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Abstract 
 
Detection turning points in unimodel has various applications to time series which have cyclic 
periods. Related techniques are widely explored in the field of statistical surveillance, that is, 
on-line turning point detection procedures. This paper will first present a power controlled 
turning point detection method based on the theory of the likelihood ratio test in statistical 
surveillance. Next we show how outliers will influence the performance of this methodology. 
Due to the sensitivity of the surveillance system to outliers, we finally present a wavelet 
multiresolution (MRA) based outlier elimination approach, which can be combined with the 
on-line turning point detection process and will then alleviate the false alarm problem 
introduced by the outliers.  
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1. Introduction  
Time series which show periodic character are often used to model cyclical behavior in 

various fields such as the expansion and recession of business cycles in economics, the tides 

in oceanography, or the change of the brightness of a star in astronomy. When dealing with 

this type of time series, detection the turning points of each cycle in the on-going process in a 

timely and precise fashion will be advantageous for future strategic decisions. Especially 

when we already have a related leading indicator which shows similar but advanced 

periodical dynamics to the index of interest, prompt and accurate detection of turning points 

in the leading indicator will give valuable signals for the prediction of the series of interest. 

Such as if an alarm is given out as soon as the leading indicator signal shows a structural 

change, we can know in advance that in our series of interest there will appear a similar 

change and we can be more prepared for it. Related research is being explored in the theory of 

statistical surveillance, which aims to give out alarms as soon as the data information 

accumulates evidence to a level sufficient to prove the occurrence of a changing point. Based 

on different ways of defining turning points and measurements of the data, there exist various 

methodologies to build test statistics which will give out alarms when they exceed certain 

threshold values. Most test statistics are built on the theories of the likelihood ratio, posterior 

distributions, or hidden Markov chains. The comparison of different methods is exhaustively 

examined in Andersson et al. (2005). This paper will mainly consider a turning point 

detection methodology utilizing the likelihood ratio method: SRlin method which is derived 

by Shiryaev-Roberts (SR) technique. The test will be constructed in a way which can control 

the power of the alarm system, that is to control its ability of giving out the alarm in time 

when a turning point actually occurs. This test statistic has the advantages of easy application 

and straightforward interpretation, and it is also flexible to the demand of the appliers based 

on their own criteria of power control.  

 

Although the surveillance system performs well under the restrictions of parametric model 

and i.i.d. normal error, the non-stationarities of the time series will always affect the property 

of the alarm test statistic. The consequences of various non-stationarities such as seasonality 

and trend behavior are carefully examined in Andersson et al. (2006). However, the problem 

of outliers has not yet aroused enough attention although it is rational to assume that outliers 

may influence the testing result significantly, as an outlier is quite easy to be misunderstood 

as some kinds of turning point for an on-line testing procedure. The influence of the outlier is 
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proved in our simulation in a form of a much higher rate of false early alarms. Thus it is 

important to find a solution to eliminate this effect in the turning point detection procedure. 

Moreover, an outlier detection methodology in statistical surveillance calls for a higher 

demand of technique than the normal outlier elimination methodology as we need to combine 

the outlier elimination on-line with turning point detection. Therefore we need a technique 

which can detect the outlier on-line as well as give out alarms for the real turning point as 

soon as possible. In this paper we introduce a methodology based on wavelet multi-resolution 

analysis (MRA), which can reach this goal easily and efficiently. This methodology uses the 

wavelet decomposed series, and the Monte Carlo experiment will show how the outlier 

influence is reduced after employing the wavelet method to handle the polluted data. 

  

This paper mainly deals with three topics: the construction of the power controlled test 

statistic in the surveillance system, the influence of the outliers, and a wavelet methodology to 

eliminate the negative effect of the outliers. According to the three topics, the rest of this 

paper will be organized as follows: Section 2 will introduce the underlying model for the 

turning point detection systems, the test statistic and an evaluation criterion. Section 3 will 

illustrate how the outlier will influence the whole detection procedure and Section 4 will show 

how the wavelet approach can eliminate the influence of outliers. The conclusion will be in 

the last section.  

