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Abstract

In this paper we investigate the effects of careful modelling the long-run dynamics of the volatil-
ities of stock market returns on the conditional correlation structure. To this end we allow
the individual unconditional variances in Conditional Correlation GARCH models to change
smoothly over time by incorporating a nonstationary component in the variance equations.
The modelling technique to determine the parametric structure of this time-varying component
is based on a sequence of specification Lagrange multiplier-type tests derived in Amado and
Teräsvirta (2011). The variance equations combine the long-run and the short-run dynamic
behaviour of the volatilities. The structure of the conditional correlation matrix is assumed to
be either time independent or to vary over time. We apply our model to pairs of seven daily
stock returns belonging to the S&P 500 composite index and traded at the New York Stock
Exchange. The results suggest that accounting for deterministic changes in the unconditional
variances considerably improves the fit of the multivariate Conditional Correlation GARCH
models to the data. The effect of careful specification of the variance equations on the estimated
correlations is variable: in some cases rather small, in others more discernible. As a by-product,
we generalize news impact surfaces to the situation in which both the GARCH equations and
the conditional correlations contain a deterministic component that is a function of time.

JEL classification: C12; C32; C51; C52.

Key words: Multivariate GARCH model; Time-varying unconditional variance; Lagrange mul-
tiplier test; Modelling cycle; Nonlinear time series.
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1 Introduction

Many financial issues, such as hedging and risk management, portfolio selection and asset allo-
cation rely on information about the covariances or correlations between the underlying returns.
This has motivated the modelling of volatility using multivariate financial time series rather
than modelling individual returns separately. A number of multivariate generalized autoregres-
sive conditional heteroskedasticity (GARCH) models have been proposed, and some of them
have become standard tools for financial analysts. For recent surveys of Multivariate GARCH
models see Bauwens, Laurent, and Rombouts (2006) and Silvennoinen and Teräsvirta (2009b).

In the univariate setting, volatility models have been extensively investigated. Many mod-
elling proposals of univariate financial returns have suggested that nonstationarities in return
series may be the cause of the extreme persistence of shocks in estimated GARCH models. In
particular, Mikosch and Stărică (2004) showed how the long-range dependence and the ‘inte-
grated GARCH effect’ can be explained by unaccounted structural breaks in the unconditional
variance. Previously, Diebold (1986) and Lamoureux and Lastrapes (1990) also argued that
spurious long memory may be detected from a time series with structural breaks.

The problem of structural breaks in the conditional variance can be dealt with by assuming
that the ARCH or GARCH model is piecewise stationary and detecting the breaks; see for
example Berkes, Gombay, Horváth, and Kokoszka (2004), or Lavielle and Teyssière (2006) for the
multivariate case. It is also possible to assume, as Dahlhaus and Subba Rao (2006) recently did,
that the parameters of the model change smoothly over time such that the conditional variance
is locally but not globally stationary. These authors proposed a locally time-varying ARCH
process for modelling the nonstationarity in variance. van Bellegem and von Sachs (2004), Engle
and Gonzalo Rangel (2008) and, independently, Amado and Teräsvirta (2011) assumed global
nonstationarity and, among other things, developed an approach in which volatility is modelled
by a multiplicative decomposition of the variance to a nonstationary and stationary component.
The stationary component is modelled as a GARCH process, whereas the nonstationary one is
a deterministic time-varying component. In van Bellegem and von Sachs (2004) this component
is estimated nonparametrically using kernel estimation, whereas in Engle and Gonzalo Rangel
(2008), it is an exponential spline. Amado and Teräsvirta (2011) described the nonstationary
component by a linear combination of logistic functions of time and their generalisations and
developed a data-driven specification technique for determining the parametric structure of
the time-varying component. The parameters of both the unconditional and the conditional
component were estimated jointly.

Despite the growing literature on multivariate GARCH models, little attention has been
devoted to modelling multivariate financial data by explicitly allowing for nonstationarity in
variance. Recently, Hafner and Linton (2010) proposed what they called a semiparametric
generalisation of the scalar multiplicative model of Engle and Gonzalo Rangel (2008). Their
multivariate GARCH model is a first-order BEKK model with a deterministic nonstationary
or ’long run’ component. In fact, their model is closer in spirit to that of van Bellegem and
von Sachs (2004), because they estimate the nonstationary component nonparametrically. The
authors suggested an estimation procedure for the parametric and nonparametric components
and established semiparametric efficiency of their estimators.

In this paper, we consider a parametric extension of the univariate multiplicative GARCH
model of Amado and Teräsvirta (2011) to the multivariate case. We investigate the effects
of careful modelling of the time-varying unconditional variance on the correlation structure of
Conditional Correlation GARCH (CC-GARCH) models. To this end, we allow the individual
unconditional variances in the multivariate GARCH models to change smoothly over time by
incorporating a nonstationary component in the variance equations. The empirical analysis con-
sists of fitting bivariate conditional correlation GARCH models to pairs of daily return series
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and comparing the results from models with the time-varying unconditional variance compo-
nent to models without such a component. As a by-product, we extend the concept of news
impact surfaces of Kroner and Ng (1998) to the case where both the variances and conditional
correlations are fluctuating deterministically over time. These surfaces illustrate how the impact
of news on covariances between asset returns depends both on the state of the market and the
time-varying dependence between the returns.

This paper is organised as follows. In Section 2 we describe the Conditional Correlation
GARCH model in which the individual unconditional variances change smoothly over time.
Estimation of parameters of these models is discussed in Section 3 and specification of the
unconditional variance components in Section 4. Section 5 contains the empirical results of fitting
bivariate CC-GARCH models to the 21 pairs of seven daily return series of stocks belonging to
the S&P 500 composite index. Conclusions can be found in Section 6.

2 The model

2.1 The general framework

Consider a N ×1 vector of return time series {yt}, t = 1, ..., T, described by the following vector
process:

yt = E(yt|Ft−1) + εt (1)

where Ft−1 is the sigma-algebra generated by the available information up until t − 1. For
simplicity, we assume E(yt|Ft−1) = 0. The N -dimensional vector of innovations (or now, returns)
{εt} is defined as

εt = Σ1/2
t ζt (2)

where the conditional covariance matrix Σt = [σijt] of εt given the information set Ft−1 is
a positive-definite N × N matrix. The error vector ζt form a sequence of independent and
identically distributed variables with mean zero and a positive definite correlation matrix Pt.

