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Abstract. In this paper we consider the forecasting performance of
a well-defined class of flexible models, the so-called single hidden-layer
feedforward neural network models. A major aim of our study is to
find out whether they, due to their flexibility, are as useful tools in
economic forecasting as some previous studies have indicated. When
forecasting with neural network models one faces several problems, all
of which influence the accuracy of the forecasts. First, neural networks
are often hard to estimate due to their highly nonlinear structure. In
fact, their parameters are not even globally identified. Recently, White
(2006) presented a solution that amounts to converting the specification
and nonlinear estimation problem into a linear model selection and es-
timation problem. He called this procedure the QuickNet and we shall
compare its performance to two other procedures which are built on
the linearisation idea: the Marginal Bridge Estimator and Autometrics.
Second, one must decide whether forecasting should be carried out re-
cursively or directly. Comparisons of these two methodss exist for linear
models and here these comparisons are extended to neural networks.

Finally, a nonlinear model such as the neural network model is not
appropriate if the data is generated by a linear mechanism. Hence, it
might be appropriate to test the null of linearity prior to building a non-
linear model. We investigate whether this kind of pretesting improves
the forecast accuracy compared to the case where this is not done.

Keywords: artificial neural network, forecast comparison, model
selection, nonlinear autoregressive model, nonlinear time series, root
mean square forecast error, Wilcoxon’s signed-rank test

JEL Classification Codes: C22, C45, C52, C53

Date: August 24, 2011.
Financial support from CREATES, funded by the Danish National Research Foundation,
is gratefully acknowledged. Part of this work was carried out when the first author was
visiting the Department of Economics at the University of California, Berkeley, and the
second author the Department of Economics at the European University Institute, Flo-
rence. We are thankful for the kind hospitality of these institutions during our visits.
Material from this paper has been presented at the workshop in Econometric Aspects
of Price Transmission Analysis, Georg-August University of Göttingen, August 2010, the
19th Symposium of the Society of Nonlinear Dynamics and Econometrics, Washington
DC, March 2011, the 31st International Annual Symposium in Forecasting, Prague, June
2011, and seminars at Banque de France and the European University Institute, Florence.
We thank participants of these occasions for their comments. The authors are solely re-
sponsible for any errors and shortcomings in this work. email: akock@creates.au.dk and
tterasvirta@econ.au.dk.

1



2 ANDERS BREDAHL KOCK AND TIMO TERÄSVIRTA

1. Introduction

Artificial Neural Networks (ANN) have been quite popular in many areas
of science for describing various phenomena and forecasting them. They
have also been used in forecasting macroeconomic time series and financial
series, see Kuan and Liu (1995) for a successful example on exchange rate
forecasting, and Zhang et al. (1998) and Rech (2002) for more mixed results.
The main argument in their favour is that ANNs are universal approxima-
tors, which means that they are capable of approximating arbitrarily accu-
rately functions satisfying only mild regularity conditions. The ANN models
thus have a strong nonparametric flavour. One may therefore expect them
to be a versatile tool in economic forecasting and adapt quickly to rapidly
changing forecasting situations. Recently, Ahmed et al. (2010) conducted an
extensive forecasting study comprising more than 1000 economic time series
from the M3 competition Makridakis and Hibon (2000), and a large number
of what they called machine learning tools. They concluded that the ANN
model that we are going to consider, the single hidden-layer feedforward
ANN model or multi-layer perceptron with one hidden layer, was one of the
best or even the best performer in their study. A single hidden-layer ANN
model is already a universal approximator; see Cybenko (1989) and Hornik
et al. (1989).

A major problem in the application of ANN models is the specification
and estimation of these models. A large number of modelling strategies have
been developed for the purpose. It is possible to begin with a small model
and increase its size (“specific-to-general”, “bottom up”, or “growing the
network”). Conversely, one can specify a network with a large number of
variables and hidden units or “neurons” and then reduce its size (“general-
to-specific”, “top down” or “pruning the network”). Since the ANN model
is nonlinear in parameters, its parameters have to be estimated numerically,
which may be a demanding task if the number of parameters in the model is
large. Recently, White (2006) devised a clever strategy for modelling ANNs
that converts the specification and ensuing nonlinear estimation problem
into a linear model selection problem. This greatly simplifies the estimation
stage and alleviates the computational effort. It is therefore of interest to
investigate how well this strategy performs in macroeconomic forecasting.
A natural benchmark in that case is a linear autoregressive model.

Quite often, application of White’s strategy leads to a situation in which
the number of variables in the set of candidate variables exceeds the number
of observations. The strategy handles these cases without problems, because
it essentially works from specific to general and then back again. We shall
also consider a one-way variant from specific to general in this study. One
may want to set a maximum limit for variables to be included in the model
to control its size.

There exist other modelling strategies that can also be applied to select-
ing the variables. In fact, White (2006) encouraged comparisons between his
method and other alternatives, and here we shall follow his suggestion. In
this work, we consider two additional specification techniques. One is Auto-
metrics by Doornik (2009), see also Krolzig and Hendry (2001) and Hendry
and Krolzig (2005), and the other one is the Marginal Bridge Estimator
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(MBE), see Huang et al. (2008). The former is designed for econometric
modelling, whereas the latter one has its origins in statistics. Automet-
rics works from general to specific, and the same may be said about MBE.
We shall compare the performance of these three methods when applying
White’s idea of converting the specification and estimation problem into
a linear model selection problem and selecting hidden units for our ANN
models. That is one of the main objectives of this paper.

The focus in this study is on multiperiod forecasting. There are two ways
of generating multiperiod forecasts. One consists of building a single model
and generating the forecasts for more than one period ahead recursively. The
other one, called direct forecasting, implies that a separate model is built
for each forecasting horizons, and no recursions are involved. For discussion,
see for example Teräsvirta (2006), Teräsvirta et al. (2010, Chapter 14), or
Kock and Teräsvirta (2011). In nonlinear forecasting, the latter method
appears to be more common, see for example Stock and Watson (1999) and
Marcellino (2002), whereas Teräsvirta et al. (2005) constitutes an example
of the former alternative. A systematic comparison of the performance of
the two methods exists, see Marcellino et al. (2006), but it is restricted to
linear autoregressive models. Our aim is to extend these comparisons to
nonlinear ANN models.

Nonlinear models can sometimes generate obviously insane forecasts. One
way of alleviating this problem is to use insanity filters as in Swanson and
White (1995, 1997a,b) who discuss this issue. We will compare two filters
to the unfiltered forecasts and see how they impact on the forecasting per-
formance of the neural networks.

In this work the ANN models are augmented by including lags of the vari-
able to be forecast linearly in them. As a result, the augmented models nest
a linear autoregressive model. It is well known that if the data-generating
process is linear, the augmented ANN model is not even locally identified;
see for example Lee et al. (1993), Teräsvirta et al. (1993) or Teräsvirta et al.
(2010, Chapter 5) for discussion. A general discussion of identification prob-
lems in ANN models can be found in Hwang and Ding (1997). It may then
be advisable to first test linearity of each series under consideration before
applying any ANN modelling strategy to it. But then, it may also be argued
that linearity tests are unnecessary, because the set of candidate variables
can be (and in our case is) defined to include both linear lags and hidden
units. The modelling technique can then choose among all of them and
find the combination that is superior to the others. We shall compare these
two arguments. This is done by carrying out pretesting and only fitting an
ANN model to the series if linearity is rejected. Forecasts are generated
from models specified this way and compared with forecasts from the ANN
models obtained using White’s method and the three automatic modelling
techniques.

The main criterion of comparing forecasts is the Root Mean Square Fore-
cast Error (RMSFE), which implies a quadratic loss function. Other alterna-
tives are possible, but the RMSFE is commonly used and thus even applied
here. We rank the methods, which makes some comparisons possible. Fur-
thermore, we also carry out Wilcoxon signed rank tests but principally for



4 ANDERS BREDAHL KOCK AND TIMO TERÄSVIRTA

descriptive purposes, so the tests are not used as an ex post model selection
criterion; see Costantini and Kunst (2011) for a discussion.

It might be desirable to compare White’s method with modelling strate-
gies which are not based on linearising the problem but in which statistical
methods such as hypothesis testing and nonlinear maximum likelihood es-
timation are applied. Examples of these include Swanson and White (1995,
1997a,b), Anders and Korn (1999) and Medeiros et al. (2006). These ap-
proaches do, however, require plenty of human resources, unless the number
of time series under consideration and forecasts generated from them are
small. This is because nonlinear iterative estimation cannot be automated
and the algorithms left to their own devices. Each estimation needs a non-
negligible amount of tender loving care, and when the number of time series
to be considered is large, ANN model building and forecasting tend to re-
quire a substantial amount of resources.

In this paper we investigate the forecasting performance of the above tech-
niques. We first conduct a small simulation study to see how well these tech-
niques perform when the data are generated by a known nonlinear model.
The economic data sets consist of the monthly unemployment and consumer
price index series from the 1960’s until 2009.

The plan of the paper is as follows. The neural network model is presented
in Section 2 and estimation techniques in Section 3. The recursive and
direct forecasting methods are discussed in Section 4 and the results are
summarized in Section 5, while Section 6 concludes.

2. The model

We begin by briefly introducing the Artificial Neural Network (ANN)
model and reviewing some of its properties. The techniques for specifying
the structure of the model and estimating the parameters will be considered
in the next section. Our model is the so-called single-hidden-layer feedfor-
ward autoregressive neural network model or single-hidden-layer perceptron

(1) yt = β′
0zt +

q∑

j=1

βj(1 + exp{γ′
jzt})

−1 + εt

where zt = (1, yt−1, ..., yt−p)
′, β0 = (β00, β01, ..., β0p)

′, γj = (γj0, γj1, ..., γjp)
and εt ∼ iidN (0, σ2). The weak stationarity condition of (1) is the same as
that of the corresponding linear AR(p) model. The ANN model is a so-called
universal approximator in the following sense. Suppose there is a functional
relationship between y and z: y = H(z). Then under appropriate regularity
conditions for any δ > 0 there exists a positive integer q < ∞ such that∥∥∥H(z) −

∑q
j=1 βj(1 + exp{γ′

jz})
−1

∥∥∥ < δ where ‖·‖ is an appropriate norm.

This indicates that (1) is a very flexible functional form and thus in principle
capable of satisfactorily approximating various nonlinear processes.

