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Abstract
In this work we consider forecasting macroeconomic variables dur-

ing an economic crisis. The focus is on a specific class of models, the
so-called single hidden-layer feedforward autoregressive neural net-
work models. What makes these models interesting in the present
context is that they form a class of universal approximators and may
be expected to work well during exceptional periods such as major
economic crises. These models are often diffi cult to estimate, and we
follow the idea of White (2006) to transform the specification and non-
linear estimation problem into a linear model selection and estimation
problem. To this end we employ three automatic modelling devices.
One of them is White’s QuickNet, but we also consider Autometrics,
well known to time series econometricians, and the Marginal Bridge
Estimator, better known to statisticians and microeconometricians.
The performance of these three model selectors is compared by look-
ing at the accuracy of the forecasts of the estimated neural network
models. We apply the neural network model and the three modelling
techniques to monthly industrial production and unemployment se-
ries of the G7 countries and the four Scandinavian ones, and focus on
forecasting during the economic crisis 2007—2009. Forecast accuracy is
measured by the root mean square forecast error. Hypothesis testing
is also used to compare the performance of the different techniques
with each other.

Keywords: Autometrics, economic forecasting, Marginal Bridge
estimator, neural network, nonlinear time series model, Wilcoxon’s
signed-rank test
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1 Introduction

Economic crises provide a useful testing ground for time series models for
forecasting. It is generally not possible to forecast a crisis well in advance,
unless there is information about past crises of the same type in the data,
which is usually not the case. Nevertheless, it is useful to investigate how well
models based on quantitative time series forecast during a crisis and in its
aftermath. This puts models to a severe test, because in quantitative terms
an economic crisis involves a strong decrease (in production) or increase (in
unemployment), while a reverse occurs in the aftermath. Models that quickly
adapt to these changing conditions would then have an advantage over less
flexible parameterisations.
In this paper the attention is restricted to a well-defined class of flexible

models, the so-called single hidden-layer feedforward neural network mod-
els. Neural networks or multilayer perceptrons are universal approximators
that can arbitrarily accurately approximate any function satisfying rather
mild regularity conditions. In a recent study, Ahmed, Atiya, El Gayar and
El-Shishiny (2010) compared the forecasting ability of several ’machine learn-
ing’tools, including various neural network models. They applied them to
forecasting 1045 time series included in the M3 forecasting competition, see
Makridakis and Hibon (2000). The series were monthly and contained at
least 80 observations. It turned out that the neural network model of the
type we shall consider in this paper was the overall winner of the comparison.
Our aim is to study how well this model forecasts during the recent economic
crisis and compare its performance with that of a linear autoregressive model,
a nonparametric model, and a simple ’no change’forecast.
A problem with these multilayer perceptrons is how to specify their struc-

ture and estimate the parameters. Recently, White (2006) presented a solu-
tion that amounted to converting the specification and nonlinear estimation
problem into a linear model selection problem. This leads to a somewhat
atypical situation, at least in time series econometrics, in which the number
of variables may vastly exceed the number of observations. The second aim
of this paper is to compare three methods for model selection capable of
handling this situation. One is White’s QuickNet that Ahmed et al. (2010)
mentioned as a possible extension to their study. The other two are the
Marginal Bridge Estimator, see Huang, Horowitz and Ma (2008), and Au-
tometrics by Doornik (2009). White (2006) proposed comparing QuickNet
with other approaches, and we take up his suggestion.
In this study we shall consider multiperiod forecasts. There are two main

ways of generating them. One is to specify and estimate a single model
and generate the forecasts recursively from this model. It is also possible to
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build a separate model for each forecast horizon and use it for obtaining the
forecasts. For discussion, see for example Teräsvirta, Tjøstheim and Granger
(2010, Chapter 14). Marcellino, Stock and Watson (2006) compared these
two methods in a linear framework. The third aim of this paper is to do
the same when the set of models mainly consists of neural network and
nonparametric models but also contains linear autoregressive ones.
Nonlinear models, such as the neural network model, sometimes generate

unrealistic or ’insane’forecasts, see Swanson and White (1995, 1997a,b) for
discussion. This problem can at least partly be remedied by adjusting such
forecasts towards more realistic values. Our fourth aim is to consider this
possibility that will be called filtering and see whether it can be useful in our
forecasting situation.
It is possible to test linearity of the time series before any model selection

and thus preclude nonlinear models when they seem superfluous. In theory
this is not necessary if linear lags of the model to be forecast are included
in the set of variables to select from in building the neural network model.
We shall see whether or not such pre-screening improves the accuracy of the
forecasts.
These problems have already been considered in Kock and Teräsvirta

(2011b). The novelty of this companion paper is its focus on the recent eco-
nomic crisis and its aftermath. We shall consider forecasting two monthly
macroeconomic variables that have been strongly affected by the crisis: in-
dustrial production and unemployment rate.
The plan of the paper is as follows. The neural network model is presented

in Section 2 and the modelling techniques in Section 3. The two forecasting
methods, recursive and direct, are briefly discussed in Section 4. The time
series from 11 different countries are presented in Section 5. Section 6 is
devoted to empirical results. Final remarks can be found in Section 7.

2 The model

The focus of this paper will be on forecasting with a flexible model during
the recent economic crisis when the macroeconomic series to be forecast show
exceptionally large fluctuations. The idea is to find out how well our flexible
functional form performs in this situation. The techniques for specifying the
structure of the model and estimating the parameters are the same as in
Kock and Teräsvirta (2011b). The difference is that this paper concentrates
on the crisis and recovery years 2007—2009.
Following Kock and Teräsvirta (2011b), our model is the so-called single-

hidden-layer feedforward autoregressive neural network (ANN) model or single-
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hidden-layer perceptron

yt = β′0zt +

q∑
j=1

βj(1 + exp{γ ′jzt})−1 + εt (1)

where zt = (1, yt−1, ..., yt−p)
′, γ = (γj1, γj2, ..., γjp)

′, j = 1, ..., p, β0 =
(β00, β01, ..., β0p)

′,and εt ∼ iidN (0, σ2). As is well known, the ANN model
is a so-called universal approximator. Suppose there is a functional relation-
ship between y and z: y = H(z). Then for all δ > 0 there exists a positive
integer q < ∞ such that |H(z) −

∑q
j=1 βj(1 + exp{γ ′jz})−1| < δ where | · |

is an appropriate norm. As explained in Kock and Teräsvirta (2011b), (1) is
a flexible functional form which can be used for approximating various un-
known nonlinear processes. Note that (1) is not the only available universal
approximator. Nevertheless, it is a popular one, and one for which White
(2006) constructed a useful specification strategy. Such a strategy is needed,
because the number of the logistic functions or hidden units q is unknown
a priori and has to be specified. Furthermore, the parameters of (1) have
to be estimated, which is a nonlinear estimation problem. In this work we
follow Kock and Teräsvirta (2011b) and linearise the nonlinear specification
and estimation problem, which is what White (2006) originally suggested.
Assuming the parameter vectors γj, j = 1, ..., q, known in (1) makes the
model linear. The linear model selection problem is the one of choosing a
subset of variables from the set

S = {yt−i, i = 1, ..., p; (1 + exp{γ ′jzt})−1, j = 1, ...,M} (2)

whereM is large. It is clear that the quality of the estimates depends on the
size of S. For this reason, in a typical macroeconomic application the number
of elements in S is likely to exceed the number of observations. This requires
model selection techniques with which one can handle such a situation.

3 Modelling with three automatic model se-
lection algorithms

In this section, analogously to Kock and Teräsvirta (2011b), we consider
three model selection algorithms that apply to our modelling problem, in
which the number of variables exceeds the number of observations. They
are Autometrics, which is a development of PcGets, see Krolzig and Hendry
(2001), Hendry and Krolzig (2005) and Doornik (2009), Marginal Bridge
Estimator (MBE, Huang, Horowitz and Ma, 2008), and QuickNet (White,
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2006). Autometrics has been built on the principle of proceeding from general
to specific, which means beginning with a large model and gradually reducing
its size. QuickNet may be characterised as a specific-to-general-to-specific
procedure, although we shall also report results on a simplified specific-to-
general version. The starting-point of the MBE also involves all variables,
but the process of selecting the final model is very different from Autometrics.
We shall now describe these three techniques in more detail, beginning with
Autometrics.

3.1 Autometrics

The algorithm is described in detail in Doornik (2009). Modelling begins
with a linear model called the General Unrestricted Model (GUM). When the
number of variables is less than the number of observations, GUM contains
all candidate variables. The model is subjected to significance tests. If all
variables have statistically significant coeffi cient estimates, the GUM is the
final model. Otherwise, because there is no unique way of going from general
to specific, the algorithm searches simpler models using different search paths.
This is done by removing variables with insignificant coeffi cients, which can
be done in various ways. When the model cannot be reduced any more, it
is subjected to diagnostic tests. If it passes the tests, it is called a terminal
model. In the opposite case, Autometrics backtracks by adding variables
until it finds a model that passes these tests. Since there are many search
paths, there will in general be several terminal models as well.
After reaching this stage, Autometrics forms the union of the terminal

models and tests the terminal models against it. The union of the models that
pass the test form a new GUM, and the general-to-specific testing procedure
is repeated and a new set of terminal models is obtained. If all these are
rejected against the new union model, the union will be the final model.
Otherwise, modelling restarts with yet another GUM and continues until a
final model has been reached.
In our case, the number of variables exceeds the number of observations.

Like Hendry and Krolzig (2005) we divide the variables into subsets, each of
which contains fewer variables than observations. This implies that at the
outset there exists more than one GUM. Each of these GUMs now forms
a starting-point for Autometrics and the algorithm yields a set of terminal
models for each GUM. The terminal models derived from all subsets of vari-
ables or all GUMs are merged to form a single union model. If the number
of variables in this model is less than the number of observations, which hap-
pens in our application, model selection proceeds from this union model as
described above.
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Autometrics is partly a black box. The user can, however, affect the
outcomes by selecting a number of settings, such as the significance level of
the tests the algorithm relies on. These will be briefly discussed in Section 4.

