.57 2.17 0.93 0.70
BRK∗

3,16 -8.11 -7.02 -6.08 -6.66 -7.30 -2.91 -1.80 -0.83 -1.43 -2.08
BRK∗

2,18 -4.92 -3.69 -1.97 -3.48 -3.69 1.01 2.25 4.04 2.46 2.28
BRK∗

3,18 -6.59 -5.25 -4.15 -5.05 -5.63 -1.50 -0.13 1.02 0.07 -0.49
MBRK∗

16 -5.48 -4.72 -2.09 -4.43 -3.91 -2.97 -2.27 0.71 -1.98 -1.27
Nt = 0 Nt = 1

AR(0) AR(-0.5) AR(0.5) MA(-0.5) MA(0.5) AR(0) AR(-0.5) AR(0.5) MA(-0.5) MA(0.5)
n = 7800
BRK∗

2,18 -4.66 -3.60 -2.78 -3.11 -3.69 1.22 2.31 3.12 2.80 2.19
BRK∗

3,18 -5.96 -4.79 -4.57 -4.31 -5.24 -0.87 0.30 0.56 0.79 -0.14
BRK∗

2,20 -3.79 -2.65 -1.52 -2.06 -2.63 2.03 3.15 4.35 3.77 3.22
BRK∗

3,20 -5.19 -3.91 -3.50 -3.33 -4.34 -0.19 1.07 1.56 1.67 0.70
MBRK∗

20 -2.42 -1.64 0.80 -0.96 -0.78 -0.39 0.31 3.21 0.97 1.48

Table 5: Relative bias of BRK∗(y,B) for B = {2, 3} and MBRK∗(y), where the local flat-top realized kernel
estimates are implemented with γ = 2/5. The subscript on the estimators illustrates the various combinations of
BRK∗B,nL

and MBRK∗nL
. In all cases, ψ2 = 0.001. All numbers are in percentages.

Finite Sample Relative RMSE of Blocked Realized Kernels
Nt = 0 Nt = 1

AR(0) AR(-0.5) AR(0.5) MA(-0.5) MA(0.5) AR(0) AR(-0.5) AR(0.5) MA(-0.5) MA(0.5)
n = 4680
BRK∗

2,16 10.95 10.27 11.15 10.03 11.06 11.72 11.50 13.36 11.51 12.52
BRK∗

3,16 12.12 11.29 12.30 11.02 12.27 11.49 11.05 12.77 10.98 12.15
BRK∗

2,18 9.84 9.01 10.49 8.87 10.21 11.43 11.37 13.54 11.35 12.41
BRK∗

3,18 10.90 9.90 11.36 9.74 11.24 10.92 10.59 12.54 10.53 11.72
MBRK∗

16 10.85 10.34 11.16 10.17 10.96 10.35 9.99 11.57 9.91 10.92
Nt = 0 Nt = 1

AR(0) AR(-0.5) AR(0.5) MA(-0.5) MA(0.5) AR(0) AR(-0.5) AR(0.5) MA(-0.5) MA(0.5)
n = 7800
BRK∗

2,18 9.18 8.28 10.00 8.10 9.60 10.74 10.58 12.54 10.75 11.67
BRK∗

3,18 9.98 8.94 10.85 8.72 10.43 10.10 9.69 11.78 9.76 10.97
BRK∗

2,20 8.59 7.83 9.68 7.60 9.10 10.51 10.47 12.78 10.69 11.73
BRK∗

3,20 9.42 8.46 10.42 8.17 9.91 9.75 9.46 11.72 9.55 10.81
MBRK∗

20 8.79 8.17 10.44 8.02 9.63 8.81 8.40 11.26 8.41 10.03

Table 6: Relative RMSE of BRK∗(y,B) for B = {2, 3} and MBRK∗(y), where the local flat-top realized kernel
estimates are implemented with γ = 2/5. The subscript on the estimators illustrates the various combinations of
BRK∗B,nL

and MBRK∗nL
. In all cases, ψ2 = 0.001. All numbers are in percentages.
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A A Robust Pre-Averaging Estimator

A robust pre-averaging estimator may be formulated by combining MRV (p) with the kernel-based

long-run noise variance estimator of Ikeda (2011),

TSN(p) =
(
1− τ2

)−1
(
|λ(2)(0)|nG−2

)−1
(RK(p,G)−RK(p,H))

where, again, τ = G/H, H = an1/2 and G = ng for g ∈
[
(2q + 1)−1, 1/2

]
, and the label TSN refers

to “two-scale noise”. Careful inspection of (Ikeda 2011, Lemmas 4-9) show that as long as q ≤ r ∈ N+,

TSN(p) = Ω +Op
(
G−q

)
+ ZN (1 + op(1)), (A.1)

where ZN
ds(H1)→ MN

(
0, limn→∞

(
Op
(
Gn−1

)
+Op

(
HG4n−3

)
+Op

(
G3n−2

)))
. Hence, define

PRV (p) =
1

θψ2
√
n
MRV (p)− ψ1

θ2ψ2
TSN(p).

Theorem A.1. Under the conditions of Lemma 2,

(1) Let VN = Op
(
ng−1

)
+ Op

(
n4g−5/2

)
+ Op

(
n3g−2

)
and CN = Op

(
ng/2−3/4

)
+ Op

(
n2g−3/2

)
+

Op
(
n3/2g−5/4

)
, then E[PRV (p)|H1] =

∫ 1
0 σ

2
t dt+Op (n−qg) and

V[PRV (p)|H1] =
4

ψ2
2

√
n

(
Φ22θ

∫ 1

0
σ4
t dt+

Φ11

θ3
Ω2 +

2Φ12Ω

θ

∫ 1

0
σ2
t dt

)
+ VN + CN .

(2) Suppose additionally, ∀i = 1, . . . , N : E[u8
ti ] <∞ and g ∈

[
(2q + 1)−1, 1/2

)
, then

n1/4

(
PRV (p)−

∫ 1

0
σ2
t dt

)
ds(H1)→ MN

(
0,

4

ψ2
2

(
Φ22θ

∫ 1

0
σ4
t dt+

Φ11

θ3
Ω2 +

2Φ12Ω

θ

∫ 1

0
σ2
t dt

))
.

Proof. The results for PRV (p) follow along the lines of the proof of Theorem 3.1. in Jacod et al. (2009)

and Podolskij & Vetter (2009) combined (A.1) and the Cauchy-Schwarz inequality. The justification

for extending the results to a mixing-dependent MMS noise is exactly the same as in (Hautsch &

Podolskij 2013, Theorem 3.3) and in the proof of Lemma 2.

Theorem A.1 shows that the finite sample bias of PRV (p) and TSRK(p) is of the same order of

magnitude. Furthermore, it relates the asymptotic (and finite sample) variance of PRV (p) to the

flat-top realized kernel. When g = 1/2, VN = Op(1), i.e. maximal emphasis on bias reduction inflates

the asymptotic variance of PRV (p). When g = (2q + 1)−1, the leading terms of VN and CN are of

orders Op
(
n−2q/(2q+1)

)
and Op

(
n−(3/2q−1/4)/(2q+1)

)
, respectively, similar to Op

(
τ2
)

and smaller than

Op(c). Together these results imply that slight modifications of Propositions 1 and 2 will describe the

robust pre-averaging estimator in relation to the flat-top realized kernels.
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B Proofs

In the following, K, k, and ε denote generic constants where K, k ∈ (0,∞) and ε ∈ (0, 1) unless specified

otherwise, and they may take different values in different places. A lemma due to (Jacod 2009, 6.23)

is stated below, and this will be used without explicit reference. Definition B.1 fixes some notation for

multiple summation and change of variables, some of which resembles the notation in Ikeda (2013).