Before forecasting with the model (1), the number of logistic functions
or hidden units q has to be specified and its parameters estimated. Various
specification techniques have been proposed in the literature. One possibility
is to begin with a large model (large q) and reduce the size of the model,
that is, to prune the network. Another possibility is to begin with a small
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model and add hidden units, which is called ’growing the network’. Either
way, one also has to estimate the parameters of the model which, given that
it is heavily nonlinear, may be numerically demanding, in particular when q
is large. For discussion, see for example Fine (1999, Chapter 6), Goffe et al.
(1994), or Simon (1999).

Nevertheless, if the parameter vectors γj , j = 1, ..., q, are known, the
model is linear in parameters. This opens up the possibility to combine
specification and estimation into a single linear model selection problem.
White (2006) suggested this technique for specifying and estimating artificial
neural network models. The linear model selection problem encountered is
the one of choosing a subset of variables from the set

(2) S = {yt−i, i = 1, ..., p; (1 + exp{γ′
jzt})

−1, j = 1, ..., M}

where M is large. Since the quality of the estimates depends on the size of
S, the number of variables in a typical macroeconomic application is likely
to exceed the number of observations. Model selection techniques that can
handle such a situation are discussed in the next section.

The neural network model (1) is not the only possible universal approxi-
mator for this application. White (2006) mentions ridgelets, Candès (1998,
2003), as an alternative. Polynomials would probably in this context not be
the best possible class of universal approximators. The fit of the estimated
polynomials often deteriorates at both ends of the series they describe, which
is not a desirable feature in forecasting economic variables such as growth
rates. Another universal approximator, the Fourier Flexible Form (FFF), is
discussed in Gallant (1984). In applying the FFF, the problem of construct-
ing the variables would have two aspects. One would have to choose the
linear combinations γ′

jzt, but one would also have to decide the number of
frequencies in the sum of trigonometric components. We settle for the ANN
model, because it is, alongside the polynomials, probably the most com-
monly used universal approximator, and because QuickNet was originally
designed to solve the specification and estimation problem for this model.

3. Modeling with three automatic model selection algorithms

We consider three model selection algorithms that apply to our modelling
problem, in which the number of variables exceeds the number of obser-
vations. They are Autometrics, constructed by Doornik (2009), Marginal
Bridge Estimator (MBE), see Huang et al. (2008), and QuickNet, White
(2006). Autometrics is built on the principle of moving from general to
specific, which means beginning with a large model and gradually reducing
its size. QuickNet may be characterised as a specific-to-general-to specific
procedure, although we shall also report results on a simplified specific-to-
general version. The starting-point of MBE also involves all variables, but
the process of selecting the final model is very different from Autometrics.
We shall now describe these three techniques in more detail, beginning with
Autometrics.

3.1. Autometrics. Modelling begins with a linear model called the Gen-
eral Unrestricted Model (GUM). When the number of variables is less than
the number of observations the GUM contains all candidate variables. The
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model is subjected to significance tests. If all variables have statistically
significant coefficient estimates, the GUM is the final model. Otherwise,
because there is no unique way of going from general to specific, the algo-
rithm searches simpler models using different search paths. It does that by
removing variables with insignificant coefficients. When the model cannot
be reduced any more, it is subjected to diagnostic tests. If it passes the
tests, it is called a terminal model. Since there are many search paths, there
will in general be several terminal models as well.

After reaching this stage, Autometrics forms the union of the terminal
models and tests the terminal models against it. The union of the models
that pass the tests form a new GUM. The general-to-specific testing pro-
cedure is then repeated and a new set of terminal models obtained. If all
models in this set are rejected against the new union model, the union will
be the final model. Otherwise, modelling restarts with yet another GUM
and continues until a final model has been reached.

In our case, the number of variables exceeds the number of observations.
We follow Hendry and Krolzig (2005) and divide the variables into subsets,
each of which contains fewer variables than observations. This implies that
at the outset there exists more than one GUM. Each of these GUMs now
forms a starting-point for Autometrics and the algorithm yields a set of
terminal models for each GUM. The terminal models derived from all subsets
of variables or all GUMs are merged to form a single union model. If the
number of variables in this model is less than the number of observations,
which happens in our application, model selection proceeds from this union
model as described above.

Autometrics is partly a black box. The user can, however, affect the
outcomes by selecting a number of settings, such as the significance level of
the tests the algorithm relies on.

3.2. Marginal Bridge estimator. MBE is designed for situations often
occurring in statistical and genomic applications in which there is a large
number of candidate variables but only a small subset of these may belong to
the model. Following Huang et al. (2008), consider first the Bridge estimator
(BE). This is a shrinkage estimator for a linear regression model

(3) yi = α + β′xi + εi, i = 1, ..., n

where xi = (xi1, ..., xipn
)′ is a pn × 1 observation vector (pn may increase

in n but pn < n,) and α = 0 without loss of generality. Furthermore, εi ∼
iid(0, σ2). BE estimates β by minimizing

L(β) =
n∑

i=1

(
yi − β′xi

)2
+ λn

pn∑

k=1

|βk|
γ(4)

where γ > 0 and λn > 0 determines the size of the penalty. Let the true
parameter vector be β0= (β′

10, β
′
20)

′ with β10 having no zero entries, β20 = 0,

and let β̂n = (β̂′
1n, β̂′

2n)′ be the corresponding estimator from (4). BE min-
imizes the OLS objective function plus a penalty for parameters different
from zero. Hence, it shrinks esimates towards zero . Huang et al. (2008)
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showed that under regularity conditions parameters are i) estimated consis-

tently (β̂n → βn in probability), ii) the truly zero parameters are set to zero(
P (β̂2n = 0) → 1

)
and iii) the asymptotic distribution of the estimators of

nonzero parameters is the same as if only these had been included in the
model. This means that the parameters of the nonzero coefficients are es-
timated (asymptotically) as efficiently as if only the relevant variables had
been included in the model from the outset.

For BE to possess this property one needs pn < n. When this condition
no longer holds, MBE is applicable. The idea is to run a series of ’mini’ or
’marginal’ regressions, with a penalty on parameters that differ from zero.
The function to be minimized equals

(5) Qn(β) =

pn∑

k=1

n∑

i=1

(yi − βkxik)
2 + λn

pn∑

k=1

|βk|
γ

Let β̃n= (β̃′
1n, β̃′

2n)′ be the estimator of β0 from (5). Under regularity condi-

tions and 0 < γ < 1, (a) the estimator β̃2n = 0 with probability converging

to one, and (b) P (β̃1nk 6= 0, β̃1nk ∈ β̃1n) → 1, as n → ∞. Property (a) is

similar to ii) for the BE. According to (b), the elements of β̃1n converge
to nonzero values. Thus, (a) and (b) jointly can be expected to efficiently
separate the relevant variables from the rest.

Of the conditions underlying the above result the so-called partial orthog-
onality condition is problematic in a time series context. It states that the
correlation between the relevant and irrelevant variables is not allowed to
be too high. This condition can be violated if the explanatory variables are
lags and functions of lags of the dependent variable as in our case. However,
as we shall see in Section 5, MBE works quite well even in our context.

3.3. QuickNet. QuickNet (QN) resembles an earlier modelling device called
RETINA, see Perez-Amaral et al. (2003). The idea of RETINA is to find
the explanatory variables that in absolute terms are most strongly correlated
with yt. The most correlated variable is selected first, and the following ones
one by one thereafter. QuickNet differs from RETINA in that the set of
candidate variables is different, as is the model selection criterion used for
final selection. QuickNet works as follows. First, the set of candidate vari-
ables S, see (2), is constructed. The variables have to be such that they
show sufficient variation in the sample and are not perfectly linearly corre-
lated; see White (2006) for details. This set of candidate variables is also
used when Autometrics and MBE are applied. Once this has been done, a
predetermined number of variables, q, are added to the model from the set
S, according to the rule that selects the variable with the strongest (posi-
tive or negative) correlation with the residuals of the previously estimated
model. Then a model selection criterion is applied to choose a subset of the
q variables. We used 10-fold cross validation as suggested by Hastie et al.
(2009).

We also experiment with a simplified unidirectional version of this method.
The variables are selected one at a time as before, but the significance of
the the added variable is tested at each step. Parsimony is appreciated, so
the significance level of the tests is decreased as the number of variables the
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model increases. Adding variables is terminated at the first non-rejection
of the null hypothesis, so this is a pure specific-to-general strategy. In the
empirical section, we apply this method such that the significance level of
the first test in the sequence equals 0.2. Beginning with this value, the sig-
nificance level is then halved at each step. In reporting results in Section
5, this method is called QN-SG. To compare the forecasts of the neural
network models to genuinely nonparametric ones, direct Nadaraya-Watson
kernel regression forecasts (NP) are generated. Finally, no change forecasts
(NC), which forecast that the variable of interest takes the same value at
any future point in time as it does at the time of forecasting, are computed
and compared with the others.

4. Forecasting

4.1. Two ways of generating multiperiod forecasts. There are two
main ways of creating multiperiod forecasts. One can either generate the
forecasts recursively, or one may apply direct forecasting. In the former
case, one and the same model is used for all forecast horizons. Direct fore-
casting implies that a separate model is built for each forecast horizon. In
the empirical section of the paper we shall compare results from these two
approaches. A brief discussion of these two techniques follows next.

4.1.1. Recursive forecasts. In order to illuminate recursive forecasting, con-
sider the model (1) with p = q = 1. These restrictions are for notational
simplicity only. Assuming the information set FT−1 = {yT−j , j ≥ 1} is in-
dependent of future error terms, the one-period-ahead forecast made at time
T equals

yT+1|T = E
(
yT+1|FT

)
= β00 + β01yT + β1(1 + exp{γ0 + γ1yT })

−1.

The corresponding conditional mean yT+2|T , that is, the two-period forecast,
becomes

yT+2|T = E
(
β00 + β01yT+1 + β1(1 + exp(γ0 + γ1yT+1))

−1 + εT+2|FT

)

= β00 + β01yT+1|T + β1E
(
1 + exp(γ0 + γ1(yT+1|T + εT+1))

−1|FT

)

= β00 + β01yT+1|T + β1

∫ ∞

−∞
(1 + exp(γ0 + γ1(yT+1|T + z)))−1φ(z)dz(6)

where φ(z) is the density of the N (0, σ2) random variable. The integral
in (6) can be computed by numerical integration. Note that it becomes a
multiple integral when the forecast horizon h > 2. It is therefore better
to calculate its value by simulation or by bootstrapping the residuals of
the model, because this remains a computationally feasible method even
when h > 2. Some authors bypass this complication altogether by setting
εT+1 = 0 in the logistic function, and as a result their forecasts are biased
estimates of the conditional mean.