This implies P−1/2
t ζt ∼ iid(0, IN ). Under these assumptions, the error vector εt satisfies the

following moments conditions:

E(εt|Ft−1) = 0

E(εt|ε′t|Ft−1) = Σt = DtPtD′
t (3)

where Dt is a diagonal matrix of time-varying standard deviations. It is now assumed that Dt

consists of a conditionally heteroskedastic component and a deterministic time-dependent one
such that

Dt = StGt (4)

where St = diag(h1/2
1t , ..., h

1/2
Nt ) contains the conditional standard deviations h

1/2
it , i = 1, ..., N,

and Gt = diag(g1/2
1t , ..., g

1/2
Nt ). The elements git, i = 1, ..., N, are positive-valued deterministic

functions of rescaled time, whose structure will be defined in a moment. Equations (3) and (4)
jointly define the time-varying covariance matrix

Σt = StGtPtGtSt. (5)

It follows that
σijt = ρijt(hitgit)1/2(hjtgjt)1/2, i 6= j (6)

and that
σiit = hitgit, i = 1, ..., N. (7)
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From (7) it follows that hit = σiit/git = E(ε∗itε
∗′
it |Ft−1), where ε∗it = εit/g

1/2
it . When Gt ≡ IN and

the conditional correlation matrix Pt ≡ P, one obtains the Constant Conditional Correlation
(CCC-) GARCH model of Bollerslev (1990). More generally, when Gt ≡ IN and Pt is a time-
varying correlation matrix, the model belongs to the family of Conditional Correlation GARCH
models.

Following Amado and Teräsvirta (2011), the diagonal elements of the matrix Gt are defined
as follows:

git = 1 +
r∑

l=1

δilGil(t/T ; γil, cil) (8)

where γil > 0, i = 1, ..., N, l = 1, ..., r. Each git varies smoothly over time satisfying the conditions
inft=1,...,T git > 0, and δil ≤ Mδ < ∞, l = 1, ..., r, for i = 1, ..., N. The function Gil(t/T ; γil, cil) is
a generalized logistic function, that is,

Gil(t/T ; γil, cil) =


1 + exp



−γil

k∏

j=1

(t/T − cilj)







−1

, γil > 0, cil1 ≤ ... ≤ cilk. (9)

Function (9) is by construction continuous for γil < ∞, i = 1, ..., r, and bounded between zero
and one. The parameters, cilj and γil determine the location and the speed of the transition
between regimes.

The parametric form of (8) with (9) is very flexible and capable of describing smooth changes
in the amplitude of volatility clusters. Under δi1 = ... = δir = 0 or γi1 = ... = γir = 0, i = 1, ..., N,
in (8), the unconditional variance of εt becomes constant, otherwise it is time-varying. Assuming
either r > 1 or k > 1 or both with δil 6= 0 adds flexibility to the unconditional variance component
git. In the simplest case, r = 1 and k = 1, git increases monotonically over time when δi1 > 0
and decreases monotonically when δi1 < 0. The slope parameter γi1 in (9) controls the degree
of smoothness of the transition: the larger γi1, the faster the transition is between the extreme
regimes. As γi1 → ∞, git approaches a step function with a switch at ci11. For small values of
γi1, the transition between regimes is very smooth.

In this work we shall account for potentially asymmetric responses of volatility to positive
and negative shocks or returns by assuming the conditional variance components to follow the
GJR-GARCH process of Glosten, Jagannathan, and Runkle (1993). In the present context,

hit = ωi +
q∑

j=1

αijε
∗2
i,t−j +

q∑

j=1

κijI(ε∗i,t−j < 0)ε∗2i,t−j +
p∑

j=1

βijhi,t−j , (10)

where the indicator function I(A) = 1 when A is valid, otherwise I(A) = 0. The assumption of
a discrete switch at ε∗i,t−j = 0 can be generalised following Hagerud (1997), but this extension
is left for later work.

2.2 The structure of the conditional correlations

The purpose of this work is to investigate the effects of modelling changes in the unconditional
variances on conditional correlation estimates. The idea is to compare the standard approach, in
which the nonstationary component is left unmodelled, with the one relying on the decomposition
(5) with Gt 6= IN . As to modelling the time-variation in the correlation matrix Pt, several
choices exist. As already mentioned, the simplest multivariate correlation model is the CCC-
GARCH model in which Pt ≡ P. With hit specified as in (10), this model will be called the
CCC-TVGJR-GARCH model. When git ≡ 1, (10) defines the ith conditional variance of the
CCC-GJR-GARCH model.
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The CCC-GARCH model has considerable appeal due to its computational simplicity, but in
many studies the assumption of constant correlations has been found to be too restrictive. There
are several ways of relaxing this assumption using parametric representations for the correlations.
Engle (2002) introduced the so-called Dynamic CC-GARCH (DCC-GARCH) model in which the
conditional correlations are defined through GARCH(1,1) type equations. Tse and Tsui (2002)
presented a rather similar model. In the DCC-GARCH model, the coefficient of correlation ρijt

is a typical element of the matrix Pt with the dynamic structure

Pt = {diagQt}−1/2Qt{diagQt}−1/2 (11)

where
Qt = (1− θ1 − θ2)Q + θ1ζt−1ζ

′
t−1 + θ2Qt−1 (12)

such that θ1 > 0 and θ2 ≥ 0 with θ1 + θ2 < 1, Q is the unconditional correlation matrix of the
standardised errors ζit, i = 1, ..., N, and ζt = (ζ1t, ..., ζNt)′. In the model of Tse and Tsui (2002),
Qt has a definition that is slightly different from (12). In our case, each ζit = εit/(hitgit)1/2, and
this version of the model will be called the DCC-TVGJR-GARCH model. Accordingly, when
git ≡ 1, the model becomes the DCC-GJR-GARCH model.

Another way of introducing time-varying correlations is to assume that the conditional cor-
relation matrix Pt varies smoothly over time between two extreme states of correlations P(1)

and P(2); see Berben and Jansen (2005) and Silvennoinen and Teräsvirta (2005, 2009a). The
correlation matrix is a convex combination of these two matrices:

Pt = {1−G(st; γ, c)}P(1) + G(st; γ, c)P(2) (13)

where P(1) and P(2) are positive definite N ×N matrices with ones on the main diagonal and
P(1) 6= P(2). G(st; γ, c) is a monotonic function bounded between zero and one, in which the
stochastic or deterministic transition variable st controls the correlations. More specifically,

G(st; γ, c) = (1 + exp {−γ(st − c)})−1 , γ > 0 (14)

where, as in (9), the parameter γ determines the smoothness and c the location of the transition
between the two correlation regimes. In this work, st = t∗ = t/T, and we call the resulting model
the Time-Varying CC-TVGJR-GARCH (TVCC-TVGJR-GARCH) model when the equations
for hit are parameterized as in (10). Defining st to be an observable random variable is also
possible. When git ≡ 1, (13) reduces to the conditional covariance of the TVCC-GJR-GARCH
model.