All convergence results are for n→∞.

Lemma B.1 (Jacod (2009), 6.23). Under Assumptions 1-2, then for i ≥ 2, E[(∆ti)
−1/2|∆p∗ti −

σti−1∆Wti |s|Hti−1 ] ≤ Ksn
−min(1,s/2) and E[(∆ti)

−1/2|
∫ ti
ti−1

Υtdt−Υti−1∆ti|s|Hti−1 ] ≤ Ksn
−min(1,s/2).

Definition B.1. For (h, g) ∈ Z2, denote S(2,h) = {1 + S+
h , . . . , n− 1 + S−h }, and S(1,h) = S(2,h) \ {1}.

Further, denote Zk = {−k, . . . ,−1, 0, 1, . . . , k} for k ∈ N and ZKk+1 = ZK \ Zk for K − k ∈ N. Last,

denote sets for various change of variables. For s = i− h ∈ S(2,h) − h = {1− S−h , . . . , n− 1− S+
h } =

S(2,−h). For s = j−i in
∑

i∈S(2,h)

∑
j∈S(2,g) =

∑
s∈S(2,g)−S(2,h)

∑
i∈S(2,g)∩(S(2,h)+s) where S(2,g)−S(2,h) =

{−(n−1+S−h ), . . . ,−1, 0, 1, . . . , n−1+S−g } = Zn−1,h,g, S
(2,h) +s = {1+S+

h,s, . . . , n−1+S−h,s} = S
(2,h)
s

for S+
h,s = max(h, 0) + max(s, 0) and S−h,s = min(h, 0) + min(s, 0), and finally S

(2,g,h)
s = S(2,g) ∩ S(2,h)

s .

Definition B.2. Let Ω̃(ee) and Ω̃(ep) replace Ω(ee) and Ω(ep), respectively, in Definitions 1 and 2 for all

combinations of local and average h-th autocovariance (covariance) and long run variance (covariance)

terms when θt(g) is replaced by θ(t, g).

B.1 Proof of Theorem 1

The proof is given by combing individual results from the decomposition,

RK∗(p) = RK∗(p∗) +RK∗(U) +RK∗(p∗, U) +RK∗(U, p∗). (B.1)

B.1.1 Results for RK∗(p∗)

Let r∗i = ∆p∗ti and make the following partition of RK∗(p∗),

RK∗(p∗) =
∑

h∈Zn−1

k

(
|h|
H

) ∑
i∈S(1,h)

r∗i r
∗
i−h︸ ︷︷ ︸

=K(r∗)

+ (r∗1)2 + (r∗n)2 + 2
n−1∑
h=1

k

(
h

n

)(
r∗h+1r

∗
1 + r∗nr

∗
n−h
)

︸ ︷︷ ︸
=Z1(r∗)

,

to separate the jittered end-point returns. From Lemma C.3 (b), Z1(r∗) = Op(m
2n−1). Further, by

(Barndorff-Nielsen et al. 2008, Theorem 1) in conjunction with Lemma C.2 (a),

√
n/H

(
K(r∗)−

∫ 1

0
σ2
sds

)
ds(H1)→ MN

(
0, 4

(
λ(00) + c

)∫ 1

0
σ4
t dt

)
. (B.2)
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B.1.2 Results for RK∗(U)

Define a(h/H) = −H2∆2k(h/H), which is the finite sample analog of −k(2)(h/H), and the equivalents

of Vh and Zh for h = 1 . . . , n− 1 of (Barndorff-Nielsen et al. 2011a, p. 165) as

Vh =

n−1∑
i=h+1

UtiUti−h +

n−h−1∑
i=1

UtiUti+h = 2

n−1∑
i=h+1

UtiUti−h

Zh = UtnUtn−h + UthUt0 + Utn−hUtn + Ut0Uth = 2(UtnUtn−h + Ut0Uth).

These definitions and (Barndorff-Nielsen et al. 2011a, Proposition A.1) provides the partition

RK∗(U) = A1(U) +A2(U) +
1

2
Z0(U)−

n−1∑
h=1

(k(h/H)− k((h− 1)/H))Zh(U)︸ ︷︷ ︸
=Z2(U)

(B.3)

where Z2(U) are due to end-effects and

A1(U) =
n

H2

∑
h∈ZcH−1

a

(
|h|
H

)
1

n

∑
i∈S(2,h)

UtiUti−h , A2(U) =
n

H2

∑
h∈Zn−1

cH

a

(
|h|
H

)
1

n

∑
i∈S(2,h)

UtiUti−h .

From Lemma C.3 (c), Z2(U) = Op(m
−1). A(U) = A1(U) + A2(U) requires more work due to the

decomposition U = e+ u, which results in

A(U) = A(e) +A(u) +A(e, u) +A(u, e), (B.4)

similar to the decomposition in (B.1).

Lemma B.2. Under the conditions of Theorem 1,

(H3n−1)1/2
(
A(U)−Op

(
α(cH)nH−2

)) ds(H1)→ MN

(
0, 4λ(22)

∫ 1

0
Ω2
tdt

)
.

Proof. First, for E[A(U)|H1] write

E[A(U)|H1] = E[A2(e) +A2(u)|H1] ≤ nH−2
∑

h∈Zn−1
cH

|a(|h|/H)|
(
|Ω(ee)(h)(1 + op(1))|+ |Ω(uu)(h)|

)
≤ nH−2K

∑
h∈Zn−1

cH

(
|Ω(ee)(h)(1 + op(1))|+ |Ω(uu)(h)|

)
≤ Op

(
α(cH)nH−2

)
(B.5)

where the first equality follows by a(|h|/H) = 0 for |h| < cH in conjunction with Lemma C.5 (a)

to eliminate the cross products, the first inequality by Lemma C.6 (b), the second inequality since

suph∈Zn−1
cH
|a(|h|/H)| ≤ K, and the last inequality by Lemma C.4. For the variance and the joint
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stable central limit theorem, the marginal results for A(e, u) +A(u, e) = 2A(e, u) + op(1) are provided

by Lemma C.5 due to Lemma C.6 (b). Let z = {e, u} and define β(x) = a(x)/λ(2)(0), i =
√
−1,

δ ∈ [−π, π], the periodogram and autocovariance function,

In,z(δ) =
1

2πn

∣∣∣ ∑
j∈S(2,0)

ztj exp(−iδj)
∣∣∣2, Cn,z(h) =

1

n

∑
j∈S(2,h)

ztjztj−h =

∫ π

−π
In,z(δ) exp(iδh)dδ

where | · |2 denotes the complex conjugate product, and write A(z) = sn
∫ π
−π In,z(δ)Kn(δ)dδ where

Kn(δ) = (2π)−1
∑

h∈Zn−1
β(|h|/H) exp(iδh) is the spectral window of β(x) and sn = 2πλ(2)(0)nH−2 is

a deterministic scale. This resembles spectrum analysis where sufficient regularity conditions for β(x)

and Kn(δ) to invoke the following central limit theorems are shown to hold in Lemmas C.2 (b) and