3.2 Marginal Bridge estimator

The MBE is designed for situations often occurring in microeconomic appli-
cations in which there is a large number of candidate variables, only a handful
of which may be relevant. These variables are sorted out using the MBE.
Following Huang et al. (2008), consider first the Bridge estimator (BE). This
is a shrinkage estimator for a linear regression model

yi = β0 + β′xi + εt (3)

where xi = (xi1, ..., xipn)′ is an pn × 1 observation vector, i = 1, ..., n, and
pn < n, and β0 = 0 without loss of generality. Furthermore, εi ∼ iid(0, σ2).
The BE estimator is the solution to the following minimisation problem:

QBn(β) =
n∑
i=1

(yi − β′xi)2 + λn

pn∑
j=1

|βj|γ (4)

where pn < n. Let the true parameter vector β0= (β′10,β
′
20)
′ with β20 = 0,

and let β̂n= (β̂
′
1n, β̂

′
2n)′ be the corresponding estimator from (4). Under reg-

ularity conditions and 0 < γ < 1, (a) the estimator β̂2n = 0 with probability
converging to one, and (b), β10 is estimated consistently. Furthermore, the
asymptotic distribution of β̂1n is the same as if only these had been included
in the model.
When pn > n, BE is not applicable and has to be replaced by the Marginal

Bridge Estimator (MBE). The idea is to run a series of ’mini’or ’marginal’
regressions, with a joint penalty. The function to be minimised equals

QMBn (β) =

pn∑
j=1

n∑
i=1

(yi − βjxij)2 + λn

pn∑
j=1

|βj|γ (5)

where 0 < γ < 1, and λn determines the size of the penalty. Let β̃n= (β̃
′
1n, β̃

′
2n)′

now be the estimator of β0 from (5). Under regularity conditions and
0 < γ < 1, (a) holds for β̃2n, and (b) Pr{β̃1nk 6= 0, β̃1nk ∈ β̃1n} → 1, as
n→∞. Thus, (a) and (b) jointly can be expected to effi ciently separate the
variables with nonzero coeffi cients from the rest.
There is yet another assumption for (a) and (b) to hold. The variables

with nonzero coeffi cients and the ones with zero coeffi cients have to be either
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uncorrelated or only weakly correlated. This is called partial orthogonality.
That assumption is clearly not satisfied in our case. Nevertheless, our aim is
to see how well the MBE works in our time series example when the partial
orthogonality assumption is violated.

3.3 QuickNet

QuickNet resembles an earlier modelling device called RETINA, see Perez-
Amaral, Gallo andWhite (2003). The idea of RETINA is to find the explana-
tory variables in a set that in absolute terms are most strongly correlated
with yt. The most correlated variable is selected first, and the following ones
one by one thereafter. QuickNet differs from RETINA in that the set of
candidate variables is different, and the model selection criterion used for
final selection is also different. QuickNet works as follows. First, the set
of candidate variables S, see (2), is constructed. The variables have to be
such that they show suffi cient variation in the sample and are not perfectly
linearly correlated; see White (2006) and Kock and Teräsvirta (2011b) for
details. This set of candidate variables is also used when Autometrics and
MBE are applied. Once this has been done, a predetermined number of vari-
ables, q, are added to the model from the set S, according to the rule that
selects the variable with the strongest absolute correlation with the residu-
als of the previously estimated model. Then a model selection criterion is
applied to choose a subset of the q variables. Following White (2006) and
Kock and Teräsvirta (2011b), we applied the 10-fold cross-validation crite-
rion of Hastie, Tibshirani and Friedman (2009). We also experimented with
the hv-cross validation criterion of Racine (2000), but it did not improve the
forecasting performance of the resulting models.
We also considered a purely specific-to-general version of QuickNet. The

variables are selected one at a time as before, but every choice is preceded
by a linearity test. Parsimony is appreciated, so the significance level of the
tests in the sequence decreases as the number of variables the model increases.
The test is the ’economy version’of the test in Luukkonen, Saikkonen and
Teräsvirta (1988). Adding variables is terminated at the first non-rejection
of the linearity hypothesis, so this is a pure specific-to-general strategy. We
apply this method such that the significance level of the first test in the
sequence equals 0.2. Beginning with this value, the significance level is then
halved at each step. In reporting results in Section 6, this method is called
QN-SG.
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4 Forecasting

4.1 How to forecast?

4.1.1 Two ways of generating multiperiod forecasts

Our model-based forecasts are estimates of conditional means from a model
or models. Computing a one-period-ahead forecast is no problem. There
are two main ways of forecasting more than one period ahead. One can
generate the forecasts recursively, or one may apply direct forecasting. In
the former case, one and the same model is used for all forecast horizons.
Direct forecasting implies that a separate model is built for each of them.
Next we briefly describe these two methods. Empirical results obtained from
them are discussed in Section 6.

4.1.2 Recursive forecasts

In order to illuminate recursive forecasting, consider the model (1) with p =
q = 1. These restrictions are for notational simplicity only. The one-period-
ahead forecast made at time T and assuming the information set FT−1 =
{yT−j, j ≥ 1} equals

yT+1|T = β00 + β01yT + β1(1 + exp{γ0 + γ1yT})−1.

The corresponding conditional mean yT+2|T , that is, the two-period forecast,
becomes

yT+2|T = E{β00 + β01(yT+1|T + εT+1)

+β1(1 + exp{γ0 + γ1(yT+1|T + εT+1)})−1 + εT+2|FT}
= β00 + β01yT+1|T + β1E{(1 + exp{γ0 + γ1(yT+1|T + εT+1)})−1|FT}
= β00 + β01yT+1|T

+β1

∫ ∞
−∞

(1 + exp{γ0 + γ1(yT+1|T + z)})−1φ(z)dz (6)

where φ(z) is the density of the N (0, σ2) random variable. The integral in
(6) has to be computed by numerical integration. Note that the integral
becomes a multiple integral when the forecasting horizon h exceeds two. It is
therefore advisable to calculate its value by simulation or by bootstrapping
the residuals of the model, because that is computationally feasible even
when h > 2. The reason we mention this is that some authors bypass this
complication altogether by setting εT+1 = 0 in the logistic function. As a
result, their forecasts are biased estimates of the conditional mean.
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In this work we apply the bootstrap. It has the advantage over simulation
that unconditional heteroskedasticity of unknown form is allowed in the error
process. More discussion about recursive nonlinear forecasting can be found
in Teräsvirta (2006), Kock and Teräsvirta (2011a) or Teräsvirta, Tjøstheim
and Granger (2010, Chapter 14), among others.

4.1.3 Direct forecasts

In direct forecasting, the conditional mean estimate arises from a different
model for each time horizon. Given the information set Ft, the forecast for
T + h made at T equals

yDT+h|T = gh(yT , yT−1, ..., yT−p+1)

where gh is a function of yT and its lags. In our case, model selection is made
using the three aforementioned techniques, but there is a ’gap’in the model
in that yT+h−1, ..., yT+1 do not enter the equation. The advantage of the
direct method lies in its computational simplicity: no recursions are needed.
But then, a separate model has to be specified for each forecast horizon,
which does require some computational effort. This is the case in particular
when Autometrics is used to find an appropriate model.

4.1.4 Forecasts and forecast errors

The models for industrial production are built on first differences of the log-
arithm of the index of monthly industrial production. Unemployment rates
are differenced before modelling. This implies that the forecasts are those of
one-month differences ∆yT+j = yT+j − yT+j−1. In forecasting industrial pro-
duction recursively h ≥ 2 periods ahead, the forecast of interest for decision-
makers is most often not ∆yT+h|T but either ∆hyT+h|T =

∑h
j=1 ∆yT+j|T , or

yT+h|T =
∑h

j=1 ∆yT+j|T + yT . The corresponding h-periods-ahead forecast
error is in both cases

eT+h|T = yT+h − yT+h|T .
In direct h-periods-ahead forecasting, the variable to be modelled is∆hyt =

yt− yt−h. The p lags of yt are thus h-period differences, which has to be kept
in mind when direct and recursive forecasts are compared with each other.
The estimated model yields direct estimates of ∆hyT+h|T = E{yT+h−yT |FT}.
The direct forecast of yT+h then equals

yT+h|T = ∆hyT+h|T + yT .
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The main measure of performance in this work is the root mean square
forecast error (RMSFE). It is calculated for each time series from out-of-
sample forecasts for the forecasting period beginning at T0 and ending at
T − hmax, where T is the last available observation and hmax the longest
forecasting horizon. Thus,

RMSFEh = {(T − hmax − T0 + 1)−1
T−hmax∑
t=T0

e2t+h|t}1/2.

The time series are monthly and the forecast horizons are h = 1, 3, 6, 12. We
shall also compare our forecasting techniques by ranking them using squared
forecast errors as the criterion.

4.2 Filters, windows and settings

Nonlinear models may sometimes generate forecasts that are deemed unre-
alistic in the light of the hitherto observed values of the time series. This
has prompted forecasters to introduce precautions in order to avoid excessive
forecast errors. The idea is to replace an unrealistic forecast with a more con-
ventional and believable one. It has been applied, among others, by Swanson
and White (1995a,b, 1997) who call the procedure the insanity filter, Stock
and Watson (1999) and Teräsvirta, van Dijk and Medeiros (2005). We shall
make use of two insanity filters. The first one works as follows: If the h-
step ahead predicted change exceeds the maximum h-step change observed
during the estimation period, use the last observed change. Swanson and
White (1995) described this as ’replacing craziness by ignorance’. In our
second filter, the extreme predicted change is replaced by a forecast from our
benchmark linear autoregressive model: craziness is replaced by linearity.
Many forecasters assume that the parameters of their model do not re-

main constant over time and use a data window to take this implicitly into
account. Since our forecasting exercise comprises a very extreme time pe-
riod, we introduce flexibility or ’learning’into our framework by applying a
rolling 12-year window when estimating our monthly neural network models.
Rolling windows are quite popular among practitioners, but they have the
potential drawback that the value of the observations in the series abruptly
drops from a positive value equal for all observations to zero after 12 years.
A more logical, albeit rarely applied, alternative would be to let the value
of the past information in the series gradually decay towards zero. This
can be achieved by weighted regression, see for example Törnqvist (1957) or
Gilchrist (1967), but is not attempted here.
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As already mentioned, Autometrics allows the user to choose settings that
define different modelling strategies. We selected the Autometrics p-value
for specification tests to equal 0.001. We also allowed pre-search variable
reduction, which can exclude variables from consideration before the actual
searches are begun. For more information, see Doornik (2009).