3 Estimation of parameters

3.1 Estimation of DCC-TVGJR-GARCH models

In this section, we assume that ωi = 1, i = 1, ..., N, in (10) and that (8) has the form

git = δi0 +
r∑

l=1

δilGil(t/T ; γil, cil)

where δi0 > 0. This facilitates the notation but does not change the argument. Under the
assumption of normality, εt|Ft−1 ∼ N(0,Σt), the conditional log-likelihood function for obser-
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vation t is defined as

`t(θ) = −(N/2) ln(2π)− (1/2) ln |Σt| − (1/2)ε′tΣ
−1
t εt

= −(N/2) ln(2π)− (1/2) ln |StGtPtGtSt| − (1/2)ε′tS
−1
t G−1

t P−1
t G−1

t S−1
t εt

= −(N/2) ln(2π)− ln |StGt| − (1/2) ln |Pt| − (1/2)ζ′tP
−1
t ζt

= −(N/2) ln(2π)− ln |Gt| − (1/2)ε̃′tG
−2
t ε̃t − ln |St| − (1/2)ε∗′t S−2

t ε∗t
+ζ′tζt − (1/2) ln |Pt| − (1/2)ζ′tP

−1
t ζt (15)

where θ= (ψ′,ϕ′,φ′)′ is the vector of all parameters of the model, and

ε̃t = S−1
t εt = (ε1t/{h1t(ψ1,ϕ1)}1/2, ..., εNt/{hNt(ψN , ϕN )}1/2)′

ε∗t = G−1
t εt = (ε1t/{g1t(ψ1)}1/2, ..., εNt/{gNt(ψN )}1/2)′

ζt = G−1
t S−1

t εt = (ε1t/{g1t(ψ1)h1t(ψ1, ϕ1)}1/2, ..., εNt/{gNt(ψN )hNt(ψN , ϕN )}1/2)′.

Equation (15) implies the following decomposition of the log-likelihood function for observation
t :

`t(ψ, ϕ, φ) = `U
t (ψ) + `V

t (ψ, ϕ) + `C
t (ψ, ϕ, φ)

where first, ψ = (ψ′
1, ...,ψ

′
N )′, and

`U
t (ψ) =

N∑

i=1

`U
it(ψi) (16)

with ψi = (δi0, δ
′
i, γ

′
i, c

′
i)
′, δi = (δi1, ..., δir)′, γi = (γi1, ..., γir)′, ci = (c′i1, ..., c

′
ir)
′, i = 1, ..., N,

and
`U
it(ψi) = −(1/2){ln git(ψi) + ε̃2

it/git(ψi)}.
Second,

`V
t (ψ, ϕ) =

N∑

i=1

`V
it (ψi, ϕi) (17)

where ϕ = (ϕ′1, ..., ϕ
′
N )′, and

`V
it (ψi, ϕi) = −(1/2){ln hit(ψi, ϕi) + ε̃2

it/hit(ψi, ϕi)}.
with ϕi = (αi1, ..., αiq, κi1, ..., κiq, βi1, ..., βip)′, i = 1, ..., N. Finally,

`C
t (ψ, ϕ, φ) = −(1/2){ln |Pt(ψ, ϕ, φ)|+ ζ′tP

−1
t (ψ, ϕ, φ)ζt − 2ζ′tζt}. (18)

The GARCH equations are estimated separately using maximization by parts. The first
iteration consists of the following:

1. Reparameterise the deterministic component (8) as follows:

g∗it = δ∗i0 +
r∑

l=1

δ∗ilGil(t/T ; γil, cil).

and set ψ∗
i = (δ∗i0, δ

∗′
i , γ ′i, c

′
i)
′, where δ∗i0 > 0 and δ∗i = (δ∗i1, ..., δ

∗
ir)
′. Maximize

LU
iT (ψ∗) =

T∑

t=1

`U
it(ψ

∗) = −(1/2)
T∑

t=1

{ln g∗it(ψ
∗
i ) + ε̃2

it/g∗it(ψ
∗
i )}

for each i, i = 1, ..., N, separately, assuming ε̃it = εit, that is, setting hit(ψi,ϕi) ≡ 1.

The resulting estimators are ψ̂
∗(1)

i = (δ̂∗(1)
i0 , δ̂

∗(1)′
i , γ̂

(1)′
i , ĉ(1)′

i )′, i = 1, ..., N. Obtain δ̂
(1)

i as

follows: δ̂
(1)

i = (δ̂∗(1)
i0 )−1δ̂

∗(1)

i so that ψ̂
(1)

i = (δ̂
(1)′
i , γ̂

(1)′
i , ĉ(1)′

i )′. Note that δ̂
∗(1)
i0 = ω̂

(1)
i .
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2. Setting ψi = ψ̂
(1)

i , i = 1, ..., N, in (17), maximize

LV
iT (ψ̂

(1)

i , ϕi) =
T∑

t=1

`V
it (ψ̂

(1)

i , ϕi) = −(1/2)
T∑

t=1

{ln hit(ψ̂
(1)

i , ϕi) + ε∗2it /hit(ψ̂
(1)

i , ϕi)}

with respect to ϕi assuming ε∗it = εit/g
1/2
it (ψ̂

(1)

i ), for each i, i = 1, ..., N, separately. Call
the ith resulting estimators ϕ̂

(1)
i .

The second iteration is as follows:

1. Maximize

LU
iT (ψ) =

T∑

t=1

`U
it(ψi) = −(1/2)

T∑

t=1

{ln git(ψi) + ε̃2
it/git(ψi)}

assuming ε̃it = εit/h
1/2
it (ψ̂

(1)

i , ϕ̂
(1)
i ), for each i, i = 1, ..., N. Call the ith resulting estimator

ψ̂
(2)

i . The important thing is that ϕi = ϕ̂
(1)
i (fixed) in the definition of ε∗it.

2. Maximize

LV
iT (ψ̂

(2)

i ,ϕi) =
T∑

t=1

`V
it (ψ̂

(2)

i ,ϕi) = −(1/2)
T∑

t=1

{ln hit(ψ̂
(2)

i , ϕi) + ε∗2it /hit(ψ̂
(2)

i ,ϕi)}

with respect to ϕi for each i, i = 1, ..., N, separately, assuming ε∗it = εit/git(ψ̂
(2)

i ). This
yields ϕ̂

(2)
i , i = 1, ..., N.

Iterate until convergence. Call the resulting estimators ψ̂i and ϕ̂i, i = 1, ..., N, and set
ψ̂ = (ψ̂

′
1, ..., ψ̂

′
N )′ and ϕ̂ = (ϕ̂′1, ..., ϕ̂

′
N )′.