In this work we apply the bootstrap. It has the advantage over simulation
that unconditional heteroskedasticity of unknown form is allowed in the
error process. More discussion about recursive forecasting can be found in
Teräsvirta (2006), Kock and Teräsvirta (2011) or Teräsvirta et al. (2010,
Chapter 14) among others.



FORECASTING BY AUTOMATED MODELLING TECHNIQUES 9

4.1.2. Direct forecasts. In direct forecasting, the conditional mean estimate
arises from a different model for each time horizon. Given the information
set FT , the forecast for T + h made at T equals

yD
T+h|T = gh(yT , yT−1, ..., yT−p+1)

where gh is a function of yT and its lags. In our case, model selection is
made using the three aforementioned techniques, but there is a ’gap’ in the
model in that yT+h−1, ..., yT+1 do not enter the equation. The advantage
of the direct method lies in its computational simplicity: no recursions are
needed. But then, a separate model has to be specified for each forecast
horizon.

4.1.3. Forecasts based on differences and forecast errors. The forecasts based
on differences are obtained in the following way. When forecasting recur-
sively first differences ∆yt = yt − yt−1 are being modelled and forecast. The
p lags of the left hand side variable are thus ∆yt−1, ...,∆yt−p To get an h-
periods-ahead forecast, which is of yT+h, the first-difference forecasts have
to be cumulated1:

(7) E
(
yT+h|FT

)
=

h∑

j=1

E
(
∆yT+j |FT

)
+ yT .

The corresponding forecast error is eT+h|T = yT+h − E
(
yT+h|FT

)
.

In direct h-periods-ahead forecasting, the variable to be modeled is ∆hyt =
yt−yt−h. The p lags of the left-hand side variable are thus ∆hyt−h, ...,∆hyt−h−p+1

and the corresponding forecast of yT+h is E
(
∆hyT+h|FT

)
+ yT . The esti-

mated model yields direct estimates of the conditional mean.
The measure of performance in this work is the root mean square forecast

error (RMSFE). It is calculated for each time series from out-of-sample
forecasts for the forecasting period beginning at T0 and ending at T −hmax,
where T is the last available observation and hmax is the maximum forecast
horizon. Thus,

RMSFEh = {(T − hmax − T0 + 1)−1
T−hmax∑

t=T0

e2
t+h|t}

1/2.

4.2. Insanity Filters. Nonlinear models may sometimes generate forecasts
that are deemed unrealistic in the light of the hitherto observed values of
the time series. This has prompted forecasters to introduce precautions in
order to avoid excessive forecast errors. The idea is to replace an unre-
alistic forecast with a more conventional and believable one. It has been
applied, among others, by Swanson and White (1995, 1997a,b) who call the
procedure the insanity filter, Stock and Watson (1999) and Teräsvirta et al.
(2005). We shall make use of two insanity filters. The first one works as
follows: If the h-step ahead predicted change exceeds the maximum h-step
change observed during the estimation period, the most recently observed
value of the variable to be predicted is the forecast. Hence, in the words of
Swanson and White (1995) we “replace craziness by ignorance”. We shall
call this filter the Swanson and White (SW) filter. In the second filter,

1The unknown E
(
∆yT+j |FT

)
are of course replaced by their bootstrapped counterparts.
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the extreme predicted change is replaced by a forecast from our benchmark
linear autoregressive model: craziness is replaced by linearity.

5. Results

The above techniques are applied to the monthly Consumer Price Index
(CPI) and unemployment series for the G7 countries as well as the four Scan-
dinavian countries. Before considering these macroeconomic series a small
Monte Carlo experiment is conducted. As mentioned in the introduction,
the purpose of this exercise is to see how the three modelling procedures
perform under controlled circumstances when the data generating process is
known and contained in the linear span of S and thus is possible to select.

5.1. General methodology and data. The technique for generating the
potential hidden units for the ANN model (1) is described in the Appendix.
We have modified the original White (2006) technique somewhat to make it
more suitable to our modelling problem. For QuickNet and MBE we used
10-fold cross validation as in Hastie et al. (2009) to determine the number of
hidden units to be included. We also used the hv-Cross Validation procedure
of Racine (2000) but this did not improve the results, so they are omitted.
Following the suggestion of White (2006), the maximum number of variables
in the ANN models was set to ten.

The macroeconomic series are obtained from the OECD Main Economic
Indicators. Most series begin in the 1960s and end in December 2009 or Jan-
uary 2010. The CPI series were transformed to logarithms before modelling
them, and the forecast errors discussed in the paper are errors in forecasting
the transformed series.

5.2. Monte Carlo. For our simulation study we chose a strongly nonlinear
model from Medeiros et al. (2006). These authors took the well-known an-
nual Wolf’s sunspot number series and, after transforming the observations
using the Box-Cox transformation as in Ghaddar and Tong (1981), fitted an
ANN model (1) with two hidden units to the transformed series. The model
is:

yt = − 0.17 + 0.85yt−1 + 0.14yt−2 − 0.31yt−3 + 0.08yt−7

+ 12.8G1(yt−1) + 2.44G2(yt−1) + ǫt(8)

where the two hidden units are

G1(yt−1) =
(
1 + exp

(
−0.46 (0.29yt−1 − 0.87yt−2 + .40yt−7 − 6.68)

))−1

and

G2(yt−1) =
(

1 + exp
(
−1.17 × 103 (0.83yt−1 − 0.53yt−2 − 0.18yt−7 + 0.38)

))−1

and ǫt ∼i.i.d.N(0,1). We generate 500 time series of 600 observations from
this model. The set of potential variables consists of G1, G2, 1000 other
hidden units, and ten lags of yt. The number of variables thus greatly exceeds
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Recursive Hor. DGP AR QN MBE Autom. QN-SG

1 1.82 1.456 1.343 1.730 1.105 1.805
NF 2 2.739 1.536 3.282 1.659 1.073 1.568

5 4.172 1.337 9 · 104 1.394 4023 1.283

1 1 1.456 1.513 1.730 1.105 1.855
SW 2 1.001 1.536 1.532 1.658 1.074 1.552

5 1.001 1.392 1.218 1.395 1.028 1.269

1 1 1.456 1.322 1.730 1.105 1.776
AR 2 1.001 1.536 1.366 1.658 1.074 1.552

5 1.001 1.337 1.214 1.395 1.028 1.269

Table 1. Average root mean square forecast error ratios for the recursive
forecasts of the simulated sunspot series. DGP: Data generating process, AR:
Autoregression, QN: QuickNet, MBE: Marginal Bridge Estimator, Autom.:
Autometrics, QN-SG: Quick-Net specific to general. NF: No Filter (for the

DGP the NF subcolumn contains the actual root mean square forecast er-
ror from forecasting with the DGP), SW: Swanson-White filter, AR: Insane
forecasts replaced by linear autoregressive ones.

Direct Hor. AR QN MBE Autom. QN-SG NP NC

1 1.456 1.343 1.730 1.105 1.805 1.546 3.560
NF 2 1.518 9.575 1.549 1.652 1.436 1.332 4.226

5 1.306 1.353 1.241 1.359 1.293 1.124 3.984

1 1.456 1.513 1.730 1.105 1.855 1.658
SW 2 1.518 1.52 1.549 1.532 1.733 1.424

5 1.363 1.326 1.241 1.322 1.293 1.124

1 1.456 1.322 1.730 1.105 1.776 1.555
AR 2 1.518 1.35 1.549 1.355 1.444 1.335

5 1.306 1.219 1.241 1.246 1.293 1.124

Table 2. Average root mean square forecast error ratios for the direct

forecasts of the simulated sunspot series. NP: Non-parametric, NC: No Change
forecasts. NF: No Filter, SW: Swanson-White filter, AR: Insane forecasts
replaced by linear autoregressive ones.

the number of observations. The forecast horizons are one, two, and five
years, and the maximum number of variables per each selected model equals
ten. We report RMSFE ratios such that the denominator is the RMSFE of
forecasts from (8), computed from the 500 replications.

Table 1 contains these ratios for the recursive forecasts. The first three
entries in the column named DGP contain the RMSFE for the forecasts
from the true model (8). As expected, all RMSFE ratios exceed unity.
Autometrics-selected models generate by far the most accurate forecasts of
the alternatives to the DGP, indicating that the method works well when
there is a true model that can be selected from the set of variables available
for the purpose. The other methods lead to models whose forecasts are of
more or less the same quality. The forecasts from MBE-selected models do
not need filtering but are nevetheless slightly more inaccurate than the other
(filtered) ones.

The performance of direct models is reported in Table 2. Models selected
by Autometrics no longer generate more accurate forecasts than the other
nonlinear models. Every possible direct model is misspecified by definition
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Rec Hor. DGP AR QN MBE Autom. QN-SG

1 3.35 4.53 4.03 4.92 3.68 4.6
AR 2 5.18 7.28 6.13 7.68 5.77 7.01

5 5.5 7.28 6.24 7.16 5.49 6.6

Dir Hor. AR QN MBE Autom. QN-SG NP NC

1 4.53 4.03 4.92 3.68 4.6 4.5 6.23
AR 2 7.19 6.65 7.54 6.2 6.93 6.67 10.4

5 7.1 6.6 6.79 6.47 7.07 6.15 10.4

Table 3. Average ranks based on the absolute forecasts errors. For each
procedure for which forecasts are carried out recursively as well as directly

the forecasts from the two alternatives are identical at the 1-month horizon.
Hence, the comparison is only made across the DGP forecasts and the direct
forecasts at the 1-month horizon and by construction the ranks are the same

for the recursive counterparts.

because the shortest lag (two-year model) or lags (five-year model) of yt

cannot be used, and Autometrics clearly suffers from this. Note the good
performance of the nonparametric model forecasting five years ahead. The
kernel autoregression seems to make most of the available information, and
the forecasts hardly need filtering. In fact, the SW filter has a negative effect
on the accuracy of the forecasts from this model. As may be expected, the No
Change forecast does not perform well in predicting these strongly cyclical
realisations.

We also compare the methods by calculating the average ranks of the
absolute forecast errors. Only the results for the AR filtered forecasts are
reported since the ranks obtained from the SW filtered ones are similar.