5 Data

The monthly industrial production and unemployment series are obtained
from the OECD Main Economic Indicators. Most of them cover the period
from the 1960s to the end of 2009 or early 2010. In this work, however,
the observation period begins in August 1994. This is because our rolling
windows consist of 12 years of monthly observations, 144 observations in
all. This number may be regarded as a compromise between stability and
flexibility, as it turned out that shorter observation periods had a tendency
to make the ANN models more unstable and lead to a larger number of
unrealistic forecasts.
The countries we consider are the G7 countries and the four Scandinavian

countries, Denmark, Finland, Norway, and Sweden. The logarithmic indus-
trial production index series of these 11 countries for the observation and
prediction period are shown in Figure 1. The industrial production generally
began to decline in the early 2008, in a few countries rather steeply. In many
but not all cases the decline was reversed in 2009. This reversal was sharpest
in Japan. Norway constitutes the most conspicuous exception to the general
trend. The Norwegian industrial production has been slowly decreasing since
the early 2000’s, and the decline does not accelerate much during 2008.
Figure 2 contains the graphs of the 11 unemployment series for the obser-

vation and prediction period. The numbers of unemployed started to increase
in 2008, and the growth has since levelled out in many but not all countries.
Denmark is perhaps the most dramatic example of a country in which the
unemployment rate was still rising at the end of 2009. The Norwegian unem-
ployment rate, while also increasing, still remained on a relatively low level
compared to the other ten countries in our study.

6 Results

6.1 Generating the variables

The technique for generating the potential hidden units for the ANN model
(1) is described in the Appendix. We modified the original White (2006)
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Filter Hor. AR QuickNet MBE Autom. QN-SG
1 1 1× 106 2.713 28.78 2.423

NF 3 1 6× 105 4.085 2× 107 3.561
6 1 3× 106 3.934 4× 107 3.461
12 1 3× 106 3.526 2× 108 3.182
1 0.9938 1.043 1.010 1.007 1.019

SW 3 0.9946 1.060 1.053 1.026 1.068
6 1 1.096 1.044 1.086 1.088
12 1.020 1.149 1.056 1.128 1.137
1 1 1.025 0.9926 1.051 1.002

AR 3 1 1.011 1.007 1.041 1.018
6 1 1.061 1.012 1.081 1.051
12 1 1.111 1.021 1.103 1.097

Table 1: Root mean square forecast error ratios of the recursive forecasts
for the 11 industrial production series. Models respecified after each period.
Forecasting begins July 2007

technique somewhat to make it more suitable to our problem; see Kock and
Teräsvirta (2011b) for more discussion. Our results are based on a set of
1200 hidden units and six lags of the dependent variable. A new set was
generated every time a new observation became available. We also experi-
mented with a smaller set containing only 600 hidden units but found that
the accuracy of the forecasts from the ANN model was higher on average,
albeit not uniformly, for the larger set. We mainly report results based on
the larger set.
In some cases, the results are based on smaller sets of candidate variables.

Autometrics crashed when applied to the German industrial production se-
ries with the set of 1206 candidate variables. The results for that series are
based on the smaller set of 606 variables. There were similar problems in
modelling unemployment series. Autometrics crashed for three countries:
Finland, Germany and Norway, when the selection pool contained 1200 hid-
den units. For Finland and Norway, reducing the number of hidden units
to 600 was enough to prevent this from happening. For Germany, it was
necessary to restrict the pool to contain only 150 logistic functions and six
linear lags. The results of the paper are based on these pool sizes.
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6.2 Industrial production

6.2.1 Overview

Overall results of forecasting the industrial production from July 2007 on-
wards can be found in Tables 1—3. As already discussed, the recursive fore-
casts for h months ahead, h > 1, are not forecasts of the monthly growth rate
hmonths ahead, because they are usually not interesting for decision-makers.
They are instead forecasts of the h-month growth rate, that is, sums of the
one-month growth rate forecasts.
Table 1 shows the RMSFEs of the recursive forecasts. From the no filter

(NF) panel it is seen that all automatic methods sometimes choose models
that yield grossly erroneous forecasts. They need not be many, as already a
single such forecast has a substantial effect on the RMSFE. After filtering,
differences in the accuracy between the methods are rather small. On aver-
age, the AR filter seems to be a better one of the two alternatives, but the
difference between them is not large. The linear AR forecasts are superior to
the nonlinear ones but as will be seen, this result does not hold uniformly on
the country level. The AR-filtered MBE forecasts come closest to the linear
AR ones. Interestingly, the specific-to-general version of QuickNet (QN-SG)
is no worse than the original one, in which ten hidden units are selected first
and the size of the model reduced thereafter. The performance of QN-SG
depends, however, on the choice of the significance levels for the tests in the
sequence. At least in theory, by changing them improving its performance
would be possible.
Table 2 contains the RMSFEs for the same period in the case where the

model is not respecified after July 2007. It appears that respecification does
not generally improve forecasting accuracy. Since differences in performance
are not large, however, in what follows we only report results from respeci-
fied models. Models selected by QuickNet generate some rather inaccurate
forecasts as do Autometrics-based models, whereas the QN-SG version of
QuickNet does not. The linear AR model remains the best alternative. The
forecasting accuracy of the four ANN models is almost as good as that of the
linear model. Nevertheless, none of them represents an improvement over it.
The direct forecasts are obtained from the following model:

∆hxt+h = g(h)(∆hxt,∆hxt−1, ...,∆hxt−ph+1) + ε
(h)
t+h (7)

where Eε(h)t+h = 0. The explanatory variables are ∆hxt and its ph − 1 lags,
h > 1. This means that the variables in the hidden units of the ANN model
are different from the ones used in recursive forecasting. The RMSFEs of the
direct forecasts can be found in Table 3. Even some of the direct forecasting
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Filter Hor. QuickNet MBE Autom. QN-SG
1 1.111 1.052 1.06 1.112

NF 3 1.774 1.079 1.104 1.101
6 3.251 1.025 2.927 1.047
12 7.469 0.9856 11.72 0.9936
1 1.073 1.036 1.007 1.092

SW 3 1.076 1.053 1.070 1.109
6 1.034 1.020 1.030 1.043
12 1.015 0.9885 0.9915 0.9948
1 1.084 1.037 1.056 1.102

AR 3 1.058 1.064 1.084 1.091
6 1.033 1.019 1.033 1.039
12 1.010 0.9829 0.9908 0.9933

Table 2: Root mean square forecast errors of the recursive forecasts for the
11 industrial production series. Models not respecified after the start of the
forecasting period in July 2007

Filter Hor. AR QuickNet MBE Autom. QN-SG NP NC
1 1 1× 106 2.713 28.78 2.423 0.9918 1.002

NF 3 1.011 686 2456 3× 105 684 0.9974 1.057
6 1.029 1× 104 1× 106 3× 109 7× 104 0.9681 1.020
12 0.9875 2× 105 1.050 3× 108 1.095 0.9664 0.9290
1 0.9938 1.043 1.010 1.007 1.019 0.9905

SW 3 0.9971 0.988 0.964 0.9671 0.9825 0.9758
6 1.003 0.9784 1.000 1.002 0.9941 0.9568
12 0.9829 1.013 1.001 1.020 1.011 0.9641
1 1 1.025 0.9926 1.051 1.002 1.006

AR 3 1.011 1.007 0.9773 0.9923 0.9981 1.022
6 1.029 1.030 1.023 1.038 1.034 0.9763
12 0.9875 1.016 0.9975 1.026 1.013 0.9668

Table 3: Root mean square forecast errors of the direct forecasts for the
11 industrial production series. Models respecified after each period. NP:
nonparametric model; NC: ’no change’
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models occasionally generate vastly inaccurate forecasts, and this is the case
for all four automatic methods.
The nonparametric (NP) model is the overall winner. The linear AR

filter makes the NP forecasts less accurate on average. After filtering, the
RMSFEs of the nonlinear forecasts are quite similar to the RMSFE of the
linear model. A general observation is that it is diffi cult to substantially
improve upon the linear model using White’s ANN approach and automatic
modelling. In fact, the ’no change’(NC) forecasts are the best alternative
in forecasting 12 months ahead, i.e., in forecasting the annual growth rate of
the industrial production during the crisis period.
Another way of comparing forecasts obtained by different methods is to

rank them according the size of the absolute forecast errors. We do it across
all months and countries for each forecast horizon, so the results fit into a
single table. We only show the results for the SW filter. The rankings for the
AR-filtered forecasts and the ones obtained for SW-filtered forecasts are very
similar, and the former are therefore omitted. The average ranks over months
and countries can be found in Table 4. For the one-month horizon, the linear
AR model is the best method (has the lowest average rank), followed by QN-
SG. NP is among the worst alternatives at the shortest horizons but is the
best one in forecasting 12 months ahead. For the intermediate horizons, the
linear AR model does well but the direct MBE forecasts have a low average
rank in forecasting three months ahead. Direct Autometrics forecasts are not
good, indicating that this method is in trouble when the available variables
only provide a rather poor approximation to the data-generating process.
All nonlinear methods except NP have poor average ranks when it comes to
direct forecasts and 12-months-ahead forecasts.
A different robust method of comparing the forecasts can be obtained by

pairing individual forecasts and testing the null hypothesis that the median
(or mean because the density is assumed symmetric) of the difference of the
absolute forecast errors of the recursive linear AR model and an alternative
equals zero. This is done using the Wilcoxon signed-rank test, see Wilcoxon
(1945), in which the alternative hypothesis is that the other model generates
more accurate forecasts than the linear recursive AR model. The results are
based on AR-filtered forecasts and can be found in Table 5. A small p-value
indicates that the null hypothesis is rejected. Subtracting the p-value from
one gives a p-value of the test in which the null and the alternative have
changed places. A large p-value in the table thus suggests that the linear
recursive AR model generates forecasts superior to those from a direct linear
AR or a nonlinear or nonparametric model. A normal approximation to the
null distribution is used to obtain the p-values. In considering the results
one has to keep in mind that the forecast errors for forecasting more than
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Rec Hor. AR QuickNet MBE Autom. QN-SG
1 3.44 3.67 3.64 3.74 3.54

SW 3 5.77 6.15 5.90 6.06 6.28
6 5.52 6.23 6.03 6.14 6.46
12 5.60 5.92 5.73 6.02 5.98

Rec Hor. AR QuickNet MBE Autom. QN-SG NP NC
1 3.44 3.67 3.64 3.74 3.54 3.59 5.92

SW 3 5.86 6.23 5.76 6.15 5.93 5.96 11.3
6 5.95 5.74 5.90 6.52 5.95 5.96 11.0
12 5.73 6.33 6.61 6.30 6.43 5.46 11.1

Table 4: The average ranks of the methods of forecasting the industrial
production (all countries). Forecasting begins July 2007. Note: The no
change forecasts are unfiltered