(c). Conditioning on H1 provides no information about uti , which is Gti-measurable. Hence,

V[A(z)|H1] = 4nH−3λ(22)

∫ 1

0
[Ω

(zz)
t ]2dt(1 + op(1)),

(H3n−1)1/2
(
A(z)−Op

(
αz(cH)nH−2

)) ds(H1)→ MN

(
0, 4λ(22)

∫ 1

0
[Ω

(zz)
t ]2dt

)

is provided by (Rosenblatt 1984, Theorem 2) for z = u, noticing Ω
(uu)
t = Ω(uu), and by (Dahlhaus

2009, Theorem 3.2) for z = e, since θt(h) is H1-measurable ∀h ∈ Z, in conjunction with (B.5) and

Lemma C.1 (a). Last, the H1-conditional cross-term covariances satisfy Cov[A(e), A(u)|H1] = 0,

Cov[A(e), 2A(e, u)|H1] = 0, and

Cov[A(u), 2A(e, u)|H1] =
2n2

H4

∑
h∈Zn−1

∑
g∈Zn−1

a

(
|h|
H

)
a

(
|g|
H

)
1

n2

∑
i∈S(2,h)

∑
j∈S(2,g)

etjκ3(i, i− h, j − g)

≤ 2n

H4
sup

h∈Zn−1

a

(
|h|
H

)2 ∑
h∈Zn−1

∑
g∈Zn−1

∑
i∈S(2,h)

sup
j∈S(2,g)

|κ3(i, i− h, j − g)| 1
n

∑
j∈S(2,g)

|etj |

≤ 2n

H4
kKOp(1)

∑
h∈Zn−1

∑
g∈Zn−1

∑
i∈S(2,h)

|κ3(i, i− h,−g)| = Op(nH
−4),

since suph∈Zn−1
a(|h|/H)2 ≤ k, supj∈S(2,g) |κ3(i, i − h, j − g)| ≤ |κ3(i, i − h,−g)|K, κ3(·) is absolutely

summable and n−1
∑

j∈S(2,g) |etj | = Op(1). The final result is, then, provided by Lemma C.1 (b).

B.1.3 Results for RK∗(p∗, U) +RK∗(U, p∗)

Define b(h/H) = H∆k(h/H), which is the sample analog of k(1)(h/H), and decompose RK∗(p∗, U) +

RK∗(U, p∗) similar to (B.3):

RK∗(p∗, U) +RK∗(U, p∗) = B(r∗, U) + Z3(r∗, U) (B.6)
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where

Z3(r∗, U) = 2
n−1∑
h=0

k

(
h

H

)(
Utnr

∗
n−h − Ut0r∗h+1

)
+

2

H

n−1∑
h=1

b

(
h

H

)(
r∗nUtn−h − r

∗
1Uth

)
are due to end-effects and B(r∗, U) = B1(r∗, U) +B2(r∗, U),

B1(r∗, U) =
2

H

∑
h∈ZcH−1

b

(
|h|
H

) ∑
i∈S(1,h)

r∗iUti−h , B2(r∗, U) =
2

H

∑
h∈Zn−1

cH

b

(
|h|
H

) ∑
i∈S(1,h)

r∗iUti−h .

From Lemma C.3 (d), Z3(r∗, U) = Op(H
1/2(nm)−1/2) + Op(m(Hn)−1/2). The results for B(r∗, U)

depends on the decomposition B(r∗, U) = B(r∗, e) +B(r∗, u).

Lemma B.3. Under the conditions of Theorem 1,

H1/2
(
B(r∗, U)−Op

(
H−1n1/2αe(cH)

))
ds(H1)→ MN

(
0, 8λ(11)

∫ 1

0

((
Ω

(ep)
t

)2
+ Ωtσ

2
t

)
dt

)
.

Proof. The marginal results for B(r∗, u) is provided by Lemma C.5 due to (3). For B(r∗, e),

E[B(r∗, e)|H1] = E[B2(r∗, e)|H1] =
2

Hn1/2

∑
h∈Zn−1

cH

b

(
|h|
H

) ∑
i∈S(1,h)

θ(ti−h, h)Υti−1σti−1(1 + op(1))

≤ 2

Hn1/2
sup
t∈[0,1]

|Υtσt| sup
h∈Zn−1

cH

∣∣∣∣b( |h|H
)∣∣∣∣ ∑

h∈Zn−1
cH

∑
i∈S(1,h)

|θ(ti−h, h)|(1 + op(1))

= Op

(
H−1n1/2αe(cH)

)
since supt∈[0,1] |Υtσt| ≤ k, suph∈Zn−1

cH
|b (|h|/H)| ≤ K, and

∑
i∈S(1,h) |θ(ti−h, h)| ≤ O(nαe(h)). Next,

V[B(r∗, e)|H1] =
4

H2

∑
h∈Zn−1

∑
g∈Zn−1

b

(
|h|
H

)
b

(
|g|
H

) ∑
i∈S(1,h)

∑
j∈S(1,g)

Cov
[
r∗i eti−h , r

∗
j etj−g |H1

]
(B.7)

where, since (r∗i , eti−h , r
∗
j , etj−g)

′ is a 4-variate Gaussian vector, (B.7) simplifies by invoking (Brillinger

1981, Theorem 2.3.2),

Cov
[
r∗i eti−h , r

∗
j etj−g |H1

]
= Cov

[
r∗i , r

∗
j |H1

]
Cov

[
eti−h , etj−g |H1

]
+Cov

[
r∗i , etj−g |H1

]
Cov

[
eti−h , r

∗
j |H1

]
,

and let (B.7) = (B.7.1) + (B.7.2) denote the decomposition. The marginal result for (B.7.1) re-

sembles the conditional variance of B(r∗, u) and is provided in Lemma C.6 (c). For (B.7.2), since

Cov
[
r∗i , etj−g |H1

]
= n−1/2Ω̃

(ep)
tj−g

(i− j + g)(1 + op(1)) use Lemma C.6 (d) and two change of variables
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s = i− h and x = j − g to write,

(B.7.2) = Op
(
(Hn)−1

)
+

4

H2

∑
h∈Zn−1

∑
g∈Zn−1

b

(
|h|
H

)
b

(
|g|
H

)
C(ep)
n (h, g)

where, using another change of variables x− s = k,

C(ep)
n (h, g) =

1

n

∑
s∈S(1,−h)

∑
x∈S(1,−g)

Ω
(ep)
tx (h+ s− x)Ω

(ep)
ts (g + x− s)

=
1

n

∑
k∈Zn−1,−h,−g

∑
s∈S(1,−g,−h)

k

Ω
(ep)
ts+k

(h− k)Ω
(ep)
ts (g + k)

= Op(n
−1) +

∑
k∈Zn−1,−h,−g

∫ 1

0
Ω

(ep)
t (h− k)Ω

(ep)
t (g + k)dt, (B.8)

which follows by splitting the sum C
(ep)
n (h, g) = C

(ep)
n (h, g, 1) + C

(ep)
n (h, g, 2) where

C(ep)
n (h, g, 1) =

∑
k∈Zn−1,−h,−g

1

n

∑
s∈S(1,−g,−h)

k

Ω
(ep)
ts (g + k)Ω

(ep)
ts (h− k)

