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Abstract

We consider modeling and forecasting a variety of asset return volatility series by adding a ran-
dom level shift component to the usual long-memory ARFIMA model. We propose a parametric
state space model with an accompanying estimation and forecasting framework that combines long
memory and level shifts by decomposing the underlying process into a simple mixture model and
ARFIMA dynamics. The Kalman filter is used to construct the likelihood function after augmenting
the probability of states by a mixture of normally distributed processes. The forecasts are constructed
by exploiting the information in the Kalman recursions. The adequacy of the estimation method-
ology is shown through a simulation study. We apply our model to volatility series categorized in
two groups: high frequency based series (tick-by-tick SPY trades and realized volatility on the S&P
500 and 30-year Treasury Bond futures) and longer spans of log-absolute daily returns (S&P 500
returns, Dollar-Aus and Dollar-Yen exchange rates). The full sample estimates show that level shifts
are present in all series. A genuine long-memory component is present in measures of volatility con-
structed using high-frequency data. On the other hand, volatility series proxied by log daily absolute
returns are characterized by a remaining short-memory component that is nearly uncorrelated once
the level shifts are accounted for. We conduct extensive out-of-sample forecast evaluations and com-
pare the results with four popular competing models. Interestingly, our ARFIMA model with random
level shifts is the only model that consistently belongs to the 10% Model Confidence Set of Hansen
et al. (2011) for both pairwise and joint comparisons. It does so for all series, forecasting periods,
forecast horizons, forecast evaluation criteria and volatility measures. The gains in forecast accuracy
can be very pronounced, especially at longer horizons.
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1 Introduction

The concept of long memory modeling and in particular its application to financial time series has

received a considerable amount of attention from researchers. Of particular interest is the fractionally

integrated process, I(d), whose order of d determines its degree of memory. To define long memory, let

{ht, t = 1, 2, · · · } be a stochastic process with autocorrelation function

γh(τ) = g(τ)τ2d−1 as τ →∞ (1)

where g(τ) is a slowly varying function as τ → ∞. If d < 1/2 the process is invertible and can be

represented by a Wold decomposition. The process is covariance stationary if −0.5 < d < 0.5 with long

memory if d > 0. When 0 < d < 0.5 the autocorrelations are hyperbolically decaying, contrasting the

geometric decay of short memory processes (i.e. d = 0). If −0.5 < d < 0 the process is said to be

anti-persistent and the inverse autocorrelations are hyperbolically decaying. Finally, if 0.5 < |d| < 1,

the process is said to be non-stationary.1 Throughout the present paper, we shall be concerned with the

case 0 < d < 0.5, i.e. the stationary long memory process. Independently, Granger & Joyeux (1980) and

Hosking (1981) introduced the ARFIMA(p, d, q) model as a parametric way of capturing long memory

dynamics. While the literature on semiparametric estimators of the memory parameter has grown, of

which the most widely applied estimators are the log-periodogram estimator by Geweke & Porter-Hudak

(1983) and Robinson (1995b) and the local Whittle estimator by Künsch (1987) and Robinson (1995a),

the ARFIMA class of models remains popular for volatility modeling and forecasting.

Recently, there has been an upsurge in the literature about the possibility that long memory is confused

with a short memory process contaminated by level shifts, spurred by the expositions in Perron (1989,

1990) who show that unit roots (d = 1) and structural changes are easily confused in the sense that

the sum of autoregressive coefficients from a stationary process are biased towards one if the series is

contaminated by shifts in the mean. Applying this concept to the context of long memory modeling,

Lobato & Savin (1998), Diebold & Inoue (2001), Granger & Hyung (2004), and Perron & Qu (2007,

2010), among others, show theoretically, empirically and through simulations that if a short memory

process is contaminated by level shifts, the time series will display many of the same properties as one of

genuine long memory, e.g. the characteristic hyperbolic decaying autocorrelations, thereby introducing

the concept of spurious long memory.

There have been several attempts to parametrically model supposedly long memory by combining ran-

dom level shifts with short memory dynamics, see e.g. Chen & Tiao (1990), McCulloch & Tsay (1993),

Lu & Perron (2010), and Qu & Perron (2010), in which the authors indeed argue that the long memory

properties of the data are spurious. The same conclusion arises from another branch of the literature

that considers testing for spurious long memory against the alternative of a short memory process con-

taminated by level shifts, see Ohanissian, Russell & Tsay (2008), Qu (2011), and Perron & Qu (2010).

A few papers are concerned with semiparametric estimation of the degree of fractionality in the presence

1A review of this literature can be found in Baillie (1996) and Beran (1998).
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of structural breaks, see Smith (2005) and McCloskey & Perron (2010). However, the probability of level

shifts is not identified in these frameworks. Instead, we advocate a parametric model that allows for

both random level shifts and long memory by combining a simple mixture model with ARFIMA(p, d, q)

dynamics. Our modeling strategy is similar to the approach suggested by Ray & Tsay (2002). However,

we introduce an estimation methodology that augments the Bayesian approach in Ray & Tsay (2002)

in three different directions, by allowing for a short memory ARMA process, by allowing level shifts to

occur at each time t, and not in blocks, and finally we extend their analysis by providing a forecasting

framework. Our methodology will be able to capture short term changes in mean as well as rare shifts,

and it can be used for out-of-sample forecasting.

We propose the use of a parametric state space model that decomposes the underlying dynamics into

an ARFIMA state variable with a mixture of normally distributed innovation. This state space model

thus nests random level shift models with short memory ARMA dynamics. The estimation procedure is

similar to the one introduced in Wada & Perron (2006) and Lu & Perron (2010). The basic principle is

to augment the probability of states by the realizations of a mixture of normally distributed processes

at time t and apply a Kalman filter to construct the likelihood function conditional on the realization

of states. To show the validity of the estimation methodology, we add to the work of Wada & Perron

(2006) and Lu & Perron (2010) by setting up a simulation study, showing the precision of the parameter

estimates. As a by-product from the simulation exercise, we provide evidence of the spurious break

phenomenon in structural models, adding to the work of Nunes, Newbold & Kuan (1995, 1996) and

Granger & Hyung (2004). The recursive structure of the Kalman filter allows us to introduce a forecasting

framework for the random level shift ARFIMA (RLS-ARFIMA) model that exploits the information in

the Kalman recursions while being weighted with the probability of being on a given realization path.

To illustrate the relevance of the proposed modeling and forecasting framework, we consider empirical

applications to proxies of volatility on various assets. In particular, we consider high-frequency (HF)

data on SPY trades, an exchange traded fund that tracks the S&P 500, S&P 500 and 30-Year Treasury

Bond (T-Bonds) futures as well as longer series of daily returns on the S&P 500 and the Dollar-Aus and

Dollar-Yen exchange rates. We estimate the parameters of the six series using the RLS-ARFIMA model,

and compare them to four competing and widely applied time series models, the random level shift model

of Chen & Tiao (1990), McCulloch & Tsay (1993), Lu & Perron (2010), the ARFIMA(0, d, 0) model, the

ARFIMA(1, d, 1) model, and the HAR model of Corsi (2009). From a preliminary data analysis and the

parameter estimates of the six series, we find that the volatility on the SPY and realized volatilities on

the S&P 500 contain a genuine long memory component, while the volatility on the remaining series are

level shift processes with some residual short memory dynamics to be modeled. Furthermore, we show

that if one fails to take both long memory and level shift into account, the resulting parameter estimates

will reflect either spurious long memory or spurious breaks. Most importantly, from the out-of-sample

forecasting analysis, we find that the RLS-ARFIMA model belongs to the 10% Model Confidence Set of

Hansen, Lunde & Nason (2011) as the only model for all forecasting horizons, in all six volatility series.

These conclusions are re-enforced by dividing the forecasting period into non-overlapping subintervals.
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Modeling both long memory and level shifts leads to consistently precise out-of-sample forecasts, whereas

models that neglect to take both effects into account provide only precise forecasts for certain horizons,

e.g. the random level shift model provides precise long-term forecasts, and the HAR model performs well

in short-term forecasting. The superiority of the RLS-ARFIMA model transcends forecasting period,

forecast evaluation criteria, asset class, sampling frequency and volatility measure.

The outline of the paper is as follows. Section 2 describes the persistent time series considered for the

empirical analysis as motivation for developing the modeling framework of the paper. Section 3 describes

the RLS-ARFIMA model, derives the likelihood function, and introduces the forecasting framework. The

simulation study is presented in Section 4, while Section 5 considers the empirical application to financial

time series. Finally, Section 6 concludes. An appendix contains both additional theory and proofs.

2 The Random Level Shift Model: Motivation and Specification

We consider modeling and forecasting of persistent financial time series. To provide some motivational

evidence in favor of using a model that combines long memory and level shifts, we provide some theoret-

ical implications of both types of memory on various statistics and document these features empirically.

2.1 The Data Generating Process with Level Shifts

Consider the data generating process (DGP):

zt = a+ ht + vt for t = 1 · · · , T, (2)

where a is a constant, ht is the stationary long-memory process, and vt is the random level shift com-

ponent. We impose the following structure on each component.

Assumption 1. The random level shift component is given by

vt =
t∑

j=1

δT,j , δT,j = πT,tηt,

where ηt ∼ i.i.d.N(0, σ2
η) with finite moments and πT,t ∼ i.i.d. Bernoulli(p/T, 1) for some p ≥ 0.

Assumption 2. The long memory component is given by an autoregressive fractionally integrated

moving-average (ARFIMA) process of the form

Φ(L)(1− L)dht = Θ(L)εt

where Φ(L) = (1− φ1L− ... − φpLp) and Θ(L) = (1− θ1L− ... − θqLq) are autoregressive and moving

average lag polynomials with order p and q, respectively, and εt ∼ i.i.d.N(0, σ2
ε ). Let 0 ≤ d < 0.5, and

assume Φ(L) and Θ(L) do not to have common roots.
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Assumption 3. The components πT,t, ηt, and ht are mutually independent.

The DGP in (2) encompasses the short memory ARMA level shift mixture for d = 0, and similarly by

imposing either p = 0 or ση = 0, we recover a stationary ARFIMA model. Note that the normality of

εt in Assumption 2 is not needed for consistency.

Remark 1. The Bernoulli probability of the random level shift process is dependent on the sample size,

T , to make the expected number of level shifts constant for a given series. This is needed to model

structural changes in mean, i.e. infrequent events that affect the properties of the series in a permanent

fashion. If this was not the case, vt would be better constructed as a random walk.

Remark 2. The RLS-ARFIMA(p, d, q) model is not to be confused with the popular class of Markov

regime switching models originating in Hamilton (1989), and in particular the Markov-Switching (MS)

ARFIMA(1,d,1) introduced in Tsay & Härdle (2009). There are two important differences between the

two classes of models. First, in contrast to regime switching models, the RLS-ARFIMA(p, d, q) model

does not restrict the number of possible regimes to a finite and predetermined number. Secondly, the

model does not restrict the magnitude of the level shifts since these are drawn from a normal distribution.

The essential feature of our model is that it captures genuine long memory while explicitly taking the

possibility of spurious long memory into account by allowing for random level shifts.

2.2 The Data

We consider six different financial time series. First, tick-by-tick trades is sampled on the SPY from

January 1997 through July 2008, amounting to T = 2, 914 trading days. Secondly, two series of realized

volatility estimates using 5-minute returns on S&P 500 and on T-bond futures during trading hours from

January 1982 until March 2007 are obtained with sample sizes of T = 6, 262 and T = 5, 069, respectively,

after deleting missing entries.2 Third, consider two longer time series of T = 9, 600 daily returns on the

Dollar-Aus and the Dollar-Yen exchange rates over the period January 4th 1971 through April 10th 2009.

Lastly, consider a series of daily returns on the S&P 500 during the span 1929-2004, corresponding to

T = 20, 327 observations. The number of trading days is considerably smaller using high-frequency (HF)

data on the SPY, the S&P 500, and the T-bonds. However, the theory of quadratic variation suggests

that under suitable conditions, HF estimates of volatility are unbiased and highly efficient proxies of

return volatility, thus permitting greater statistical precision, see e.g. Andersen, Bollerslev, Diebold &

Labys (2001, 2003) and Barndorff-Nielsen & Shephard (2002). Additionally, Varneskov & Voev (2010)

find the use of HF data over daily data adds precision in out-of-sample forecasts.