 

2. Turning point detection system based on likelihood ratio method  
2.1 The underlying unimodel and the event to be detected 

The time series X={ ,  t=1,2,...}tX  which the statistical surveillance will monitor is the leading 

indicator of the actual series of interest, such as the unemployment insurance claims, house 

start, or stock prices can be viewed as the leading indicators for the Federal to make strategic 

to decide the next period’s interest rates. When the concerned series and its leading indicator 

have similar periodic dynamics, detection of the turning time of the leading indicator will help 

to predict the turning point of the series of interest.  In the surveillance system, both the series 

of interest and the leading indicator show cyclic behaviors, and each cycle will show the same 

upward trend as well as the downward trend but with distinct turning point times. We suppose 

in each cycle the indicator series has the stochastic dynamics t t tX µ ε= + , where 

2. . .(0, )t n i dε σ  and the underlying process tµ  has a unimodel structure, which means tµ  is 

either convex or concave. Here we assume that the unimodel is convex containing a peak, and 

http://www.businessdictionary.com/definition/unemployment-insurance.html
http://www.businessdictionary.com/definition/claim.html
http://www.investorwords.com/3110/money_supply.html
http://www.investorwords.com/4725/stock.html
http://www.investorwords.com/1892/Fed.html
http://www.investorwords.com/2539/interest_rate.html
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this assumption is quite practical as it is always more important to detect the turning point 

from an expansion to recession and give out a timely alarm so that we can avoid the influence 

brought up by the economic recession as early as possible. Most often it is more difficult for 

the agents to notice a recession when the economy is in an uptrend although the impact of the 

recession will mostly be negative. Then based on the observation tx , at each decision time s , 

we need to tell whether sµ  belongs to the upward trend ( )D s  or the downward trend ( )C s , 

where:  

1

1 1 1

( ) : ...

( ) : ... ...
s

s

D s
C s andτ τ

µ µ

µ µ µ µ− −

≤ ≤

≤ ≤ ≥ ≥
,                                                                                  (I) 

with τ  being the unknown peaking time in the unimodel. Statistical surveillance is an on-line 

detection process in which we need to make repeated decisions each time we have a new 

observation sx . On the other hand, as statistical surveillance deals with the periodic time 

series, the structure of the model in a unit cycle can always be estimated based on the 

observations from last cycles. Thus this paper assumes the unimodel for tµ  is known and a 

linear model is further chosen for simplicity. Then ( )D s  and ( )C s  have the following 

structure: 

{ }
0 1( ) :

( ) : ( )
sD s s

C s C
µ β β

τ

= +

∪
,                                                                                                              (II)  

where 0 1 1( ) : ( 1) ( 1)sC sτ µ β β τ δ τ= + − − − + , { }1,2,..., sτ = ; 0β , 1β  and 1δ  can be estimated 

from the historical data. The rest of the paper will adopt this parametric linear assumption as it 

is straightforward enough to illustrate the above mentioned three topics. We will see in the 

later part of the paper, as the likelihood ratio test is quite robust to the underlying model 

structure, the result from this linear symmetric model can be easily extended to other 

parametric models or even nonparametric cases, and for related research, the reader can be 

referred to Frisén (1994) and Andersson et al. (2006). 

 
2.2 Alarm statistics  

A surveillance system is constructed on two main elements:  test statistic and alarm limit. The 

test statistic in this paper is based on the full likelihood ratio method, and the system will give 

out alarm when the value of the likelihood ratio based test statistic exceeds certain alarm limit. 

At each decision time s , let sΧ  denote the filtration generated by X  till time s , and sxτ  

denote the information generated by X  from time τ  to s . Then the likelihoods for the two 
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events { } { ,  1, 2,..., } {  }iC s i i s Cτ τ= ≤ = ∪ = = = ∪  and { }D sτ= >  correspond to ( )sL C Χ  

and ( )sL D Χ  , and the likelihood ratio based test surveillance system will give out an alarm 

as soon as: 

1 1

( ) ( )( ) ( ) ( )( ) .
( ) ( ) ( ) ( ) ( )

i iC Cs ss s
s s

i alarms D s D
i is s

f x f xL C f C P iLR s w k
L D f D P s f x f x

τ τ

τ τ

µ µ µ µτ
τ µ µ µ µ= =

= =Χ Χ =
= = = = ≥

Χ Χ ≤ = =∑ ∑ ,  

where ( )
( )i

P iw
P s
τ
τ
=

=
≤

 and the alarm time At  is then min[ : ( ) ]A alarmt t LR t k= ≥  where 

( )
1 ( )alarm

k P Dk
k P C

= ⋅
−

  with k  being a positive constant which is chosen to satisfy certain 

evaluation criteria. The expression of alarmk  is actually deduced in a way which lets the 

likelihood ratio based method be equivalent to a posterior probability based method where the 

alarm rule is ( )sP C kΧ >  under the situation ( ) 1 ( )P D P C= − , and the proof is as follows:  

( ) ( ) ( ) ( ) ( ) ( ) 1( )  
( ) ( ) ( ) ( ) ( ) ( )

( ) . ( )                       
( ) (1 ). ( )

s s s
s

s s s

s

s

f C P C f C P C f D P D
P C k k

f C P C f D P D f C P C k

f C k P D
f D k P C

Χ Χ + Χ
Χ > ⇒ > ⇒ <

Χ + Χ Χ

Χ
⇒ >

Χ −

. 