=
∑

k∈Zn−1,−h,−g

∫ 1

0
Ω

(ep)
t (h− k)Ω

(ep)
t (g + k)dt(1 + op(1))

C(ep)
n (h, g, 2) =

1

n

∑
k∈Zn−1,−h,−g

∑
s∈S(1,−g,−h)

k

Ω
(ep)
ts (g + k)

S+
k∑

k1=S−k

(
Ω

(ep)
ts+k

(h− k)− Ω
(ep)
ts+k−k1

(h− k)−

+ Ω
(ep)
ts+k−k1

(h− k)− Ω
(ep)
ts (h− k)

)
≤ K

n

∑
k∈Zn−1,−h,−g

|k|αe(h− k)αe(g + k) = O(n−1)

using sup
s∈S(1,−g,−h)

k

|Ω(ep)
ts (g + k)| ≤ Kαe(g + k), sup

∑
s∈S(1,−g,−h)

k

∣∣∣Ω(ep)
ts+k

(h− k)− Ω
(ep)
ts+k±1

(h− k)
∣∣∣ ≤

Kαe(h − k) for k ≶ 0 |k| times, and
∑

k∈Zn−1,−h,−g
|k|αe(h − k)αe(g + k) < ∞. By inserting (B.8)

in (B.7.2) and using a fourth change of variable g − h = z along with a Taylor approximation of

b(|h+ z|/H), write

H(B.7.2) = Op(n
−1) + (1 +O(H−1))

4

H

∑
z∈Z2(n−1)

∑
h∈Zn−1,z,z

b

(
|h|
H

)2 ∑
k∈Zn−1,−h,−(h+z)∫ 1

0
Ω

(ep)
t (h− k)Ω

(ep)
t (h+ z + k)dt

P−→ 8λ(11)

∫ 1

0

(
Ω

(ep)
t

)2
dt

where the final convergence in probability follows by changing the order of summation with respect to
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z, h, and k and taking the limit. As Cov[B(r∗, u), B(r∗, e)|H1] = 0, this implies

V[B(r∗, U)|H1]
P−→ 8λ(11)

∫ 1

0

((
Ω

(ep)
t

)2
+ Ωtσ

2
t

)
dt.

The stable central limit theorem follows by applying (Jacod 2009, Lemma 4.4) in conjunction with

Lemma C.1 (b).

B.1.4 Joint Characterization

Having established the marginal results for RK(p∗), RK(U) and RK∗(U, p∗) + RK∗(p∗, U), a joint

characterization of RK(p) requires the consideration of cross-term covariances. However, this simplifies

as
1

H

∑
h∈Zn−1

∑
g∈Zn−1

b (|h|/H) a (|g|/H) −→ 0,
1

H

∑
h∈Zn−1

∑
g∈Zn−1

k (|h|/H) b (|g|/H) −→ 0,

leaving only the contribution from 2× Cov[RK(p∗), RK(U)|H1] for which

1

H

∑
h∈Zn−1

∑
g∈Zn−1

k (|h|/H) a (|g|/H) −→ 2λ(11),

see (Ikeda 2011, p. 33). First, separate out the end-points to write

Cov(K(r∗), A(U)|H1) =
1

H2

∑
h∈Zn−1

∑
g∈Zn−1

k (|h|/H) a (|g|/H)
∑

i∈S(1,h)

∑
j∈S(1,g)

Cov
(
r∗i r
∗
i−h, UtjUtj−g |H1

)
,

and useH1-conditional independence of r∗i and utj ∀(i, j) ∈ S(1,h)×S(1,g) in conjunction with (Brillinger

1981, Theorem 2.3.2) to deduce

Cov
(
r∗i r
∗
i−h, UtjUtj−g |H1

)
= Cov

(
r∗i , etj |H1

)
Cov

(
r∗i−h, etj−g |H1

)
+Cov

(
r∗i , etj−g |H1

)
Cov

(
r∗i−h, etj |H1

)
.

Both terms on the right hand side are symmetric to (B.7.2) in the proof of Lemma B.3. Hence, by

similar derivations 2 × Cov(K(r∗), A(U)|H1)
P−→ 8λ(11)

∫ 1
0 (Ω

(ep)
t )2dt. The H1-conditional mean, H1-

conditional variance, and the joint asymptotic distribution in Theorem 1, including conditions on the

flat-top shrinkage, follows by combining the individual asymptotic results: (B.2), Lemma B.2-B.3, and

Lemma C.3 for the end-points with the cross-term covariance, and then use Lemma C.1 (b).

B.2 Proof of Proposition 1

(1) follows by B[TSRK(p)|H1] = Op
(
n−1/2q

)
and B[RK∗(p)|H1] ≤ Op

(
n−1/2(1−γ)(1+r)

)
where the

asymptotic order of the latter is strictly smaller when q < (1 − γ)(1 + r) or equivalently when γ <

(1 + r − q)/(1 + r). (2) is trivial as limn→∞Φ(jj)(τ) > λ(jj) for j = 0, 1, 2.
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B.3 Proof of Proposition 2

(1) follows by considering B[RK∗(p)|H1] ≤ Op
(
n−1/2(1−(1/2+q)/(3/2+q))(1+r)

)
and B[TSRK(p)|H1] =

Op
(
n−q/(2q+1)

)
. The asymptotic order of the former is, then, strictly smaller than that of the latter,

which may be seen by algebraic manipulation of the powers to show q/(1 + r) < (2q + 1)/(2q + 3) as

q/(1+r) ≤ 1/2 and (2q+1)/(2q+3) ∈ [3/5, 1). To show (2), rewrite the variances n1/2V[RK∗(p)|H1] =

V(λ, a) + 4ac
∫ 1

0 σ
4
t dt+ op(1) and n1/2V[TSRK(p)|H1] = V(λ, a) +O

(
τ2
)

[4a
∫ 1

0 σ
4
t dt+ 4a−3

∫ 1
0 Ω2

tdt+

8a−1
∫ 1

0 {Ωtσ
2
t +2(Ω

(ep)
t )2}dt]+op(1) such that the ratio V[RK∗(p)|H1]/V[TSRK(p)|H1] = vn(q, ψ2, ρ)

may be defined as

vn(q, ψ2, ρ) =
V(λ, a)(4a

∫ 1
0 σ

4
t dt)

−1 + c+ op(1)

V(λ, a)(4a
∫ 1

0 σ
4
t dt)

−1 +O (τ2) [1 + a−4ψ41 + 2a−2(ψ2ρ2 + 2(
∫ 1

0 (Ω
(ep)
t )2dt)(

∫ 1
0 σ

4
t dt)

−1)]
.

Since the O
(
τ2
)

term is strictly positive, vn(q, ψ2, ρ) decreases in both ψ2 and ρ. To see that

∂vn(·)/∂q > 0, consider the rates of decay for c = O
(
n−1/2γ

)
and O

(
τ2
)

= O
(
n2/(2q+1)−1

)
where it

suffices to show O
(
τ2
)

= o
(
n−1/2γ

)
. By manipulating the powers, 1/2γ and 1− 2/(2q+ 1), O

(
τ2
)

=

o
(
n−1/2γ

)
follows by (1/2+q)(2q+1) < (2q−1)(3+2q) since q ∈ N+. Lastly, plimn→∞ vn(q, ψ2, ρ) = 1

holds since c = o(1) and τ = o(1).