Maximization is carried out in the usual fashion by solving the equations

∂

∂ψi

LU
iT (ψi) = (1/2)

T∑

t=1

(
ε̃2
it

git(ψi)
− 1)

1
git(ψi)

∂git(ψi)
∂ψi

= 0

for ψi

∂

∂ϕi

LV
iT (ϕi) = (1/2)

T∑

t=1

(
ε∗2it

hit(ψ̂
(n)

i , ϕi)
− 1)

1

hit(ψ̂
(n)

i ,ϕi)

∂hit(ψ̂
(n)

i ,ϕi)
∂ϕi

= 0

for ϕi in the nth iteration. Writing Gilt = G(t∗, γil, cil), we have

∂git(ψi)
∂ψi

= (1, Gi1t, G
(γ)
i1t , G

(c)
i1t, ..., Girt, G

(γ)
irt , G

(c)
irt)

′

where, for k = 1 in (9),

G
(γ)
ilt =

∂Gilt

∂γil
= δilGilt(1−Gilt)(t∗ − cil), l = 1, ..., r

G
(c)
ilt =

∂Gilt

∂cil
= −γilδilGilt(1−Gilt), l = 1, ..., r
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and

∂hit(ψ̂
(n)

i , ϕi)
∂ϕi

= (1, ε∗2i,t−1, ..., ε
∗2
i,t−q, ε

∗2
i,t−1I(ε∗i,t−1 < 0), ..., ε∗2i,t−qI(ε∗i,t−q < 0),

hi,t−1(ψ̂
(n)

i , ϕi), ..., hi,t−p(ψ̂
(n)

i , ϕi))
′ +

p∑

j=1

βij
∂hi,t−j(ψ̂

(n)

i ,ϕi)
∂ϕi

when the conditional variance hit is defined in (10).
After estimating the TVGARCH equations, estimate φ given ψ̂i and ϕ̂i by maximizing

LC
T (φ) =

T∑

t=1

`C
t (φ) = −(1/2)

T∑

t=1

{ln |Pt(φ)|+ ζ′tP
−1
t (φ)ζt − 2ζ′tζt}

where ζt = (ζ1t, ..., ζNt)′ with ζit = εit/{hit(ψ̂i, ϕ̂i)git(ψ̂i)}1/2, i = 1, ..., N, and

∂

∂φ
LC

T (φ) = −(1/2)
T∑

t=1

∂vec(Pt)′

∂φ
vec(P−1

t −P−1
t ζtζ

′
tP

−1
t ).

All computations in this paper have been performed using Ox, version 3.40, see Doornik
(2002), and a modified version of Matteo Pelagatti’s source code1.

This approach is computationally feasible. Engle and Sheppard (2001) only estimate the
GARCH equations once and show that for Gt = IN , the maximum likelihood estimators ϕ̂i,
i = 1, ..., N, (in their framework git(ψi) ≡ 1) are consistent. The two-step estimator is, how-
ever, asymptotically less efficient than the full maximum likelihood estimator. Further iteration
in order to obtain efficient estimators is possible, see Fan, Pastorello, and Renault (2007) for
discussion, but it has not been undertaken here. Under regularity conditions, the maximum like-
lihood estimators of the TVGJR-GARCH equations are consistent and asymptotically normal;
see Amado and Teräsvirta (2011).

3.2 Estimation of TVCC-TVGJR-GARCH models

The maximum likelihood estimation of the parameters of the model TVCC-GJR-GARCH model
can be carried out in three steps as in Silvennoinen and Teräsvirta (2005, 2009a). The log-
likelihood function can be decomposed as before. The components (16) and (17) remain the
same, whereas (18) becomes

`C
t (ψ, ϕ, ξ) = −(1/2){ln |Pt(ξ)|+ ζ′tP

−1
t (ξ)ζt − 2ζ′tζt}

where the {N(N−1)+2}×1 vector ξ = (vecl(P(1))
′, vecl(P(2))

′, γ, c)′. (The vecl operator stacks
the columns below the main diagonal into a vector.) In their scheme, the parameter vectors
ψ and ϕ of the GARCH equations are estimated first, followed by the conditional correlations
in P(1) and P(2), given the transition function parameters γ and c in (14). Finally, γ and c
are estimated given ψ, ϕ, P(1) and P(2). The next iteration begins by re-estimating ϕ given
the previous estimates of P(1), P(2), γ and c. The only modification required for the estimation
of TVCC-TVGJR-GARCH models compared to Silvennoinen and Teräsvirta (2005) is that for
each main iteration there is an inside loop for iterative estimation (maximisation by parts) of ψ
and ϕ. In practice, compared to the two-step estimates, the extra iterations do not change the
estimates much, but the estimators become fully efficient.

1The Ox estimation package is freely available at http://www.statistica.unimib.it/utenti/p matteo/
Ricerca/research.html
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Asymptotic properties of the maximum likelihood estimators of the TVCC-TVGJR-GARCH
model are not yet known. The existing results only cover the CCC-GARCH model; see Ling and
McAleer (2003). Due to a time-varying correlation matrix, deriving corresponding asymptotic
results for the TVCC-TVGJR-GARCH model is a nontrivial problem and beyond the scope of
the present paper. Note that asymptotic normality has been proven for maximum likelihood
estimates of the parameters of the TVGJR-GARCH model: our univariate GARCH components
are of this form.

4 Modelling with TVGJR-GARCH models

4.1 Specifying the unconditional variance component

In applying a model belonging to the family of CC-TVGJR-GARCH models, there are two
specification problems. First, one has to determine p and q in (10) and r in (8). Furthermore,
if r ≥ 1, one also has to determine k for each transition function (9). Second, at least in
principle one has to test the null hypothesis of constant conditional correlations against either
the DCC- or TVCC-GARCH model. We shall concentrate on the first set of issues. It appears
that in applications involving DCC-GARCH models the null hypothesis of constant conditional
correlations is never tested, and we shall adhere to that practice. In applications of the STCC-
GARCH model, constancy of correlations is always tested before applying the larger model, see
Silvennoinen and Teräsvirta (2005, 2009a). The test can be extended to the current situation
in which the GARCH equations are TVGJR-GARCH ones instead of plain GJR-GARCH ones.
Nevertheless, in this work we assume that the correlations do vary over time as is done in the
context of DCC-GARCH models and apply the TVCC-GARCH model without carrying out a
correlation constancy test.

We shall thus concentrate on the first set of specification issues. We choose p = q = 1 and
test for higher orders at the evaluation stage. As to selecting r and k, we shall follow Amado and
Teräsvirta (2011) and briefly review their procedure. The conditional variances are estimated
first, assuming git ≡ 1, i = 1, ..., N. The number of deterministic functions git is determined
thereafter equation by equation by sequential testing. For the ith equation, the first hypothesis
to be tested is H01: γi1 = 0 against H11: γi1 > 0 in

git = 1 + δi1Gi1(t/T ; γi1, ci1).

The standard test statistic has a non-standard asymptotic distribution because δi1 and ci1

are unidentified nuisance parameters when H01 is true. This lack of identification may be
circumvented by following Luukkonen, Saikkonen, and Teräsvirta (1988). This means that
Gi1(t/T ; γi1, ci1) is replaced by its mth-order Taylor expansion around γi1 = 0. Choosing m = 3,
this yields

git = α∗0 +
3∑

j=1

δ∗ij(t/T )j + R3(t/T ; γi1, ci1) (19)

where δ∗ij = γj
i1δ̃

∗
ij with δ̃∗ij 6= 0, and R3(t/T ; γi1, ci1) is the remainder. The new null hypothesis

based on this approximation is H′01: δ∗i1 = δ∗i2 = δ∗i3 = 0 in (19). In order to test this null
hypothesis, we use the Lagrange multiplier (LM) test. Furthermore, R3(t/T ; γi1, ci1) ≡ 0 under
H01, so the asymptotic distribution theory is not affected by the remainder. As discussed in
Amado and Teräsvirta (2011), the LM-type test statistic has an asymptotic χ2-distribution with
three degrees of freedom when H01 holds.