 

It is obvious that in the determinations of both iw  and alarmk  we need to know the distribution 

of the turning point time τ . When no reliable distribution is available, Shiryaev (1963) and 

Roberts (1966) proposed a method which assumes a non-informative prior distribution for τ , 

and let ( )P tτ =  be equal for all t . Therefore, the resulting alarm statistic has equal weights 

and the test statistic is: 
1

( )( ) ( )
( )

( ) ( ) ( )

iCss
s s

s D
is s

f xL C f C
SR s

L D f D f x
τ

τ

µ µ

µ µ=

=Χ Χ
= = =

Χ Χ =∑ . For the linear 

specified model in (II) , the test statistic becomes: 

2
0 1 12

1 2
0 12

1exp ( ( ( 1) ( 1)))
2( )

1exp ( ( ))
2

s

us
u i

s
i

u
u i

x i u i
SRlin s

x u

β β δ
σ

β β
σ

=

=

=

 − − + − − − + 
 =

 − − + 
 

∑
∑

∑
. 

 

We also assume the unimodel is symmetric with 1 1δ β=  and then test statistic turns out to be: 

12
1

1( ) exp 4 ( ( 1 ))
2

s s

u i
i u i

SRlin s x i u wβ
σ= =

   = − − +      
∑ ∑ , 
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where 2
1 0 1(4 ( 1) 4 ) ( 1)

s

i
u i

w i u iβ β β
=

= − + − +∑ . 

 

In an on-line surveillance detection system, an alarm is given as soon as ( )SRlin s  exceeds the 

limit ( )
1 ( )alarm

k P Dk
k P C

= ⋅
−

. Although the choice of alarmk  depends on the distribution of τ , 

when applying the algorithm proposed by Shiryaev (1963) and Roberts (1966), mentioned 

above, alarmk  turns out to be a constant and it can be determined by simulations based on 

certain size-controlled or power-controlled criteria. In the next section, we will propose a 

criterion which can control the power of the test and decide alarmk  by Monte Carlo simulations, 

with the power corresponding to the ability of the system to give out an alarm as soon as the 

turning point appears.  

 
2.3 Alarm limits and related criteria to evaluate the performance of system  

Without knowing the distribution of τ , the alarm limit alarmk  can be determined by fixing a 

certain criterion for evaluating the performance of the alarm statistics. In the statistical 

hypothesis testing framework with null hypothesis 0H  and alternative hypothesis AH , there 

exist two types of evaluation indexes: type I  error with its corresponding probability 

0 0(reject H H  true)Pα =  and the probability of type II error 

0 A(do not reject H H  true)Pβ = . The evaluation procedure can be carried out in two ways: 

the most often used is to fix the size and then to compare 0 Apower 1- (reject H H  true)Pβ= = , 

the other is to set the power and then compare the type I  errors. In a statistical surveillance 

system, 0H  is interpreted as that there is no turning point till the current time and sX  belongs 

to phase D  while AH  asserts that a turning point already occurred and sX  belongs to phase 

C . Therefore in the surveillance system, the size is actually related with false alarms when no 

turning point occurs and power will correspond to the alarm delay after a turning point has 

already appeared. Then alarmk  can be chosen either by fixing the size or by controlling the 

power. As long as alarmk  is determined, the detection system can be evaluated by comparing 

the other type of index which corresponds to power or size.  In Gan (1993) and Andersson 

(2002), alarmk  is chosen from simulation by controlling the median run length (MRL) until a 

false alarm, under the assumption that no turning point actually occurs and it can be expressed 
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as: A AMRL Media t Media tD τ=   =  = ∞    . This way of determining alarmk  is a size-fixed 

method as it assumes no turning point has occurred during the whole surveillance period. In 

the following sections we will investigate the influence of the outlier on false early alarms, 

which is to compare the sizes before and after the outlier occurs, thus we need to choose alarmk  

in a power-fixed method. Here the power is defined as the probability that the alarm will ring 

with only a one step delay after the turning point actually occurs. Suppose the whole series 

has T  observations, this power criterion is: 

0 APower (reject  H H True) (Alarm rings at 1 if ) ( ( 1) )

          ( 1) ( ( 1) ) ... ( -1) ( ( 1) -1)
alarm

alarm alarm

P P s s P LR k

P s P LR s k s P s T P LR s k T

τ τ

τ τ

= = + = = + >

= = ⋅ + > = + + = ⋅ + > =
. 