B.4 Proof of Lemma 2

First, convergence in law of Ūti follows using (Yang 2007, Theorem 3.1) as

M1/2Ūti
d−→ N(0, ψ1Ω), 0 ≤ i ≤ n−M.

This is immediately seen by writing Ūti = −
∑M

j=1 ∆g
(
j+1
M

)
Uti+j and using the arguments in the proof

of Lemma C.5 (2). In this case, the blocks Ūti becomes asymptotically serially dependent. However,

∃$ ∈ (κ/(1 + ru), κ) such that Cov
(
Ūti , Ūtj

)
= op

(
M−1

)
for |i − j| = M + n$. To see this, write

M Cov
(
Ūti , Ūtj

)
≤ KMαu(n$)

P−→ 0 by Lemma C.4 whenever $ > κ(1 + ru)−1 where κ(1 + ru)−1 < κ

trivially. Thus, the additional distance between blocks to make them asymptotically independent,

compared with the i.i.d. noise case, increases with n at a slower rate than M , i.e. n$/M = o(1). This

implies that the big block-small block technique, see (Jacod, Podolskij & Vetter 2010, p. 1494), may be

used without asymptotic implications as the size of the asymptotically dominant big blocks is strictly

larger than M , the size of the smaller, asymptotically dominant blocks. Using this in conjunction with

(Jacod et al. 2010, Theorem 3.3) gives the desired result.

B.5 Proofs of Theorems 2 and 3

Before proceeding to the proofs, consider the following lemma and a definition.

Lemma B.4. Under the conditions of Theorem 1 (2), RKT
i (p) has representation RKT

i (p) =
∫ τi
τi−1

σ2
t dt+

∆M̃τi(1+op(1)), i = 1, . . . , nL where M̃t is an Ht-measurable sequence of continuous local martingales
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on t ∈ [0, 1], which satisfies n1/2[M̃, M̃ ]
P−→ V(λ, a) and n1/4[M̃,W ]

P−→ 0. The properties of M̃t also

holds under the statistical risk neutral distribution, Q.9

Proof. Theorem 1 and Lemma 3 provide the representation of RKT
i (p) where for fixed τi, i = 1, . . . , nL,

(iL)−1/4M̃τi

ds(H1)→ MN(0, plimn→∞ τi
∫ τi

0 V(λ, a, t)dt). Interchangeability of limits and quadratic vari-

ation follows by (Mykland & Zhang 2012, Proposition 4). Finally, existence of equivalent results under

the risk neutral distribution, Q, follows by Girsanov’s Theorem due to the absence of drift in M̃t.

Definition B.3. Let Mi+j−1 =
{
w ∈ O : med

(
RKT

i−1(p), RKT
i (p), RKT

i+1(p)
)

= RKT
i+j−1(p)

}
for

j = 0, 1, 2 and Pi+j−1 = P[Mi+j−1|H1].

B.5.1 Theorem 2

First, by Lemma B.4 in conjunction with (Mykland et al. 2012, Remark 9),

BRK∗(p, 1) = RK∗(p) +Op(n
−β), (B.9)

which provides the first result of Theorem 2 (1). Next, for B ≥ 2, denote the two bias terms B1 =
1
b
B−1
2B

∫ 1
0
V(λ,a,t)
σ2
t

dt and B2 = bB−1
3 [σ, σ]. Then, using Lemma B.4 and (B.9) in conjunction with

(Mykland et al. 2012, Theorems 4, 10 and 11) gives the strong approximation,

RK∗(p)−BRK∗(y,B) = n−1/2+βB1 + n−β(B2 −Op(1)) + J +Op(n
1/2(β−1)) +Op(n

−3/2β)

where J = 0 if Jt = 0 ∀t ∈ [0, 1] and

J = −Bb
B−1
B n−β

B−1
B

∑
0≤t≤1

(σ2
t )

B−1
B (∆Jt)

2/B + op(n
−βB−1

B ),

under the jump alternative, providing the remaining parts of Theorem 2.

B.5.2 Theorem 3

The following holds for the median function except at the null set
{

(x1, x2, x3) ∈ R3|x1 = x2 = x3

}
and is used in later derivations,

lim
ε→0

1

ε
[med(x1, x2, x3 + εz)−med(x1, x2, x3)] =

z if x1 < x3 < x2 or x2 < x3 < x1,

0 otherwise.

Hence, the median function is differentiable except at the null set, and this is used to provide a strong

approximation for MBRK∗(p) using a Taylor expansion, similar to the proofs of (Mykland et al. 2012,

9The risk neutral distribution is defined in e.g. (Mykland & Zhang 2009, Section 2.2).
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Theorems 4, 10 and 11). First, consider a Taylor expansion assuming Jt = 0 ∀t ∈ [0, 1]. Define the

function f(xi−1, xi, xi+1) = xi −med(xi−1, xi, xi+1) and write

BRK∗(p, 1)−MBRK∗(p) = RKT
1 (p) +RKT

nL
(p) +

nL−1∑
i=2

f
(
RKT

i−1(p), RKT
i (p), RKT

i+1(p)
)
. (B.10)

Then, by Itô’s formula
∫ τi
τi−1

σ2
t dt = σ2

τi−1
∆τi +

∫ τi
τi−1

(τi − t)dσ2
t ≤ σ2

τi−1
∆τi + Op

(
(∆τi)

2
)

since As-

sumption 1 ensures dσ2
t ≤ K ∀t ∈ [0, 1]. Using this in conjunction with Lemma B.4 provides

RKT
1 (p) + RKT

nL
(p) = Op(n

−β). Before expanding the function f
(
RKT

i−1(p), RKT
i (p), RKT

i+1(p)
)

around f
(
στi−1∆τi, στi−1∆τi, στi−1∆τi

)
, note that f(z, z, z) = 0, f

(j)
xi+l−1(z, z, z) = 0 for l = 0, 1, 2

when j > 1 where f
(j)
xi+l−1(·) = ∂jf(·)/∂xji+l−1, and

f (1)
xi (z, z, z) =

0 if Mi,

1 otherwise,
f (1)
xi±1

(z, z, z) =

−1 if Mi±1,

0 otherwise.

Using this, slight algebraic manipulation shows that (B.10) may be rewritten as

BRK∗(p, 1)−MBRK∗(p) = Op(n
−β) +

nL−1∑
i=2

2∑
l=0

(
RKT

i (p)−RKT
i+l−1(p)

)
1{Mi+l−1},

noting that RKT
i (p)−RKT

i+l−1(p) = 0 ∀i = 2, . . . , nL−1 when l = 1. Hence, this requires establishing

results for

RKT
i (p)−RKT

i−1(p) =

∫ τi

τi−1

σ2
t dt−

∫ τi−1

τi−2

σ2
t dt+ ∆M̃τi −∆M̃τi−1 ,

since the analogous results for RKT
i (p) − RKT

i+1(p) follows immediately. Again, by repeated use of

Itôs formula,
∫ τi
τi−1

σ2
t dt−

∫ τi−1

τi−2
σ2
t dt = Op

(
(∆τ)2

)
where ∆τ = ∆τi = ∆τi−1, which implies

nL−1∑
i=2

2∑
l=0

(∫ τi

τi−1

σ2
t dt−

∫ τi+l−1

τi+l−2

σ2
t dt

)
1{Mi+l−1} = Op(n

−β).