The ranks can be found in Table 3. As can be expected from the RMSFE
results, the forecasts from the DGP have the lowest ranks. However, the
ranks of the recursive forecasts by Autometrics are not much higher and even
as low as the DGP ones at the five year horizon. Of the remaining neural
network procedures MBE forecasts have the highest ranks while the No
Change forecasts are by far the least accurate overall. This is not surprising
due to the cyclical nature of the series to be forecast. The nonparametric
forecasts perform about as well as the ANN-based procedures at the shortest
horizons and better than them at the five year horizon.

Another robust way of considering the results is to use Wilcoxon’s signed-
rank test (Wilcoxon (1945)) for comparing forecasts from the DGP with the
others. The null hyothesis is that the absolute forecast error of the DGP and
that of the other model have the same mean whereas the alternative is that
the alternative model has a lower mean absolute forecast error. The tests
are carried out separately for each horizon. The results are reported in Table
4. A normal approximation has been used in calculating the p-values. This
is appropriate due to the large number of forecasts (500). Small p-values
indicate that the alternative model produces more accurate forecasts than
the DGP. If the alternative hypothesis is that the forecasts from the DGP
have the lowest mean, one simply subtracts the reported p-values from one
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Recursive Hor. AR QN MBE Autom. QN-SG

1 1 1 1 1 1
AR 3 1 1 1 1 1

5 1 1 1 0.852 1

Direct Hor. AR QN MBE Autom. QN-SG NP NC

1 1 1 1 1 1 1 1
AR 3 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1

Table 4. p-values of the Wilcoxon signed-rank test for testing the null of
the mean of the forecast errors from the DGP being equal to the mean of the

corresponding forecast error from the model in each column of the table. The
tests are carried out separately at each horizon and the alternative hypothesis
is that the model in the table has a lower mean. Top panel: Recursive forecasts.

Bottom panel: Direct forecasts.

Recursive Total Linear Nonlinear DGP units

QN 9.55 0.348 9.21 1.64
MBE 9.22 0.756 8.47 0.77
Autom 11 1.5 9.51 3.47
QN-GS 5.3 0.324 4.98 1.12

Table 5. Average number of variables selected for the recursive forecasts
of the CPI based on differences. “Total” indicates total number of variables
included, “Linear” indicates the number of linear units included, “Nonlinear”
gives the number of hidden units included, and DGP units gives the number

of units included from the data generating process.

and obtains the p-values of this test. All tests are based on the AR-filtered
forecasts2.

As can be seen from Table 4, the results in Tables 1 and 2 accord with
those from the Wilcoxon test. It is not possible to reject the hypothesis
that the absolute forecast errors of the DGP forecasts and those from the
alternative model have the same mean if the alternative hypothesis is that
the alternative model has a lower mean. If the alternative hypothesis is
that the DGP forecast errors have a lower mean, the null of equal means is
rejected with a single exception: the recursive five-year forecasts from the
Autometrics-selected ANN model.

Table 5 offers some background to the results in Tables 1 and 2. It contains
information about the size and variable types in the nonlinear models for
recursive forecasting. The average number of variables in every type of
model is larger than the size of (8) which is six variables as the intercept
is not counted. It is worth noting that Autometrics, while selecting the
largest models, picks up elements of the true model more frequently than
the other model selection techniques. This is probably the most important
factor in explaining its success in forecasting. Moreover, Autometrics on

2Alternatively, one could consider the Giacomini-White test (Giacomini and White (2006))
which includes the Diebold-Mariano test (Diebold and Mariano (1995)) as a special case.
The Giacomini-White test, however, relies on a rolling window. The Giacomini-White test
was also carried out but most often the conclusions were the same as for the Wilcoxon
test and so the results are not reported here.
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average chooses more linear lags than the other models, although fewer
than their number in the true model. The average number of linear lags in
the other models is rather small. The specific-to-general QN-SG is clearly
more parsimonious than QuickNet, but this result is not invariant to the
choice of significance levels in the test sequence. QuickNet-based recursive
forecasts are somewhat more accurate than QN-SG ones at one-and five-year
horizons.

5.3. Macroeconomic forecasts. The CPI and unemployment series are
forecast at the 1, 3, 6, and 12-month horizons. The CPI series are trans-
formed into logarithms, and 240 forecasts based on an expanding window
are generated for each horizon3. Forecasts from models of differenced series
are formed as described in Section 4.1.3. The pool of variables contains 600
hidden units with p = 6 in (1) and the first six linear lags of the dependent
variable.

The models are respecified every six months. This is because of Auto-
metrics is quite slow: otherwise respecification could easily be done every
month. Pretesting linearity and letting the nonlinear model selection oper-
ate only if the linearity hypothesis was rejected did not on average improve
the performance of the nonlinear models. This may be due the fact that lin-
ear lags are included into the pool of hidden units which makes it possible
to select a linear model anyway.

5.4. Consumer Price Index. The RMSFE ratios for recursive CPI fore-
casts from models of differenced series can be found in Table 6. The denom-
inator in the RMSFE ratio is now the RMSFE of the recursive linear AR
forecasts. It is seen that filtering the forecasts is necessary. All four model
selection techniques lead to ANN models that generate some very inaccurate
forecasts. This is the case already for one-month forecasts and is due to the
fact that some models contain very strongly correlated variables. A pair of
them typically has large (in absolute value) coefficients with opposite signs.
Forecasting with such a model yields inaccurate forecasts and cumulating
them in forecasting more than one month ahead makes the situation even
worse. This is clearly seen from the table. Furthermore, all ratios exceed
one, which means that on average no ANN model, not even after filter-
ing, generates more accurate recursive forecasts than the linear AR model.
Models selected by MBE perform slightly better than the other nonlinear
models.

These results may be compared with the ones in Table 7. This table
contains the RMSFE ratios for direct forecasts from models built using dif-
ferenced series. Models built using QuickNet and Autometrics still generate
a few forecasts that require filtering, whereas MBE-based forecasts do not.
After filtering the six- and 12-month forecasts from the ANN models are
more accurate than the benchmark ones. This is also the case for forecasts
from direct linear AR models. Their RMSFE ratios are comparable to those
obtained from models built by MBE which is the best-performing model se-
lection technique. The forecasting performance of the nonparametric model

3For some of the shorter data sets the number of forecasts is less than 240, because the
first window was set to include at least 200 observations.
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Recursive Hor. AR QN MBE Autom. QN-SG

1 1 16.82 1.02 257.9 1.043
NF 3 1 5 · 104 2 · 106 2 · 109 1.052

6 1 4 · 105 1 · 106 6 · 109 2.411
12 1 1 · 106 1 · 106 1 · 1010 3 · 105

1 1 1.040 1.020 1.074 1.047
SW 3 1.004 1.033 1.020 1.075 1.061

6 1.003 1.055 1.020 1.085 1.076
12 1.011 1.107 1.034 1.172 1.091

1 1 1.042 1.019 1.072 1.044
AR 3 1 1.025 1.014 1.058 1.052

6 1 1.036 1.017 1.047 1.071
12 1 1.066 1.032 1.105 1.088

Table 6. Average root mean square forecast error ratios for the recursive
forecasts of the CPI series based on differences. NF: No Filter, SW: Swanson-

White filter, AR: Insane forecasts replaced by linear autoregressive ones.

Direct Hor. AR QN MBE Autom. QN-SG NP NC

1 1 16.82 1.02 257.9 1.043 1.148 1.133
NF 3 0.976 2.699 0.9893 2464 1.02 1.074 1.169

6 0.8123 20.77 0.8239 1869 0.8362 0.9335 1.159
12 0.7336 3.286 0.7284 20.08 0.7436 0.8203 1.134

1 1 1.040 1.020 1.074 1.047 1.150
SW 3 0.976 1.039 0.9893 1.059 1.030 1.081

6 0.8123 0.8452 0.8239 0.8987 0.836 0.9335
12 0.7336 0.7584 0.7284 0.8355 0.7397 0.8203

1 1 1.042 1.019 1.072 1.044 1.147
AR 3 0.976 1.020 0.9893 1.042 1.019 1.075

6 0.8123 0.840 0.8239 0.8819 0.835 0.9335
12 0.7336 0.7591 0.7284 0.8371 0.7395 0.8203

Table 7. Average root mean square forecast error ratios for the direct
forecasts of the CPI series based on differences. NF: No Filter, SW: Swanson-
White filter, AR: Insane forecasts replaced by linear autoregressive ones.

is below average, and the ’no change’ forecasts are less accurate than even
the corresponding recursive ones.

The RMSFE ratios in Table 8 refer to recursive forecasts from models
built on CPI levels. Filtered forecasts are more accurate on average than
the corresponding forecasts in Table 6. MBE-based forecasts are the most
accurate ones and models built by QN-SG generate the least accurate recur-
sive forecasts: all ratios remain above one. Recursive linear AR models built
on levels are somewhat superior to ones built on differences. The RMSFE
ratios lie below one for the two longest horizons but are greater than the
corresponding ratios for forecasts from models obtained by MBE, QuickNet
and Autometrics.

Table 9 contains the RMSFE ratios for direct forecasts from models spec-
ified and estimated from the level series. It appears that MBE is the best
model-building method when the criterion is the RMSFE. The ratios are
even smaller than the ones found in Tables 6–8. Direct models selected by
QuickNet also perform better than the recursive ones, whereas the same
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Recursive Hor. AR QN MBE Autom. QN-SG

1 1.011 1.013 0.977 1.062 1.139
NF 3 1.001 20.39 0.9315 6311 1.195

6 0.9728 3 · 105 0.8535 1 · 107 1.223
12 0.9372 3 · 106 0.787 3 · 108 1.309

1 1.011 1.013 0.977 1.062 1.139
SW 3 1.001 0.9685 0.9314 1.003 1.184

6 0.9728 0.896 0.8532 0.9299 1.187
12 0.9372 0.823 0.7871 0.8489 1.185

1 1.011 1.013 0.977 1.062 1.139
AR 3 1.001 0.9661 0.9314 1.003 1.181

6 0.9728 0.8923 0.8532 0.9299 1.187
12 0.9372 0.8143 0.7871 0.8489 1.167

Table 8. Average root mean square forecast error ratios for the recursive
forecasts of the CPI series based on levels. NF: No Filter, SW: Swanson-White
filter, AR: Insane forecasts replaced by linear autoregressive ones.