 

Monte Carlo simulation shows that in the likelihood ratio based approach, as long as the 

underlying parametric model is fixed, alarmk  will be stable regardless of the actual turning 

point time. Thus we only need to set a T  which can give a stable alarmk . Furthermore, alarmk  

does not need to be an exact value but in certain digit level as ( 1)LR s +  is much bigger than 

( )LR s  if sτ = , and this is also the reason that the surveillance system performs well as it is 

quite easy to distinguish  ( 1)LR s +  from ( )LR s  when the turning point actually occurs.  

 
2.4 Simulation result from Monte Carlo experiments 

Monte Carlo experiments are applied to decide alarmk  and later to review the performance of 

the power controlled surveillance system. The parameters for the underlying linear model are 

set as 0 1 1β β= = . To decide alarmk , we set 1σ = , power = 0.8 and T = 30 which is large 

enough for the stability of alarmk . Based on a fixed power and its corresponding alarm limit 

alarmk , we can evaluate the size of this test system, which is the probability that the system will 

give out a false alarm before any turning point occurs, and it can be measured by the average 

length and rate of the false early alarm before the actual turning point. In applications, the 

power can be chosen to be the most suitable to control the system, with the trade off that a 

higher power will end up with a higher size. Here we choose the power to be equal to 0.8 as 

this corresponds to a low size and the system can then avoid a high early false alarm rate. On 

the other hand, we can still investigate the property of the power for the alarm system by way 

of evaluating the actual delay length and rate, as alarmk  is chosen by just fixing the delay at a 

length equal to one. Monte Carlo simulation is applied to assess the power-fixed test system. 
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In the Monte Carlo experiment, we simulate three different series which follow the dynamics 

in the linear model (II) with the actual turning points time turnT  set to be 5, 30, and 50. It is 

also interesting to investigate how the volatility will influence the test system, thus we set 

three variance levels where ~ [0.5,1.5], ~ [1.5,2.5]U Uσ σ  and ~ [2.5,3.5]Uσ . Based on the 

experimental design, and for each case the number of replications is 1000, we get the 

following simulation result:  
Table 2.4.1: Property of the power controlled surveillance system 

     turnT          False early alarm             Alarm delay 

                         length        rate                   length        rate 
~ [0.5,1.5]Uσ  

 5                     1.000        0.001                  1.014       0.780 
 30                   14.000      0.003                  1.421       0.982 
 50                   20.714      0.007                  1.689       0.984 

~ [1.5,2.5]Uσ  
 5                    1.000         0.001                   2.698      0.999 
 30                  15.667       0.006                   2.358      0.991 
 50                  27.800       0.005                   2.292      0.992 

~ [2.5,3.5]Uσ  
 5                   1.000         0.002                   3.681      0.997 
 30                 12.167       0.006                   3.678      0.992 
 50                 21.500       0.010                   3.553      0.989 

 

In Table 2.4.1, the index’s length and rate correspond to the average length and occurrence 

frequency for a false early alarm or an alarm delay in 1000 replications. Thus Table 2.4.1 

shows that under the restrictions of i.i.d. normally error and linear symmetric model, the 

alarm system is alert as well as accurate with a short delay and quite low false alarm 

percentage: lower than 1%. The change of variance does not have much influence on the size 

property while in the power perspective, higher variance will bring about a longer delay, and 

this is due to the higher variance’s confounding the likelihood value and the system may wait 

till ( )LR s i+  is large enough to trigger the alarm.  However, compared to the false alarm 

length, the alarm delay is quite short: lower than 4 for all cases, and for ~ [0.5,1.5]Uσ , the 

system is quite alert with very short delay length: less than 2. This good behavior of the 

surveillance system is due to the strict restrictions that the parametric model is already known 

and the error is i.i.d. normal. Loosening the restrictions will always degrade the performance 

of the alarm system and lots of efforts have been devoted to resolve the problems aroused by 

less restricted data. Among them, Frisén (1994) discussed the consequence of unsuitably 

specified parametric models and introduce a nonparametric method. Andersson et al. (2006) 

had a wide exploration of the influences brought up by autocorrelation errors, seasonal effects, 
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and a long time trend. However, after closer scrutiny of this turning point detection procedure, 

we see that if an outlier that has the same turning direction appears before the actual change 

appears, the system may give out a false early alarm as it will misidentify this outlier as a 

turning trend. For this reason, it is crucial to detect and correct the outlier when carrying out 

the surveillance process. The next sections will discuss the problems brought in by the outliers 

as well as how to improve the test when the data is polluted by outliers.  