If the null hypothesis is rejected, the model builder also faces the problem of selecting the
order k ≤ 3 in the exponent of Gil(t/T ; γil, cil). It is solved by carrying out a short test sequence
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within (19); for details see Amado and Teräsvirta (2011). The next step is then to estimate the
alternative with the chosen k, add another transition, and test the hypothesis γi2 = 0 in

git = 1 + δ∗i1Gi1(t/T ; γi1, ci1) + δ∗i2Gi1(t/T ; γi2, ci2)

using the same technique as before. Testing continues until the first non-rejection of the null
hypothesis. The LM-type test statistic still has an asymptotic χ2-distribution with three degrees
of freedom under the null hypothesis.

4.2 The modelling cycle

After specifying the model, its parameters are estimated and the estimated model evaluated.
In short, building TVGJR-GARCH models for the elements of Dt = StGt of the CC-GARCH
model defined by equations (3) and (4) proceeds as follows:

1. Estimate the conditional variance ht as in (10) with p = q = 1. This may be preceded
by testing the null hypothesis of no ARCH. In applications to financial return series of
sufficiently high frequency, the test may be omitted as it is clear that volatility clustering
occurs.

2. After specifying and estimating hit, test H01: git ≡ 1 against H11: git = 1+δi1Gi1(t/T ; γi1, ci1),
for i = 1, ..., N, at the significance level α(1). In case of a rejection, select k and test H02:
git = 1 + δi1Gi1(t/T ; γi1, ci1) against H12: git = 1 +

∑2
l=1 δilGil(t/T ; γil, cil) at the signifi-

cance level α(2) = τα(1), where τ ∈ (0, 1). More generally, α(j) = τα(j−1), j = 2, 3, .... The
significance level is lowered at each stage for reasons of parsimony. In our application we
choose τ = 1/2, but the results are quite robust to the choice of τ in the sense that a wide
range of the discount factor values yield the same r.

3. Evaluate the estimated individual TVGJR-GARCH equations by means of LM and LM-
type diagnostic tests. For relevant misspecification tests for TV-GARCH models (they are
directly applicable to testing TVGJR-GARCH models), see Amado and Teräsvirta (2011).
This includes testing for higher orders of p and q in (10). If the models pass the tests, they
will be incorporated in multivariate CC-GARCH models. If the multivariate model is the
TVCC-GJR-GARCH model, the GARCH equations will be re-estimated as described in
Section 3.

We shall now apply the modelling cycle to individual daily return series. As already indicated,
the interest lies in how careful modelling of nonstationarity in return series affects correlation
estimates. This will be investigated by a set of bivariate CC-GARCH models.

5 Empirical analysis

5.1 Data

The effects of modelling the nonstationarity in return series on the conditional correlations are
studied with price series of seven stocks of the S&P 500 composite index traded at the New York
Stock Exchange. The time series are available at the website Yahoo! Finance. They consist
of daily closing prices of American Express (AXP), Boeing Company (BA), Caterpillar (CAT),
Intel Corporation (INTC), JPMorgan Chase & Co. (JPM), Whirlpool (WHR) and Exxon Mobil
Corporation (XOM). The seven companies belong to different industries that are consumer
finance (AXP), aerospace and defence (BA), machines (CAT), semiconductors (INTC), banking
(JPM), consumption durables (WHR) and energy (XOM). A bivariate analysis of returns of
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these companies may give some idea of how different the correlations between firms representing
different industries can be. The observation period starts in September 29, 1998 and ends
in October 7, 2008, yielding a total of 2521 observations. All stock prices are converted into
continuously compounded rates of returns, whose values are plotted in Figure 1.

A common pattern is evident in the seven return series. There is a volatile period from the
beginning until the middle of the observation period and a less volatile period starting around
2003 that continues almost to the end of the sample. At the very end, it appears that volatility
increases again. Moreover, as expected, all seven return series exhibit volatility clustering, but
the amplitude of the clusters varies over time.

Descriptive statistics for the individual return series can be found in Table 1. Conventional
measures for skewness and kurtosis and also their robust counterparts are provided for all series.
The conventional estimates indicate both non-zero skewness and excess kurtosis: both are typi-
cally found in financial asset returns. However, conventional measures of skewness and kurtosis
are sensitive to outliers and should therefore be viewed with caution. Kim and White (2004)
suggested to look at robust estimates of these quantities. The robust measures for skewness
are all positive but very close to zero indicating that the return distributions show very little
skewness. All robust kurtosis measures are positive, AXP and JPM being extreme examples
of this, which suggests excess kurtosis (the robust kurtosis measure equals zero for normally
distributed returns) but less than what the conventional measures indicate. The estimates are
strictly univariate and any correlations between the series are ignored.

5.2 Modelling the conditional variances and testing for the nonstationary
component

We first construct an adequate GJR-GARCH(1,1) model for the conditional variance of each
of the seven return series. The models are tested against misspecification applying the tests
in Lundbergh and Teräsvirta (2002) to the GJR-GARCH model. The estimation results can
be found in Table 6. The estimated models show a distinct IGARCH effect: some of the
estimates of αi1 + κi1/2 + βi1 even exceed unity. In a majority of cases, the asymmetry term
I(ε∗i,t−1 < 0)ε∗2i,t−1 dominates the term ε∗2i,t−1. The misspecification test results in Table 8 do
not reveal major inadequacies, except that the GJR-GARCH model seems to get rejected when
tested against the model containing also a nonlinear STAR component. This situation changes
when the GJR-GARCH model is tested against the TV-GJR-GARCH: the results appear in
Table 3 under the heading ’single transition’. The null model is strongly rejected in all seven
cases. From the same table it is seen when the single transition model is tested against two
transitions (’double transition’) that one transition is enough in all cases. The test sequence for
selecting the type of transition shows that not all rejections imply a monotonically increasing
function git.