To estimate the volatility using data of different frequency, we result to a modulated realized volatility

approach, see Appendix A.1 for a review, and absolute returns for tick-by-tick data and daily returns,

respectively. These two proxies are denoted CMRV,t and CDaily,t, and similarly, the realized volatility

proxy is labeled CRV,t. As the dynamic models require the possibility of both positive and negative

2We thank Asger Lunde for providing cleaned tick data on the SPY and Shinsuke Ikeda for the realized volatility series (see
Ikeda (2010) for details on their construction).
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level shifts occurring, we will throughout the paper be concerned with logarithmic transformations of

all measures.3

Unconditional summary statistics of stock return and exchange rate volatility have been widely docu-

mented in the literature, see e.g. Andersen & Bollerslev (1997), Andersen, Bollerslev, Diebold & Ebens

(2000, 2001), and Andersen, Bollerslev, Diebold & Labys (2001), whereas fewer results are available

for bond market volatility. The unconditional distribution of the various proxies is shown in Table 1

to exhibit excess kurtosis, be extremely right-skewed, and a logarithmic transformation of the series

improves the approximation of Gaussianity, in accordance with the aforementioned papers.

2.3 The Dynamic Properties of the Volatility Series

To analyze the conditional properties of the persistent time series, we need to dwell on aspects of their

autocovariance function and their periodogram.

2.3.1 The Autocovariance Function

Let the autocovariance function of the ARFIMA process ht be given by R(τ). Then, the sample proper-

ties of the autocovariance function of a short memory mixture type model, see e.g. Perron & Qu (2010),

can easily be generalized to accommodate long memory. A crucial ingredient for this generalization

is the functional central limit theorem for the cumulative random level shift process, vt, considered

by Georgiev (2002) and Leipus & Viano (2003). They derive the following relevant result under weak

convergence of the Skorohod topology, denoted by “⇒”.

Lemma 1. (Georgiev (2002) and Leipus & Viano (2003)) Let vt by given by Assumption 1 with 0 <

p < ∞, then vT (s) =
∑[Ts]

j=1 δT,j ⇒ J(s) where J(s) =
∑N(s)

j=0 ηj with N(s) is a Poisson process with

jump intensity p that is independent of ηj for all j.

The sample autocovariance with an unknown mean is defined for lag τ by R̂(τ) = T−1
∑T−τ

t=1 (zt −
z̄)(zt+τ − z̄) with z̄ = T−1

∑T
t=1 zt. We study fixed-τ asymptotics, i.e. τ/T → 0 as T →∞.

Proposition 1. Let zt be given in (2). Then, under Assumption 1-3, if τ/T → 0 as T → ∞, R̂(τ) ⇒
R(τ) +

∫ 1
0 (J(s)− J̄)2ds, where J̄ =

∫ 1
0 J(s)ds.

Proof. See Perron & Qu (2010).

The limiting additive autocovariance function is analogous to its counterpart in Perron & Qu (2010), but

it augments the latter by allowing for a hyperbolic decay in R(τ). The contribution of the cumulative

level shift process is a positive random variable, independent of τ . At first, R(τ) will dominate the level

shifts, but as τ increases, the relative influence of the level shift component will become increasingly

important and it will eventually dominate R(τ) as its limiting value does not go to zero.

3Note, that the logarithmic transformation of the daily absolute returns are computed as ln(CDaily,t + 0.001) to bound zero
daily returns away from minus infinity, but ln(CDaily,t) is written for notational convenience.
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Consider plots of the autocorrelation functions for the six volatility proxies in Figure 1. These display

hyperbolically decaying autocorrelations akin to a fractionally integrated process, but there are differ-

ences across series. The SPY series and the series of realized volatilities on the S&P 500 exhibit large

autocorrelations, which slowly decay to zero, indicating dominance of genuine fractional long memory

and questioning the presence of a level shift component. On the other hand, the remaining series do not

seem to be decaying to exactly zero, suggesting the presence of a level shifts.

Remark 3. If d = 0 in the above model, the autocorrelations will still exhibit a hyperbolically decaying

pattern, but the long memory properties of the series will be spuriously caused by the level shifts in mean.

2.3.2 Semi-Parametric Memory Parameter Estimates

The hint of long memory in the series is of particular interest for the application in this paper. The

modeling of persistent series has become ever more important due to the possibility that genuine long

memory processes may be confused with short memory processes contaminated by level shifts. To asses

the range of the fractional difference factor, we estimate d using the semiparametric log-periodogram

(GPH) estimator of Geweke & Porter-Hudak (1983) and Robinson (1995b) given by

log Iz(λj) = c− 2d log(2 sin(λj/2)) + ej j = 1, · · · ,m

where Iz(λj) = (1/2πT )
∣∣∣∑T

t=1 zt exp(iλjt)
∣∣∣2 is the periodogram evaluated at the Fourier frequency

λj = 2πj/T , where i =
√
−1 and | · |2 denotes the complex conjugate product. The memory parameter

estimate, d̂, is computed as a function of m for all series in Figure 2. For the SPY and realized volatilities

on the S&P 500 the memory parameter estimates seem to converge around 0.5 as m → ∞, indicating

the presence of a genuine long memory component, but estimates that indicate non-stationary mean

at the zero frequencies may be an indication that a level shift component also contaminates the series.

However, for the four remaining series, the memory parameter estimates are non-stationary for small

values of m, and as m increases, d̂ gradually decreases. As documented by Perron & Qu (2010), this

pattern indicates a simultaneous presence of a level shift component and short memory dynamics, where

the effects of the latter becomes ever more important as m increases, hence the decline in d̂.

Remark 4. The non-stationary behavior of d̂ for small values of m is exactly what is predicted by a

level shift process with some additional dynamics. If the remaining dynamics is ARFIMA (ARMA), d̂

will converge (decrease) to some d as m increases, see e.g. Perron & Qu (2007, 2010) for details.

Remark 5. These simultaneous features of non-stationarity for small values of m combined with a grad-

ually decreasing GPH estimate as m increases cannot be explained by the competing perturbed fractional

models, as these predict that a stationary noise term will bias d̂ with the same sign for all values of m,

see e.g. Deo & Hurvich (2001), Sun & Phillips (2003), and Hurvich, Moulines & Soulier (2005).

To gain additional insight into the underlying process, a simple test of the null-hypothesis of long memory

against the alternative of a short memory process contaminated by level shifts proposed in Perron & Qu
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(2010) is conducted as

Sd(a, b) =

√
24 [T a]

π2

(
d̂a − d̂b

)
d−→ N(0, 1)

for 0 < a < b < 1, where d̂a is the GPH estimate using m = T a frequency ordinates. The test is

implemented with b = 4/5 and a ∈ [1/3, 1/2] and the results are illustrated in Figure 3. As expected,

there is little evidence against genuine long memory using data on the SPY and realized volatilities on

the S&P 500. However, this does not imply that the series are not contaminated with level shifts. The

null hypothesis is rejected for the four remaining series, supporting the results from the GPH estimates

and the autocorrelation functions.

The results suggest that level shifts are likely to be present in all series. A genuine long-memory

component appears to be present in measures of volatility constructed using high-frequency data. On

the other hand, volatility series proxied by log daily absolute returns appear to be characterized by a

remaining short-memory component that is nearly uncorrelated. This indicates the need to incorporate

both level shifts and long-memory when modeling volatility series, hence the relevance of our general

model (2). The next section presents the method used for estimating this model.

3 Estimation Methodology

We use a parametric approach to capture the dynamics of zt ≡ ln(Ci,t), and our suggested model

generalizes the random level shift model combined with stationary short memory dynamics by allowing

for stationary long memory. In addition, we introduce an estimation methodology that augments the

Bayesian approach in Ray & Tsay (2002) by allowing for ARMA parameters, by allowing level shifts

to occur at each time t, and not in blocks, for which their three empirical examples are of size b =

(20, 220, 63), and by providing a forecasting framework.

3.1 State Space Representation

To feasibly estimate the RLS-ARFIMA(p, d, q) model and to provide a forecasting framework, the model

is re-written using a state space representation.

Definition 1. The level shift component vt is specified as a random walk process with innovations terms

distributed as a mixture of two normally distributed errors as

vt = vt−1 + δT,t

δT,t = πT,tη1t + (1− πT,t)η0t

where ηjt ∼ i.i.d.N(0, σ2
ηj) for j = (0, 1).

The representation in (2) is recovered by imposing σ2
η1 = σ2

η and σ2
η0 = 0. This specification has the

advantage of making level shifts random events that do not depend on past realizations of the data.
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Note that, under Assumption 2, the long memory component in the RLS-ARFIMA DGP in (2) may be

written as an AR(∞)

ht =

∞∑
i=1

ψiht−i + εt. (3)

where ψi is given by
∞∑
i=0

ψiL
i =

Φ(L)

Θ(L)
(1− L)d.

Then the model can be written in the following state space form

∆zt = ht − ht−1 + δT,t

ht =
∞∑
i=1

ψiht−i + εt.

Similar to the ARFIMA state space frameworks of Chan & Palma (1998) and Ray & Tsay (2002) who

approximate an MA(∞) process by a truncated MA(M) model, where M is chosen depending on the

length of the modeled series, the AR(∞) process is approximated by an AR(M) model. The choice of

M is discussed in detail in Section 4. Approximating ht with a finite M , the state space representation

on matrix form is

∆zt = FHt + δT,t (4)

Ht = GHt−1 + Et (5)

where F = [1,−1, 0, · · · , 0], and Ht = [ht, ht−1, · · · , ht−M+1]′ are M × 1 vectors, G is an M ×M matrix

of parameters and identifying terms

G =



ψ1 ψ2 · · · ψM

1 0 · · · 0
... 1

...
. . .

0 · · · 1 0


,

and finally Et = [εt, 0, · · · , 0]′ is an M × 1 vector, satisfying Et ∼ i.i.d.N (0M×1, Q), where Q is an

M ×M covariance matrix defined as

Q =

(
σ2
ε 01×(M−1)

0(M−1)×1 0(M−1)×(M−1)

)
,

and finally 01×(M−1) denotes a 1× (M − 1) vector of zeros.

Remark 6. From Theorem 2.1 and Corollary 2.2. in Chan & Palma (1998), there is no finite-
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dimensional state space representation for d 6= 0. However, the authors show that a truncated state

space representations of an ARFIMA model retains nice asymptotic properties such as consistency and

efficiency if M ∝ T β and β is appropriately selected. Furthermore, their simulation study shows that a

finite M is sufficient for estimating the parameters of the model.

3.2 Maximum Likelihood Estimation

The state space model in (4)-(5) combines the short memory frameworks of Wada & Perron (2006) and

Lu & Perron (2010) with the long memory specification of Chan & Palma (1998). Consequently, the

proposed estimation methodology builds on their results.

3.2.1 The Conditional Log-likelihood Function

The basic principle behind the estimation procedure is to augment the probability of states by the

realizations of the mixture of normally distributed processes at time t, and apply a Kalman filter to

construct the likelihood function conditional on the realization of states. Let the available information

up and until time t be denoted by the vector Zt = [∆z1,∆z2, · · · ,∆zt], and let the parameter vector be

denoted by Σ = [σ2
η, p, σ

2
ε , d,Φ(L),Θ(L)]. Then, we can express the conditional log-likelihood function

as

ln(L) =
T∑
t=1

lnf(∆zt|Zt−1; Σ)

f(∆zt|Zt−1; Σ) =
1∑
i=0

1∑
j=0

f(∆zt|st−1 = i, st = j, Zt−1; Σ)Pr(st−1 = i, st = j|Zt−1; Σ)

where st is an indicator for the particular state at time t, which is independent of past realizations. If

a level shift occurs πT,t = 1, then st = 1, and similarly st = 0 if a level shift does not occur, πT,t = 0.