Next, let M̃ =
∑nL−1

i=2

(
∆M̃τi −∆M̃τi−1

)
1{Mi−1}, then

E
[
M̃2|H1

]
≤ E

[
nL−1∑
i=2

(∆M̃2
τi + ∆M̃2

τi−1
)−

nL−1∑
i=2

∆M̃τi1{Mi−1}

nL−1∑
i=2

∆M̃τi−11{Mi−1}|H1

]
≤ Op(n−1/2)

where the first inequality follows by conditional independence of the martingale increments, ∆M̃τi , and

the second by Lemma B.4. Hence, M̃ = Op(n
−1/4). Combining results, BRK∗(p, 1)−MBRK∗(p) =

Op(n
−β) + Op(n

−1/4). Using this in conjunction with (B.9) provides the final result. When Jt fol-

lows the jump alternative, then by the same argument as (Andersen, Dobrev & Schaumburg 2012,
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Section A.3), RKT
i−1(y), RKT

i (y), RKT
i+1(y) will (asymptotically) at most contain one jump since

E[Nt] <∞. Hence,

nL∑
i=2

E
[
med

(
RKT

i−1(p), RKT
i (p), RKT

i+1(p)
)
−med

(
RKT

i−1(y), RKT
i (y), RKT

i+1(y)
)
|H1

]
≤

nL∑
i=2

2∑
l=0

E
[
|RKT

i+l−1(p)−RKT
i+l−1(y)||H1

]
Pi+l−1 ≤ Op(n−β),

where the first inequality follows by the L1-norm, the second inequality since RKT
i+l−1(p)−RKT

i+l−1(y)

cancels if no jump occur and Pi+l−1 = Op(n
−β) l = 0, 1, 2 if ∆Js 6= 0 occurs for ts ∈ (τi+l−2, τi+l−1].

To see the latter, let, for simplicity, a jump occur for RKT
i−1(y), then

Pi−1 ≤ P[RKT
i−1(y) < RKT

i (p)|H1] + P[RKT
i−1(y) < RKT

i+1(p)|H1] ≤ Op(n−β)

by the Markov inequality. This provides the final result.

C Technical Results and Definitions

Note that some objects are not explicitly defined in this subsection, but rather when they occur in

Section B.

Definition C.1. (Stable Convergence, A General Class of Kernels)

(a) (Jacod & Shiryaev 2003, pp. 512-513): Suppose X is σ-field on (O,F ,P) such that X ⊆ F , then

Yn converges X -stably in law to Y , Yn
ds(X )→ Y , if and only if the pair (W,Yn) converges in law

to (W,Y ) for any X -measurable random variable W .

(b) KA1 of (Andrews 1991, p. 812) is defined as the set of functions k : R→ [−1, 1], which satisfy (a)

k(0) = 1, (b) k(x) = k(−x), (c) k(00) <∞, and (d) k(·) is continuous at 0 and at all but a finite

number of points.

Lemma C.1 (Barndorff-Nielsen et al. (2008), Lemma 1 and Proposition 5). Let L{·|X} denote the

X -conditional law. Then,

(a) If Yn
ds(X )→ Y and {Wn} is a sequence of positive random variables on (O,F ,P) tending in proba-

bility to a positive X -measurable random variable W such that Wn/W
P−→ 1, then WnYn

d−→WY .

(b) Let {Yn} and {Zn} be sequences of random vectors. Suppose Yn
ds(X )→ Y and L{Zn|X}

P−→ L{Z|X}.
Then (Yn, Zn)

ds(X )→ (Y,Z).

Lemma C.2. Let k(x) ∈ K∗, then for large H,
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(a) Define the n×n matrix A = diag(1, 2, . . . , 2), the n×1 vector w =
(
1, . . . , 1, λ

(
h−c
H

)
, . . . , λ

(
n−1−c
H

))
for h/H ≥ c, then w′Aw = 2Hλ(00) + 2cH +O(1).

(b) β (x) = 0 for |x| < c and β (|x|) ∈ KA1 for |x| ≥ c. For |x| ≥ c, β(|x|) is differentiable at all but a

finite number of points, and
∫∞

0 [β(j)(|x|)]2 <∞ for j = 1 almost everywhere.

(c) supδ

{∑g
j=1 |K(δj)−K(δj−1)| : −π ≤ δ0 < · · · < δg ≤ π; g ∈ N

}
<∞.

Proof. (a) Follows from summing over cH elements in A and then using (Barndorff-Nielsen et al. 2008,

Theorem 2). (b) For |x| < c, the results follow immediately. For |x| ≥ c, it holds β (|x|) : R→ [−1, 1]

because |λ(2)(|x| − c)| achieves its maximum at |x| = c, and β(c) = 1 by construction. Continuity,

symmetry and square integrability follow from the properties of λ(x). Differentiability of β(|x|) and

square summability of β(1)(|x|) follows from Definition 1 (a) and (d). (c) is provided by the properties

of β(x) in (b).

Lemma C.3. (Jittered variables) Under the conditions of theorem 1, (a) r∗1 + r∗n = Op(mn
−1/2). (b)

Z1(r∗) = Op(m
2n−1) +Op(H

1/2mn−1). (c) Z2(U) = Op(m
−1). (d) Z3(r∗, U) = Op(H

1/2(nm)−1/2) +

Op(m(Hn)−1/2) +Op((m/n)1/2).

Proof. (a) Recall the definition of the jittered end-point returns r∗1 = p∗tm − m−1
∑m

i=1 pti−1 and

r∗n = m−1
∑m

i=1 p
∗
tN−m+1

− p∗tn−1
. The result is derived for r∗1, since the symmetric result for r∗n follows

immediately. Using the telescoping sum property of returns, write

r∗1 =
1

m

m∑
i=1

(p∗tm − p
∗
ti−1

) =
1

m

m∑
i=1

i∑
j=1

r∗m+1−j =
1

m

m∑
i=1

Op

(
in−1/2

)
= Op(mn

−1/2),

which provides the first result. (b) The third component of

Z1(r∗) = (r∗1)2 + (r∗n)2 + 2
n−1∑
h=1

k

(
h

n

)(
r∗h+1r

∗
1 + r∗nr

∗
n−h
)

is Op

(√
Hm2n−2

)
by calculating the mean and variance, given h > 0, of a sum of conditionally

independent Gaussian variables using (a) in conjunction with Lemma C.2 (a). Hence, the result follows

by (a) for the first two terms as the boundary terms for h = n − 1 are of order Op(H
−1/2) smaller

than these. (c) is provided by (Barndorff-Nielsen et al. 2011a, Proposition A.2), since Assumptions 2

and 3 ensures
∑

h∈Z |Ω(h)| <∞. For (d), as

Z3(r∗, U) = 2
n−2∑
h=1

k

(
h

H

)(
Utnr

∗
n−h − Ut0r∗h+1

)
+

2

H

n−1∑
h=1

b

(
h

H

)(
r∗nUtn−h − r

∗
1Uth

)
+ k(0)(Utnr

∗
n − Ut0r∗1) + k((n− 1)/H)(Utnr

∗
1 − Ut0r∗n),
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it suffices to characterize probabilistic orders of Utnr
∗
n−h and r∗nUtn−h in the first two terms since the

last two terms are Op((m/n)1/2) by the Cauchy-Schwarz inequality, (a) and (c). For Utnr
∗
n−h =

(etn+utn)r∗n−h, E[utnr
∗
n−h|H1] = 0 and V[utnr

∗
n−h|H1] = m−2(r∗n−h)2

∑m
i,j=1 Ω(uu)(i−j) = Op((mn)−1)

for the exogenous noise component, and

etnr
∗
n−h =

1

mn1/2

m∑
j=1

θ(tN−m+j ,−(h+ j))Υtn−h−1
σtn−h−1

(1 + op(1))

≤ sup
t∈[0,1]

|Υtσt|
1

mn1/2
(1 + op(1))

m∑
j=1

αe(h+ j) = Op((mn
1/2)−1),

since supt∈[0,1] |Υtσt| ≤ K and
∑m

j=1 αe(h + j) = O(1) ∀h ∈ Z, for the endogenous noise component.