 

3. The influence of outlier 
3.1 A brief description of outliers and outlier detection methods 

The property of quick and accurate detection of turning point by the surveillance system in 

Section 2 is built on the assumptions of i.i.d. normal error and the parametric regressions 

among variables. In practical applications the data is easily subjected to malfunctions of the 

data collection mechanism, calculation errors or unexpected and extreme events. One of the 

resulting consequences is the appearance of outliers, which are defined in Barnett and Lewis 

(1994) as observations with abnormal deviations from the mean of the remainder of the data 

set. Outliers are generally divided into two types: additive outlier (AO) and innovative outlier 

(IO). The first one affects the level of the current observations and always takes the form of 

an isolated value or data spike at the time when the disturbance occurs; the second one is 

some kind of inherent contamination which influences future observations through the same 

dynamics as the core process. As an IO is propagated by the autocorrelation of the series, we 

do not consider it here since the data are assumed to be uncorrelated. The data structure with 

additive level outliers (AO) which we will further investigate is then defined 

as ( ) ( ) ( ) ( ) ( ) ( )y t t I t t x t tµ ω ε ε= + ⋅ + = + , where ω  is the magnitude of the disturbance and 

( )I t  is an index function which is 1 at the outlier appearance time and 0 otherwise.  

 
3.2 The influence of outlier on turning point detection process 

The inconsistency of the outlier with the rest of the data set will always confound the data 

analysis from the model identification to the parameter estimation, statistical inference and 

even further: to the forecasting. In the procedure of turning point detection, the outlier will 

confuse the data in a way that it may be misidentified as a turning point. In an on-line peak 

detection procedure, if a down biased outlier appears, the detection mechanism may 

misidentify it as a downwards turning point and give out an early false alarm although the 

main trend of the series is still upwards. This early detection problem caused by the outliers 

can be demonstrated by simulation when we add an additive outlier to the unimodel. The 
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following simulations add one outlier at a random time before the turning point occurs with 3 

levels of magnitudes of the outliers. Based on the significance of the deviation from the 

underlying model, ω  is set to be ω = 1.5 , 3σ σ− − , and 5σ− . The influence of the outlier will 

be illustrated clearly by using one turning point case with turnT =30 and ~ [0.5,1.5]Uσ . The 

total length for the whole series is set to be 60 and Figure 1 shows how the series will look 

when it is polluted by different magnitudes of the outliers. One outlier is added at to each of 

three cases where the outliner occurrence times are randomly setting as 14, 11, and 24: 

0 10 20 30 40 50 60
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0 10 20 30 40 50 60

-5
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25
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                                                                            Figure 3.2.1: Outlier polluted unimodel  
 

Figure 3.2.1 shows that for ω = 5σ− , the outlier is easily detected visually. However, in on-

line turning point detection, this outlier will most likely to be misidentified as the turning 

point. When ω = 1.5σ− and 3σ− , it is not easy to detect the outlier from the figure but it does 

not mean that this will not influence the turning point detection. With the data sets which 

include one outlier at random time in each series, we examine the system again by 1000 

Monte Carlo replications and get a new table as follows: 
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Table 3.2.1: Property of the power-controlled surveillance system under outlier influence 

    ω            False early alarm             Alarm delay 

                     length        rate                   length        rate 
~ [0.5,1.5]Uσ  

1.5σ−              15.181      0.011                 1.352       0.952 
3σ−                 14.384      0.250                 1.002       0.362 
5σ−                 14.739      0.813                 1.242       0.157 
~ [1.5,2.5]Uσ  

1.5σ−             14.285       0.007                 2.220       0.992 
3σ−                14.613       0.176                 1.862       0.801 
5σ−                14.753       0.657                 2.745       0.303 
~ [2.5,3.5]Uσ  

1.5σ−             14.281        0.016                 2.992      0.963 
3σ−                13.116        0.103                 3.454      0.886 
5σ−                13.959        0.596                 3.450      0.380 

 