The estimated TV-GJR-GARCH models can be found in Tables 4 and 5. Table 5 shows
how the persistence measure α̂i1 + κ̂i1/2 + β̂i1 is dramatically smaller in all cases than it is
when git ≡ 1. In two occasions, remarkably low values, 0.782 for CAT and 0.888 for WHR, are
obtained. For the remaining series the reduction in persistence is smaller but the values are still
distinctly different from the corresponding ones in Table 6. From Table 4 it can be seen that ĝit

changes monotonically only for BA, whereas for the other series this component first decreases
and then increases again. In INTC and WHR, however, there is an increase very early on,
after which the pattern is similar to that of the other four series. This is also clear from Figure
2 that contains the graphs of ĝit for the seven estimated models. The misspecification tests of
Amado and Teräsvirta (2011) in Table 7 suggest that most of the estimated models are adequate.
Exceptions include the models of BA and INTC returns for which the tests suggest that the
GJR-GARCH type asymmetry is not enough, and a more flexible asymmetry component would
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be required. For WHR returns, a higher-order GARCH model might be a useful extension.
The effects of modelling the nonstationarity in variance is also illustrated by Figures 3, 4,

5 and 6. Figure 3 shows the estimated conditional standard deviations from the GJR-GARCH
models. The behaviour of these series looks rather nonstationary. The conditional standard
deviations from the TVGJR-GARCH model can be found in Figure 5. These plots, in contrast
to the ones in Figure 3, do not show signs of nonstationarity. The deterministic component
git is able to absorb the changing ‘baseline volatility’, and only volatility clustering is left to
be parameterized by hit. This is clearly seen from the graphs in Figure 5 as they look flatter
but retain the peaks visible of those in Figure 3. Moreover, the sample autocorrelations of |εit|
shown in Figure 4 decay very slowly as a function of the lag length, whereas the decay rate of
the autocorrelogram of |ε∗it| (or |εit| /ĝ

1/2
it ) in Figure 6 is considerably faster and appears close to

the exponential. This is what we would expect after the unconditional variance component has
absorbed the long-run movements in the series. These findings justify at an empirical level that
the low lever of persistence is exclusively due to the modelling of the unconditional variance.

Furthermore, Table 2 contains the same statistics as Table 1, but now for the standardised
returns εit/ĝ

1/2
t . As may be expected, these returns are less leptokurtic than the original ones.

Interestingly, there are three series, BA, INTC and XOM, for which the robust kurtosis mea-
sure indicates that the marginal distribution of the standardised returns is close to a normal
distribution.

5.3 Effects of modelling the long-run dynamics of volatility on correlations

We now examine the effects of modelling nonstationary volatility equations on the correlations
between pairs of stock returns. For that purpose, we consider three bivariate Conditional Corre-
lation GARCH models, the CCC-, the DCC-, and the TVCC-GJR-GARCH(1,1) model defined
in Section 2.2. For each model, two specifications will be estimated for modelling the univariate
volatilities. One is the first-order GJR-GARCH model that corresponds to Gt ≡ I2, whereas
the other one is the GJR-GARCH model for which Gt 6= I2 in (5).

We shall first compare the rolling correlation estimates for (εit, εjt) and (εit/ĝ
1/2
it , εjt/ĝ

1/2
jt )

pairs. Figure 7 contains the pairwise correlations between the former and the latter computed
over 100 trading days. The differences are sometimes quite remarkable in the first half of the
series where the correlations of rescaled returns are often smaller than those of the original
returns. In a few cases, this is true for the whole series.

This might suggest that there are also differences in conditional correlations between models
based on GJR-GARCH type variances and their TVGJR-GARCH counterparts. A look at Fig-
ure 8 suggests, perhaps surprisingly, that when one compares DCC-GJR-GARCH models with
DCC-TVGJR-GARCH ones, this is not the case. The figure depicts the differences between the
conditional correlations over time for the 21 bivariate models. They are generally rather small,
and it is difficult to find any systematic pattern in them. The AXP-CAT and CAT-WHR pairs
are the two exceptions: for the former pair, the difference lies in the range (−0.27, 0.32) whereas
for the latter pair the difference on the correlations moves within the interval (−0.22, 0.30).
Thus, one may conclude that if the focus of the modeller is on conditional correlations, taking
nonstationarity in the variance into account is not particularly important.

Figure 9 shows the estimated time-varying correlations for the TVCC-GJR-GARCH and
TVCC-TVGJR-GARCH models. The parameter estimates can be found in Tables 10 and 11,
respectively. For the majority of the estimated models, the estimate of the slope transition
parameter γ attains its upper bound of 500. For these cases, the transition function is close to a
step function. The differences in correlations have to do with the smoothness of the increase in
correlations during the first quarter of the observations. These differences are not systematic:
in some cases the increase is smoother in the former model, in others in the latter. In a few
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cases, the differences are very small. There is only one pair (WHR-XOM) for which the level
of the correlations is different after the change is completed. The main conclusion from these
comparisons would be rather similar to that obtained from considering DCC-GARCH models.
It would also be possible to consider other transition variables than time, but it has not been
done here.

Nevertheless, the fit of the models considerably improves when the unconditional variance
component is properly modelled. The log-likelihood values of the estimated models for the
21 pairs of return series are reported in Table 9. The maxima of the log-likelihood functions
are substantially larger when git is estimated than when it is ignored. A comparison between
DCC- and TVCC-GARCH models suggests that both fit the time series equally well. The
TVCC-TVGJR-GARCH model has the highest maximum in 11 cases out of 21, so the ordering
between the two is completely random. The constant conditional correlation (CCC-) GARCH
model fits the data less well than the other two, which is in line with the previous literature on
conditional correlations.

5.4 Time-varying news impact surfaces

In this section we consider the impact of unexpected shocks to the asset returns on the estimated
covariances. This is done by employing a generalization of the univariate news impact curve of
Engle and Ng (1993) to the multivariate case introduced by Kroner and Ng (1998). The so-called
news impact surface is the plot of the conditional covariance against a pair of lagged shocks,
holding the past conditional covariances constant at their unconditional sample mean levels.
The news impact surfaces of the multivariate correlation models with the volatility equations
modelled as TVGJR-GARCH models are time-varying because they depend on the component
gi,t−1. They will be called time-varying news impact surfaces. The time-varying news impact
surface for hijt is the three-dimensional graph of the function

hijt = f(εi,t−1/gi,t−1, εj,t−1/gj,t−1, ρij,t−1;ht−1)

where ht−1 is a vector of conditional covariances at time t − 1 defined at their unconditional
sample means. As an example, Figure 10 contains the time-varying news impact surface for the
covariance generated by the CCC-TVGJR-GARCH model for the pair BA-XOM. The choice of
this single pair of assets is merely illustrative, but the same shapes of the surfaces can be found
for other pairs as well. From the figure we see how the surface can vary over time due to the
nonstationary component gi,t−1. We are able to distinguish different reaction levels of covariance
estimates to past shocks during tranquil and turbulent times. It shows that the response to the
news of a given size on the estimated covariances is clearly stronger during periods of calm in the
market (’lower regime’) than it is during periods of high turbulence. According to the results,
when calm prevails a minor piece of ‘bad news’ (unexpected negative shock) is rather big news
compared to a big piece of ‘good news’ (unexpected positive shock) during turbulent periods.
This is seen from the asymmetric bowl-shaped impact surface.