Rec. Hor. QuickNet MBE Autom QN-SG
1 0.950 0.808 0.992 0.915

AR 3 0.874 0.731 0.933 0.938
6 0.991 0.909 0.944 0.994
12 0.865 0.409 0.880 0.918

Dir. Hor. AR QuickNet MBE Autom QN-SG NP NC
1 0.950 0.808 0.992 0.915 0.790 0.690

AR 3 0.952 0.997 0.483 0.969 0.955 0.851 0.531
6 0.995 0.947 0.943 1 0.985 0.997 0.500
12 0.987 1 1 1 1 0.679 0

Table 5: p-values of the Wilcoxon signed-rank test for testing the hypothe-
sis that the mean of the differences of absolute forecast errors of industrial
production for all countries from the linear recursive AR model and another
model are equal against the alternative that the other model has smaller ab-
solute forecast errors. p-values subtracted from one are those of the test in
which the null and the alternative hypothesis change places

15



one month ahead are not independent, which violates the assumptions of the
test. Another caveat is that the average loss size varies from one country to
another, which may also affect the outcomes. Nevertheless, we believe that
the p-values are still indicative of the results and report them.
Table 5 shows that the only two methods for which p < 0.95 for all

horizons are the recursive MBE and ’no change’. There is only one p-value
below 0.4, that of ’no change’12 months ahead, so on average it does not
seem possible to find from our set of models one that would generate more
accurate forecasts than the recursive linear AR model. It is seen that all
direct methods except ’no change’underperform at the two longest horizons,
which cannot be seen from Table 3. The nonparametric model in forecasting
12 months ahead constitiues an exception. This may be the case because
the growth rate of many series turns from negative to positive during the
forecasting period. Most models cannot forecast that turn, but the no change
’method’by construction adapts quickly.
Table 6 contains the average numbers of variables or hidden units selected

by each method. For recursive forecasting models, MBE yields the most
parsimonious models, followed by Autometrics. The difference between the
two variants of QuickNet is small but again, the results may change if the
significance levels in QN-SG are altered. Most of the variables selected are
hidden units, although this does not necessarily lead to forecasts that would
be more accurate than the ones from the linear AR model. Lags of ∆xt or
∆hxt get selected more often by MBE than by the other automatic methods.
Although the general tendency becomes clear from Table 6, the results are
not similar for all countries.
The situation is different when direct forecasting is concerned. Table 6

only shows the numbers of variables for the 12-months-ahead models, because
that already shows the general tendencies. In fact, the differences in these
numbers between the three-month and the 12-month models are usually quite

Type of forecast Recursive Direct 12
Number of variables Total Lags HU Total Lags HU

QuickNet 7.13 0.06 7.07 6.19 0.26 5.93
QN-SG 6.92 0.06 6.85 5.79 0.25 5.54
MBE 3.61 0.17 3.44 2.16 0.28 1.88
Autometrics 4.66 0.03 4.63 10.8 0.12 10.7

Table 6: The average number of linear lags and hidden units (HU) selected
for ANN models for recursive, and direct 12-months ahead, forecasting of
industrial production of the 11 countries from July 2007 onwards
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small, although on the country level exceptions do occur. It is seen that for
MBE the average number of variables in the 12-month models is smaller than
that of the one-month model used for recursive forecasting. In fact, although
this is not shown, the decrease is a monotonic function of the forecasting
horizon. Perhaps the most striking feature is the strong increase in the
number of variables selected by Autometrics. It is there already for three-
month models (the number of selected variables then equals 12.3). As there
is a gap in direct models between the dependent variable and the available
lags, there may not be a well-fitting model to choose. Because Autometrics
subjects the final model to diagnostic tests and backtracks along the search
path as long as these tests reject the null hypothesis, this strategy may
mean that the model that finally passes the tests contains a large number of
variables.

6.2.2 Japan

The summary tables hide the fact that there is plenty of variation across
individual countries. The accuracy of the forecasts varies from one coun-
try to the next, and no automatic method for generating forecasts dom-
inates the others. For this reason, we present results for two individual
countries, Japan and the UK. We also briefly touch upon some Norwe-
gian outcomes. The remaining country-specific RMSFE results are available
at http://econ.au.dk/research/research-centres/creates/research/
research-papers/supplementary-downloads/.
It is seen from Figure 1 that the Japanese industrial production fluctuates

heavily during the forecasting period. Consequently, it makes a good test
case, also because the linear AR forecasts of the Japanese series are on average
the least accurate among the 11 countries considered. The first four figures
in the ’no filter’(NF) panel of the ’AR’column of Table 7 are the RMSFEs
of the recursive forecasts for the Japanese industrial production 1, 3, 6 and
12 months ahead. Note that the RMSFE for the 12-months-ahead forecasts
is a remarkable 26%. An interesting fact is that no filter is applied to any
of the forecasts, except the linear AR ones. The ANN models yield more
accurate one-month forecasts than the linear AR model. QuickNet has the
best performance one and three months ahead, whereas MBE yields the
most accurate nonlinear 12-month forecasts. If the models are not respecified
during the forecasting period, the accuracy of the six- and 12-month forecasts
increases for all three methods. These results are not reproduced here but, as
an example, the RMSFE of the 12-month forecasts for MBE without filtering,
which does not improve the forecasts, equals 0.688.
The RMSFEs of the direct forecasts can be found in Table 8. Direct
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Filter Hor. AR QuickNet MBE Autom. QN-SG
1 0.02232 0.7503 0.9259 0.8519 0.7322

NF 3 0.06517 0.9193 1.023 0.9965 0.9138
6 0.1392 1.263 1.024 1.295 1.258
12 0.2644 1.355 0.9791 1.355 1.353
1 0.7753 0.7503 0.9259 0.8519 0.7322

SW 3 0.9194 0.9193 1.008 0.9965 0.9138
6 1.010 1.263 1.023 1.295 1.258
12 1.013 1.355 0.9818 1.355 1.353
1 1 0.7503 0.9259 0.8519 0.7322

AR 3 1 0.9193 1.008 0.9965 0.9138
6 1 1.263 1.023 1.295 1.258
12 1 1.355 0.9818 1.355 1.353

Table 7: Root mean square forecast errors of the recursive forecasts for the
Japanese industrial production series. Models respecified after each period.
Forecasting begins July 2007

Filter Hor. AR QuickNet MBE Autom. QN-SG NP NC
1 1 0.7503 0.9259 0.8519 0.7322 1.065 1.236

NF 3 1.009 0.8869 1.060 0.8044 0.8893 1.059 1.255
6 0.8721 0.8488 0.8211 711.4 0.8375 0.9077 0.9435
12 0.7044 0.7512 0.7356 0.7505 0.7533 0.7508 0.6863
1 0.7753 0.7503 0.9259 0.8519 0.7322 0.8389

SW 3 1.009 0.8869 1.060 0.8044 0.8893 0.9664
6 0.8721 0.8488 0.8211 0.9051 0.8375 0.9077
12 0.7044 0.7782 0.7632 0.7505 0.7803 0.7657
1 1 0.7503 0.9259 0.8519 0.7322 1.050

AR 3 1.009 0.8869 1.060 0.8044 0.8893 1.112
6 0.8721 0.8488 0.8211 0.8788 0.8375 0.9077
12 0.7044 0.7518 0.7362 0.7505 0.7539 0.7419

Table 8: Root mean square forecast errors of the direct forecasts for the
Japanese industrial production series. Models respecified after each period.
Forecasting begins July 2007
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Rec. Hor. QuickNet MBE Autom QN-SG
1 0.748 0.893 0.873 0.663

AR 3 0.375 0.969 0.841 0.300
6 0.693 0.955 0.924 0.648
12 0.761 0.617 0.831 0.601

Dir. Hor. AR QuickNet MBE Autom QN-SG NP NC
1 0.748 0.893 0.873 0.663 0.848 0.945

AR 3 0.259 0.439 0.641 0.399 0.553 0.924 0.962
6 0.656 0.767 0.0194 0.986 0.678 0.601 0.937
12 0.780 0.998 0.998 0.991 0.999 0.889 0.553

Table 9: p-values of the Wilcoxon signed-rank test for testing the hypothesis
that the mean of the differences of absolute forecast errors of Japanese in-
dustrial production from the linear recursive AR model and another model
equals zero against the alternative that the other model has smaller absolute
forecast errors. p-values subtracted from one are those of the test in which
the null and the alternative hypothesis change places

three-, six- and 12-month forecasts appear more accurate than their recursive
counterparts whose RMSFEs were reported in Table 7. This is also true for
forecasts from the linear AR model. The three-month MBE forecasts are an
exception, however. Three-month out-of-bounds Autometrics forecasts are
effectively corrected by the SW filter.
Interestingly, the nonparametric model is now inferior to the other direct

methods. The only exception is the ’no change’ for horizons less than 12
months. (As already mentioned, Autometrics generates ’insane’ forecasts
at the three-month horizon, but filtering corrects them.) The SW filter,
however, considerably improves the RMSFE of the nonparametric forecasts
at the two shortest horizons. The ’no change’forecasts are the least accurate
ones for these horizons, however, for 12 months ahead they have the smallest
RMSFE of all forecasts, both recursive and direct.
Results of the Wilcoxon signed-rank test in Table 9 are similar to the

general case in that it is hard to improve upon the linear recursive AR
model. Only the direct six-month MBE forecasts (p = 0.019) seem to com-
pare favourably with them. But then, the null hypothesis is not rejected
either way for the two recursive QuickNet forecasts, the recursive Automet-
rics ones, the direct linear AR forecasts or the nonparametric ones, if p-values
0.05 and 0.95 are used as indicators. All direct forecasts from ANN models
fail when the forecast horizon is 12 months, which strongly contrasts the pic-
ture given by Table 8. In that table, the ratios for all ANN-based forecasts
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Type of forecast Recursive Direct 12
Number of variables Total Lags HU Total Lags HU

QuickNet 8.47 0 8.47 5.40 0 5.40
QN-SG 8.20 0 8.20 3.70 0 3.70
MBE 3.43 0.03 3.40 1.90 0 1.90
Autometrics 2.53 0 2.53 21.9 0.13 21.8