3.2.2 The Optimizing Kalman Filter

Consider the following rules and expressions for conditional probabilities:

Pr(st−1 = i, st = j|Zt−1; Σ) = Pr(st = j)Pr(st−1 = i|Zt−1; Σ)

= Pr(st = j)

1∑
k=0

Pr(st−2 = k, st−1 = i|Zt−1; Σ),

Pr(st−2 = k, st−1 = i|Zt−1; Σ) =
f(∆zt−1|st−2 = k, st−1 = i, Zt−2; Σ)

f(∆zt−1|Zt−2; Σ)
Pr(st−2 = k, st−1 = i|Zt−2; Σ),

Pr(st = j|Zt; Σ) =

1∑
i=0

Pr(st−1 = i, st = j|Zt; Σ).
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Next, let us define the prediction error as

νijt = ∆zt − E[∆zt|st−1 = i, Zt−1; Σ] = ∆zt − FH i
t|t−1

where νijt ∼ N(0, f ijt ), and the prediction error variance is given by f ijt = FP it|t−1F
′ + σ2

ηj , where P it|t−1

is the conditional variance of the state variable in state i. The superscript (ij) refers to the value of

a variable conditional on the process being in state i at time t − 1, and state j at time t. Note, that

the conditional expectation of ∆zt does not depend on the value of j, since we are conditioning on the

information at time t− 1. The best forecast of the state variable and its associated variance is given by

H i
t|t−1 = GH i

t−1|t−1

P it|t−1 = GP it−1|t−1G
′ +Q

where Ht−1|t−1 and Pt−1|t−1, respectively, are computed using standard updating principles as shown

below. For the case of st−1 = i and st = j, the updating formulas become

H ij
t|t = H i

t|t−1 + P it|t−1F
′(FP it|t−1F

′ + σ2
ηj)
−1νijt

P ijt|t = P it|t−1 − P
i
t|t−1F

′(FP it|t−1F
′ + σ2

ηj)
−1FP it|t−1

where a problem arises as the two possible states causes the number of estimates for the state vector

and its conditional variance to grow exponentially over time with a factor of t2. A solution to this,

suggested in Harrison & Stevens (1976), is to re-collaps H ij
t|t and P ijt|t as an approximation to make them

unaffected by the history of states before time t− 1 as follows

Hj
t|t =

∑1
i=0 Pr(st−1 = i, st = j|Zt; Σ)H ij

t|t

Pr(st = j|Zt; Σ)

P jt|t =

∑1
i=0 Pr(st−1 = i, st = j|Zt; Σ)

[
P ijt|t +

(
Hj
t|t −H

ij
t|t

)(
Hj
t|t −H

ij
t|t

)′]
Pr(st = j|Zt; Σ)

for each t. Finally, combine all the previous results to determine the density as

f(∆yt|st−1 = i, st = j, Zt−1; Θ) =
1√
2π

(f ijt )−
1
2 exp

{
−ν

ij
t (f ijt )−1νijt

2

}
, (6)

enabling us to compute the likelihood function. The estimation procedure shares similarities with its

counterpart for Markov regime switching models, see Hamilton (1994), but it has two added complexities.

First, the mean and the variance of the conditional density are nonlinear functions of the past realizations

and the fundamental parameters. Hence, we cannot separate all elements of Σ in the first order conditions

and apply a standard EM algorithm. Secondly, the conditional probability of being in a given regime is

not separable from the conditional density.
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3.3 Forecasting with the RLS-ARFIMA Model

The state space structure of the RLS-ARFIMA(p, d, q) model allows us to obtain τ -step ahead forecasts

by combining results from state space- and Markov switching forecasting frameworks, see e.g. Brockwell

& Davis (1991), Hamilton (1994), and Gabriel & Martins (2004). These are modified to fit the structure

of the random level shift modeling framework.

Proposition 2. Let zt satisfy Assumption 1-3, then the τ -step ahead forecast is given as

ẑt+τ |t = zt + FGτ

 1∑
i=0

1∑
j=0

Pr(st+1 = j)Pr(st = i|Zt; Σ)H ij
t|t


where Et(zt+τ ) = ẑt+τ |t denotes the expected value of the process at time t+τ , conditional on the available

information at time t.

Proof. See Appendix B.

Intuitively, a τ -step-ahead forecast for each realization of state is made and weighted by the probability of

being on a given transition path while conditioning on time t information. Compared with forecasting

for regime switching models, we do note try to forecast a level shift nor the probability of having

a certain level τ periods into the future, since level shifts are by definition random events, of which

there is great uncertainty about their magnitude and timing. Note that as a by-product, we get a

forecasting methodology for both the random level shift model of Lu & Perron (2010) and the class of

ARFIMA(p, d, q) models by imposing certain parameter restrictions.

Remark 7. The present forecasting framework encompasses multiple types of forecasting schemes; re-

cursive estimation, rolling window estimation, and lastly, a one-time estimation of the parameters, and

then using the Kalman recursions to compute the forecasts conditional on the parameter estimates.

4 Simulation Study

The accuracy of the parameter estimates from using the state space estimation methodology in Wada

& Perron (2006) and Lu & Perron (2010) remains to be determined. Hence, to show the validity of

our proposed estimation methodology, and to get an indication about how to select M , the order of

truncation of the AR(M) representation of the ARFIMA(p, d, q) dynamics in the RLS-ARFIMA model,

we set up a comprehensive simulation study focusing on distinguishing the proportion of memory in the

time series attributed to level shifts and to pure long memory, respectively. We consider a Monte-Carlo

study for N = 100 replications, four different truncation lengths M = (5, 10, 15, 20)′ and two sample

sizes T = (1000, 3000)′ to get an indication of the benefits from adding information.4 Consider the

following two DGP’s:

4It is suggested by Chan & Palma (1998) and Martin & Wilkins (1999) that a smaller order truncation is sufficient for
identifying and capturing the dynamics of the process.
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DGP 1: RLS-ARFIMA(0, d, 0) with d = (0, 0.2, 0.45), p = (0, 20, 50)′, σ2
η = 0.7, and σ2

ε = 0.8.

DGP 2: RLS-ARFIMA(0.2, 0.45,−0.1) with p = (0, 50)′, σ2
η = 0.7, and σ2

ε = 0.8.

The bias and root mean squared error (RMSE) of the parameter estimates under both DGP’s are

presented in Tables 2-4. The results for DGP 1 are presented inTables 3 and 4 for T = 1000 and T = 3000

observations, respectively. First, by considering results for T = 1000, the three parameters, excluding

ση, are precisely estimated, and their biases and RMSE’s are both decreasing in M . Additionally, the

bias of p/T increases with d, but this effect disappears as both M and T are increased. Generally, the

model is able to distinguish between memory stemming from d and p/T , respectively, and increases in

both M and T are seen to improve the precision of the parameter estimates. However, the magnitude of

the level shift, ση, is estimated with greater uncertainty, being upward biased with a high RMSE, and

this uncertainty does not disappear with increases in M and T . When extending the analysis to allow

for short memory dynamics in DGP 2, we see from Table 2 that the biases of d, p, and σε, φ, and θ are

greatly decreasing in M and T , being virtually inexistent for M = 20 and T = 3000, while ση still suffers

from a slight upward bias. Our model is able to distinguish between spurious and pure long memory,

and as the bias of the various memory parameters are generally decreasing in M , we select M = 20 as

the order of truncation for the empirical applications.

5 Empirical Analysis for the Volatility in the Bond, Foreign Ex-

change, and Stock Markets

In Sections 2.3.1 and 2.3.2, we saw a tendency for the six time series of volatility proxies to have both

long memory and level shift features. Whereas the former is more pronounced for the HF volatility

proxies on the SPY and the S&P 500, the latter seems to dominate the series of daily returns on the

S&P 500, the Dollar-AUS- and the Dollar-Yen exchange rates, and on HF data on the T-bonds. Hence,

we will describe the results in depth for the SPY and the Dollar-Yen exchange rate since these represent

two distinct “groups” of series who share similar characteristics.

The relevance of the employed modeling and forecasting framework is shown by comparing the full-

sample parameter estimates and the out-of-sample forecasting performance of the RLS-ARFIMA(0, d, 0)

and RLS-ARFIMA(1, d, 1) models to four other widely applied time series models. Time series models,

and especially the class of ARFIMA(p, d, q) models and the HAR model of Corsi (2009), have been shown

by Andersen, Bollerslev, Diebold & Labys (2003), Chiriac & Voev (2011), and Varneskov & Voev (2010)

to outperform the popular class of GARCH models in terms of out-of-sample forecasting performance

in both univariate and multivariate settings. However, evidence on the forecasting performance of these

models when level shifts are taken into account is lacking in the literature. Gabriel & Martins (2004)

show through simulations that a Markov regime switching model outperforms ARFIMA models when

infrequent breaks occur, but the ARFIMA class of models remains the most balanced forecaster when

the underlying process is I(d).
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The first contending model is the random level shift (RLS) model of Lu & Perron (2010) where the short

run dynamics is modeled as white noise. It can expressed as a special case of the RLS-ARFIMA(p, d, q)

model in (2) as

zt = a+ ht + vt

where ht = εt. The model is estimated using the state space methodology in 3.2, and the forecasts are

conducted using Proposition 2.

The second and third model belongs to the ARFIMA(p, d, q) class. They can similarly be expressed as

zt = a+ ht

where ht is given by (3). In particular, we consider the popular model of fractional noise where p = q = 0

and the ARFIMA(1, d, 1), which are widely used for forecasting. Since, neither of these models consider

the possibility of the underlying I(d) process being contaminated with level shifts, potentially biasing the

memory parameter upwards, the proposed state space estimation framework might be too restrictive as

the long memory parameter estimate is restricted to the stationary range. Consequently, the two models

are estimated using a conditional maximum likelihood approach, see e.g. Beran (1995) and Doornik &

Ooms (2004), and the forecasts are constructed by the accompanying forecasting framework in the two

papers.

Lastly, we consider the HAR model, which has been shown in e.g. Corsi (2009) and Chiriac & Voev (2011)

to provide accurate forecasts of realized volatility. The HAR model is a regression-based approximate

long memory model that captures the hyperbolically decaying autocorrelations by weighting lagged AR

terms in a parsimonious way. The model can be written as

z
(d)
t+1 = α+ β1z

(d)
t + β2z

(w)
t + β3z

(bw)
t + β4z

(m)
t + ε

(d)
t .

where d, w, bw, and m stands for a daily, weekly (5 days), biweekly (10 days), and monthly (21 days)

sampling frequency, respectively, α is a constant and ε
(d)
t ∼ i.i.d.N(0, σ2

ε ). Again, normality is not

needed for consistency. The regressors on the right-hand-side are averages of past values of zt scaled

to match the left-hand-side variable, e.g. z
(w)
t = 1

5

∑4
j=0 zt−j . The model is estimated by maximum

likelihood. Direct forecasting with the HAR model are easily obtained due to the hierarchical structure

of the model. A 1-step-ahead forecast can be computed from the model above, while multistep forecasts

are constructed by specifying the hierarchy to match the forecast horizon, see Chiriac & Voev (2011)

for details.

5.1 Full-Sample Parameter Estimates

The results for the high-frequency based volatility series and the three long-span daily log-absolute daily

returns series are presented in Tables 5-7. They are quite different across the two groups but similar

within each. Hence, we discuss in detail the results for only one series in each group, the SPY for the
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high-frequency group (Panels A and C of Table 5) and the Dollar-Yen exchange rate for the daily group

(Panels B and C of Table 6).

We first discuss the results for the SPY series. The long memory parameter of the RLS-ARFIMA(0, d, 0)

model is estimated to d = 0.4241, suggesting a genuine long memory component, which coincides with

the preliminary analysis of the time series in Section 2.3.2. The estimated probability of a level shift

is p/T = 0.0205, but with a high standard error. If we consider the point estimate of p/T , it suggests

that a shift occurs every 49 days on average, which is a fairly low duration compared to the estimated

durations of daily absolute returns on the S&P 500, AMEX, Dow Jones, and NASDAQ in Lu & Perron

(2010). Similarly, using the RLS-ARFIMA(1, d, 1) model, we obtain an estimate of d = 0.3846. The

probability of level shifts and the ARMA parameters are estimated with large standard errors, and

moreover, the ARMA components seem to characterize a common factor. The estimated parameters

suggest that the underlying volatility process consists of both a genuine long memory process and a level

shifts component. The long memory parameter estimate of the ARFIMA(0, d, 0) model similarly shows

a strong stationary long memory component, while the corresponding estimate for the ARFIMA(1, d, 1)

model is d = 0.6305, suggesting a non-stationary process. Furthermore, the estimated ARMA parame-

ters of the ARFIMA(1, d, 1) model are large and significant. The difference in the estimates of d from the

RLS-ARFIMA models and that from the ARFIMA(1, d, 1) model is quite suggestive. As documented

in Perron & Qu (2010), if level shifts are present the estimate of d obtained from an ARFIMA(1, d, 1)

model will be inflated to capture the large estimates of d obtained from a log-periodogram regression

with few frequency ordinates (as depicted in Figure 2). In order to capture the smaller estimates when

more frequency ordinates are included, the fitted value of the MA parameter is biased towards a large

negative value to accentuate the short-run mean reversion. When accounting for level shifts such biases

are not present and the long-memory component is seen to be stationary with the remaining noise close

to being serially uncorrelated.