Figure 11 contains the time-varying news impact surfaces under low and high volatility from
the CCC-TVGJR-GARCH model for the conditional variance of BA when there is no shock
to XOM. Figure 12 contains a similar graph for XOM when there is no shock to BA. The
asymmetric shape shows that a negative return shock has a greater impact than a positive
return shock of the same size. Furthermore, as already obvious from Figure 10, a piece of news
of a given size has a stronger effect on the conditional variance when volatility is low than when
it is high.

Estimated news impact surfaces from the TVCC-TVGJR-GARCH model of the BA-XOM
pair are plotted in Figure 13. These news impact surfaces are able to distinguish between
responses during low and high variance as well as low and high correlation levels. It is seen from
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Figure 13 that both the degree of turbulence in the market and the level of the correlations
affect the impact of past shocks on the covariances. This indicates that both factors play an
important role in assessing the effect of shocks on the covariances according to the TVCC-
TVGJR-GARCH model. It is evident from the figure that high covariance estimates are related
to strong correlations and a high degree of turbulence in the market.

6 Conclusions

In this paper, we extend the univariate multiplicative TV-GARCH model of Amado and Teräsvirta
(2011) to the multivariate CC-GARCH framework. The model allows the individual variances
to vary smoothly over time according to the logistic transition function and its generalizations.
We develop a modelling technique for specifying the parametric structure of the determinis-
tic time-varying component that involves a sequence of Lagrange multiplier-type tests. In this
respect, our model differs from the semiparametric model of Hafner and Linton (2010).

We consider a set of CC-GARCH models to investigate the effects of nonstationary variance
equations on the conditional correlation matrix. The models are applied to pairs of seven
daily stock returns belonging to the S&P 500 composite index. We find that in our examples
modelling the time-variation of the unconditional variances considerably improves the fit of
the CC-GARCH models. The results show that multivariate correlation models combining
both time-varying correlations and time-varying unconditional variances provide the best in-
sample fit. They also indicate that modelling the nonstationary component in the variance
has relatively little effect on correlation estimates when the conditional correlation model is
the DCC-GARCH model, whereas the results are different for the STCC-GARCH model of
Silvennoinen and Teräsvirta (2005, 2009a). In a number of occasions, the correlations estimated
from this model with time as the sole transition variable (TVCC-GARCH) are quite different
from what they are when the GJR-GARCH equations are implicitly assumed stationary. The
most conspicuous difference between the estimated TVCC-TVGJR-GARCH and TVCC-GJR-
GARCH models can be found in the degree of smoothness of the change in the correlations, but
the direction of the change is not systematic.

With the TVGJR-GARCH equations we are also able to consider the effect of the nonsta-
tionary variance component on the moving correlations. For many pairs of returns, the fact that
correlations between raw returns increase over time can be attributed to increasing volatility.
This conclusion is based on the observation that the same moving correlations computed from
returns with constant unconditional variance do not increase over time.

Furthermore, the TVGJR-GARCH approach gives us the opportunity to generalize the news
impact surfaces introduced by Kroner and Ng (1998) such that they can vary over time. In the
TVCC-TVGJR-GARCH model, the impact of news (shocks) on the covariances between returns
is a function of both time-varying variances and time-varying correlations. As in the univariate
case already considered in Amado and Teräsvirta (2011), it is seen that the impact of a piece
of news of a given size is larger when the market is calm than when it is during periods of
high volatility. In the multivariate case we can also conclude that high conditional correlation
between two returns adds to the impact as compared to the situation in which the correlation
is low. We also reproduce the old result that negative shocks or news have a stronger effect on
volatility than positive news of the same size.

An extension of this methodology to the case in which the conditional correlations are also
controlled by a stochastic variable is available through the Double STCC-GJR-GARCH model.
This makes it possible to model for example asymmetric responses of conditional correlations
to functions of past returns. This, however, is a topic left for future research.
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Mikosch, T., and C. Stărică (2004): “Nonstationarities in Financial Time Series, the Long-
Range Dependence, and the IGARCH Effects,” Review of Economics and Statistics, 86, 378–
390.
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Appendix A: Tables

Table 1: Descriptive statistics of the asset returns

Asset Min Max Mean Std.dev. Skew Ex.Kurt Rob.Sk. Rob.Kr.
AXP -19.35 13.23 0.011 2.280 -0.265 4.864 0.004 0.418
BA -19.39 9.513 0.019 2.069 -0.611 7.215 -0.003 0.106
CAT -11.51 9.067 0.037 2.073 -0.260 3.945 -0.022 0.108
INTC -24.87 18.32 -0.009 2.896 -0.470 6.197 -0.001 0.160
JPM -19.97 15.47 0.025 2.524 0.282 6.901 -0.010 0.396
WHR -13.30 12.95 0.022 2.254 0.183 3.516 0.004 0.272
XOM -8.83 9.29 0.039 1.579 -0.136 2.334 -0.058 0.060

Notes: The table contains summary statistics for the raw returns of the seven stocks of the S&P
500 composite index. The sample period is from September 29, 1998 until October 7, 2008 (2521
observations). Rob.Sk. denotes the robust measure for skewness based on quantiles proposed by
Bowley (see Kim and White (2004)) and the Rob.Kr. denotes the robust centred coefficient for
kurtosis proposed by Moors (see Kim and White (2004)).

Table 2: Descriptive statistics of the standardised returns

Asset Min Max Mean Std.dev. Skew Ex.Kurt Rob.Sk. Rob.Kr.
AXP -8.36 6.196 0.015 1.171 -0.071 2.756 0.018 0.122
BA -11.45 6.771 0.019 1.512 -0.404 3.852 -0.012 0.032
CAT -15.68 8.613 0.042 1.743 -0.280 4.354 -0.005 0.083
INTC -19.35 13.23 −4× 10−4 1.738 -0.491 4.238 0.016 0.028
JPM -7.356 5.700 0.019 1.122 0.183 3.236 0.017 0.192
WHR -8.949 9.808 0.027 1.786 0.261 2.566 4× 10−5 0.194
XOM -6.051 6.365 0.038 1.221 -0.172 1.430 -0.044 0.001

Notes: The table contains summary statistics for the standardised returns of the seven stocks of the
S&P 500 composite index. The standardised returns are obtained dividing the raw returns by the
estimate of the function g

1/2
t . The sample period is from September 29, 1998 until October 7, 2008

(2521 observations). Rob.Sk. denotes the robust measure for skewness based on quantiles proposed by
Bowley (see Kim and White (2004)) and the Rob.Kr. denotes the robust centred coefficient for kurtosis
proposed by Moors (see Kim and White (2004)).
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Table 3: Sequence of tests of the GJR-GARCH model against a TV-GJR-GARCH model