Direct Hor. AR QN MBE Autom. QN-SG NP NC
1 1.011 1.013 0.977 1.062 1.139 16.77 1.133

NF 3 0.9661 0.9418 0.9057 0.9761 1.198 8.037 1.169
6 0.9053 3.401 0.8114 0.9982 1.204 5.072 1.159
12 0.7771 0.7205 0.6928 0.9416 1.173 3.119 1.134
1 1.011 1.013 0.977 1.062 1.139 3.783

SW 3 0.9661 0.9418 0.9057 0.9761 1.198 5.172
6 0.9053 0.8305 0.8114 0.954 1.204 4.907
12 0.7771 0.7205 0.6928 0.9416 1.173 3.119
1 1.011 1.013 0.977 1.062 1.139 3.675

AR 3 0.9661 0.9418 0.9057 0.9761 1.198 5.136
6 0.9053 0.8303 0.8114 0.9564 1.204 4.904
12 0.7771 0.7205 0.6928 0.9416 1.173 3.119

Table 9. Average root mean square forecast error ratios for the direct
forecasts of the CPI series based on levels. NF: No Filter, SW: Swanson-White
filter, AR: Insane forecasts replaced by linear autoregressive ones.

cannot be said of models based on Autometrics or QN-SG. In the light of
these results, going from specific to general and back again (QuickNet) is a
better idea than going from specific to general only (QN-SG), but this find-
ing cannot be generalized. It may be noted that the nonparametric model
built on levels generates much less accurate forecasts than the same model
estimated from differenced series. Its RMSFE ratios are remarkably larger
than any other ratio. Summing up, it seems that direct forecasts are on
average more accurate than the recursive ones. Exceptions do exist: com-
pare Autometrics-based six- and 12-month RMSFE ratios in Tables 8 and
9. It should be pointed out that these results are general ones and do not
necessarily hold for all 11 countries.

As was the case for the simulation study we also compare the forecast
performance of the methods applied by considering their ranks. This is
done for all countries and forecast horizons. Furthermore, forecasts from
models built on differences and the ones based on levels are included in the
same comparison.
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Rec Diff Hor. AR QN MBE Autom. QN-SG

1 6.53 6.62 6.57 6.89 6.71
AR 3 11.8 11.9 11.7 12 12.4

6 12.9 12.8 12.7 12.8 13.5
12 14.5 14.7 14.4 15.1 15.1

Dir Diff Hor. AR QN MBE Autom. QN-SG NP NC

1 6.53 6.62 6.57 6.89 6.71 8.2 7.38
AR 3 11 11.2 11.2 11.1 11.3 13.8 13.6

6 8.95 9.25 9.05 9.85 9.37 12.5 14.2
12 8.9 8.66 8.65 9.44 8.52 11.4 14.4

Rec Level Hor. AR QN MBE Autom. QN-SG

1 6.62 6.32 6.21 6.49 7.68
AR 3 11.7 10.6 10.7 10.8 14.1

6 12.1 10.8 10.7 10.5 14.9
12 12.3 10.2 10.5 9.89 14.9

Dir Level Hor. AR QN MBE Autom. QN-SG NP NC

1 6.62 6.32 6.21 6.49 7.68 7.97 7.38
AR 3 10.5 10.3 10.1 10.7 14.3 17.7 13.6

6 10.5 9.95 9.73 10.8 15 22 14.2
12 8.91 9.32 8.94 9.89 14.5 21.6 14.4

Table 10. Average ranks based on the absolute forecasts errors. For each
procedure for which forecasts are carried out recursively as well as directly

the forecasts from the two alternatives are identical at the 1-month horizon.
Hence, the comparison is only made across the direct forecasts at the 1-month
horizon and by construction the ranks are the same for the recursive counter-

parts.

The results can be found in Table 10. At the 1-month horizon absolute
forecast errors from the ANN procedures have ranks very close to each other,
which is in accordance with the findings from Tables 6-9. The nonparametric
and No Change forecasts have considerably higher ranks than the other
procedures. This is true for the forecasts based on differences as well as the
ones based on levels. In particular the high ranks for the nonparametric
forecasts are no surprise in the light of the high relative RMSFE in Table
9. In general, the direct methods have the lowest average ranks. This is
the case in particular for the forecasts based on the differences of the series.
The overall winner at the 12-month horizon is the QN-SG method based
on differences while the MBE-based forecasts come in second. This again
agrees with the results reported in Tables 6-9.

Similarly to the simulated example, we conduct Wilcoxon’s signed-rank
test for pairs of absolute forecast error series. The benchmark, the recursive
linear AR forecast, is always one of the forecasts in the pair. As already
discussed, the null hypothesis of the test is that the means of the absolute
forecast errors are equal, and the alternative is that the absolute forecast
errors of the ’other model’ have the smaller mean of the two. The upper
panel of Table 11 contains p-values of the test for recursive forecasts from
differenced models. Most of them are close to one, which means that the
null hypothesis is rejected in the opposite direction. This accords with the
information in Table 6, where all RMSFE ratios were greater than one.
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Recursive Hor. QN MBE Autom. QN-SG

1 0.998 0.778 1 1
AR 3 0.963 0.0582 0.982 1

6 0.949 0.266 0.995 1
12 1 1 1 1

Direct Hor. AR QN MBE Autom. QN-SG NP NC

1 0.998 0.778 1 1 1 1
AR 3 0 0.011 1 · 10−5 1 · 10−5 0.005 1 1

6 0 0 0 0 0 0 1
12 0 0 0 0 0 0 0.968

Table 11. p-values of the Wilcoxon signed-rank test for testing the null

of the mean of the forecast errors from recursive forecasts of the CPI series
from the linear AR estimated on differences is equal to the mean of the cor-
responding forecast error from the model in each column of the table. The
tests are carried out separately at each horizon and the alternative hypothesis

is that the model in the table has a lower mean. Top panel: Models estimated
recursively on differences. Bottom panel: Models estimated directly on differ-

ences.

The MBE-based forecasts at horizons up to six months constitute the only
exception.

The lower panel contains the p-values for direct forecasts. They are mostly
close to zero for long forecasting horizons. The no change forecast is the
only exception: all p-values are large. Direct forecasts can thus be deemed
superior to recursive ones when the models are built on differenced CPI-
series. This strengthens conclusions that emerge from Tables 4 and 5.

Table 12 contains p-values of the same test and null hypothesis when the
forecasts are obtained using models built on CPI series in levels. Results
in the upper panel show that the null hypothesis is rejected in favour of
the recursive linear AR forecasts when compared to the model selected by
QN-SG. The other methods generate ANN models that yield more accurate
recursive forecasts than the linear AR model (p-values are close to zero)
or forecasts for which the null hypothesis is not rejected (QuickNet and
Autometrics one-month forecasts). The lower panel shows that QN-SG-
based direct models do not perform well either. The same can be said about
the nonparametric model and the ’no change’ forecasts. Considering all
four horizons at once, MBE emerges as the best-performing model selection
criterion for direct models when Wilcoxon’s test is used as the yardstick.

As in the simulated example, it is interesting to see whether the size of
the model and the accuracy of the forecasts from it have to do with each
other. Table 13 contains information about the size and composition of
models based on differenced series. When forecasting recursively, it is seen
from the left panel that QN-SG selects the most parsimonious models which
do not, however, yield the most accurate forecasts. MBE selects somewhat
less parsimonious models that on average yield the most accurate recursive
forecasts. It also chooses the largest fraction of linear lags, although their
average number remains below one. Models selected by Autometrics are by
far the largest ones. There does not seem to be a clear connection between
the model size and forecast accuracy.
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Recursive Hor. QN MBE Autom. QN-SG

1 0.160 1 · 10−4 0.171 1
AR 3 1 · 10−8 0 4 · 10−6 1

6 0 0 0 1
12 0 0 0 1

Direct Hor. AR QN MBE Autom. QN-SG NP NC

1 1 0.160 1 · 10−4 0.171 1 1 1
AR 3 0 0 0 4 · 10−8 1 1 1

6 0 0 0 0 1 1 1
12 0 0 0 0 1 1 0.968

Table 12. p-values of the Wilcoxon signed-rank test for testing the null
of the mean of the forecast errors from recursive forecasts of the CPI series
from the linear AR estimated on differences is equal to the mean of the cor-

responding forecast error from the model in each column of the table. The
tests are carried out separately at each horizon and the alternative hypothesis
is that the model in the table has a lower mean. Top panel: Models estimated
recursively on levels. Bottom panel: Models estimated directly on levels.

Recursive Total Linear Nonlinear

QN 6.35 0.298 6.05
MBE 5.51 0.818 4.69
AM 15.5 0.393 15.1
QN-SG 4.03 0.195 3.83

Direct MBE Total Linear Nonlinear

1 mth 5.51 0.818 4.69
3 mths 5.48 2.45 3.03
6 mths 5.29 3.55 1.74
12 mths 2.69 1.72 0.964

Table 13. Left panel: Average number of variables selected for the mod-
els generating recursive forecasts of the CPI based on differences. “Total”
indicates total number of variables included, “Linear” indicates the number

of linear units included, and “Nonlinear” gives the number of hidden units
included. Right panel: Average number of variables selected for the direct
forecasts of the CPI based on differences by MBE.

Recursive Total Linear Nonlinear

QN 5.35 1.09 4.27
MBE 7.19 5.64 1.55
AM 19.1 1.34 17.7
QN-SG 1.39 1 0.386

Direct MBE Total Linear Nonlinear

1 mth 7.19 5.64 1.55
3 mths 7.24 5.74 1.49
6 mths 7.42 6 1.42
12 mths 7.21 6 1.21

Table 14. Left panel: Average number of variables selected for the models
generating recursive forecasts of the CPI based on levels. “Total” indicates
total number of variables included, “Linear” indicates the number of linear
units included, and “Nonlinear” gives the number of hidden units included.

Right panel: Average number of variables selected for the direct forecasts of
the CPI based on levels by MBE.

The right-hand panel of Table 13 contains the average size and composi-
tion of models based on differenced series and selected by MBE for direct
forecasting. The average number of variables is halved when one moves
from six- to 12-month models, whereas the share of linear lags of the total
increases up to six-month models and remains about the same for 12-month
ones.

Table 14 contains the same information for models built on levels. All
methods now select more linear variables than in the previous case. QN-SG
is still the most parsimonious technique, and even QuickNet selects fewer
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variables than MBE. As Tables 9 and 12 indicate, forecasts from MBE are
still the most accurate ones on average. The use of Autometrics leads to
largest models. They perform better than QN-SG-selected models but less
well than ones specified using MBE. The right panel of the table shows that
MBE select a large number of linear lags for all direct models. In fact, every
MBE-model built for the two longest horizons contains all six lags and only
a small number of hidden units. A comparison of the RMSFE ratios in
Tables 6 and 8 on the one hand and Tables 7 and 9 on the other (indirectly)
suggests that direct models based on level data and selected by MBE may be
slightly superior to the same type of model, selected by the same technique,
but based on differenced series. Whether or not this is due to the larger
amount of linear lags in the former models is not clear, however.