Table 10: The average number of linear lags and hidden units (HU) selected
for ANN models for recursive, and direct 12-months ahead, forecasting of the
Japanese industrial production from July 2007 onwards

lie clearly below unity. The reason for this contradiction is that the errors
of a couple of very last recursive forecasts from the linear AR model are re-
markably large and have a considerable impact on the corresponding RMSFE
and ratios in the table. The robust test de-emphasises this effect and in fact
indicates that the recursive nonlinear forecasts are a better alternative than
the direct ones when the recursive linear AR forecasts form the benchmark.
These large errors also partly explain the large (26%) 12-month RMSFE in
Table 7.
The average numbers of variables or hidden units selected by the four

methods for models generating the recursive forecasts of the Japanese indus-
trial production can be found in Table 10. The QuickNet is by far the least
parsimonious technique with over eight hidden units selected on the average.
There is little difference between the pure specific-to-general QN-SG and the
original QuickNet. Autometrics is slightly more parsimonious than MBE. It
may be noted that in this case, only MBE selects a linear lag or lags of ∆xt,
and this happens very rarely.
The direct 12-month models tell a different story which is, however, in line

with what can be concluded from Table 6. Autometrics now selects a very
large number of hidden units, whereas for the other methods, the numbers
are considerably smaller than in the case of the one-month models. This may
be because the Japanese industrial production has been diffi cult to forecast
and deprived of the most important lags, Autometrics struggles to find a
model that would pass the diagnostic tests. MBE on the other hand, finds
most of the heavily lagged hidden units irrelevant and excludes them.
These results may be contrasted with ones for Norway. The Norwegian

series was easier to forecast than the Japanese one, since the industrial pro-
duction of that country only decreased modestly during the crisis. This is
reflected in the RMSFE of the linear AR model 12-month forecasts, which
equals 0.0298, close to one tenth of the Japanese one. Table 11 contains the
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average variable selection numbers for the ANN models of the Norwegian
industrial production. The results correlate with the RMSFEs in that the
most parsimonious models, generated by MBE, yield slightly more accurate
forecasts than the other. Furthermore, Autometrics that chooses the least
parsimonious models also has the highest RMSFE ratio even after filtering
(there are explosive recursive six- and 12-month forecasts among the unfil-
tered ones). However, the forecast accuracy of none of the four methods is
superior to that of the linear AR model.
The result for the direct 12-month models are different in that Automet-

rics on the average now selects rather few variables (only 0.33 on average
for the six-month models). This may have something to do with the fact
that the Norwegian industrial production displays less variation during the
forecasting period than the Japanese one. (The direct Autometrics forecasts
for the Norwegian industrial production do not need any filtering but are,
however, less accurate than forecasts from the linear AR model.) As before,
MBE selects the smallest number of variables, and the share of linear lags is
greater than observed elsewhere. Surprisingly, in this case QuickNet selects
a relatively large number of variables.

6.2.3 United Kingdom

We shall consider the results for the UK here to in order to have an example
in which many models and alternatives, the direct ones in particular, perform
somewhat better than the linear AR model. The RMSFEs for the recursive
forecasts can be found in Table 12. The RMSFE of the forecasts from the
linear AR model equals 0.078, which is moderate in comparison to the other
series.
Some recursive forecast errors from both QuickNet and Autometrics are

very large, but filtering changes the situation. Note that the one-way QN-SG

Type of forecast Recursive Direct 12
Number of variables Total Lags HU Total Lags HU

QuickNet 3.63 0 3.63 9.83 0.83 9.00
QN-SG 6.20 0 6.20 8.00 0.83 7.17
MBE 4.26 0.03 4.23 1.27 0.83 0.43
Autometrics 6.83 0.03 6.80 3.97 0.03 3.93

Table 11: The average number of linear lags and hidden units (HU) selected
for ANN models for recursive, and direct 12-months ahead, forecasting of the
Norwegian industrial production from July 2007 onwards
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Filter Hor. AR QuickNet MBE Autom. QN-SG
1 0.01317 1.625 0.936 301.7 1.014

NF 3 0.0267 171.9 1.011 6228 1.053
6 0.04575 8871 1.003 3× 107 0.9518
12 0.07799 2× 104 1.001 6× 108 1.041
1 1 0.9949 0.936 0.7121 1.014

SW 3 1 1.084 1.011 0.7863 1.029
6 1 0.9551 1.003 1.053 0.9451
12 1 1.007 1.001 1.235 1.035
1 1 0.9934 0.936 0.9444 1.014

AR 3 1 1.080 1.011 0.9759 1.029
6 1 0.9556 1.003 1.001 0.9451
12 1 1.006 1.001 0.9863 1.035

Table 12: Root mean square forecast errors of the recursive forecasts for
the UK industrial production series. Models respecified after each period.
Forecasting begins July 2007

does not yield such forecasts. The SW filter makes Autometrics a superior
performer at short horizons. MBE forecasts do not need filtering and are at
longer horizons comparable in quality to the linear AR forecasts.
The RMSFEs of direct forecasts can be found in Table 13. As for Auto-

metrics, direct forecasts, after SW filtering, are slightly more accurate than
the recursive ones. Some improvement is also apparent for MBE and the lin-
ear AR forecasts. Filtered MBE forecasts are also more accurate than their
recursive counterparts. Some of the direct six-month forecasts are out-of-
bounds, and this is true for all four methods. Filtering corrects the problem.
The nonparametric model generates more accurate forecasts than the linear
recursive AR one, and filtering is almost never applied. Note, however, that
the direct linear AR forecasts are also more accurate than the corresponding
recursive ones. The ’no change’alternative is superior to the recursive lin-
ear AR model, but in this case it is not the best method for forecasting 12
months ahead.
The results of the Wilcoxon test appear in Table 14. Direct forecasts

are more accurate than they seem in the summary table (Table 5). Direct
linear AR forecasts are more accurate than the recursive linear ones, as are
direct Autometrics and nonparametric forecasts at longest horizons. It is
also seen that, due to the exceptional period to be forecast, the results vary
from one horizon to the other. According to the test, all direct forecasts are
relatively accurate at the six-month horizon, whereas QuickNet fails when
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Filter Hor. AR QuickNet MBE Autom. QN-SG NP NC
1 1 1.625 0.936 301.7 1.014 0.8867 0.8909

NF 3 0.8926 0.9696 0.6225 0.7366 0.7609 0.8727 0.9447
6 0.9305 8203 2433 2.198 2305 0.8603 0.9588
12 0.9854 1.043 0.9854 0.9666 1.024 0.9312 0.9743
1 1 0.9949 0.936 0.7121 1.014 0.8867

SW 3 0.8926 0.9696 0.6225 0.7366 0.7609 0.8727
6 0.8635 0.7829 0.8764 0.8835 0.8537 0.8603
12 0.9763 1.009 0.9854 0.9666 1.000 0.9318
1 1 0.9934 0.936 0.9444 1.014 0.8867

AR 3 0.8926 0.9696 0.6225 0.7366 0.7609 0.8727
6 0.9305 0.9309 0.8961 0.9031 0.8437 0.8603
12 0.9854 1.031 0.9854 0.9666 1.022 0.9438

Table 13: Root mean square forecast errors of the direct forecasts for the UK
industrial production series. Models respecified after each period. Forecast-
ing begins July 2007

the horizon is 12 months. All p-values for recursive forecasts are below 0.95,
so one cannot reject the null hypothesis in favour of the recursive linear AR
model. But then, one p-value for recursive Autometrics forecasts is less than
0.05, suggesting a rejection in the opposite rejection.
The average numbers of selected variables can be found in Table 15. MBE

is again the most parsimonious choice for models for recursive forecasting
with 3.3 variables per equation. QuickNet and Autometrics select largest
models on average, more than eight variables per model. There is now no
clear correlation, positive or negative, between the size of the model and the
accuracy of the forecasts.
Among the models for generating direct forecasts, the MBE-selected ones

show the same tendency as before: the number of variables in 12-month mod-
els is less than in one-month ones. The largest deviation from the general
results is that for 12-month models. Remarkably, there is not a single occa-
sion in which Autometrics would choose even one variable. The 12-month
forecasts from Autometrics thus consist of means of the annual difference of
the (log) industrial production. It is seen from Tables 13 and 14 that these
forecasts do well in comparison. Only the forecasts from the nonparamet-
ric model have a smaller RMSFE, and the null hypothesis of the Wilcoxon
test is rejected in favour of Autometrics at the 5% level (but remember cau-
tion in interpreting these p-values). In comparison, it may be mentioned
that the average number of variables in the three-month Autometrics-based
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Rec. Hor. QuickNet MBE Autom QN-SG
1 0.573 0.322 0.608 0.617

AR 3 0.803 0.877 0.0859 0.455
6 0.786 0.921 0.375 0.877
12 0.803 0.864 0.0469 0.700

Dir. Hor. AR QuickNet MBE Autom QN-SG NP NC
1 0.573 0.322 0.608 0.617 0.728 0.831

AR 3 0.0214 0.728 0.131 0.149 0.149 0.111 0.159
6 0.00219 0.0393 0.0449 0.068 0.0627 0.068 0.0958
12 0.0184 0.994 0.577 0.0376 0.990 0.0393 0.103

Table 14: p-values of the Wilcoxon signed-rank test for testing the hypoth-
esis that the mean of the differences of absolute forecast errors of the UK
industrial production from the linear recursive AR model and another model
equals zero against the alternative that the other model has smaller absolute
forecast errors. p-values subtracted from one are those of the test in which
the null and the alternative hypothesis change places

Type of forecast Recursive Direct 12
Number of variables Total Lags HU Total Lags HU

QuickNet 8.83 0 8.83 6.60 0 6.60
QN-SG 6.47 0 6.47 6.77 0 6.77
MBE 3.30 0.17 3.13 2.50 0 2.50
Autometrics 8.13 0.07 8.07 0 0 0

Table 15: The average number of linear lags and hidden units (HU) selected
for ANN models for recursive, and direct 12-months ahead, forecasting of the
UK industrial production from July 2007 onwards

models equals 17.2. According to Table 13, forecasts from them are quite
competitive as well, less accurate than the MBE forecasts (the average size
of the corresponding model is 3.0 variables) but better than the other direct
alternatives.