If we consider the estimated parameters from the HAR model, the combined impact from the daily,

weekly, biweekly, and monthly ln(CMRV,t) is 0.42 + 0.26 + 0.17 + 0.11 = 0.96, between the first order

autocorrelation in Figure 1 and a unit root, suggesting a highly persistent process. Finally, the estimated

probability of a level shift using the RLS model is p/T = 0.2227, an extremely high probability of a

level shift, which is assumed to be a rare event. This is clearly empirical evidence of the spurious break

phenomenon. A genuine long memory component is present in the time series of diffusive volatility

estimates on the SPY, and the RLS model is attempting to fit the persistent process by overestimating

the number of shifts.

Next, we consider the parameter estimates using daily data on the Dollar-Yen exchange rate (Panels

B and C of Table 7). The estimated long memory parameter using the RLS-ARFIMA(0, d, 0) model

is d = 0.0532, a very small value indicating the absence of a long-memory component, though given

the standard error reported it is deemed significant. The estimate of the probability of level shifts

is significant with a value p/T = 0.0027, implying that level shifts are rare (26) and occur with a

duration of 369 days on average. These results are comparable with those of Lu & Perron (2010) for the
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S&P 500, even though a small long memory component is present. Furthermore, significant estimates

of ση = 3.0657 and σε = 1.2765 show that level shifts are large contributors to the total variation of

Dollar-Yen exchange rate returns. The results for the RLS-ARFIMA(1, d, 1) model are very similar. The

estimated impact of the level shift is basically identical and the estimate of the long-memory parameter d

is even smaller and insignificant with a value of 0.0002. The estimates of the autoregressive and moving-

average coefficients are nearly identical indicating a common factor and the fact that the remaining noise

is basically uncorrelated, a result in line with those of Lu & Perron (2010) obtained for the S&P 500.

They are also consistent with the results obtained from estimating the simple RLS model, though with

the later the probability of level shift is somewhat higher albeit with the variance of the shifts being

smaller.

It is interesting to consider the estimated long memory parameter from the ARFIMA(0, d, 0) and

ARFIMA(1, d, 1) models. As expected, the two models estimate much higher values of d compared

to the RLS-ARFIMA models, a feature that is consistent with the presence of the level shifts. Again,

we observe interesting differences between the two models. The estimate of d is much higher for the

ARFIMA(1, d, 1) model and the large negative moving-average component is again present inducing

strong mean reversion. These features are similar to those obtained with the SPY series discussed above

and can similarly be explained by the presence of the level shifts.

As mentioned previously, the results for the realized volatility series on the S&P 500 and to some

extent those for the 30-year Treasury Bond futures are similar to those of the SPY and the results

for the long-span log-absolute returns series on the S&P 500 returns and Dollar-Aus exchange rate are

similar to those for the Dollar-Yen exchange rates. In summary, the results indicate that the simple

RLS-ARFIMA(0, d, 0) model is the most appropriate for all series, with the exception of the realized

volatility series of the 30-year Treasury Bond futures for which the RLS-ARFIMA(1, d, 1) model is the

most appropriate. The level shift component is important for all series being more frequent but with

less variability for the high-frequency based volatility series. Once these are taken into account, there

is very little evidence of remaining serial correlation in the short-memory component, except for the

realized volatility series of the 30-year Treasury Bond futures. One important difference is the fact that

for the daily log-absolute return series the estimate of the long-memory parameter is very close to zero,

while for the high-frequency based volatility series it is high, around 0.40. Why this is the case remains

a puzzle that is currently under investigation by one of the authors.

5.2 Forecasting Exercise

In addition to correct modeling and correct identification of both spurious and pure long memory

features of a process, it is interesting to consider the implications of our model for forecasting. Despite

the advances of different structural random level shift models, their use in forecasting have been long

term, and comparisons have been made against GARCH type models that have been shown to be inferior

for volatility forecasting. Thus, we consider whether the RLS- and the ARFIMA models are effective

forecasting tools when compared to all of the models considered in the previous section.

15



5.2.1 Forecasting Setup

We consider out-of-sample forecasting of the last Tout = 900 days of all six samples, which are divided

into three equally sized non-overlapping sub-periods to decompose the forecasting performance and to

add robustness to our results. The parameters are estimated once, without the last 900 days, and the

forecasts are computed conditional on these estimates.5 We consider direct τ -step-ahead forecasting for

three different horizons τ = (1, 5, 10)′. Let the cumulative direct τ -step-ahed forecast be defined as

z̄t+τ,i|t =

τ∑
s=1

ẑt+s,i|t

for model i ∈M0, whereM0 is the initial, finite set of models, and similarly let the cumulative volatility

proxy be denoted as σ̄2
t,τ =

∑τ
s=1 zt+s. Then, we use the mean square forecast error (MSFE) criterion

defined as

MSFEτ,i =
1

Tout

Tout∑
t=1

(
σ̄2
t,τ − z̄t+τ,i|t

)2
which is shown in Hansen & Lunde (2006a) and Patton (2009) to be robust to noise in the volatility

proxy.6 To facilitate model comparison, define the relative performance of models i, j ∈ M0 at time t

as

dij,t =
(
σ̄2
t,τ − z̄t+τ,i|t

)2 − (σ̄2
t,τ − z̄t+τ,j|t

)2
.

Then, let dij,t satisfy the following assumption:

Assumption 4. For some r > 2 and γ > 0, it holds that E |dij,t|r+γ < ∞, ∀i, j ∈ M0 and that

{dij,t}i,j∈M0 is strictly stationary with var(dij,t) > 0 and α-mixing of order −r/(r − 2).

Remark 8. Assumption 4 places restrictions on the relative performance {dij,t}, and not directly on

the loss function, which can exhibit structural breaks, long memory, etc. This assumption seems to be

satisfied by plots of the loss differentials, and by the robustness of our results to the use of different

estimation window.

Under Assumption 4, the forecasts are evaluated and compared using the 10% Model Confidence Set

(MCS) of Hansen et al. (2011), see Appendix A.2 for a review. The MSFE’s and accompanying MCS

p-values (in parenthesis) for multiple and pairwise comparisons of dynamic models are shown in Tables

8-13, We use (a) and (b) to indicate which models belong to the 10% MCS of joint or pairwise compar-

isons against the RLS-ARFIMA(0, d, 0) model, respectively. Similarly, (c) is used to indicate whether the

RLS-ARFIMA(0, d, 0) belongs to the 10% MCS of all the pairwise comparisons. The pairwise compar-

isons against the RLS-ARFIMA(0, d, 0) is done to identify the relative importance of distinguishing the

5This approach is taken due to the heavy computational task of re-estimating parameters in each step. For robustness both
recursive and rolling window estimation have been used on 5 of the 6 series (with the exception of the daily S&P 500); the
numerical results were similar, and the model rankings were identical. This is explained by the fact that the parameter
estimates are robust to the choice of the estimation window.

6The results were qualitatively the same using mean absolute forecast errors.
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spurious and the genuine long memory components of a process, and they provide indicative statistics

of relative performance of the models individually.7

5.2.2 Forecasting Results

To assist interpretation, consider the rankings of the 1-step-ahead forecasts for the HAR model using

the whole out-of-sample period of 900 days on the SPY in Table 8. First, from the MCS p-values we

see that the model belongs to the 10% MCS when all models are compared, while it does not belong

to the 10% MCS when only compared against the RLS-ARFIMA(0, d, 0), indicating inferior short term

forecasting performance.

From the forecasting exercise using HF data on the SPY, we observe from Table 8 that the RLS-

ARFIMA(0, d, 0) and the RLS-ARFIMA(1,d,1) are the only models belonging to the 10% MCS for all

forecasting horizons. Furthermore, we see that the RLS model performs decently as the forecasting

horizon increases, but it is inferior for short term forecasting. The reverse holds for the HAR and the

ARFIMA models. The results are only re-enforced by considering the decomposition of the forecasting

periods into three non-overlapping intervals. The RLS-ARFIMA model provides precise forecasts as

the only model for all forecasting horizons when the underlying process is dominated by genuine long

memory, and there is a large discrepancy with the HAR and ARFIMA models for longer forecast

horizons.

When considering out-of-sample forecasts of the volatility on the Dollar-Yen exchange rate in Table 11,

we see a similar pattern. The main difference is that the role of the superior forecaster is assumed by the

RLS-ARFIMA(1, d, 1) model for all forecasting horizons, and that the relative superiority is increasing

with the forecast horizon. It is interesting to note that the RLS-ARFIMA(0, d, 0) is the second best

model, being only slightly inferior to the RLS-ARFIMA(1, d, 1) model. Furthermore, we see that the

MSFE’s for the HAR and the ARFIMA models are at least a factor 3 larger than the MSFE of the

RLS-ARFIMA(1, d, 1) model for 10-step-ahead forecasts, showing that there is substantial statistical

value in modeling both level shifts and the remaining dynamics of a given series.

Lastly, the results of the forecasting exercises are generalized by considering the results for the four

remaining series in Tables 9, 10, 12, and 13. The models can roughly be divided into four tiers. The top

tier of forecasting models consists of the RLS-ARFIMA(0, d, 0) and the RLS-ARFIMA(1,d,1) models as

these provide precise forecasts for all forecasting horizons in all series. The second tier consists of the

RLS model, which is ranked just below the two top models for all samples. The HAR model comprises

the third tier as it performs decently for data on the S&P 500 (both HF and daily) and on the T-bonds,

but worse using exchange rate data and data on the SPY. Last, the ARFIMA models, which are widely

used in the literature, rank worst in most cases. The fact that the ARFIMA(1, d, 1) model provides

the worst forecasts is in itself evidence of the presence of level shifts. As discussed before, if level shifts

are present they will simultaneously bias the estimate of d upward (most often in the non-stationary

7The forecasts were also evaluated using the test for superior predictability of Hansen (2005) for a robustness check, and
the results were qualitatively the same.
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region) and the estimate of the moving-average parameter towards a large negative value. Such biases

are responsible for the deterioration in the forecasting performance.

In summary, there is overwhelming evidence in favor of using the RLS-ARFIMA class of models, which

is able to distinguish between spurious and pure long memory. The superiority of the RLS-ARFIMA

models for forecasting transcends forecasting period, forecast evaluation criteria, asset class, sampling

frequency, and volatility measures.

6 Conclusion

In this paper, we have shown that persistent time series, such as volatility of asset returns, can be

modeled and forecasted by combining long memory and random level shifts. We advocated a parametric

state space model where the underlying dynamics is decomposed into a simple mixture model and an

ARFIMA process (the RLS-ARFIMA model), allowing both short term and long term parameters to

be estimated together with the probability and magnitude of level shifts. We provided an estimation

methodology where the basic principle behind the estimation procedure is to augment the probability

of states by the realizations of a mixture of normally distributed processes at time t, and applying a

Kalman filter to construct the likelihood function conditional on the realization of states. Furthermore,

we provided a forecasting framework that exploits the information in the Kalman recursions and the

realization of states. The validity of the estimation methodology was shown through a simulation study.

The model was applied to high-frequency bond and stock market data together with daily returns on

the Dollar-AUS and Dollar-Yen exchange rates and the S&P 500 index. The full-sample parameter

estimates and out-of-sample forecasts were compared with four popular competing time series models.