Hence, the first term in Z3(r∗, U) is Op((H/(mn))−1/2) by Lemma C.2 (a). For r∗nUtn−h = r∗n(etn−h +

utn−h), E[r∗nutn−h |H1] = 0 and V[r∗nutn−h |H1] = Ω(uu)(0)(r∗n)2 = Op(m
2/n) by (a) for the exogenous

noise component, and

r∗netn−h =
1

mn1/2

m∑
i=1

i∑
j=1

θ(tn−h,m− j + h)ΥtN−jσtN−j (1 + op(1))

≤ 1

mn1/2
sup
t∈[0,1]

|Υtσt|(1 + op(1))
m∑
i=1

i∑
j=1

αe(m− j + h) ≤ Op(mn−1/2),

since
∑m

i=1

∑i
j=1 αe(m − j + h) ≤ O(m2) ∀h ∈ Z, for the endogenous noise component. Hence, the

second term in Z3(r∗, U) is Op(m(Hn)−1/2), providing the final result.

Lemma C.3 shows that a stronger condition on m are required to avoid end-effects influencing

the asymptotic distribution than specified in Barndorff-Nielsen et al. (2008, 2011a) and Ikeda (2011,

2013), since neither notices the fact that the efficient end-point returns are a triangular array.

Lemma C.4. Let Assumption 2 and 3 hold and denote z = {e, u}, then for n, p ∈ N+,

∞∑
h=n

|Ω(zz)(h)|p ≤
∞∑
h=n

αz(h)p ≤ Kαz(n)p.

Proof. Define f(n) = αz(n)−p, h(n) = n(rz+ε)p, F (n) =
∑∞

j=n f(j)−1 and H(n) =
∑∞

j=n h(j)−1.

Then, since f(j)/h(j) = (αz(j)j
rz+ε)−p → ∞ as j → ∞, the sequence is ascending and it follows

by the mixing inequality for z = u and (Dahlhaus & Polonik 2009, Proposition 5.4) for z = e and

(Hoffmann-Jørgensen 2008, Lemma 2.1 (2)) that

∞∑
h=n

|Ω(zz)(h)|p ≤ F (n) ≤ Kh(n)

f(n)
H(n).

Then, since h(n + 1)H(n + 1) ≤ kh(n)H(n) by h(n + 1)/h(n) ≤ k and H(n + 1)/H(n) ≤ 1, the
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descending sequence may be bounded as h(n)H(n) ≤ kH(1) ≤ K where H(1) is a p-series with

exponent p(rz + ε) > 1, giving the desired result.

Lemma C.5. Let the conditions of Theorem 1 hold and suppose {xt}t∈[0,1] is an X1-measurable,

bounded random variable where Xt ⊂ Ft is a σ-algebra on
(
O,F , (Ft)t∈[0,1],P

)
satisfying Xt ⊥⊥ Gs

∀(t, s) ∈ [0, 1]2. Further, suppose (b1, b2) = {(1, 0), (0, 1)} such that

∑
h∈Zn−1

1

nb2

∑
i∈S(1,h)

xtixti−h
P−→
∑
h∈Z

∫ 1

0
ct(h)dt = Ω(xx) (C.1)

where ct(h) is X1-measurable ∀h ∈ Z, P-uniformly bounded ∀(h, t) ∈ Z × [0, 1] and Ω(xx) ∈ (0,∞)

P-almost surely. Define the realized kernel estimator

RK(f, x, u) =
1

Hb1

∑
h∈Zn−1

f

(
h

H

)
1

nb2

∑
i∈S(1,h)

xtiuti−h ,

where f(x) : R → [−1, 1] is a weight function, which is differentiable at all but a finite number of

points and f (jj) =
∫∞
−∞[f (j)(x)]2dx <∞ for j = 0 and j = 1 almost everywhere. Then,

(a) E[RK(f, x, u)|X1] = 0 and nb2H2b1−1V[RK(f, x, u)|X1]
P−→ f (00)Ω(uu)Ω(xx).

(b) nb2/2H(2b1−1)/2RK(f, x, u)
ds(X1)→ MN

(
0, f (00)Ω(uu)Ω(xx)

)
.

Proof. (a) E[RK(f, x, u)|X1] = 0 is trivial. Next, write

V[RK(f, x, u)|X1] =
1

H2b1

1

nb2

∑
h∈Zn−1

∑
g∈Zn−1

f

(
h

H

)
f
( g
H

)
Cn(h, g)

where Cn(h, g) may be written using a change of variables j − i = l as

Cn(h, g) =
1

nb2

∑
i∈S(1,h)

∑
l∈S(1,g)−i

xtixti+lΩ
(uu)(l + g − h) =

∑
l∈Zn−1,h,g

Ω(uu)(l + g − h)
1

nb2

∑
i∈S(1,g,h)

l

xtixti+l
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By another change of variables g − h = z,

nb2H2b1−1V[RK(f, x, u)|X1] =
1

H

∑
h∈Zn−1

∑
z∈Zn−1−h

f

(
h

H

)
f

(
h+ z

H

) ∑
l∈Zn−1,h,h+z

Ω(uu)(l + z)

× 1

nb2

∑
i∈S(1,h+z,h)

u

xtixti+l

=
(
1 +O(H−1)

) ∑
z∈Z2(n−1)

1

H

∑
h∈Zn−1,z,z

f

(
h

H

)2 ∑
l∈Zn−1,h,h+z

Ω(uu)(l + z)

× 1

nb2

∑
i∈S(1,h+z,h)

l

xtixti+l
P−→ f (00)Ω(uu)Ω(xx),

where the second equality follows by Taylor’s theorem since f(x) is differentiable at all but a finite

number of points and f (11) < ∞ almost everywhere. The final convergence in probability follows by

switching the order of summation with respect to h and (l, i) and using (C.1). (b) First, rewrite

RK(f, x, u) as

RK(f, x, u) =
∑

i∈S(1,0)

utiw̄n,i, w̄n,i =
1

Hb1

1

nb2

∑
h∈S(1,0)

f

(
h− i
H

)
xth

and define the sequences (K̄n, L̄n) ∈ R+ × R+ where K̄n = O(nk̄) and L̄n = O(nl̄) for 0 < k̄ < l̄ < 1.

The stable central limit theorem follows by the central limit theorem for weighted α-mixing processes

from (Yang 2007, Theorem 3.1) X1-conditionally in conjunction with (a) and Lemma C.1 (a), since

the following four conditions are shown to hold: (1) w̄n = maxi∈S(1,0) |w̄n,i| ≤ Op(
∑

i∈S(1,0) w̄2
n,i) =

Op(V[RK(f, x, u)|X1]), (2) nL̄−1
n αu(K̄n) = o(1), (3) nK̄nL̄

−1
n w̄2

nV[RK(f, x, u)|X1]−1 = op(1), and (4)

L̄n
∑

i∈S(1,0) w̄2
n,i = op(1). For (1), the last equality in orders is immediate from the derivations in (a).