6.2.4 Summary

Since it is not possible to discuss all empirical results in detail, we shall
briefly list results common to most series and mention aspects in which the
countries differ from each other. The most conspicuous common result is that
the accuracy of the ’no change’12-month forecasts, measured in RMSFEs,
is superior to that of all other forecasts in six countries and better than
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the linear AR in all but one. This country is Norway for which, as already
mentioned, the RMSFE of the linear AR model 12 months ahead is lowest
of all. But then, the ’no change’ forecast is not usually among the most
accurate ones at shortest (one- and three-month) horizons. These results are
reflected in the NC column of Table 1.
Another common outcome is that the nonparametric model most often

has a lower RMSFE than the linear AR model. This is not always case for
all forecasting horizons, but in four cases out of 11, it has the lowest RMSFE
for 12-month forecasts.
Third, the sets of forecasts for many countries contain insane recursive

forecasts. This occurs in seven countries out of 11. Only two countries,
Denmark and Finland, are completely free of them. Even the direct method
generates occasional insane forecasts, due to highly correlated variables in
the selected models.
Fourth, filtering is useful for a majority of the series. It does not only

adjust the insane forecasts but in many cases also improves the accuracy
overall and leads to an RMSFE less than that of the forecasts from the
linear AR model. It seems that QuickNet and Autometrics profit more from
filtering than MBE.
Fifth, we also considered forecasts in a situation in which the model was

not respecified after July 2007. In a majority of cases, forecasts from this
model are inferior to the ones obtained from respecified and re-estimated
models. The only distinctly different case is the Japanese industrial produc-
tion when the forecast horizon is at least six months. Then all automatic
techniques profited from the original model not being respecified.
Sixth, we tested linearity of the series before modelling and only employed

the ANN model when the test rejected. The effect of this pre-testing was
mixed, producing minor improvements in some cases but also making the
accuracy of the forecasts worse in others. The gains, when they occurred,
were not systematic in the sense that sometimes only a subset of techniques
were positively helped by this pre-screening.
Seventh, as is already obvious from Table 6, MBE selects the smallest

models. It appears that there is no clear correlation between the size of
the model and the forecasting accuracy. Autometrics-built direct forecasting
models tend to contain the largest number of variables, although exceptions
to this rule do exist.
The country that differs most from the rest is the United States. For the

US, all ANN models generate insane recursive forecasts, and the recursive
linear AR ones are usually more accurate than their ANN counterparts. The
recursive QuickNet 12 months ahead forecasts constitute the only exception
and, if the model is not respecified after June 2007, MBE forecasts for the
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Filter Hor. AR QuickNet MBE Autom. QN-SG
1 1 3× 105 1.022 1.254 1.107

NF 3 1 1× 105 1.010 1.251 1.048
6 1 7× 106 1.008 1.343 1.027
12 1 1× 107 1.018 1.865 1.005
1 1.028 1.116 1.044 1.115 1.133

SW 3 0.9923 1.041 0.9945 1.076 1.037
6 0.9931 1.015 0.9867 1.059 1.018
12 0.9962 1.007 0.9926 1.031 1.002
1 1 1.077 1.023 1.100 1.107

AR 3 1 1.044 1.002 1.077 1.045
6 1 1.024 0.9928 1.061 1.023
12 1 1.014 0.9932 1.032 1.002

Table 16: Root mean square forecast error ratios of the recursive forecasts
for the 11 unemployment rate series. Models respecified after each period.
Forecasting begins July 2007

same horizon form another one. The ’no change’forecasts of the US industrial
production are inaccurate, and the nonparametric forecasts are better than
their linear AR counterparts only at the 12-month horizon. The SW filter
considerably improves direct Autometrics three- and six-month forecasts.

6.3 Unemployment rate

6.3.1 Overview

It is seen from Figure 2 that unemployment rates have not fluctuated as
strongly during the crisis period as the industrial production. In most coun-
tries, the economic recovery did not yet show in the unemployment rates at
the end of 2009. The results of recursive forecasts appear in Table 16. They
show that the linear AR model yields the most accurate forecasts overall. Af-
ter filtering, however, MBE is fully competitive with the linear model at the
three-month and longer forecasting horizons. Kock and Teräsvirta (2011b)
also found that MBE-selected ANN models generated the most accurate fore-
casts which, however, on average did not improve upon what was obtained
from the linear AR model.
As in the case of industrial production, QuickNet-based ANNmodels gen-

erate a number of insane forecasts. But then, the specific-to-general version
QN-SG does not do that. It appears that allowing QuickNet to first select
ten variables and then ask it to reduce the size of the model sometimes leads
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Filter Hor. AR QuickNet MBE Autom. QN-SG NP NC
1 1 3× 105 1.022 1.254 1.107 1.052 1.225

NF 3 1.010 1.248 1.083 3× 104 1.149 1.109 1.259
6 1.017 1.110 1.072 1× 105 1.109 1.087 1.158
12 1.023 2× 104 1.046 7530 0.9855 1.069 1.012
1 1.028 1.116 1.044 1.115 1.133 1.075

SW 3 1.033 1.091 1.090 1.216 1.117 1.109
6 1.015 1.078 1.070 1.100 1.077 1.063
12 1.023 0.9842 1.046 1.031 0.9775 1.067
1 1 1.077 1.023 1.100 1.107 1.075

AR 3 1.010 1.103 1.082 1.230 1.117 1.109
6 1.017 1.090 1.070 1.130 1.088 1.070
12 1.023 0.9927 1.046 1.047 0.9787 1.067

Table 17: Root mean square forecast errors of the direct forecasts for the 11
unemployment rate series. Models respecified after each period. Forecasting
begins July 2007

to overfitting. After filtering the differences in the RMSFE between these
two versions of QuickNet practically disappear.
Autometrics also generates some forecasts that have to be filtered. A com-

parison of filtered forecasts suggests that on average, this method yields the
least accurate recursive unemployment rate forecasts. As may be expected,
this result does not hold for all countries in the sample.
The main effect of not respecifying the model during the forecasting pe-

riod is that MBE is less accurate than it is when updating the model takes
place. (These results are not reported in detail here.) Forecasts from the
Autometrics-based models without filtering improve, and filtering has a min-
imal effect on them. They still remain slightly less accurate than forecasts
obtained by the other selection techniques.
The RMSFE ratios of direct forecasts can be found in Table 17. The MBE

forecasts are now clearly inferior to the recursive ones. The same is true for
Autometrics and even the linear AR model. The only gain can be found
in QuickNet and QN-SG 12-months-ahead forecasts, for which the RMSFE
ratio is slightly below unity. The nonparametric forecasts perform less well
than in the case of industrial production and have, after filtering, the worst
12-months-ahead performance. The ’no change’forecast is not a good choice
either. The reason can be seen from Figure 2. Since the unemployment rates
mostly increase during the forecasting period and no recoil takes place, this
alternative works less well than it does in forecasting industrial production
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Rec Hor. AR QuickNet MBE Autom. QN-SG
1 3.61 3.91 3.53 3.88 3.92

SW 3 6.06 6.43 5.89 6.43 6.46
6 5.78 6.18 5.65 6.45 6.08
12 6.03 6.41 5.85 6.67 6.19

Dir Hor. AR QuickNet MBE Autom. QN-SG NP NC
1 3.61 3.91 3.53 3.88 3.92 3.93 4.80

SW 3 6.02 6.23 6.23 6.89 6.48 6.51 7.84
6 5.78 6.68 6.09 6.92 6.55 6.47 8.95
12 6.49 6.35 7.11 6.66 6.28 7.19 6.32

Table 18: The average ranks of the methods of forecasting the unemployment
rate (all countries). Forecasting begins July 2007

during the crisis.
The average ranks of different methods computed as the ones for the

industrial production forecasts can be found in Table 18. They are quite
different from those in Table 4. Recursive MBE forecasts now have the
lowest average rank for all four horizons, followed by the recursive linear
AR forecasts. The direct AR forecasts perform equally well as the recursive
ones except for the longest forecasting horizon. The ’no change’ forecasts
now have the highest average rank at the three shortes horizons and the
nonparametric forecasts at the 12-month horizon. The direct Autometrics
and MBE 12-month forecasts have the highest ranks of all ANN-forecasts.
As far as Autometrics-based forecasts are concerned, the reason for this is
probably the same as in the industrial production case: diffi culties in finding
a satisfactory approximation to the data-generating process when the most
relevant lags are not allowed to enter the model.
From Table 19 it can be concluded that on average recursive forecasts

are more accurate than the direct ones, when the yardstick is the Wilcoxon
signed-rank test. Direct linear AR forecasts are the only exception, whereas
the other direct models, including ’no change’, perform less well than the
recursive linear AR model. The other method for which all p-values are less
than 0.95 is the recursive MBE. At the 12-month horizon the p-value of the
test is as low as 0.054. Autometrics is the worst performer, which accords
with the results in Tables 16 and 17.
The number of variables selected by different methods appear in Table

20. MBE and Autometrics select the fewest variables for models of recursive
forecasting. QuickNet that generated many insane forecasts has the highest
average number selected. For direct models, the situation changes radically.
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Rec. Hor. QuickNet MBE Autom QN-SG
1 0.994 0.830 0.997 1

AR 3 0.887 0.307 0.999 0.983
6 0.802 0.248 1 0.854
12 0.684 0.0543 1 0.459

Dir. Hor. AR QuickNet MBE Autom QN-SG NP NC
1 0.994 0.830 0.997 1 0.976 1

AR 3 0.311 0.985 0.990 1 0.987 0.997 1
6 0.838 1 0.988 1 0.999 1 0.999
12 0.604 0.860 0.985 0.977 0.700 1 0.100

Table 19: p-values of the Wilcoxon signed-rank test for testing the hypothesis
that the mean of the differences of absolute forecast errors of unemployment
rate for all countries from the linear recursive AR model and another model
are equal against the alternative that the other model has smaller absolute
forecast errors. p-values subtracted from one are those of the test in which
the null and the alternative hypothesis change places

Type of forecast Recursive Direct 12
Number of variables Total Lags HU Total Lags HU

QuickNet 7.08 0.18 6.90 6.27 0.01 6.26
QN-SG 5.02 0.18 4.84 6.06 0.01 6.05
MBE 2.88 0.24 2.64 1.47 0.28 1.46
Autometrics 2.91 0.09 2.82 15.8 0.26 15.5

Table 20: The average number of linear lags and hidden units (HU) selected
for ANN models for recursive, and direct 12-months ahead, forecasting of
unemployment rate of the 11 countries
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Filter Hor. AR QuickNet MBE Autom. QN-SG
1 0.1648 0.9341 1.007 1.129 0.9461

NF 3 0.3614 11.5 0.9447 1.061 0.7723
6 0.8164 9.462 0.9378 1.058 0.8042
12 1.941 9.082 0.9769 1.014 0.9282
1 1 0.9341 1.007 1.129 0.9461

SW 3 1 0.7660 0.9447 1.061 0.7723
6 1 0.8113 0.9369 1.049 0.8036
12 1 0.9198 0.9751 1.011 0.9270
1 1 0.9341 1.007 1.129 0.9461

AR 3 1 0.7660 0.9447 1.061 0.7723
6 1 0.8113 0.9369 1.049 0.8036
12 1 0.9198 0.9751 1.011 0.9270

Table 21: Root mean square forecast error ratios of the recursive forecasts
for the US unemployment rate series. Models respecified after each period.
Forecasting begins July 2007

The number of variables selected byMBE decreases whereas the same number
for Autometrics strongly increases. A similar pattern was already found
for industrial production models. When a number of important lags are
removed from consideration, Autometrics has problems in finding a model
that satisfies the diagnostic criteria. On average it selects 19.0 variables for
three-month and 19.6 variables for six-month ANN models. For QuickNet,
the differences in the average model size between recursive (one-month) and
direct forecasting models are relatively small.