The full sample estimates revealed that level shifts are present in all series. A genuine long-memory

component is present in measures of volatility constructed using high-frequency data and for such series

there is little evidence of remaining short-memory serial correlation, except for the realized volatility

series of the 30-year Treasury Bond futures. On the other hand, volatility series proxied by log daily

absolute returns are characterized by a remaining short-memory component that is nearly uncorrelated

once the level shifts are accounted for with little, if any, evidence of a long-memory component. It

is therefore important to model both long memory and level shifts to avoid the parameter estimates

reflecting either spurious long memory or spurious breaks. Furthermore, the RLS-ARFIMA is the only

model that consistently belongs to the 10% MCS in terms of out-of-sample forecasting performance for

all forecasting horizons, showing the statistical value of distinguishing between spurious and genuine

long memory for forecasting. The added value is clearly illustrated when considering multi-step-ahead

forecasts on, e.g., the Dollar-Yen exchange rate, since the out-of-sample forecasting performance for long

memory models that fails to take level shifts into account deteriorate with increased forecasting horizon.

These results were confirmed by splitting the forecasting period into non-overlapping subintervals. The

superiority of the RLS-ARFIMA models transcends forecasting period, forecast evaluation criteria, asset

class, sampling frequency and volatility measure.
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Summary Statistics of Volatility Proxies

Proxy Mean SD Max Min Skew Kur

SPY C2
t 0.81 1.02 17.77 0.02 5.78 59.65

Ct 0.80 0.41 4.22 0.15 1.77 6.39

ln(Ct) -0.34 0.47 1.44 -1.89 0.10 -0.28

S&P 500D C2
t 1.30 5.79 417.01 0.00 30.72 1,686

Ct 0.74 0.87 20.42 0.00 4.26 39.70

ln(Ct) -0.93 1.39 3.02 -6.91 -1.66 4.98

Dollar-AUS C2
t 0.48 4.88 370.37 0.00 53.24 3,633

Ct 0.38 0.57 19.25 0.00 9.16 191.37

ln(Ct) -1.94 1.92 2.96 -6.91 -1.36 1.44

Dollar-Yen C2
t 0.43 1.51 90.34 0.00 28.10 1,400

Ct 0.44 0.48 9.51 0.00 3.17 24.93

ln(Ct) -1.55 1.57 2.25 -6.91 -1.50 2.91

S&P 500RV Ct 1.02 8.27 610.1 0.00 65.82 4,735

ln(Ct) -0.56 0.87 6.41 -5.63 0.52 1.71

T-Bonds Ct 0.28 0.20 1.00 0.00 1.16 1.20

ln(Ct) -1.60 0.91 -0.00 -5.52 -1.13 1.66

Table 1: Summary statistic of the six volatility proxies, the continuous part of modulated bipower variation
using HF data on the SPY, daily absolute returns on the S&P 500 together with the Dollar-AUS and Dollar-
Yen exchange rates, and 5-minute realized volatility on both the S&P 500 and 30-Year treasury bonds.
Standard deviation, skewness, and kurtosis are denoted ”SD”, ”Skew”, and ”Kur”, respectively.

p/T = 0, T = 1000,M p/T = 0.05, T = 1000,M p/T = 0.05, T = 3000,M

5 10 15 20 5 10 15 20 5 10 15 20

Bias Bias Bias

d -0.21 -0.17 -0.16 -0.11 -0.22 -0.18 -0.15 -0.13 -0.17 -0.13 -0.10 -0.08

φ 0.12 0.11 0.11 0.07 0.15 0.13 0.12 0.10 0.13 0.12 0.10 0.08

θ -0.03 -0.02 -0.01 -0.01 -0.02 -0.01 -0.00 -0.01 0.00 0.02 0.01 0.01

p/T 0.08 0.06 0.04 0.04 0.08 0.06 0.05 0.04 0.05 0.03 0.02 0.01

ση -0.00 0.09 0.15 0.11 -0.08 -0.02 0.07 0.06 -0.07 0.01 0.04 0.07

σε -0.03 -0.02 -0.02 -0.01 -0.04 -0.03 -0.02 -0.02 -0.03 -0.02 -0.01 -0.01

RMSE RMSE RMSE

d 0.27 0.23 0.23 0.18 0.28 0.25 0.22 0.22 0.21 0.17 0.16 0.15

φ 0.26 0.25 0.25 0.22 0.27 0.25 0.24 0.24 0.19 0.19 0.18 0.17

θ 0.12 0.12 0.13 0.12 0.10 0.11 0.11 0.12 0.06 0.07 0.08 0.08

p/T 0.11 0.10 0.07 0.10 0.12 0.12 0.11 0.10 0.08 0.06 0.06 0.05

ση 0.44 0.50 0.54 0.44 0.28 0.35 0.38 0.42 0.22 0.23 0.25 0.27

σε 0.05 0.04 0.03 0.03 0.05 0.04 0.04 0.04 0.03 0.03 0.02 0.02

Table 2: Simulation results for RLS-ARFIMA(1, d, 1) using the following parameter configuration (d =
0.45, φ = 0.2, θ = −0.1, σ2

η = 0.7, σ2
ε = 0.8). The bias and root mean squared error (RMSE) are computed

for different M and T using N = 100 replications.
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p/T = 0,M p/T = 0.02,M p/T = 0.05,M

5 10 15 20 5 10 15 20 5 10 15 20

Panel A: d = 0

Bias Bias Bias

d 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.02

p/T 0.00 0.00 0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.01 -0.01 -0.01 -0.01

ση 0.01 0.00 0.00 0.00 0.19 0.19 0.19 0.19 0.24 0.24 0.24 0.24

σε -0.00 -0.00 -0.00 -0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01

RMSE RMSE RMSE

d 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03

p/T 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

ση 0.01 0.01 0.01 0.01 0.40 0.40 0.40 0.40 0.35 0.35 0.35 0.35

σε 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Panel B: d = 0.2

Bias Bias Bias

d -0.01 -0.01 -0.01 -0.01 -0.02 -0.01 -0.01 -0.00 -0.02 -0.01 -0.01 -0.01

p/T 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.00 -0.00 -0.00 -0.00

ση 0.10 0.07 0.06 0.05 0.03 0.07 0.07 0.08 0.11 0.12 0.13 0.11

σε -0.01 -0.01 -0.00 -0.00 -0.01 -0.01 -0.00 -0.00 -0.01 -0.00 -0.00 -0.00

RMSE RMSE RMSE

d 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.05

p/T 0.04 0.03 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

ση 0.17 0.09 0.08 0.07 0.40 0.42 0.42 0.42 0.30 0.32 0.33 0.31

σε 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Panel C: d = 0.45

Bias Bias Bias

d -0.04 -0.02 -0.02 -0.02 -0.02 -0.02 -0.01 -0.01 -0.04 -0.03 -0.02 -0.02

p/T 0.07 0.06 0.06 0.05 0.03 0.02 0.03 0.02 0.02 0.01 0.01 0.01

ση 0.31 0.22 0.18 0.15 -0.16 0.09 0.10 0.16 0.02 0.03 0.04 0.04

σε -0.01 -0.01 -0.00 -0.00 0.07 0.05 0.05 0.05 -0.02 -0.01 -0.01 -0.01

RMSE RMSE RMSE

d 0.06 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.06 0.05 0.04 0.04

p/T 0.08 0.07 0.06 0.06 0.06 0.05 0.07 0.05 0.04 0.03 0.03 0.03

ση 0.36 0.29 0.24 0.22 0.35 0.35 0.46 0.46 0.28 0.31 0.32 0.33

σε 0.03 0.03 0.04 0.03 -0.01 -0.00 -0.00 0.00 0.03 0.03 0.03 0.03

Table 3: Simulation results for RLS-ARFIMA(0, d, 0) with the following parameter configuration (σ2
η =

0.7, σ2
ε = 0.8, T = 1000) and d = (0, 0.2, 0.45), corresponding to no persistence, small persistence and high

persistence. The bias and root mean squared error (RMSE) are computed for each M = (5, 10, 15, 20) using
N = 100 replications.
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p/T = 0,M p/T = 0.02,M p/T = 0.05,M

5 10 15 20 5 10 15 20 5 10 15 20

Panel A: d = 0

Bias Bias Bias

d 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01

p/T 0.00 0.00 0.00 0.00 -0.01 -0.01 -0.01 -0.01 -0.02 -0.02 -0.02 -0.02

ση 0.00 0.00 0.00 0.00 0.29 0.29 0.29 0.29 0.23 0.23 0.23 0.23

σε 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

RMSE RMSE RMSE

d 0.01 0.01 0.01 0.01 0.05 0.01 0.01 0.01 0.02 0.02 0.02 0.02

p/T 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02

ση 0.01 0.00 0.00 0.00 0.37 0.37 0.37 0.37 0.28 0.28 0.28 0.28

σε 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Panel B: d = 0.2

Bias Bias Bias

d -0.01 -0.01 -0.01 -0.01 -0.03 -0.02 -0.01 -0.01 -0.02 -0.01 -0.00 -0.00

p/T 0.02 0.02 0.02 0.01 0.00 -0.00 -0.00 -0.00 -0.01 -0.01 -0.01 -0.01

ση 0.08 0.05 0.03 0.03 0.08 0.12 0.13 0.13 0.12 0.14 0.14 0.14

σε -0.00 -0.00 -0.00 -0.00 -0.01 -0.00 -0.00 -0.00 -0.01 -0.00 -0.00 -0.00

RMSE RMSE RMSE

d 0.02 0.02 0.02 0.02 0.04 0.03 0.02 0.02 0.04 0.03 0.03 0.03

p/T 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02

ση 0.10 0.06 0.07 0.04 0.27 0.29 0.30 0.30 0.22 0.24 0.24 0.24

σε 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01

Panel C: d = 0.45

Bias Bias Bias

d -0.03 -0.02 -0.01 -0.01 -0.04 -0.02 -0.01 -0.01 -0.04 -0.02 -0.01 -0.00

p/T 0.05 0.05 0.04 0.03 0.03 0.02 0.02 0.01 0.01 0.00 0.00 0.00

ση 0.34 0.21 0.15 0.12 -0.06 0.00 0.03 0.05 0.06 0.10 0.12 0.13

σε -0.01 -0.01 -0.00 -0.00 -0.01 -0.00 -0.00 -0.00 -0.01 -0.00 -0.00 0.00

RMSE RMSE RMSE

d 0.04 0.03 0.02 0.02 0.05 0.03 0.02 0.02 0.05 0.03 0.02 0.02

p/T 0.05 0.05 0.05 0.05 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03

ση 0.38 0.24 0.18 0.15 0.28 0.34 0.38 0.40 0.24 0.28 0.30 0.31

σε 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01

Table 4: Simulation results for RLS-ARFIMA(0, d, 0) with the following parameter configuration (σ2
η =

0.7, σ2
ε = 0.8, T = 3000) and d = (0, 0.2, 0.45), corresponding to no persistence, small persistence and high

persistence. The bias and root mean squared error (RMSE) are computed for each M = (5, 10, 15, 20) using
N = 100 replications.
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Panel A: HF Data on the SPY

α φ θ d p/T ση σε

ARFIMA(0, d, 0) -0.3367 - - 0.4991 - - -

(0.4369) (0.0412)

ARFIMA(1, d, 1) -0.4138 0.4384 0.5968 0.6305 - - -

(0.6112) (0.2364) (0.2742) (0.1583)

RLS-ARFIMA(0, d, 0) - - - 0.4241 0.0205 0.2646 0.2218

(0.0250) (0.0118) (0.0540) (0.0038)

RLS-ARFIMA(1, d, 1) - -0.4645 -0.4884 0.3846 0.0340 0.2476 0.2185

(0.6006) (0.5807) (0.0446) (0.0174) (0.0467) (0.0046)

RLS - - - - 0.2227 0.2293 0.1737

(0.0300) (0.0186) (0.0038)

Panel B: Daily Data on the S&P 500

α φ θ d p/T ση σε

ARFIMA(0, d, 0) -0.9019 - - 0.1285 - - -

(0.0167) (0.0022)

ARFIMA(1, d, 1) -0.7513 0.3784 0.6945 0.3545 - - -

(0.0643) (0.0089) (0.0105) (0.0097)

RLS-ARFIMA(0, d, 0) - - - 0.0203 0.0035 0.4934 1.3156

(0.0067) ( 0.0011) (0.0671) (0.0067)

RLS-ARFIMA(1, d, 1) - 0.4326 0.5713 0.1595 0.0315 0.1145 1.3214

(0.0397) (0.0514) (0.0284) (0.0407) (0.0727) ( 0.0067)

RLS - - - - 0.0045 0.5081 1.3121

(0.0013) (0.0613) (0.0067)