Table 3.2.1 shows that for when ω = 1.5σ− , the system is almost not influenced with a still 

very low false alarm rate. When ω = 3σ− , the problem of the outliers begin to appear with an 

obviously higher false alarm rate and when ω = 5σ− , the alarm rate rises significantly to even 

around 80% when ~ [0.5,1.5]Uσ . Thus for outliers of small magnitude, the system is still 

robust but with larger magnitude outliers the system will be influenced significantly. Table 

3.2.1 also shows that for ω = 3σ−  and  ω = 5σ− , the larger σ  is, the less will the system be 

influenced by the outlier, such as when ω = 5σ− , the false alarm rate will be lower when 

~ [2.5,3.5]Uσ  than the false alarm rate when ~ [1.5,2.5]Uσ .  However, this is not due to the 

system’s being more robust to the outliers with higher σ  level, it is just because of the same 

reason where higher σ  lead to longer delay, that is larger σ  will confound the likelihood 

value and the alarm is not that easy to be triggered compared to data with lower σ .  

 

Generally speaking, the system needs to be modified after outlier pollution when ω = 3σ−  or 

even higher. As the down biased outlier will cause an early false alarm for the peak detection 

in the convex shaped unimodel, the same misidentification can happen when an up biased 

outlier appears for the bottom detection procedure in a concave unimodel, with the outlier 

being misidentified as an upper trend turning point. Therefore, when carrying out online 

turning point detection, it is important to correct the outlier in order to eliminate its negative 

influence. In many empirical applications, the outlier effect can be eliminated by setting a 

threshold bound, or by some nonparametric method including smoothing or kernel regression. 

However, detection outlier in an on-line surveillance procedure requires a more tricky 

methodology as it needs to combine the outlier detection procedure on-line with turning point 
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detection and correct it as soon as it appears. Some traditional outlier detection approaches 

which need the whole series of data or nearby observations such as kernel regression are not 

suitable. This paper will introduce a wavelet based method which can achieve the required 

detection and correcting demands in the surveillance system as it can handle the data on-line. 

The main advantage of this wavelet approach is that it can analyze data in both the time 

domain and the frequency domain and thus possesses good localization identifications in both 

time and scale. Therefore, for a series which shows non-stable or non-stationary aspects such 

as structure break, discontinuities or data spike, wavelet methodology will be an elegant 

algorithm to be adopted.  

 

4. Wavelet based outlier correction methodology  
4.1 A brief introduction to wavelets and wavelet multiresolution 

The traditional way of analyzing a signal in the frequency domain is the well known Fourier 

analysis which applies sinusoidal waves as the transformation filter.  The main drawback of 

this transformation is that it can not maintain the information of the time domain and will be 

unsuitable for signals with irregular behavior such as spikes or data breaks. The wavelet 

transformation adopts a basis of spatially localized functions as its transform filter. Then 

based on wavelet filtering of the original signal through shifting and dilations, the wavelet 

transformation can capture the characteristics of data series both in the frequency domain and 

the time domain. It is an excellent tool for the analysis of the non-stationary data showing 

time-localized discontinuities or abrupt changes. By wavelet multiresolution analysis (MRA) 

which combines resolutions from both time and frequency domains, the signal can be 

decomposed into different scales where the non-stationarity of the signal can be analyzed 

according to their own resolution levels: long run trends correspond to the low frequency 

resolution and the spikes such as the outliers can be captured in the high frequency resolution. 

A brief introduction of the wavelet methodology is as follows: 

 

Corresponding to sinusoidal waves in the Fourier transform, the wavelet basis functions 

{ }, : ,k j k jψ ∈  used in the wavelet transform are generated by translations and dilations of a 

basic mother wavelet 2 ( )Lψ ∈   and can be expressed as ,
1( ) ( )k j

t kt
jj

ψ ψ −
= . For a 

continuous signal ( )f t , its wavelet transform is  *
, ,( , ) , ( ) ( )k j k jk j f f t t dtγ ψ ψ= 〈 〉 = ∫  and the 
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inverse wavelet transform is ,( ) ( , ) ( )k jf t k j t dkdjγ ψ= ∫∫ . Time and frequency resolutions can 

be achieved using different choices of k  and j . In the time domain, translation of k  

corresponds to different time points; in the frequency domain, compressed versions of  

, ( )k j tψ  with lower j  maintain the high frequency information of the original signal, while 

dilated versions with larger j  capture the lower frequencies in the signal.   