6.3.2 United States

Similarly to the industrial production case, we consider in detail the country
(the United States) with the largest 12-month RMSFE for recursive linear
AR forecasts. The RMSFE ratios of recursive forecasts for the US appear
in Table 21. As in the summary table, models chosen by QuickNet generate
some infeasible forecasts. This is avoided by QN-SG, but after filtering the
results for the two variants of QuickNet are quite close to each other and give
the best results. MBE-based ANN models also yield more accurate forecasts
than the linear AR model, and filtering is hardly used. The Autometrics
forecasts are not filtered either, but they are less accurate than even the
linear AR forecasts.
If the models are not respecified during the forecasting period (detailed

results not given here), the situation changes. MBE becomes the worst alter-
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Filter Hor. AR QuickNet MBE Autom. QN-SG NP NC
1 1 0.9341 1.007 1.129 0.9461 1.065 1.301

NF 3 1.016 1.453 1.155 1.504 1.322 1.266 1.575
6 1.056 1.319 1.176 1.390 1.339 1.355 1.473
12 1.045 0.9944 1.066 1.018 0.9953 1.173 1.224
1 1 0.9341 1.007 1.129 0.9461 1.065

SW 3 1.016 0.9598 1.155 0.9683 0.8892 1.266
6 1.056 1.138 1.176 1.028 1.184 1.095
12 1.045 0.9594 1.066 0.9931 0.9608 1.151
1 1 0.9341 1.007 1.129 0.9461 1.065

AR 3 1.016 1.039 1.155 1.087 0.974 1.266
6 1.056 1.195 1.176 1.142 1.226 1.171
12 1.045 0.9711 1.066 0.9992 0.9725 1.156

Table 22: Root mean square forecast errors of the direct forecasts for the US
unemployment rate series. Models respecified after each period. Forecasting
begins July 2007

native, whereas Autometrics generates more accurate results than the linear
AR model for six-and 12-month horizons. QuickNet also gains from respecifi-
cation, although, like Autometrics, it generates more accurate forecasts than
the linear AR model for the two longest horizons when the same model is
used for the whole forecasting period.
The results from direct forecasting models are reported in Table 22. They

follow the general tendency in that direct linear AR forecasts are less accurate
than the recursive ones. Furthermore, neither the nonparametric model nor
the ’no change’forecast are useful alternatives. QuickNet and Autometrics
(after filtering) perform best, but the recursive forecasts from the QuickNet-
based ANN models are more accurate than the direct ones. The same is true
for MBE. The overall conclusion is that for this series, recursive forecasts are
clearly superior to the direct ones, only Autometrics constitutes an exception.
Table 23 contains the results of the Wilcoxon signed-rank test. All re-

cursive methods except Autometrics perform reasonably well. Compared to
their recursive counterparts, direct linear AR forecasts are also acceptable.
It seems that forecasting six months ahead using the direct method is partic-
ularly diffi cult. In accord with the results in Tables 21 and 22, forecasts from
the nonparametric model and the ’no change’forecast are clearly inferior to
recursive linear AR ones.
The average numbers of variables selected for ANN models of the US

unemployment series follow the general pattern evident in Table 20. It is
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Rec. Hor. QuickNet MBE Autom QN-SG
1 0.648 0.908 0.986 0.792

AR 3 0.0627 0.322 0.798 0.149
6 0.169 0.259 0.932 0.314
12 0.383 0.0602 0.886 0.537

Dir. Hor. AR QuickNet MBE Autom QN-SG NP NC
1 0.648 0.908 0.986 0.792 0.882 0.996

AR 3 0.233 0.488 0.897 0.601 0.314 0.973 0.999
6 0.641 0.999 0.921 0.969 0.998 1 1
12 0.693 0.214 0.352 0.488 0.191 1 0.998

Table 23: p-values of the Wilcoxon signed-rank test for testing the hypoth-
esis that the mean of the differences of absolute forecast errors of the US
unemployment rate from the linear recursive AR model and another model
equal zero against the alternative that the other model has smaller absolute
forecast errors. p-values subtracted from one are those of the test in which
the null and the alternative hypothesis change places

Type of forecast Recursive Direct 12
Number of variables Total Lags HU Total Lags HU

QuickNet 6.73 0 6.73 8.67 0 8.67
QN-SG 6.30 0 6.30 7.53 0 7.53
MBE 3.93 0 3.93 1.40 0 1.40
Autometrics 3.20 0 3.20 21.5 0.27 21.2

Table 24: The average number of linear lags and hidden units (HU) selected
for ANN models for recursive, and direct 12-months ahead, forecasting of the
US unemployment rate
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Filter Hor. AR QuickNet MBE Autom. QN-SG
1 0.09843 1.055 1.022 1.123 1.048

NF 3 0.1664 10.88 1.013 1.205 1.064
6 0.2798 94.17 0.9782 1.136 1.024
12 0.5117 226 0.9324 0.9876 0.9511
1 1 1.055 1.022 1.123 1.048

SW 3 1 1.218 1.013 1.205 1.064
6 1 1.074 0.9782 1.136 1.024
12 1 0.9938 0.9324 0.9876 0.9511
1 1 1.055 1.022 1.123 1.048

AR 3 1 1.218 1.013 1.205 1.064
6 1 1.074 0.9782 1.136 1.024
12 1 0.9938 0.9324 0.9876 0.9511

Table 25: Root mean square forecast error ratios of the recursive forecasts
for the Norwegian unemployment rate series. Models respecified after each
period. Forecasting begins July 2007

seen from Table 24 that Autometrics and MBE are the most parsimonious
methods for recursive models. Likewise, MBE selects very few variables for
direct 12-month models, whereas Autometrics does exactly the opposite. It
is the only method that occasionally selects a linear lag, and this happens in
constructing 12-month models. The numbers for QuickNet lie between these
two extremes.

6.3.3 Norway

The Norwegian unemployment rate has not been much affected by the crisis,
and the RMSFE for a linear 12-month forecast equals only 0.520. Table 25
shows that for recursive forecasts, the linear AR model is the most accurate
for the shortest horizons but is inferior to all ANN forecasts at the 12-month
horizon. QuickNet generates some out-of-bounds forecasts, whereas the other
three methods do not need filtering. MBE is the most accurate one of them.
If the model is not respecified during the forecasting period, Autometrics
is the best performer in forecasting one and 12 months ahead (results not
reported here in detail). Linearity testing has a positive effect on the forecasts
from MBE and QN-SG but a negative one on Autometrics-based forecasts.
Results on direct forecasts can be found in Table 26. They indicate that

for short horizons, the recursive forecasts from the linear AR model are su-
perior to the other forecasts. In 12-month forecasts the situation changes
quite drastically, and all the methods, except ’no change’and Autometrics
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Filter Hor. AR QuickNet MBE Autom. QN-SG NP NC
1 1 1.055 1.022 1.123 1.048 1.000 1.066

NF 3 0.9837 1.162 1.022 1.374 1.129 1.046 1.237
6 1.011 1.015 1.019 1.149 1.060 0.9247 1.192
12 0.9538 0.7795 0.8881 1.048 0.7058 0.9519 1.011
1 1 1.055 1.022 1.123 1.048 1.000

SW 3 0.9837 1.162 1.022 1.374 1.129 1.046
6 1.011 1.015 1.019 1.149 1.060 0.9247
12 0.9538 0.7795 0.8881 1.048 0.7058 0.9519
1 1 1.055 1.022 1.123 1.048 1

AR 3 0.9837 1.162 1.022 1.374 1.129 1.046
6 1.011 1.015 1.019 1.149 1.060 0.9247
12 0.9538 0.7795 0.8881 1.048 0.7058 0.9519

Table 26: Root mean square forecast errors of the direct forecasts for the
Norwegian unemployment rate series. Models respecified after each period.
Forecasting begins July 2007

yield models that forecast better than the linear model. The two Quick-
Net methods are the most accurate ones, with QN-SG having the smallest
RMSFE ratio. The direct 12-month forecasts are even more accurate than
the corresponding recursive ones. No forecasts are being filtered.
Results of the Wilcoxon signed-rank test in Table 27 deviate from the

general trend in that many direct models generate relatively acceptable fore-
casts. They include both QuickNet methods, MBE and the nonparametric
model. This is true in particular when the forecasting horizon is 12 months,
QN-SG being ahead (the p-value equals 0.0225). Recursive MBE is also a
good performer: the lowest p-value (at the 12-month horizon) equals 0.053.
Autometrics does not do well in this test if the 12-month horizon is omitted
from comparison.
The average number of variables selected for Norwegian ANN models can

be found in Table 28. Linear lags are very rarely selected. QuickNet, the
only method that generates insane forecasts, is the one choosing the largest
amount of hidden units for models recursive forecasting. There is a big
difference between it and QN-SG. The latter also produces more accurate
forecasts of the two. Note, however, that this difference disappears when
direct 12-month models are considered. In this case, neither QuickNet nor
QN-SG forecasts need filtering.
MBE is still the most parsimonious method. Autometrics has the same

property as before: the models for direct multiperiod forecasting contain a
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Rec. Hor. QuickNet MBE Autom QN-SG
1 0.431 0.714 0.978 0.911