Panel C: HAR Models

α βd βw βbw βm σε

SPY

HAR -0.0138 0.4193 0.2561 0.1704 0.1128 0.2287

(0.0055) (0.0218) (0.0493) (0.0653) (0.0420) (0.0030)

S&P 500

HAR -0.2616 -0.0007 0.0438 0.0375 0.6402 1.3371

(0.0185) (0.0080) (0.0241) (0.0385) (0.0349) (0.0066)

Table 5: Parameter estimates of the dynamic models with standard errors in parenthesis using the full
sample of T = 2, 914 observations for the SPY, and T = 20, 327 for the S&P 500.
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Panel A: Daily Data on the Dollar-Aus Exchange Rate

α φ θ d p/T ση σε

ARFIMA(0, d, 0) -2.2685 - - 0.2469 - - -

(0.0610) (0.0026)

ARFIMA(1, d, 1) -3.3750 0.2924 0.7511 0.5520 - - -

(0.1954) (0.0100) (0.0122) (0.0151)

RLS-ARFIMA(0, d, 0) - - - 0.0420 0.0025 1.0432 1.3837

(0.0117) (0.0006) (0.0387) (0.0103)

RLS-ARFIMA(1, d, 1) - -0.3576 -0.3722 0.0308 0.0026 1.0468 1.3823

(0.2188) (0.2142) (0.0168) (0.0007) (0.0293) (0.0104)

RLS - - - - 0.0041 0.9795 1.3758

(0.0008) (0.0090) (0.0101)

Panel B: Daily Data on the Dollar-Yen Exchange Rate

α φ θ d p/T ση σε

ARFIMA(0, d, 0) -1.7860 - - 0.2280 - - -

(0.0522) (0.0032)

ARFIMA(1, d, 1) -2.7731 0.2785 0.6034 0.4490 - - -

(0.1810) (0.0145) (0.0190) (0.0134)

RLS-ARFIMA(0, d, 0) - - - 0.0532 0.0027 3.0657 1.2765

(0.0117) (0.0006) (0.5819) (0.0096)

RLS-ARFIMA(1, d, 1) - 0.7718 0.7240 0.0002 0.0025 3.1090 1.2778

(0.0808) (0.0826) (0.0011) (0.0007) (0.6808) (0.0100)

RLS - - - - 0.0049 2.3171 1.2641

(0.0010) (0.3802) (0.0098)

Panel C: HAR Models

α βd βw βbw βm σε

Dollar-Aus

HAR -0.1129 0.0355 0.1116 0.0795 0.7138 1.4235

(0.0254) (0.0119) (0.0347) (0.0534) (0.0425) (0.0103)

Dollar-Yen

HAR -0.2012 0.0526 0.2156 0.0752 0.5248 1.3363

(0.0268) (0.0119) (0.0337) (0.0505) (0.0402) (0.0097)

Table 6: Parameter estimates of the dynamic models with standard errors in parenthesis using the full
sample of T = 9, 600 for the Dollar-Aus and Dollar-Yen exchange rates.
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Panel A: HF Data on the S&P 500

α φ θ d p/T ση σε

ARFIMA(0, d, 0) -0.4769 - - 0.4481 - - -

(0.2997) (0.0127)

ARFIMA(1, d, 1) -0.5040 0.3417 0.4923 0.5595 - - -

(0.4433) (0.1021) (0.1175) (0.0420)

RLS-ARFIMA(0, d, 0) - - - 0.3564 0.0123 1.5518 0.4603

(0.0146) (0.0024) (0.1735) (0.0049)

RLS-ARFIMA(1, d, 1) - 0.8793 0.8589 0.3191 0.0139 1.4801 0.4579

(0.1923) (0.2132) (0.0376) (0.0027) (0.1742) (0.0051)

RLS - - - - 0.1127 0.6704 0.3882

(0.0105) (0.0407) (0.0054)

Panel B: HF Data on the 30-Year T-Bonds

α φ θ d p/T ση σε

ARFIMA(0, d, 0) -1.5648 - - 0.1745 - - -

(0.0405) (0.0072)

ARFIMA(1, d, 1) -1.3215 0.2500 0.6214 0.4393 - - -

(0.1518) (0.0257) (0.0348) (0.0318)

RLS-ARFIMA(0, d, 0) - - - 0.0564 0.0374 0.2215 0.8294

(0.0187) (0.0645) (0.1876) (0.0092)

RLS-ARFIMA(1, d, 1) - 0.2955 0.6164 0.3722 0.0600 0.1106 0.8366

(0.0437) (0.0740) (0.0920) (0.3127) (0.2895) (0.0088)

RLS - - - - 0.0711 0.2208 0.8185

(0.0894) (0.1375) (0.0087)

Panel C: HAR Models

α βd βw βbw βm σε

S&P 500

HAR -0.0307 0.3450 0.3283 0.0603 0.2110 0.4987

(0.0080) (0.0150) (0.0351) (0.0469) (0.0315) (0.0045)

30-Year T-Bonds

HAR -0.4008 0.0028 0.1311 0.2938 0.3232 0.8471

(0.0464) (0.0163) (0.0492) (0.0755) (0.0625) (0.0084)

Table 7: Parameter estimates of the dynamic models with standard errors in parenthesis using the full
sample of T = 6, 262 observations on the S&P 500, and T = 5, 069 on 30-Year Treasury Bonds.
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Forecast Evaluations Based on the MSFE Criterion for the SPY

tout ∈ [1, 300] tout ∈ [301, 600]

1-step 5-step 10-step 1-step 5-step 10-step

RLS-ARFIMA(0, d, 0) 0.03 0.45 1.66 0.05 0.85 3.12

(0.72a,c ) (0.78a,c ) (1.00a,c ) (0.94a,c ) (1.00a,c ) (1.00a,c )

RLS-ARFIMA(1, d, 1) 0.03 0.45 1.66 0.05 0.85 3.14

(0.72a, 0.75b) (1.00a, 1.00b) (0.72a, 0.72b) (0.94a, 0.51b) (0.92a, 0.92b) (0.45a, 0.45b)

RLS 0.03 0.47 1.79 0.06 1.05 4.45

(0.33a, 0.11b) (0.64a, 0.53b) (0.49a, 0.40b) (0.17a, 0.03) (0.01, 0.01) (0.00, 0.00)

ARFIMA(0, d, 0) 0.03 4.01 22.02 0.05 4.84 25.73

(0.72a, 0.46b) (0.00, 0.00) (0.00, 0.00) (1.00a, 1.00b) (0.00, 0.00) (0.00, 0.00)

ARFIMA(1, d, 1) 0.03 2.71 14.42 0.05 3.49 17.76

(1.00a, 1.00b) (0.00, 0.00) (0.00, 0.00) (0.94a, 0.77b) (0.00, 0.00) (0.00, 0.00)

HAR 0.03 3.53 38.38 0.05 4.36 43.48

(0.28a, 0.18b) (0.00, 0.00) (0.00, 0.00) (0.17a, 0.07) (0.00, 0.00) (0.00, 0.00)

tout ∈ [601, 900] tout ∈ [1, 900]

1-step 5-step 10-step 1-step 5-step 10-step

RLS-ARFIMA(0, d, 0) 0.05 1.45 6.55 0.05 0.92 3.74

(0.83a,c ) (0.61a,c ) (0.91a,c ) (0.81a,c ) (0.34a,c ) (1.00a,c )

RLS-ARFIMA(1, d, 1) 0.05 1.44 6.54 0.05 0.91 3.75

(0.57a, 0.08) (0.88a, 1.00b) (1.00a, 1.00b) (0.55a, 0.12b) (1.00a, 1.00b) (0.88a, 0.88b)

RLS 0.06 1.38 6.70 0.05 0.96 4.29

(0.39a, 0.09) (1.00a, 1.00b) (0.91a, 0.82b) (0.02, 0.00) (0.34a, 0.32b) (0.03, 0.03)

ARFIMA(0, d, 0) 0.05 1.87 8.04 0.05 3.58 18.71

(1.00a, 1.00b) (0.01, 0.01) (0.20a, 0.05) (1.00a, 1.00b) (0.00, 0.00) (0.00, 0.00)

ARFIMA(1, d, 1) 0.05 2.26 10.13 0.05 2.82 14.15

(0.59a, 0.69b) (0.00, 0.00) (0.00, 0.00) (0.81a, 0.76b) (0.00, 0.00) (0.00, 0.00)

HAR 0.05 1.45 7.98 0.05 3.12 30.19

(0.83a, 1.00b) (0.88a, 1.00b) (0.32a, 0.17b) (0.26a, 0.07) (0.00, 0.00) (0.00, 0.00)

Table 8: Forecast evaluations of the dynamic models. We consider both MCS comparisons of all models and
pairwise comparisons with RLS-ARFIMA(0, d, 0) as the benchmark. (a), (b) indicate that the model belongs
to the 10% MCS using all and pairwise comparisons, respectively. (c) indicates that the RLS-ARFIMA(0, d, 0)
belongs to the 10% MCS of all pairwise comparisons. See the main text for more details.
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Forecast Evaluations Based on the MSFE Criterion for the Daily S&P 500

tout ∈ [1, 300] tout ∈ [301, 600]

1-step 5-step 10-step 1-step 5-step 10-step

RLS-ARFIMA(0, d, 0) 1.32 7.25 20.10 1.51 9.23 22.98

(0.21a) (0.27a,c ) (0.21a) (0.45a,c ) (0.31a) (0.37a,c )

RLS-ARFIMA(1, d, 1) 1.31 7.11 19.46 1.50 9.27 23.37

(1.00a, 1.00b) (0.48a, 1.00b) (1.00a, 1.00b) (0.52a, 1.00b) (0.31a, 0.76b) (0.37a, 0.45b)

RLS 1.32 7.31 20.42 1.51 9.13 22.70

(0.21a, 0.63b) (0.16a, 0.32b) (0.06, 0.11b) (0.52a, 0.97b) (0.31a, 1.00b) (0.37a, 1.00b)

ARFIMA(0, d, 0) 1.38 12.19 42.22 1.57 16.68 58.12

(0.11a, 0.05) (0.00, 0.00) (0.00, 0.00) (0.26a, 0.07) (0.00, 0.00) (0.00, 0.00)

ARFIMA(1, d, 1) 1.32 9.28 29.47 1.49 12.91 42.10

(0.44a, 1.00b) (0.08, 0.00) (0.04, 0.00) (1.00a, 1.00b) (0.04, 0.00) (0.00, 0.00)

HAR 1.34 6.92 19.61 1.51 8.34 20.17

(0.21a, 0.47b) (1.00a, 1.00b) (0.89a, 1.00b) (0.52a, 0.88b) (1.00a, 1.00b) (1.00a, 1.00b)

tout ∈ [601, 900] tout ∈ [1, 900]

1-step 5-step 10-step 1-step 5-step 10-step

RLS-ARFIMA(0, d, 0) 1.04 5.65 14.59 1.29 7.39 19.27

(0.12a,c ) (0.18a,c ) (0.04) (0.47a,c ) (0.21a,c ) (0.70a,c )

RLS-ARFIMA(1, d, 1) 1.05 6.04 16.34 1.29 7.48 19.76

(0.11a, 0.12b) (0.01, 0.00) (0.00, 1.00b) (1.00a, 1.00b) (0.21a, 0.17b) (0.10a, 0.05)

RLS 1.04 5.57 14.21 1.29 7.35 19.16

(1.00a, 1.00b) (1.00a, 1.00b) (1.00a, 1.00b) (0.72a, 1.00b) (0.21a, 1.00b) (1.00a, 1.00b)

ARFIMA(0, d, 0) 1.08 7.76 23.74 1.34 12.24 41.56

(0.11a, 0.12b) (0.01, 0.01) (0.00, 0.00) (0.02, 0.00) (0.00, 0.00) (0.00, 0.00)

ARFIMA(1, d, 1) 1.05 6.64 18.73 1.29 9.63 30.23

(0.11a, 0.44b) (0.01, 0.00) (0.00, 0.02) (0.91a, 1.00b) (0.01, 0.00) (0.00, 0.00)

HAR 1.06 6.05 18.40 1.30 7.11 19.41

(0.11a, 0.41b) (0.16a, 0.18b) (0.00, 0.00) (0.47a, 0.37b) (1.00a, 1.00b) (0.70a, 0.85b)