 

For discrete time series, the original Discrete Wavelet Transform (DTW) can be achieved by 

certain orthonormal transformation. We here introduce the maximal overlap discrete wavelet 

transform (MODWT) which is not orthonormal but has no restriction on the sample size, 

while the original DWT needed the sample length be a multiple of a power of two. For an N  

dimensional discrete vector { , 0,..., 1}tX t NΧ = = − , the level J  MODWT of Χ  contains 

1J + vectors 1,..., ,J JW W V  with wavelet coefficients jW  corresponding to changes of scale 

12 j
jτ

−= , while the wavelet scaling coefficients JV  corresponds to averages on a scale of 

2 j
Jλ = . The N  dimensional vectors jW  and JV  are computed by ,j j J Jw v= Χ = ΧW V  

where jw and Jv  are N N× matrices. Then the MODWT based MRA of Χ  is defined as: 

1 1

J J
T T
j j J J j J

j j
D Sw v

= =

Χ = + = +∑ ∑W V , where jD  is the thj  level MODWT detail containing the 

microscopic detail of Χ  which is the high frequency information of the original signal and 

JS  is the thJ level MODWT smooth containing landscape characteristics of Χ  which is the 

low frequency resolution of the signal. Basically, the MODWT and multiresolution can be 

viewed as a band-pass filter process on Χ , and based on different transformation matrices 

jw  and Jv , we have different choices of filters. For more information about the wavelet 

methodology and MODWT, we refer to Vidakovic (1999), Percival and Walden (2000), and 

Gençay et al. (2001). An important issue now is how to choose the wavelet filter. A central 

factor in choosing a particular wavelet is to match the characteristics of the series under 

consideration. The number L in the name of the wavelet indicates the width of the filter. In 

general, the wavelets with small L are narrower and less smooth, while wavelets with large L 

are relatively wide and smooth. This paper chooses the Haar wavelet with L = 2 as it does not 

suffer from the problem of boundary coefficients and is most suitable for our on-line outlier 

detection system. 
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4.2  Wavelet based method to correct for outliers in an on-line surveillance system  

In Section 4.1 we mentioned that through the wavelet decomposition, the wavelet detail will 

maintain the high frequency information and the wavelet smooth keeps the low frequency 

trend. As outliers belong to the microscopic detail of the signal, it is reasonable to analyze it 

in the wavelet detail, which is most sensitive to the local behavior of the signal.  There already 

exist literatures on the wavelet outlier detection: such as Canan and Huzurbazar (2002) and 

Aurea et al. (2009). The main idea of these papers is to set a threshold for the wavelet detail 

coefficient of the original observations (see Canan and Huzurbazar, 2002) or the residuals 

from the specified model (see Aurea et al., 2009). The outlier can be detected when the detail 

coefficients surpass the threshold and later be corrected after an inverse wavelet 

transformation.  In our system of surveillance analysis, we need to specify the underlying 

model of the upward trend ( )D s  and that of the downward trend ( )C s , thus the residual 

based method is not suitable as we have no idea which pre-model is specified first. Instead we 

take the wavelet detail jD  directly from the original data to check if it is outside a certain 

threshold level. The first level wavelet detail is taken as it captures the finest information of 

the signal and will be most sensitive to the outliers. Thus we set J =1 in the wavelet transform 

which results in decomposition 1 1D SΧ = + . More straightforwardly, for an outlier polluted 

series, the following figure shows how the wavelet detail can be used to detect the outlier:  

 
Figure 4.2.1: Wavelet decomposition of outlier polluted series  
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Figure 4.2.1 shows that for this series with outlier appearing at time 25, according to the 

wavelet decomposition, wavelet detail 1D  is quite sensitive to the outliers with a significant 

deviation at the outlier occurrence time, which makes it efficient to detecting outliers. For the 

wavelet smooth 1S , it can still remain the original unimodel structure and the outlier time is 

not obvious.  

 

It is also important to choose the threshold level since a large threshold will destroy the 

information of the original data while a small one may lack the ability to detect outliers.  

Canan and Huzurbazar (2002) chose the universal threshold suggested by Donoho et al. (1994) 

with the threshold value set to 22 log( )Nλ σ=  where N  is the length of the decomposed 

vector and σ  is estimated by the median absolute deviations (MAD) of the wavelet detail. 