The first inequality follows by noticing maxi∈S(1,0) |w̄n,i| = Op(H
(1−2b1)/2n−(1+b2)/2) ≤ Op(H1−2b1n−b2)

since O(1) ≤ O(H(1−2b1)/2n(1−b2)/2) for both combinations of (b1, b2). Since, ru ∈ N+, (2) is satisfied by

having 0 < (1− l̄)/(1+ru+ε) < k̄ < l̄ < 1. (3), nK̄nL̄
−1
n w̄2

nV[RK(f, x, u)|X1]−1 = nK̄nL̄
−1
n Op(n

−1)
P−→

0 trivially by condition (1). Last, (4) follows by noticing the conditions for L̄nOp(H
(1−2b1)n−b2)

P−→ 0

are l̄ − ν < 0 for (b1, b2) = (1, 0) and l̄ − (1− ν) < 0 for (b1, b2) = (0, 1). Setting ν = 1/2 as required

for the central limit theorem in Theorem 1, these conditions are easily satisfied.

This generalizes (Ikeda 2013, Lemma 4) as it applies more generally to series of weighted products

of independent variables, which individually may exhibit temporal dependence. Note that condition

(3) is slightly different from (Yang 2007, (3.4)) and that (Yang 2007, Assumption 2 (i)) is omitted.

However, careful inspection of the proof on pp. 1022-1023 shows that condition (3) suffices for line 7,

and that condition (4) is sufficient for (Yang 2007, (3.14)), as r̃ = r+ 2, in their notation, may replace

r in the last five lines of their proof since ∃v > 4 : supti∈[0,1] E[|uti |v] <∞.

Lemma C.6. Under the conditions of Theorem 1,
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(a)
∑

i∈S(1,h,−s)
0

∣∣∣Cov[eti−h , eti+s |H1]− Ω
(ee)
ti

(h+ s)
∣∣∣ ≤ K (1 + min(|h|, n)αe(h+ s)) (1 + op(1)).

(b) n−1
∑

i∈S(1,h,−s)
0

Cov[eti−h , eti+s |H1]
P−→
∫ 1

0 Ω
(ee)
t (h+ s)dt.

(c) H(B.7.1)
P−→ 8λ(11)

∫ 1
0 σ

2
tΩ

(ee)
t dt.

(d)
∑

i∈S(1,h)

∑
j∈S(1,g)

∣∣∣Ω̃(ep)
tj−g

(i− j + g)Ω̃
(ep)
ti−h

(j − i+ h)− Ω
(ep)
tj−g

(i− j + g)Ω
(ep)
ti−h

(j − i+ h)
∣∣∣ ≤ Op(1).

Proof. (a) First, write

Cov[eti−h , eti+s |H1] =

∞∑
g=−∞

θ(ti, g)θ(ti, g − (h+ s))n(∆W̃ti−g)
2

+

∞∑
(g,j 6=h+s+g)=−∞

θ(ti, g)θ(ti+h+s, j)n(∆W̃ti−g)(∆W̃ti−j+h+s)
P−→ Ω̃

(ee)
ti

(h+ s)

using the Markov inequality to ensure convergence in probability. Then, (Dahlhaus & Polonik 2009,

Proposition 5.4) provides the final result. (b) follows by applying (a). (c) Using two similar change

of variables as in the proof of Lemma C.5 (a), it follows for∑
l∈Zn−1,h,h+z

∑
i∈S(1,h+z,h)

l

r∗i r
∗
i+l Cov

[
eti−h , eti+l−(h+z)

|H1

]
= (C.7.1) + (C.7.2)

using (a) that

(C.7.1) =
∑

i∈S(1,h+z,h)
0

(r∗i )
2 Cov

[
eti−h , eti−(h+z)

|H1

]
=

∑
i∈S(1,h+z,h)

0

(r∗i )
2Ω

(ee)
ti

(−z)(1 + op(1)),

(C.7.2) =
∑

l∈Zn−1,h,h+z\{0}

∑
i∈S(1,h+z,h)

l

r∗i r
∗
i+l Cov

[
eti−h , eti+l−(h+z)

|H1

]
≤

∑
l∈Zn−1,h,h+z\{0}

sup
i∈S(1,h+z,h)

l

∣∣∣Ω(ee)
ti

(l − z)(1 + op(1))
∣∣∣ ∑
i∈S(1,h+z,h)

l

|riri+l| = Op(n
−1/2),

since
∑

l∈Zn−1,h,h+z\{0} sup
i∈S(1,h+z,h)

l

∣∣∣Ω(ee)
ti

(l − z)
∣∣∣ ≤ ∑l∈Zn−1,h,h+z\{0}Kα(l − z) < ∞ and, uniformly

for l 6= 0,
∑

i∈S(1,h+z,h)
l

riri+l = Op(n
−1/2). Hence, using a Taylor approximation for b(|h+ z|/H),

H(B.7.1) = 4(1 +O(H−1))
∑

z∈Z2(n−1)

1

H

∑
h∈Zn−1,z,z

b

(
|h|
H

)2 (
Op(n

−1/2) +
∑

i∈S(1,h+z,h)
0

(r∗i )
2Ω

(ee)
ti

(−z)
)

P−→ 8λ(11)

∫ 1

0
σ2
tΩ

(ee)
t dt,

where the final convergence in probability follows by switching the order of summation with respect
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to h and i. For (d), denote

(C.7.3) =
∑

i∈S(1,h)

∑
j∈S(1,g)

∣∣∣Ω̃(ep)
tj−g

(i− j + g)Ω̃
(ep)
ti−h

(j − i+ h)− Ω
(ep)
tj−g

(i− j + g)Ω
(ep)
ti−h

(j − i+ h)
∣∣∣ ,

then

(C.7.3) ≤
∑

i∈S(1,h)

∑
j∈S(1,g)

∣∣∣Ω̃(ep)
ti−h

(j − i+ h)
∣∣∣ ∣∣∣Ω̃(ep)

tj−g
(i− j + g)− Ω

(ep)
tj−g

(i− j + g)
∣∣∣

+
∑

i∈S(1,h)

∑
j∈S(1,g)

∣∣∣Ω(ep)
tj−g

(i− j + g)
∣∣∣ ∣∣∣Ω̃(ep)

ti−h
(j − i+ h)− Ω

(ep)
ti−h

(j − i+ h)
∣∣∣

≤ K

n

∑
i∈S(1,h)

∑
j∈S(1,g)

(∣∣∣Ω̃(ep)
ti−h

(j − i+ h)
∣∣∣+
∣∣∣Ω(ep)

tj−g
(i− j + g)

∣∣∣) ≤ Op(1),

using
∣∣∣Ω̃(ep)

tj−g
(i− j + g)− Ω

(ep)
tj−g

(i− j + g)
∣∣∣ ≤ supt∈[0,1] |Υtσt|

∣∣θ(tj−g, i− j + g)− θtj−g(i− j + g)
∣∣ and

supg
∑n

i=1 |θ(ti, g)− θti(g)| ≤ K for the second inequality.
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