5.4.1. Individual countries. To shed light on some of the cross-country vari-
ation in the results that cannot be seen in the summary tables we now con-
sider results for some individual countries, Italy, Japan, and the US. They
are selected because there are interesting differences between them. The
remaining country-specific RMSFE are available at http://econ.au.dk/

research/research-centres/creates/research/research-papers/

supplementary-downloads/rp-2011-28/.
Tables 15 and 16 show the RMSFE ratios for the US CPI forecasts based

on differences (only the results for the AR-filter are presented). It is seen
that it is indeed possible to improve upon the linear AR model even when
forecasting recursively, although this is not true for all three methods. In
fact, only MBE outperforms the linear autoregression at all horizons, which
again indicates it may be superior to QuickNet and Autometrics in fore-
casting the CPI series. The Wilcoxon tests were also carried out on the
individual countries. Based on these, the above findings are significant since
at no horizon does one observe a higher p-value than 0.044 when testing the
AR forecasts against the recursive MBE ones.

On average MBE selects seven variables of which 3.38 are linear lags. It
is more parsimonious and includes a higher number of linear lags than the
other procedures.

A comparison of Tables 15 and 16 shows that for the US the the recursive
forecasts are less accurate than the corresponding direct ones. The differ-
ences in the RMSFE are, however, less pronounced than in Tables 6 and 7.
The finding that the direct forecasts are more accurate than the recursive
ones is uniform across all countries. All ANN models, independent of the
variable selection procedure, work well in direct forecasting. However, for
the US they are at the longest horizons outperformed by the nonparametric
model and perform less well than they do in general. For the direct fore-
casts MBE is again the most parsimonious procedure whereas Autometrics
on average selects the largest models. MBE-based models also contain the
largest number of linear units.

The averaged results for the forecasts based on levels also sometimes hide
differences between the individual countries. To illustrate this, Tables 17
and 18 present RMSFE ratios for Italy, Japan, and the US (only the results
based on the AR-filter are shown). Table 17 shows that there can be con-
siderable variation in the performance of the variable selection procedures.
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US Recursive Hor. AR QN MBE Autom. QN-SG

1 1 1.03 0.9803 1.044 1.011
AR 3 1 0.9811 0.9722 1.003 1.034

6 1 0.9836 0.9388 0.9769 1.006
12 1 1.017 0.9484 1.033 1.058

Table 15. Average root mean square forecast error ratios for the recursive

forecasts of the US CPI series based on differences. AR: Insane forecasts
replaced by linear autoregressive ones.

US Direct Hor. AR QN MBE Autom. QN-SG NP NC

1 1 1.03 0.9803 1.044 1.011 1.044 1.221
AR 3 0.9952 0.9742 0.9988 0.9298 0.9403 0.9417 1.179

6 0.8312 0.8749 0.8332 0.8656 0.8825 0.8098 1.224
12 0.9483 1.014 0.9145 0.9856 0.9501 0.8423 1.598

Table 16. Average root mean square forecast error ratios for the direct
forecasts of the US CPI series based on differences. AR: Insane forecasts
replaced by linear autoregressive ones.

MBE is the most stable procedure and the only one which has RMSFE ra-
tios below unity for all three countries at all horizons4, but for each country
a different variable selection procedure is dominant. The relative stability
of MBE is most likely due to the fact that for all three countries this pro-
cedure selects the largest number of linear units. For Italy and the US it
includes all six linear units and for Japan it chooses a purely linear model
every time (though not the AR(6)). Nevertheless, MBE is outperformed
by Autometrics which generally chooses only a small fraction of linear lags.
However, MBE includes unusually few linear units (3.6) for Japan, so it may
still argued that models with a high number of linear units combined with
a few nonlinear ones perform well on average.

A comparison of the results in Table 17 with the ones in Table 18 indicates
that that the direct forecasts are superior to their recursive counterparts.
This accords with the overall results. Moreover, the nonparametric model
generates very inaccurate forecasts for these three countries, which is also in
line with the general results. The direct MBE forecasts again have RMSFE
ratios below unity. The performance of Autometrics varies quite remarkably.
In forecasting 12 months ahead, Autometrics-based forecasts are an excellent
choice for Japan, a mediocre one for the US, and are definitely not to be
recommended for forecasting the Italian CPI. The situation is the same if
recursive forecasts in Table 17 are considered. Autometrics-based forecasts
are much better than the recursive AR ones for Japan, except at the one-
month horizon, still acceptable for the US, and very inaccurate for Italy.

Results on forecasting the CPI series sugest that forecasts based on levels
are superior to their counterparts based on differences. Furthermore, direct

4Recall, however, that the benchmark is the AR(6) model forecasted recursively based on
differences of the time series. But even then, it still illustrates the rather stable perfor-
mance of MBE. Its relative RMSFE are actually below one for the recursive level based
forecasts for all countries at all horizons except for the UK and Denmark for which the
1-month forecasts have ratios above one.
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ITA Recursive Hor. AR QN MBE Autom. QN-SG

1 1.002 1.165 0.9263 1.603 1.757
AR 3 1.055 1.188 0.8965 1.629 1.955

6 1.135 1.252 0.9073 1.677 2.067
12 1.195 1.264 0.8355 1.715 1.855

JP Recursive Hor. AR QN MBE Autom. QN-SG

1 0.9667 1.02 0.9885 1.069 1.021
AR 3 0.9188 0.9652 0.9612 0.8725 0.9721

6 0.7846 0.8702 0.8419 0.6776 0.8807
12 0.6717 0.755 0.7242 0.5016 0.7644

US Recursive Hor. AR QN MBE Autom. QN-SG

1 0.9999 1.008 0.9477 0.9458 1.088
AR 3 0.9961 0.87 0.9152 0.9035 0.9962

6 0.9877 0.7469 0.8597 0.8102 0.9509
12 0.9633 0.6898 0.9324 0.8573 1.125

Table 17. Average root mean square forecast error ratios for the recursive
forecasts of the CPI series based on levels. AR: Insane forecasts replaced by
linear autoregressive ones.

ITA Direct Hor. AR QN MBE Autom. QN-SG NP NC

1 1.002 1.165 0.9263 1.603 1.757 0.9978 1.689
AR 3 0.9942 1.091 0.875 1.423 1.977 13.64 1.943

6 0.9135 1.01 0.8358 1.428 1.949 8.529 1.942
12 0.7215 0.8067 0.7564 1.571 1.772 4.438 1.733

JP Direct Hor. AR QN MBE Autom. QN-SG NP NC

1 0.9667 1.02 0.9885 1.069 1.021 4.768 0.9762
AR 3 0.883 0.925 0.9675 0.8878 0.9711 4.708 0.872

6 0.7352 0.8424 0.7352 0.7064 0.8715 2.999 0.662
12 0.5334 0.6727 0.5334 0.5289 0.699 1.591 0.4879

US Direct Hor. AR QN MBE Autom. QN-SG NP NC

1 0.9999 1.008 0.9477 0.9458 1.088 0.9979 1.221
AR 3 0.9994 0.8962 0.9212 0.9275 1.014 1.883 1.179

6 1.007 0.7585 0.8741 0.9568 0.9696 4.698 1.224
12 1.032 0.7579 0.9107 0.9179 1.147 4.062 1.598

Table 18. Average root mean square forecast error ratios for the direct

forecasts of the CPI series based on levels. AR: Insane forecasts replaced by
linear autoregressive ones. The NC forecasts are not filtered.

forecasting is preferable to recursive forecasts and MBE is the most stable
forecasting procedure. This last observation may be attributed to the high
number of linear units MBE includes and which it supplements with a few
relevant nonlinear units.

5.5. Unemployment. A common feature of results on forecasting unem-
ployment rate series with those on forecasting the CPI is the appearance of
some vastly inaccurate forecasts and the consequent need for filtering. This
is first seen from Table 19 that contains the RMSFE ratios for recursive fore-
casts when the models are built on differenced series. For filtered foreacsts,
all ratios still lie above one. Models selected by MBE appear to lead to most
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Recursive Hor. AR QN MBE Autom. QN-SG

1 1 1.124 1.005 2 · 109 1.045
NF 3 1 97.78 1.001 7 · 109 1.054

6 1 3333 1.003 1 · 1010 1.051
12 1 5 · 104 1.006 1 · 1010 1.026

1 1 1.090 1.006 1.216 1.079
SW 3 1.004 1.081 1.007 1.239 1.073

6 1.004 1.058 1.008 1.26 1.056
12 1.001 1.026 1.008 1.221 1.026

1 1 1.068 1.005 1.161 1.049
AR 3 1 1.07 1.002 1.152 1.058

6 1 1.05 1.004 1.142 1.051
12 1 1.021 1.006 1.092 1.025

Table 19. Average root mean square forecast error ratios for the recursive
forecasts of the unemployment series based on differences. NF: No Filter, SW:

Swanson-White filter, AR: Insane forecasts replaced by linear autoregressive

ones.

Direct Hor. AR QN MBE Autom. QN-SG NP NC

1 1 1.124 1.005 2 · 109 1.045 0.9999 1.109
NF 3 0.9979 59.88 1.024 7 · 106 1.063 1.024 1.167

6 1.002 1.133 1.031 2 · 109 1.133 1.046 1.148
12 1.031 250.1 1.054 2 · 108 1.197 1.091 1.055

1 1 1.090 1.006 1.216 1.079 1.013
SW 3 1.001 1.060 1.028 1.197 1.062 1.022

6 1.002 1.104 1.030 1.196 1.116 1.046
12 1.030 1.101 1.049 1.223 1.128 1.080

1 1 1.068 1.005 1.161 1.049 0.9999
AR 3 0.9979 1.053 1.025 1.184 1.058 1.023

6 1.002 1.101 1.028 1.195 1.113 1.042
12 1.031 1.109 1.047 1.215 1.138 1.082

Table 20. Average root mean square forecast error ratios for the direct
forecasts of the unemployment series based on differences. NF: No Filter, SW:
Swanson-White filter, AR: Insane forecasts replaced by linear autoregressive

ones.

accurate nonlinear forecasts, and they do not need filtering. Autometrics-
selected models are, even after filtering, the most inaccurate ones. Table 20
indicates that on average, direct forecast are not superior to recursive ones.
This is true for both linear and nonlinear forecasts. Nonparametric forecasts
do not require much filtering but are less accurate than the ones from the
MBE-forecasts.