Table 9: Forecast evaluations of the dynamic models. We consider both MCS comparisons of all models and
pairwise comparisons with RLS-ARFIMA(0, d, 0) as the benchmark. (a), (b) indicate that the model belongs
to the 10% MCS using all and pairwise comparisons, respectively. (c) indicates that the RLS-ARFIMA(0, d, 0)
belongs to the 10% MCS of all pairwise comparisons. See the main text for more details.
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Forecast Evaluations Based on the MSFE Criterion for the Dollar-Aus

tout ∈ [1, 300] tout ∈ [301, 600]

1-step 5-step 10-step 1-step 5-step 10-step

RLS-ARFIMA(0, d, 0) 1.24 7.20 17.45 1.94 12.52 25.06

(0.66a,c ) (0.10a,c ) (0.05) (1.00a,c ) (0.15a,c ) (0.04)

RLS-ARFIMA(1, d, 1) 1.23 7.15 17.22 1.95 12.43 24.65

(1.00a, 1.00b) (1.00a, 1.00b) (1.00a, 1.00b) (0.24a, 0.07) (1.00a, 1.00b) (1.00a, 1.00b)

RLS 1.24 7.34 18.13 1.95 12.91 26.48

(0.61a, 0.43b) (0.06, 0.05) (0.01, 0.01) (0.24a, 0.15b) (0.01, 0.01) (0.00, 0.03)

ARFIMA(0, d, 0) 1.29 25.48 111.18 2.04 32.14 124.91

(0.15a, 0.05) (0.00, 0.00) (0.00, 0.00) (0.02, 0.01) (0.00, 0.00) (0.00, 0.20)

ARFIMA(1, d, 1) 1.24 75.05 366.28 1.99 83.31 385.26

(0.66a, 0.63b) (0.00, 0.00) (0.00, 0.00) (0.01, 0.00) (0.00, 0.00) (0.00, 0.00)

HAR 1.27 9.81 109.54 2.00 17.13 126.19

(0.15a, 0.14b) (0.01, 0.00) (0.00, 0.00) (0.02, 0.01) (0.00, 0.00) (0.00, 0.00)

tout ∈ [601, 900] tout ∈ [1, 900]

1-step 5-step 10-step 1-step 5-step 10-step

RLS-ARFIMA(0, d, 0) 1.46 9.44 25.59 1.55 9.72 22.67

(0.91a,c ) (0.05) (0.03) (1.00a,c ) (1.00a,c ) (1.00a,c )

RLS-ARFIMA(1, d, 1) 1.45 9.60 26.29 1.55 9.73 22.68

(0.93a, 1.00b) (0.05, 0.10b) (0.03, 0.05) (0.91a, 0.91b) (0.97a, 0.97b) (0.93a, 0.93b)

RLS 1.45 9.09 24.07 1.55 9.78 22.88

(0.96a, 1.00b) (1.00a, 1.00b) (1.00a, 1.00b) (0.75a, 0.55b) (0.57a, 0.46b) (0.57a, 0.45b)

ARFIMA(0, d, 0) 1.60 70.27 329.67 1.64 42.48 187.00

(0.05, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.91b) (0.00, 0.00) (0.00, 0.00)

ARFIMA(1, d, 1) 1.45 145.39 716.38 1.56 101.01 486.76

(0.96a, 1.00b) (0.00, 0.00) (0.00, 0.00) (0.07, 0.10b) (0.00, 0.00) (0.00, 0.00)

HAR 1.45 12.17 151.86 1.57 13.04 128.94

(1.00a, 1.00b) (0.01, 0.00) (0.00, 0.00) (0.13, 0.07) (0.00, 0.00) (0.00, 0.00)

Table 10: Forecast evaluations of the dynamic models. We consider both MCS comparisons of all models and
pairwise comparisons with RLS-ARFIMA(0, d, 0) as the benchmark. (a), (b) indicate that the model belongs
to the 10% MCS using all and pairwise comparisons, respectively. (c) indicates that the RLS-ARFIMA(0, d, 0)
belongs to the 10% MCS of all pairwise comparisons. See the main text for more details.
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Forecast Evaluations Based on the MSFE Criterion for the Dollar-Yen

tout ∈ [1, 300] tout ∈ [301, 600]

1-step 5-step 10-step 1-step 5-step 10-step

RLS-ARFIMA(0, d, 0) 1.24 5.95 13.78 1.75 12.10 30.39

(0.34a,c ) (0.03) (0.02) (0.02) (0.14a) (0.00)

RLS-ARFIMA(1, d, 1) 1.23 5.11 10.53 1.66 10.53 22.73

(1.00a, 1.00b) (1.00a, 1.00b) (1.00a, 1.00b) (1.00a, 1.00b) (1.00a, 1.00b) (1.00a, 1.00b)

RLS 1.23 6.10 14.55 1.76 12.54 32.03

(0.67a, 1.00b) (0.02, 0.00) (0.01, 0.00) (0.03, 0.54b) (0.01, 0.02) (0.00, 0.03)

ARFIMA(0, d, 0) 1.30 9.27 30.94 1.71 12.93 36.01

(0.04, 0.01) (0.02, 0.00) (0.01, 0.00) (0.35a, 1.00b) (0.14a, 0.50b) (0.00, 0.20)

ARFIMA(1, d, 1) 1.25 42.21 199.39 1.69 43.86 194.63

(0.26a, 0.51b) (0.00, 0.00) (0.00, 0.00) (0.35a, 1.00b) (0.00, 0.00) (0.00, 0.00)

HAR 1.26 9.47 53.71 1.69 15.80 66.05

(0.05a, 0.23b) (0.02, 0.00) (0.00, 0.00) (0.35a, 1.00b) (0.01, 0.00) (0.00, 0.00)

tout ∈ [601, 900] tout ∈ [1, 900]

1-step 5-step 10-step 1-step 5-step 10-step

RLS-ARFIMA(0, d, 0) 1.38 11.05 31.78 1.46 9.69 25.24

(0.37a,c ) (0.32a,c ) (0.27a,c ) (0.07) (0.01) (0.00)

RLS-ARFIMA(1, d, 1) 1.32 10.27 28.00 1.40 8.63 20.33

(1.00a, 1.00b) (1.00a, 1.00b) (1.00a, 1.00b) (1.00a, 1.00b) (1.00a, 1.00b) (1.00a, 1.00b)

RLS 1.38 11.20 32.45 1.46 9.94 26.28

(0.37a, 0.74b) (0.29a, 0.50b) (0.24a, 0.48b) (0.04, 0.87b) (0.00, 0.01) (0.00, 0.01)

ARFIMA(0, d, 0) 1.37 30.56 128.80 1.46 17.52 64.54

(0.37a, 1.00b) (0.00, 0.00) (0.00, 0.00) (0.04, 0.91b) (0.00, 0.00) (0.00, 0.00)

ARFIMA(1, d, 1) 1.32 82.96 398.19 1.42 56.19 262.56

(0.79a, 1.00b) (0.00, 0.00) (0.00, 0.00) (0.07, 1.00b) (0.00, 0.00) (0.00, 0.00)

HAR 1.32 16.07 93.34 1.43 13.77 70.78

(0.79a, 1.00b) (0.10a, 0.00) (0.00, 0.00) (0.07, 1.00b) (0.00, 0.00) (0.00, 0.00)

Table 11: Forecast evaluations of the dynamic models. We consider both MCS comparisons of all models and
pairwise comparisons with RLS-ARFIMA(0, d, 0) as the benchmark. (a), (b) indicate that the model belongs
to the 10% MCS using all and pairwise comparisons, respectively. (c) indicates that the RLS-ARFIMA(0, d, 0)
belongs to the 10% MCS of all pairwise comparisons. See the main text for more details.
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Forecast Evaluations Based on the MSFE Criterion for the S&P 500 RV

tout ∈ [1, 300] tout ∈ [301, 600]

1-step 5-step 10-step 1-step 5-step 10-step

RLS-ARFIMA(0, d, 0) 0.19 2.93 11.42 0.17 2.27 8.65

(1.00a,c ) (1.00a,c ) (1.00a,c ) (0.54a,c ) (0.24a) (0.03)

RLS-ARFIMA(1, d, 1) 0.19 3.29 13.33 0.17 2.22 8.37

(0.57a, 0.22b) (0.01, 0.00) (0.00, 0.00) (0.56a, 1.00b) (1.00a, 1.00b) (1.00a, 1.00b)

RLS 0.19 2.94 12.11 0.18 2.47 10.46

(0.57a, 0.24b) (0.99a, 0.99b) (0.46a, 0.46b) (0.34a, 0.07) (0.24a, 0.30b) (0.03, 0.04)

ARFIMA(0, d, 0) 0.19 7.05 33.48 0.17 10.91 56.34

(0.15a, 0.10) (0.00, 0.00) (0.00, 0.00) (0.65a, 1.00b) (0.00, 0.00) (0.00, 0.00)

ARFIMA(1, d, 1) 0.19 6.00 27.44 0.17 9.36 47.27

(0.72a, 0.72b) (0.00, 0.00) (0.00, 0.00) (1.00a, 1.00b) (0.00, 0.00) (0.00, 0.00)

HAR 0.19 2.97 12.73 0.17 2.53 11.28

(0.57a, 0.22b) (0.97a, 0.82b) (0.29a, 0.11b) (0.65a, 1.00b) (0.07, 0.05) (0.00, 0.00)

tout ∈ [601, 900] tout ∈ [1, 900]

1-step 5-step 10-step 1-step 5-step 10-step

RLS-ARFIMA(0, d, 0) 0.24 3.46 11.58 0.20 2.88 10.54

(1.00a,c ) (1.00a,c ) (1.00a,c ) (1.00a,c ) (1.00a,c ) (1.00a,c )

RLS-ARFIMA(1, d, 1) 0.24 3.55 12.10 0.20 3.02 11.26

(0.55a, 0.06) (0.09, 0.02) (0.01, 0.00) (0.50a, 0.21b) (0.01, 0.00) (0.00, 0.00)

RLS 0.25 4.13 15.49 0.21 3.18 12.66

(0.20a, 0.02) (0.05, 0.02) (0.01, 0.00) (0.08, 0.00) (0.01, 0.03) (0.00, 0.00)

ARFIMA(0, d, 0) 0.24 16.17 81.77 0.20 11.35 56.92

(0.55a, 0.46b) (0.00, 0.00) (0.00, 0.00) (0.37a, 0.24b) (0.00, 0.00) (0.00, 0.00)

ARFIMA(1, d, 1) 0.24 14.40 71.10 0.20 9.89 48.35

(0.55a, 0.39b) (0.00, 0.00) (0.00, 0.00) (0.77a, 0.77b) (0.00, 0.00) (0.00, 0.00)

HAR 0.25 3.78 15.36 0.20 3.09 13.10

(0.20a, 0.11b) (0.09, 0.04) (0.00, 0.00) (0.27a, 0.12b) (0.01, 0.02) (0.00, 0.00)

Table 12: Forecast evaluations of the dynamic models. We consider both MCS comparisons of all models and
pairwise comparisons with RLS-ARFIMA(0, d, 0) as the benchmark. (a), (b) indicate that the model belongs
to the 10% MCS using all and pairwise comparisons, respectively. (c) indicates that the RLS-ARFIMA(0, d, 0)
belongs to the 10% MCS of all pairwise comparisons. See the main text for more details.
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Forecast Evaluations Based on the MSFE Criterion for 30-Year T-Bonds

tout ∈ [1, 300] tout ∈ [301, 600]

1-step 5-step 10-step 1-step 5-step 10-step

RLS-ARFIMA(0, d, 0) 0.79 4.96 13.32 0.59 4.49 12.04

(0.68a,c ) (0.32a) (0.26a,c ) (0.95a,c ) (1.00a,c ) (1.00a,c )

RLS-ARFIMA(1, d, 1) 0.79 5.46 15.81 0.59 5.87 18.19

(0.97a, 1.00b) (0.21a, 0.19b) (0.05, 0.05) (0.87a, 0.76b) (0.01, 0.01) (0.00, 0.00)

RLS 0.80 5.03 13.69 0.60 4.57 12.42

(0.68a, 0.76b) (0.21a, 0.60b) (0.22a, 0.28b) (0.87a, 0.25b) (0.60a, 0.38b) (0.48a, 0.24b)