This threshold can not be used here as we do not know the whole observation number N  in 

the detection procedure.  Instead we follow the procedure in Aurea et al. (2009) and set the 

threshold value θ  directly to the lower 2.5% percentile value of the wavelet detail from 

standard normally distributed data. The wavelet detail from the original series which is under 

this value is set to 0 while the others remain the same and result in a new series of wavelet 

detail '
1D . Next we reconstruct a series ' '

1 1X D S= +  and apply it for the turning point 

detection. Suppose that at time t  the alarm is not triggered and we already determined the 

threshold θ . Then the whole procedure can be carried out in the following steps: 

 

Step 1: Based on all the available observations 1 1 ... tx x + , we use the wavelet decomposition to 

decompose the series into wavelet detail 1D  and wavelet smooth 1S . 

Step 2: Record the time when 1D  lower than θ , set the corresponding 1D  to 0 and this results 

in a new wavelet detail '
1D . 

Step 3: Set ' '
1 1X D S= +  and then put 'X into the detection system. 

 

The new series 'X  maintains the original structure of the observations X  but with the 

suspicious outlier point corrected, and we can also know when the outlier appears from the 

information given in 1D . For the outlier polluted series in Figure 1, we apply the procedure 

based on the above 3 steps. As when ω = 1.5σ− , the system is almost not influenced by the 
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outliers, we only carry out the correlation procedure for ω = 3σ−  and ω = 5σ− , and then get 

the outlier corrected series in Figure 4.2.2: 
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Figure 4.2.2: Wavelet threshold corrected unimodel 

 

Figure 4.2.2 shows that for ω = 5σ− , the outlier shrinks to an extent which can almost be 

ignored and for ω = 3σ− , the outlier disappears totally. Moreover, the following simulation 

will show that for ω = 3σ−  and 5σ− , by using 'X instead of X  , the performance of the 

turning point detection procedure in the surveillance system will be improved with a much 

lower false early alarm rate. In the new Monte Carlo experiment, the DGP is the same outlier 

polluted data as those from Section 3. Then we apply the wavelet outlier correction 

methodology at the same time with the turning point detection process. Still after 1000 

replications, we get the following table: 
                               Table 4.2.1: Property of the surveillance system after filtering the outliers 

         ω            False early alarm             Alarm delay 

                            length        rate                 length        rate 
~ [0.5,1.5]Uσ        

     3σ−                   14.544      0.079                1.875       0.898 
     5σ−                   13.759      0.216                1.456       0.738 

~ [1.5,2.5]Uσ  
     3σ−                   16.589       0.073               2.825       0.915 
    5σ−                   14.099       0.181               2.597       0.803 

~ [2.5,3.5]Uσ  
     3σ−                  13.833        0.072               3.352       0.911 
     5σ−                  14.691        0.178               3.388       0.804 

           

Compared with Table 3.2.1, the false alarm rates in Table 4.2.1 are subdued to a large extent 

both when ω = 3σ−  and 5σ− , especially when ~ [0.5,1.5]Uσ  and ~ [1.5,2.5]Uσ  where the 

system is influenced seriously by the outliers, the reduction of the false alarm rate is quite 
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obvious. We even do more simulations for ω = 7σ−  where the false alarm rate for the 

uncorrected data approaches 100%, while after the wavelet correlation it falls to around 40%. 

Although for ω  lager than 5σ− ,  the false alarm rates are still not very low even after the 

wavelet filtering, but in those cases the outliers are easily noticed visually when more 

observations are added. Thus by combining the wavelet detection and visual impression 

together, the outlier problem can be reduced significantly in the surveillance process. Table 

4.2.1 also shows that the corresponding alarm delay rates are higher by using 'X  instead of 

applying original data X . As the delay lengths are quite moderate, this higher delay rate 

problem is not serious compared with the problems brought up by false alarm with its length 

being easily larger than 10. 

 

 

5. Conclusion  
This paper concentrates on three issues: first a power controlled on-line turning point 

detection system is proposed in Section 2 and we show this methodology performs well with 

the ability to give out timely alarms after only short delays. Section 3 points out that the 

decent behavior of this method is degraded by an outlier, which brings about a high false early 

alarm rate. To solve this problem, we next apply a wavelet multiresolution (MRA) based on-

line outlier elimination method in Section 4, both the visual figures and the simulation results 

show that this methodology can reduce the influence of the outlier considerably. Generally 

speaking, the wavelet based approach has the advantage of being able to detect and correct the 

outlier on-line with turning point monitoring as the data process continues. Moreover, 

although the whole analysis in this paper is based on a linear parametric model, the same 

technologies can be extended to another unimodel quite easily. We only need to change the 

likelihood function in Section 2, and all the methodologies are fairly robust to the underlying 

unimodel structure.  
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