AR 3 0.982 0.700 0.984 0.984
6 0.961 0.609 0.996 0.908
12 0.809 0.0532 0.735 0.359

Dir. Hor. AR QuickNet MBE Autom QN-SG NP NC
1 0.431 0.714 0.978 0.911 0.617 0.911

AR 3 0.0602 0.741 0.820 0.993 0.455 0.869 0.983
6 0.767 0.367 0.663 0.656 0.439 0.245 0.886
12 0.265 0.0735 0.0958 0.447 0.0225 0.322 0.447

Table 27: p-values of the Wilcoxon signed-rank test for testing the hypothesis
that the mean of the differences of absolute forecast errors of Norwegian
unemployment rate from the linear recursive AR model and another model
are equal against the alternative that the other model has smaller absolute
forecast errors. p-values subtracted from one are those of the test in which
the null and the alternative hypothesis change places

Type of forecast Recursive Direct 12
Number of variables Total Lags HU Total Lags HU

QuickNet 9.53 0 9.53 4.80 0 4.80
QN-SG 2.77 0 2.77 5.57 0 5.57
MBE 1.87 0 1.87 1.57 0 1.57
Autometrics 3.43 0 3.43 16.9 0.07 16.8

Table 28: The average number of linear lags and hidden units (HU) selected
for ANN models for recursive, and direct 12-months ahead, forecasting of the
Norwegian unemployment rate from July 2007 onwards
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large number of hidden units. Although the Norwegian unemployment rate
has been relatively easy to forecast, Autometrics still favours large models
when the shortest lags are barred from the selection pool. This becomes
obvious already in three-month models that on average contain 22.6 hidden
units (and no linear lags). This tendency to generate large models may lie
behind the crashes of Autometrics in our experiments.
The remaining country-specific RMSFE results can be found at http://

econ.au.dk/research/research-centres/creates/research/research-
papers/supplementary-downloads/.

6.3.4 Summary

One of the most consistent features of the ANN models for recursive fore-
casting is that QuickNet-based models sometimes generate very inaccurate
forecasts. This happens for eight countries out of eleven. One of the remain-
ing three is Germany, whose models were based on only 150 hidden units.
It may be noted that the specific-to-general version QN-SG did not generate
a single completely inaccurate forecast in that no forecast was filtered. The
QN-SG forecasts were also often more accurate than the QuickNet ones.
Another common outcome is that the benchmark linear AR model is

quite competitive against the ANN ones when recursive forecasts are com-
pared. It is most frequently surpassed by MBE which also selects the most
parsimonious models for both recursive and direct forecasting. This happens
for more than one half of the countries at least at two forecast horizons. For
two countries, the linear AR model is always better than any of its ANN
competitors. They are France and Germany. Note that for the latter, the
selection pool only contained 150 hidden units, 1/8 of the total forming the
starting-point of the experiment. It may be that this is too little for the
ANN models estimated through linear model selection to have a fair chance
to perform better than the linear model.
Third, filtering is most often applied to QuickNet (as is obvious from

above) and Autometrics recursive forecasts. There are only two countries
for which the unemployment rate forecasts are never filtered: Sweden and
Germany. For the latter, this may again have to do with the size of the
selection pool.
Fourth, it seems that not respecifying the model during the forecasting

period beginning in July 2007 was most beneficial for Autometrics (five cases
out of 11). In general, however, respecifying seems a better idea. Further-
more, Autometrics in some cases seems to have gained from prescreening via
linearity testing, but in general this did not seem useful. For Japan, however,
linearity was never rejected. Nevertheless, for this country all four methods
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(after filtering) generated more accurate forecasts than the linear AR model.
Fifth, even some direct models occasionally yield vastly inaccurate fore-

casts. This occurs less frequently than in the case of recursive forecasting,
but both some QuickNet and Autometrics-based models do that. Results of
the Wilcoxon signed-rank test indicate that direct forecasts are on average
not superior to their recursive counterparts, although country-specific results
may contain exceptions. In comparing recursive and direct linear forecasts
using the same test the results are similar to the previous ones: the recursive
AR forecasts in general appear more accurate than direct ones.

7 Conclusions

The results of our forecasting experiment show that when it comes to forecast
during a severe economic crisis, there is no dominant method for doing that
among the ones considered here. The behaviour of the series may affect the
results. In most cases, the industrial production growth rates turn negative
and then positive again. The unemployment rates typically increase without
a clear turning-point during the forecasting period. A method may perform
well for one type of series but not for the other. A case in point is the
nonparametric model that yields reasonable forecasts overall for industrial
production series but fares less well in forecasting unemployment rates. The
same is true for the ’no change’ forecast. A general conclusion is that on
average, it is not easy to improve upon the linear AR model.
Concerning ANN selection methods, a tentative conclusion is that parsi-

monious methods work best. This is in agreement with the results reported
in Kock and Teräsvirta (2011b). In comparing QuickNet with QN-SG it is
seen that the latter generates fewer completely erroneous forecasts. These
forecasts are likely to emerge from models with a number of very strongly
correlated variables. The possibility of choosing such models is greater in
QuickNet than in QN-SG but could be controlled by keeping the maximum
number of variables to be selected small in QuickNet. In this experiment it
has equalled ten.
It seems that the modelling philosophy of MBE is suitable for this type of

model selection problem. MBE works to first remove all irrelevant variables
from consideration and build a model on the remaining ones. The result
is most often a parsimonious model. Judging from the results, this is a
reasonable strategy.
Autometrics tries to find a model that is parsimonious but also passes a

battery of misspecification tests. This strategy works well when the model
is a reasonable approximation to reality but less well when it is not. In
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direct forecasting one is facing the latter situation, because the most relevant
lags are excluded from consideration. The result is a heavily parameterised
ANN model that can sometimes forecast well but often is not competitive
against the other ANN models. It appears that Autometrics may not be an
appropriate tool for building models for direct multiperiod forecasting. It can
be an excellent choice when the data-generating process is well approximated
by a subset of variables in the data set of the researcher. A simulated example
in Kock and Teräsvirta (2011b) demonstrates this fact very clearly.
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Appendices

A Creating the pool of hidden units

We use the following modification of the strategy of White (2006); see Kock
and Teräsvirta (2011b):

1. Rewrite the argument of the logistic function in (1) as follows:

γ ′zt = (γ1/σ̂z)(γ
′
2z̃t − γ0) (8)

where zt = (1, z̃′t)
′ and σ̂z is the sample standard deviation of γ ′2z̃t.

Choose γ2 as in White (2006).

2. Next obtain γ0. Consider the values xt = γ ′2z̃t, t = 1, ..., T . Let xmin
and xmax denote the minimum and maximum values of this sequence.
Let d = xmax−xmin. Now draw γ0 from a uniform (xmin+δd, xmax−δd)
distribution for δ ∈ [0, 0.5]. We choose δ = 0.1. In this way we make
sure that the hidden units are not centred at very small or large values
of γ ′2z̃t. As a result of the parameterization (8), demeaning z̃t is not
necessary.

3. Finally, the slope parameter γ1 is chosen uniformly at random from
the set {1.25j : j = 0, 1, ..., 20}. The range of possible values is (1, 87).
The set is deliberately constructed to be denser for small values since
the slope of the logistic function changes more for changes in γ1 when
γ1 is small than when it is large. For large values of γ1 changes in this
parameter will not affect the slope of the logistic function much, and
so it is less important to have a dense grid there.

The decisive difference between White’s strategy and ours lies in §3. In
the former, γ1 is not a scale-free parameter. That is, a change of units in z̃t
affects the set of possible slopes that can be selected, which is a disadvantage.
In (8), γ1 is a scale-free parameter due to the division of the exponent by
σ̂z, for discussion, see for example Teräsvirta (1998). This makes it possible
for the user to define a reasonable range for this parameter. The minimum
value of the scale-free γ1 is set to unity in order to avoid logistic functions
with too little sample variation.
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Figure 1: Logarithm of the industrial production index for the G7 and the
four Scandinavian countries, 1994(8)—2009(12)
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Figure 2: Unemployment rate series for the G7 and the four Scandinavian
countries, 1994(8)—2009(12)

43



Research Papers 
2011 

 

 

 

2011-14: Stefano Grassi and Paolo Santucci de Magistris: When Long Memory 
Meets the Kalman Filter: A Comparative Study 

2011-15: Antonio E. Noriega and Daniel Ventosa-Santaularia: A Simple Test for 
Spurious Regressions 

2011-16: Stefano Grassi  and Tommaso Proietti: Characterizing economic 
trends by Bayesian stochastic model specification search 

2011-17: Søren Johansen and Theis Lange: Some econometric results for the 
Blanchard-Watson bubble model 

2011-18: Tom Engsted and Thomas Q. Pedersen: Bias-correction in vector 
autoregressive models: A simulation study 

2011-19: Kim Christensen, Roel Oomen and Mark Podolskij: Fact or friction: 
Jumps at ultra high frequency 

2011-20: Charlotte Christiansen: Predicting Severe Simultaneous Recessions 
Using Yield Spreads as Leading Indicators 

2011-21: Bent Jesper Christensen, Olaf Posch and Michel van der Wel: 
Estimating Dynamic Equilibrium Models using Macro and Financial 
Data 

2011-22: Antonis Papapantoleon, John Schoenmakers and David Skovmand: 
Efficient and accurate log-Lévi approximations to Lévi driven LIBOR 
models 

2011-23: Torben G. Andersen, Dobrislav Dobrev and Ernst Schaumburg: A 
Functional Filtering and Neighborhood Truncation Approach to 
Integrated Quarticity Estimation 

2011-24: Cristina Amado and Timo Teräsvirta: Conditional Correlation Models 
of Autoregressive Conditional Heteroskedasticity with Nonstationary 
GARCH Equations 

2011-25: Stephen T. Ziliak: Field Experiments in Economics: Comment on an 
article by Levitt and List 

2011-26: Rasmus Tangsgaard Varneskov and Pierre Perron: Combining Long 
Memory and Level Shifts in Modeling and Forecasting of Persistent 
Time Series 

2011-27: Anders Bredahl Kock and Timo Teräsvirta: Forecasting Macroecono-
mic Variables using Neural Network Models and Three Automated 
Model Selection Techniques 

2011-28: Anders Bredahl Kock and Timo Teräsvirta: Forecasting performance 
of three automated modelling techniques during the economic crisis 
2007-2009 