In the case of unemployment series, the models built on levels do not
produce forecasts superior to their counterparts from models based on dif-
ferences. Table 21 contains the RMSFE ratios for recursive forecasts. Again,
MBE-selected models seem to generate more accurate forecasts than the oth-
ers, whereas model selection using Autometrics leads to models with most
inaccurate forecasts. The most striking feature of Table 22 is that the non-
parametric forecasts, which need no filtering, are nevertheless on average
distinctly more inaccurate than forecasts generated by any other model or
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Recursive Hor. AR QN MBE Autom. QN-SG

1 0.9994 2 · 105 1.007 1.302 1.048
NF 3 1.010 3 · 105 1.028 1 · 108 1.076

6 1.024 5 · 106 1.041 8 · 108 1.087
12 1.016 9 · 106 1.036 1 · 109 1.065

1 0.9994 1.064 1.007 1.148 1.048
SW 3 1.01 1.079 1.027 1.147 1.076

6 1.018 1.106 1.036 1.135 1.087
12 1.011 1.085 1.030 1.098 1.061

1 0.9994 1.067 1.007 1.146 1.048
AR 3 1.010 1.080 1.027 1.150 1.076

6 1.024 1.108 1.042 1.135 1.087
12 1.016 1.093 1.034 1.104 1.061

Table 21. Average root mean square forecast error ratios for the recursive
forecasts of the unemployment series based on levels. NF: No Filter, SW:

Swanson-White filter, AR: Insane forecasts replaced by linear autoregressive

ones.

Direct Hor. AR QN MBE Autom. QN-SG NP NC

1 0.9994 2 · 105 1.007 1.302 1.048 1.514 1.109
NF 3 1.006 8.759 1.033 2760 1.068 1.507 1.167

6 1.005 1.327 1.045 1.995 1.084 1.499 1.148
12 1.008 29.72 1.056 3.201 1.040 1.354 1.055

1 0.9994 1.064 1.007 1.148 1.048 1.514
SW 3 1.006 1.08 1.033 1.195 1.068 1.503

6 0.999 1.138 1.039 1.261 1.084 1.495
12 1.005 1.063 1.051 1.202 1.04 1.332

1 0.9994 1.067 1.007 1.146 1.048 1.514
AR 3 1.006 1.072 1.033 1.196 1.068 1.503

6 1.005 1.133 1.044 1.257 1.084 1.495
12 1.008 1.055 1.054 1.203 1.04 1.333

Table 22. Average root mean square forecast error ratios for the direct
forecasts of the unemployment series based on levels. NF: No Filter, SW:
Swanson-White filter, AR: Insane forecasts replaced by linear autoregressive

ones.

method. It can also be noted that direct linear forecasts from linear AR
models built on untransformed series have RMSFE ratios close to one, while
no filtering has been necessary. The ’no change’ forecasts are somewhat less
accurate as the ones generated by QuickNet-selected models but better than
Autometrics-ones.

Table 23 contains the average ranks of the models based on the abso-
lute forecasts errors. In this comparison ANN forecasts from Autometrics-
selected models have the highest ranks. In accordance with Tables 19-22,
MBE is the best performing ANN selection method. However, none of them
has a lower average rank than the linear AR model. The performance of
the nonparametric forecasts is highly dependent on whether the models are
built on differences or levels. In the former case the ranks are much lower
than in the latter, which are by far the highest overall. This accords with
the RMSFE results in Table 22.
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Rec Diff Hor. AR QN MBE Autom. QN-SG

1 6.58 6.89 6.77 7.17 6.84
AR 3 11.1 11.9 11.2 12.2 12

6 10.9 11.8 11 12.2 12
12 11.1 11.7 11.3 12.2 11.9

Dir Diff Hor. AR QN MBE Autom. QN-SG NP NC

1 6.58 6.89 6.77 7.17 6.84 6.52 5.98
AR 3 11 11.9 11.6 12.4 11.7 11.6 12.6

6 10.8 12 11.3 12.3 11.9 11.2 12.9
12 11.4 12 11.3 12.7 12.1 12.2 12.4

Rec Level Hor. AR QN MBE Autom. QN-SG

1 6.36 6.91 6.45 7.22 6.89
AR 3 11 11.9 11.3 12.7 12.2

6 11 12.2 11.3 12.8 12.2
12 10.8 12.1 11.2 12.7 12.1

Dir Level Hor. AR QN MBE Autom. QN-SG NP NC

1 6.36 6.91 6.45 7.22 6.89 9.23 5.98
AR 3 10.8 11.7 11.2 13.1 11.8 15.5 12.6

6 10.5 11.9 11 13.6 12 15.7 12.9
12 10.7 11.6 11.3 13.1 11.3 15 12.4

Table 23. Average ranks based on the absolute forecasts errors. For each
procedure for which forecasts are carried out recursively as well as directly

the forecasts from the two alternatives are identical at the 1-month horizon.
Hence, the comparison is only made across the direct forecasts at the 1-month
horizon and by construction the ranks are the same for the recursive counter-

parts.

Table 24 contains p-values of Wilcoxon’s signed-rank test of absolute fore-
cast errors for AR-filtered forecasts from models based on differenced un-
employment series. The null hypothesis of equal means is mostly rejected
(the p-value is close to unity) in favour of the linear recursive AR absolute
forecast errors having a smaller mean than the ones from the other model.
MBE forecasts three months ahead are the only ANN-exception. For direct
linear three- and six-month forecasts the null hypothesis of equal means is
not rejected either.

Table 25 contains the same information with the difference that the al-
ternative model is built on levels instead of differences. In this case, the null
hypothesis is never rejected for MBE-based direct models, but it turns out
that at longest horizons, direct linear AR forecasts have smaller absolute
errors than the recursive AR ones (the corresponding p-values in Table 25
are close to zero). The result for 12-month forecasts requires an explanation.
In Table 22, the 12-month RMSFE ratio of the direct linear AR forecasts
equals 1.008, which does not indicate superiority of these forecasts over the
recursive linear ones. Even after filtering, the direct linear 12-month model
generates, however, a couple of large absolute forecast errors. This has a
considerable effect on the RMSFE but a lesser one on the signed-rank statis-
tic, in which the size of a particular error weighs less than in the RMSFE.
The direct 12-month AR forecasts do have a smaller RMSFE ratio than the
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Recursive Hor. QN MBE Autom. QN-SG

1 1 0.99 1 1
AR 3 1 0.645 1 1

6 1 0.962 1 1
12 1 0.999 1 1

Direct Hor. AR QN MBE Autom. QN-SG NP NC

1 1 0.990 1 1 0.332 1
AR 3 0.226 1 0.999 1 1 1 1

6 0.367 1 0.999 1 1 0.991 1
12 1 1 1 1 1 1 1

Table 24. p-values of the Wilcoxon signed-rank test for testing the null of

the mean of the forecast errors from recursive forecasts of the unemployment
series from the linear AR estimated on differences is equal to the mean of the
corresponding forecast error from the model in each column of the table. The
tests are carried out separately at each horizon and the alternative hypothesis

is that the model in the table has a lower mean. Top panel: Models estimated
recursively on differences. Bottom panel: Models estimated directly on differ-

ences.

Recursive Hor. QN MB Autom. QN-SG

1 1 0.823 1 1
AR 3 1 0.999 1 1

6 1 0.999 1 1
12 1 0.723 1 1

Direct Hor. AR QN MB Autom. QN-SG NP NC

1 0.333 1 0.823 1 1 1 1
AR 3 0.204 1 0.764 1 1 1 1

6 0.003 1 0.404 1 1 1 1
12 3 · 10−6 0.990 0.148 1 0.828 1 1

Table 25. p-values of the Wilcoxon signed-rank test for testing the null of

the mean of the forecast errors from recursive forecasts of the unemployment
series from the linear AR estimated on levels is equal to the mean of the
corresponding forecast error from the model in each column of the table. The
tests are carried out separately at each horizon and the alternative hypothesis

is that the model in the table has a lower mean. Top panel: Models estimated
recursively on levels. Bottom panel: Models estimated directly on levels.

other methods in Table 22, which is in accord with the information in Table
25.

Statistics on the size and composition of the ANN models for forecasting
based on differenced CPI series can be found in Table 26. When forecast-
ing recursively MBE generates the smallest models and Autometrics the
largest ones. QuickNet and QN-SG lie in between. Most of the selected
variables are hidden units. The average size of the MBE-based direct mod-
els decreases slightly with the forecasting horizon. It appears that there
is positive correlation with the size of the model and its forecasting per-
formance. In Table 19 and 20 models selected by MBE have the smallest
RMSFE ratios, whereas Autometrics-based models have the largest ones.
Models chosen using QuickNet and QN-SG lie in the middle.

Table 27 contains the same statistics for models based on levels. QN-SG
now produces the most parsimonious models when forecasting recursively,
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Recursive Total Linear Nonlinear

QN 6.62 0.0569 6.56
MBE 3.66 0.115 3.55
AM 13.7 0.172 13.5
QN-SG 6.12 0.0569 6.06

MBE Total Linear Nonlinear

1 mth 3.66 0.115 3.55
3 mths 2.88 0.295 2.59
6 mths 2.58 0.227 2.35
12 mths 2.49 0.0556 2.43

Table 26. Left panel: Average number of variables selected for the models

gnerating recursive forecasts of the unemployment series based on differences.
“Total” indicates total number of variables included, “Linear” indicates the
number of linear units included, and “Nonlinear” gives the number of hidden
units included. Right panel: Average number of variables selected for the

direct forecasts of the CPI based on differences by MBE.

Recursive Total Linear Nonlinear

QN 5.02 1 4.02
MBE 6.08 5.23 0.848
AM 13.6 1.42 12.2
QN-SG 2.98 1 1.98

MBE Total Linear Nonlinear

1 mth 6.08 5.23 0.848
3 mths 6.03 5.31 0.723
6 mths 5.89 5.29 0.6
12 mths 5.12 4.34 0.782

Table 27. Left panel: Average number of variables selected for the mod-
els generating recursive forecasts of the unemployment series based on levels.