ARFIMA(0, d, 0) 0.80 5.41 15.12 0.60 5.84 17.99

(0.68a, 0.51b) (0.21a, 0.23b) (0.22a, 0.14b) (0.87a, 0.55b) (0.01, 0.01) (0.00, 0.00)

ARFIMA(1, d, 1) 0.79 4.58 11.53 0.59 4.87 13.59

(0.97a, 1.00b) (1.00a, 1.00b) (1.00a, 1.00b) (1.00a, 1.00b) (0.42a, 0.19b) (0.40a, 0.12b)

HAR 0.79 4.59 12.31 0.60 4.62 12.74

(1.00a, 1.00b) (0.96a, 1.00b) (0.46a, 1.00b) (0.67a, 0.60b) (0.60a, 0.35b) (0.48a, 0.33b)

tout ∈ [601, 900] tout ∈ [1, 900]

1-step 5-step 10-step 1-step 5-step 10-step

RLS-ARFIMA(0, d, 0) 0.79 4.02 10.17 0.73 4.49 11.86

(0.80a,c ) (1.00a,c ) (1.00a,c ) (0.92a,c ) (1.00a,c ) (1.00a,c )

RLS-ARFIMA(1, d, 1) 0.81 7.62 27.53 0.73 6.31 20.44

(0.26a, 0.23b) (0.00, 0.00) (0.00, 0.00) (0.71a, 0.54b) (0.0, 0.00) (0.00, 0.00)

RLS 0.79 4.13 10.70 0.73 4.58 12.29

(1.00a, 1.00b) (0.29a, 0.29b) (0.11a, 0.11b) (0.92a, 0.70b) (0.17a, 0.17b) (0.03, 0.03)

ARFIMA(0, d, 0) 0.84 8.20 29.65 0.74 6.47 20.82

(0.17a, 0.02) (0.00, 0.00) (0.00, 0.00) (0.28a, 0.02) (0.00, 0.00) (0.00, 0.00)

ARFIMA(1, d, 1) 0.80 12.85 54.25 0.72 7.40 26.14

(0.80a, 0.74b) (0.00, 0.00) (0.00, 0.00) (1.00a, 1.00b) (0.00, 0.00) (0.00, 0.00)

HAR 0.80 5.47 15.52 0.73 4.89 13.50

(0.59a, 0.54b) (0.00, 0.00) (0.00, 0.00) (0.92a, 0.79b) (0.01, 0.02) (0.00, 0.00)

Table 13: Forecast evaluations of the dynamic models. We consider both MCS comparisons of all models and
pairwise comparisons with RLS-ARFIMA(0, d, 0) as the benchmark. (a), (b) indicate that the model belongs
to the 10% MCS using all and pairwise comparisons, respectively. (c) indicates that the RLS-ARFIMA(0, d, 0)
belongs to the 10% MCS of all pairwise comparisons. See the main text for more details.
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A Appendix: Additional Theory

This section provides reviews of some theoretical aspects needed for estimation using tick-by-tick data

and for forecast evaluation.

A.1 Modulated Realized Volatility

First, define the efficient logarithmic asset price, P ∗t , which is assumed to follow an Itô diffusion process

defined on a filtered probability space (Ω,F , (Ft),P):

P ∗t = P ∗0 +

t∫
0

asds+

t∫
0

σsdWs

where as is a continuous and locally bounded predictable drift rate, and σs > 0 is a cadlag volatility

process, Ws is the standard Brownian Motion. This efficient price process is generalized to a stochastic

volatility jump diffusion model by including a jump component as

Y ∗t = P ∗t + Zt

where Zt is a pure jump Levy process of finite activity. The quantity of interest is the integrated

variance over a period (say one day), defined as IVt =
∫ t
t−1 σ

2
sds. If prices where observed continuously,

without jumps, and without measurement errors, then the realized variance estimator will consistently

estimate IVt. However, when using observed high-frequency data, the intra-daily return series can be

contaminated by market microstructure noise, which will severely bias the realized variance estimator

as the sampling frequency increases, see, e.g., Hansen & Lunde (2006b) and Bandi & Russell (2008). To

model discreteness of observations and market microstructure noise, define the observable price process

Pt,j = P ∗t,j + Ut,j

for an (assumed) evenly spaced grid j = 1, · · · , nt where nt is number of intra-daily observations, and

(Ut,j)1≤j≤nt is assumed to be an i.i.d. noise process for tractability. Following Podolskij & Vetter

(2009b), it is assumed that P ∗t,j and Ut,j are independent, E(Ut,j) = 0, and E(U2
t,j) = ω2

t . The discrete

price process with jumps is then computed straightforwardly as Yt,j = Pt,j + Zt,j . To estimate IVt, we

adopt the noise-robust class of modulated bipower variation estimators and accompanying jump testing

framework of Podolskij & Vetter (2009a, 2009b). The class of modulated bipower variation statistics

can be represented as

MBV (P, r, l)t = n
(r+l)/4−1/2
t

Mt∑
j=1

|P̄ (Kt)
t,j |

r|P̄ (Kt)
t,j+1|

l, r, l ≥ 0,
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where

P̄
(Kt)
t,j =

1

nt/Mt −Kt + 1

jnt/Mt−Kt∑
i=(j−1)n/Mt

(Pτt,i+Kt − Pτt,i),

τt,i = i/nt for i = 0, · · · , nt is the observations points on day t for t = 1, · · · , T , Kt = c1,tn
1/2
t , and

Mt = n
1/2
t /(c1,tc2) for some optimally determined coefficients c1,t and c2. If we assume no jumps in

the underlying efficient price process the modulated realized volatility estimator based on the observed

series of logarithmic asset prices is given by

MRV (P )t =
c1,tc2MBV (P, 2, 0)t − ν2,tω̂

2
t

ν1,t

where ν1,t and ν2,t are optimally determined coefficients, and ω2
t is the variance of the i.i.d. noise

component on day t, which can be consistently estimated by the 5th best realized variance estimator of

Zhang, Mykland & Aı̈t-Sahalia (2005) as

ω̂t
2 =

1

2nt

nt∑
i=1

|Pτt,i − Pτt,i−1 |2.

Given no jumps in the underlying diffusion process, Podolskij & Vetter (2009b) show that MRV (P )t
P−→

IVt. Note that the presence of jumps invalidates this consistency result. In the presence of jumps, the

modulated bipower variation estimator,

MBV (Y )t =
c1,tc2µ

−2
1 MBV (Y, 1, 1)t − ν2,tω̂

2
t

ν1,t

where µ1 is a constant, was shown to be consistent. Since we do not know prior to estimation

whether jumps occur on a given trading, we can test for their presence based on the difference of{
MBV (P, 2, 0)t − µ−2

1 MBV (Y, 1, 1)t
}

as n
1/4
t (MBV (P, 2, 0)t−µ−2

1 MBV (Y, 1, 1)t)ζ
−1
t

L−→ N(0, 1) where

ζ2
t is the asymptotic variance of the test statistic. This is estimated robustly to the presence of both

jumps and market microstructure noise as ζ̂2
t = ŵt,11− 2µ−2

1 ŵt,12 +µ−4
1 ŵt,22. For the test statistic to be

valid under the alternative hypothesis (a strictly positive quantity) as well as under the null, a robust

estimator of each of the ŵt,pq terms is based on the pre-averaging methodology as explained in Podolskij

& Vetter (2009a). The jump test is then given by

St = n
1
4
t

MBV (X, 2, 0)t − µ−2
1 MBV (Y, 1, 1)t

ζ̂t

L−→ N(0, 1).

Next, we can can separate the jump component from the continuous diffusive estimate using two steps.

First, define the jump component as Jt = I{St>Φ−1
1−α}

(MRVt−MBVt) where IA is the indicator function
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for the event A, Φ−1
1−α is the (1 − α) quantile in the standard normal distribution, and α = 0.05 is the

significance level. Second, construct the continuous series as C2
MRV,t = MRVt − Jt.8

A.2 The Model Confidence Set

In this section, the theory of model confidence sets (MCS) for general objects is reviewed based on

Hansen et al. (2011) with the application to comparison of forecasting models in mind.

Consider a setM0 that contains a finite number of objects indexed by i = 1, · · · ,m0. These objects are

evaluated in terms of a loss function, L, over the sample t = 1, · · · , T , where the loss associated with

period t is denoted Li,t.
9 Define the relative performance dij,t, ∀i, j ∈ M0. Then, the set of superior

objects are

M∗ ≡ {i ∈M0 : E(dij,t) ≤ 0, ∀j ∈M0}.

The objective is to determine M∗, and this is done through a sequence of significance tests, where the

significantly inferior objects of M0 are eliminated. The null hypothesis may be stated as

H0,M : E(dij,t) = 0 ∀i, j ∈M ⊂M0,

which is tested against the alternative E(dij,t) 6= 0 for some i, j ∈M. The test is based on an algorithm

which consists of an equivalence test, δM and an elimination rule, eM. The equivalence test is used to

test H0,M, and it takes the values δM = (0, 1) corresponding to accepting or rejecting H0,M, respectively.

The elimination rule eM determines the object of M that is to be removed in the event that H0,M is

rejected. The MCS algorithm may be described by three steps

Step 1 Initially set M =M0.

Step 2 Test H0,M using δM at a given significance level α.

Step 3 If δM = 0, define M̂∗1−α =M; otherwise use eM to eliminate an object fromM and repeat the

procedure from Step 1.

The set M̂∗1−α consists of the surviving objects and this is referred to as the model confidence set.

A.2.1 MCS p-values

To facilitate the interpretation of the p-values, consider the sequence of random setsM0 =M1 ⊃M2 ⊃
· · · ⊃ Mm0 whereMi = {eMi , · · · , eMm0

}, so that eM1 is the first element to be eliminated in the event

that H0,M1 is rejected, eM2 is the second element, and so on.

Definition 2. (Definition 4 of Hansen et al. (2011))

8Note that the MRV and MBV estimators are not guaranteed to be positive, but no negative estimate was observed using
the sample 1997-2008 for the SPY.

9This could be, for exapmle, the mean squared forecast errors or the mean absolute forecast errors.
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Let PH0,Mi
denote the p-value associated with the null hypothesis H0,Mi, with the convention PH0,Mi

≡ 1.

The MCS p-value for model eMj ∈M0 is defined by p̂eMj
≡ maxi≤j PH0,Mi

.

The interpretation of the MCS p-values are analogues to that of standard p-values. The MCS set can

thus be interpreted as containing the best random subset of models, M∗, with a certain probability.

A.2.2 Equivalence Test and Elimination Rule

Several equivalence tests and elimination rules have been suggested, see Hansen et al. (2011). However,

for the empirical implementation, we have selected the range statistic, TR,M ≡ maxi,j∈M |tij |, where tij

is a t-statistic constructed as

tij =
d̄ij√

var(d̄ij)
for i, j ∈M

where d̄ij = n−1
∑T

t=1 dij,t, i.e., the relative loss between the ith and the jth models. The elimination

rule is then given by eR,M = arg maxi∈M supj∈M tij .

B Appendix: Proof of Proposition 2

From the prediction error, we know that νijt+1 = ∆zt+1 − E[∆zt+1|st = i, Zt; Σ] for which Et[ν
ij
t+1] = 0.

Hence,

Et[∆zt+1] = Et[∆zt+1|st = i, Zt; Σ] = F

 1∑
i=0

1∑
j=0

Pr(st = i, st+1 = j|Zt; Σ)GH ij
t|t

 .
Here we do not adopt the approximating re-collapsing procedure of Harrison & Stevens (1976), since we

only consider the forecasting of four transition paths. We can find the τ -step-ahead prediction using the

recursive algorithm for best linear mean-square predictors using the fact that the probability of a level

shift is assumed to be invariant of past realizations (see e.g. Brockwell & Davis (1991) for details)

Et[∆zt+τ ] = F τGτ

 1∑
i=0

1∑
j=0

Pr(st+1 = j)Pr(st = i|Zt; Σ)H ij
t|t

 ,
and as F τ = F , we may express the τ -step-forecast as

Et[zt+h] = zt + FGτ

 1∑
i=0

1∑
j=0

Pr(st+1 = j)Pr(st = i|Zt; Σ)H ij
t|t

 .
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