“Total” indicates total number of variables included, “Linear” indicates the
number of linear units included, and “Nonlinear” gives the number of hidden
units included. Right panel: Average number of variables selected for the
direct forecasts of the CPI based on differences by MBE.

and even QuickNet-based models have a smaller average size than the ones
chosen by MBE. The share of linear lags is now appreciably greater than in
Table 26, and this is the case for all four procedures. Autometrics selects
the largest direct models, whose average size is practically the same as it is
in the models for recursive forecasting. It appears that in this case, leaving
out lags does not affect the average size of the model.

The correlation between the size of the model and the accuracy of the
forecasts is weaker than in the previous case. A look at Table 21 shows that
MBE-selected models still have the smallest RMSFE ratios, although they
do not have the smallest size. Note, however, that they contain the largest
number of linear lags, which may have affected the outcome. The position
of Autometrics is unchanged: largest models and largest RMSFE ratios.

All models for direct forecasting contain more linear terms when the mod-
els are in levels than when they are in differences. They share this feature
with the corresponding models built for forecasting the CPI.

5.5.1. Individual countries. The average results for the unemployment series
are indicative of the results for the individual countries. No large differences
can be found on the country level. However, to illustrate that not all rel-
ative RMSFE ratios are close to unity we discuss a few individual country
results. The tables with the relative RMSFE for each individual country can
be found at http://econ.au.dk/research/research-centres/creates/

research/research-papers/supplementary-downloads/rp-2011-28/.
For example the direct forecasts on the differences of the Italian unemploy-

ment series are around ten percent more precise than the recursive forecasts
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from the linear autoregression. Similarly to the average results MBE deliv-
ers the most accurate forecasts of the ANN procedures while Autometrics
is the most imprecise in particular at the short horizons. In fact these two
observations are both very stable across all eleven countries emphasizing the
fact that the average results reflect the results for the individual countries
rather well.

The direct forecasts on the levels of the German unemployment series
are another example of a country for which it is possible to outperform the
recursive linear autoregressive model on the differences. These forecasts are
also an instance of a series for which the SW-filter produces more accurate
forecasts than the AR-filter. MBE is again the most successful nonlinear
model.

6. Conclusions

In this paper we consider macroeconomic forecasting with a flexible non-
linear model, the single-hidden layer feedforward neural network model that
is a universal approximator. We apply the idea of White (2006) of trans-
forming the specification and estimation problem of this model to a linear
model specification problem. This leads to a situation in which the number
of candidate variables to choose among vastly exceeds the number of obser-
vations. Three modelling techniques, White’s QuickNet among them, that
can handle this difficulty are compared and the models selected are used for
forecasting.

The benchmark in our forecast comparisons is, with one exception, the
linear AR model with recursive forecasts. It is turns out to be difficult to
improve upon its forecasting precision using recursive forecasting, while the
direct method seems to be a more successful approach. It appears that the
Marginal Bridge Estimator of Huang et al. (2008) yields the best performing
ANN models overall, but the results do vary from one country to the other.
Autometrics of Doornik (2009) selects models with excellent forecasting per-
formance when there is a well-fitting model to be discovered but does poorly
when no potential model fits the data well. QuickNet selects models whose
average forecasting performance lies between that of the two others. Parsi-
mony plays a role since MBE often selects models with the fewest variables
of the available alternatives. The purely nonparametric model generates
relatively accurate forecasts for inflation series but is much less successful in
forecasting unemployment rates. The performance of the models may also
vary as a function of the forecasting horizon.

All three techniques often produce models that yield some very erroneous
or ’insane’ forecasts, which makes filtering them necessary. The two insanity
filters considered in this paper perform almost equally well, although the AR
filter may have a slight edge over the filter that Swanson and White (1995)
introduced. Multicollinearity is the main reason for insane forecasts, and
it might be a good idea to develop all three modelling strategies further in
order to reduce the probability of the outcomes in which the final model
contains very strongly linearly correlated variables.

We find that that testing linearity before variable selection does not help
in choosing useful models. It may do so for certain countries and variables
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but may lead to weakened forecasting performance in some others. For this
reason it cannot be recommended as a part of any of the three modelling
strategies under consideration.

Forecasts are generated using both the recursive and the direct method.
Overall, direct forecasting is somewhat superior to the recursive technique,
but it does not dominate the latter. The results vary from one country and
variable to the other. This is true also in comparing the accuracy of recursive
and direct forecasts from linear AR models: on average direct forecasts are
more accurate than the recusive ones.

When it comes to choosing between models based on first differences of
the series and ones specified and estimated using levels it turns out that in
forecasting the CPI models built on levels tend to generate more accurate
forecasts on average than the corresponding models constructed using first
differences. It is not clear why that is the case. In forecasting unemployment
rates the outcome is less clear: the models based on levels cannot be viewed
as superior to models built on first differences.

A general conclusion is that the ANN model can be useful in macroeco-
nomic forecasting, but that the linear AR model is a serious competitor. In
practice, the forecaster may experiment with several models and methods
between settling for one, if the final goal is to find a model with the best
performance for a given country and variable. Another possibility left for
further work would be to combine recursive and direct forcasts obtained
with various linear AR and ANN models.

Finally, the purpose of this work has not been to compare the forecasting
performance of different nonlinear models. Doing so in a satisfactory fashion
would require a vast amount of resources. It would also shift the focus away
from our main aim: comparing different modelling techniques for the single-
hidden layer ANN model made possible by the work of White (2006), and
has not been attempted here.
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Appendix A. Creating the pool of hidden units

First we shall consider the procedure of White (2006). It consists of three
steps.

(1) Rewrite the argument of the logistic function in (1) as follows:

γ′zt = γ0 + γ1(γ
′
2z̃t)

using the notation: zt = (1, z̃′t)
′. For convenience, assume that each

element of z̃t has mean zero. The vector γ2 is the direction vector
whose length equals one, and it is selected first. This is done as fol-

lows. Let the random vector x ∼ N (0, Ip). Then set γ2 = x(x′
x)−1/2

which is uniformly distributed on the unit sphere Sp−1 in R
p.

(2) Given γ2, choose γ1 > 0 such that it is at least of the magnitude
of σ̂z = std(γ′

2z̃t) with the range spanning modest multiples of σ̂z.
Draw γ1 at random from this range. The scalar γ1 gives the length of
the vector γ2 and controls the slope of the hidden unit as a function
of γ′

2z̃t.
(3) Choose γ0 such that it has mean zero and standard deviation com-

parable to std(γ1(γ
′
2z̃t)). Draw γ0 at random from this distribution.

This scalar controls the location of the hidden unit.

In our experiments, selecting γ1 as in step (2) above frequently led to
values of this parameter that were too small in the sense that the hidden
unit did not display sufficient variation in the sample. This had adverse
consequences to the forecasts. To avoid them, we constructed a modification
with the following structure:

(1) Rewrite the argument of the logistic function in (1) as follows:

(9) γ′zt = γ1/σ̂z(γ
′
2z̃t − γ0)

Choose γ′
2 as described above in step (1) above.

(2) Next obtain γ0. Consider the values xt = γ′
2z̃t, t = 1, ..., T,. Let xmin

and xmax denote the minimum and maximum values of this sequence.
Let d = xmax − xmin. Now draw γ0 from a uniform distribution on
[xmin + δd, xmax − δd] for δ ∈ [0, 0.5]. We choose δ = 0.1. In this
way we make sure that the hidden units are not centered at very
small or large values of γ′

2z̃t. As a result of the parameterization (9),
demeaning z̃t is not necessary.

(3) Finally, the slope parameter γ1 is chosen uniformly at random from
the set

{
1.25j : j = 0, 1, ..., 20

}
. Hence, the smallest possible value

of γ1 is 1 while the largest possible value is 87. The set is deliberately
constructed to be denser for small values since the slope of the logistic
function changes more for changes in γ1 when γ1 is small than when
γ1 is big. For large values of γ1 changes in γ1 will not affect the slope
of the logistic function much and so it is less important to have a
dense grid here.

The decisive difference between the two strategies lies in choosing γ1. In the
strategy of White (2006), γ1 is not a scale-free parameter. That is, a change
of units in z̃t affects the set of possible slopes that can be selected, which is
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a disadvantage. In (9), γ1 is a scale-free parameter due to the division by
σ̂z, for discussion, see for example Teräsvirta (1998). This makes it possible
to define a reasonable range for this parameter. The minimum value of the
scale-free γ1 is set to unity in order to avoid logistic functions with too little
sample variation.



Research Papers 
2011 

 

 

 

2011-13: Dennis Kristensen: Nonparametric Detection and Estimation of 
Structural Change 

2011-14: Stefano Grassi and Paolo Santucci de Magistris: When Long Memory 
Meets the Kalman Filter: A Comparative Study 

2011-15: Antonio E. Noriega and Daniel Ventosa-Santaularia: A Simple Test for 
Spurious Regressions 

2011-16: Stefano Grassi  and Tommaso Proietti: Characterizing economic 
trends by Bayesian stochastic model specification search 

2011-17: Søren Johansen and Theis Lange: Some econometric results for the 
Blanchard-Watson bubble model 

2011-18: Tom Engsted and Thomas Q. Pedersen: Bias-correction in vector 
autoregressive models: A simulation study 

2011-19: Kim Christensen, Roel Oomen and Mark Podolskij: Fact or friction: 
Jumps at ultra high frequency 

2011-20: Charlotte Christiansen: Predicting Severe Simultaneous Recessions 
Using Yield Spreads as Leading Indicators 

2011-21: Bent Jesper Christensen, Olaf Posch and Michel van der Wel: 
Estimating Dynamic Equilibrium Models using Macro and Financial 
Data 

2011-22: Antonis Papapantoleon, John Schoenmakers and David Skovmand: 
Efficient and accurate log-Lévi approximations to Lévi driven LIBOR 
models 

2011-23: Torben G. Andersen, Dobrislav Dobrev and Ernst Schaumburg: A 
Functional Filtering and Neighborhood Truncation Approach to 
Integrated Quarticity Estimation 

2011-24: Cristina Amado and Timo Teräsvirta: Conditional Correlation Models 
of Autoregressive Conditional Heteroskedasticity with Nonstationary 
GARCH Equations 

2011-25: Stephen T. Ziliak: Field Experiments in Economics: Comment on an 
article by Levitt and List 

2011-26: Rasmus Tangsgaard Varneskov and Pierre Perron: Combining Long 
Memory and Level Shifts in Modeling and Forecasting of Persistent 
Time Series 

2011-27: Anders Bredahl Kock and Timo Teräsvirta: Forecasting Macroecono-
mic Variables using Neural Network Models and Three Automated 
Model Selection Techniques 

 