Transitions H0 H03 H02 H01

Single transition
AXP 0.0184 0.1177 0.0071 0.5722
BA 0.0021 0.0616 0.0461 0.0072
CAT 0.0044 0.0260 0.0107 0.1971
INTC 5× 10−5 9× 10−5 0.1600 0.0197
JPM 9× 10−4 0.0073 0.0023 0.8500
WHR 6× 10−5 7× 10−4 0.0011 0.9401
XOM 0.0018 0.0836 7× 10−4 0.4271

Double transition
AXP 0.0826 0.1953 0.0378 0.4032
BA 0.1208 0.1480 0.0547 0.8419
CAT 0.4011 0.1719 0.4961 0.4347
INTC 0.4307 0.8757 0.1050 0.7458
JPM 0.0947 0.0144 0.8678 0.5484
WHR 0.3059 0.8856 0.1450 0.2249
XOM 0.1111 0.1526 0.4198 0.0685
Notes: The entries are the p-values of the LM-type tests of constant unconditional
variance applied to the seven stock returns of the S&P 500 composite index. The
appropriate order k in (9) is chosen from the short sequence of hypothesis as
follows: If the smallest p-value of the test corresponds to H02, then choose k = 2.
If either H01 or H03 are rejected more strongly than H02, then select either k = 1
or k = 3. See Amado and Teräsvirta (2011) for further details.
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Table 4: Estimation results for the univariate TV-GJR-GARCH models

Asset δ̂1 γ̂1 ĉ11 ĉ12 ĉ13 r

gt component

AXP 4.3601
(0.1989)

300
(−)

0.4825
(0.0015)

0.9034
(0.0021)

− 1

BA −0.651
(0.0135)

300
(−)

0.4686
(0.0011)

− − 1

CAT 1.2366
(0.1102)

300
(−)

0.3021
(0.0011)

0.9726
(0.0028)

− 1

INTC 2.9973
(0.1553)

300
(−)

0.0262
(0.0004)

0.4775
(0.0031)

0.9127
(0.0039)

1

JPM 6.3688
(0.2737)

300
(−)

0.4821
(0.0012)

0.9042
(0.0020)

− 1

WHR 1.2272
(0.0917)

300
(−)

0.0892
(0.0008)

0.4195
(0.0072)

0.8497
(0.0024)

1

XOM 1.1063
(0.0809)

300
(−)

0.4106
(0.0029)

0.8672
(0.0037)

− 1

Notes: The table contains the parameter estimates of the git component from the
TV-GJR-GARCH(1,1) model for the seven stocks of the S&P 500 composite index,
over the period September 29, 1998 - October 7, 2008. The estimated model has
the form git = 1+

∑r
l=1 δilGil(t/T ; γil, cil), where Gil(t/T ; γil, cil) is defined in (9)

for all i. The numbers in parentheses are the standard errors.
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Table 5: Estimation results for the univariate TV-GJR-GARCH models

Asset ω̂ α̂1 κ̂1 β̂1 α̂1 + κ̂1
2 + β̂1

ht component

AXP 0.0477
(0.0123)

− 0.1309
(0.0205)

0.9045
(0.0146)

0.9699

BA 0.1050
(0.0463)

− 0.0899
(0.0330)

0.9103
(0.0326)

0.9552

CAT 0.6641
(0.4611)

0.0477
(0.0290)

− 0.7340
(0.1696)

0.7817

INTC 0.1203
(0.0498)

0.0450
(0.0165)

− 0.9155
(0.0269)

0.9605

JPM 0.0474
(0.0152)

0.0213
(0.0110)

0.1135
(0.0262)

0.8890
(0.0229)

0.9670

WHR 0.3569
(0.2392)

0.0736
(0.0326)

− 0.8141
(0.1009)

0.8877

XOM 0.0644
(0.0222)

0.0272
(0.0113)

0.0578
(0.0215)

0.9008
(0.0235)

0.9568

Notes: The table contains the parameter estimates of the hit component from
the TV-GJR-GARCH(1,1) model for the seven stocks of the S&P 500 composite
index, over the period September 29, 1998 - October 7, 2008. The estimated
model has the form hit = ωi + αi1ε

∗2
it−1 + κi1Iit−1(ε

∗
it−1)ε

∗2
it−1 + βi1hit−1, where

ε∗it = εit/g
1/2
it and Iit(ε

∗
it) = 1 if ε∗it < 0 (and 0 otherwise) for all i. The numbers

in parentheses are the Bollerslev-Wooldridge robust standard errors.

Table 6: Estimation results for the univariate GJR-GARCH models

Asset ω̂ α̂1 κ̂1 β̂1 α̂1 + κ̂1
2 + β̂1

AXP 0.0160
(0.0061)

− 0.1199
(0.0223)

0.9432
(0.0094)

1.003

BA 0.0247
(0.0164)

− 0.0618
(0.0304)

0.9647
(0.0167)

0.996

CAT 0.0151
(0.0153)

0.0156
(0.0081)

− 0.9810
(0.0107)

0.994

INTC 0.0471
(0.0352)

0.0514
(0.0233)

− 0.9444
(0.0237)

0.997

JPM 0.0122
(0.0062)

0.0229
(0.0095)

0.0987
(0.0232)

0.9331
(0.0136)

1.005

WHR 0.0338
(0.0235)

− 0.0414
(0.0146)

0.9744
(0.0104)

0.995

XOM 0.0406
(0.0174)

0.0323
(0.0107)

0.0526
(0.0194)

0.9256
(0.0177)

0.984

Notes: The table contains the parameter estimates from the GJR-GARCH(1,1)
model for the seven stocks of the S&P 500 composite index, over the period
September 29, 1998 - October 7, 2008. The estimated model has the form
hit = ωi +αi1ε

2
it−1 +κi1Iit−1(εit−1)ε

2
it−1 +βi1hit−1, where Iit(εit) = 1 if εit < 0

(and 0 otherwise) for all i. The numbers in parentheses are the Bollerslev-
Wooldridge robust standard errors.
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Table 7: Misspecification tests for the TV-GJR-GARCH models

(a) LM test of no ARCH in the standardised residuals

Return AXP BA CAT INTC JPM WHR XOM
r = 1 0.513 0.099 0.695 0.558 0.884 0.0376 0.494
r = 5 0.328 0.391 0.955 0.927 0.975 0.2107 0.326
r = 10 0.137 0.438 0.997 0.956 0.897 0.2649 0.145

(b) LM test of GJR-GARCH(1,1) vs. GJR-GARCH(1,2) model

Return AXP BA CAT INTC JPM WHR XOM
0.532 0.134 0.853 0.104 0.269 0.0218 0.496

(c) LM test of GJR-GARCH(1,1) vs. GJR-GARCH(2,1) model

Return AXP BA CAT INTC JPM WHR XOM
0.241 0.210 0.975 0.652 0.607 0.0161 0.972

(d) LM type test of no STGJR-GARCH model of order 1

Return AXP BA CAT INTC JPM WHR XOM
0.429 2× 10−5 0.562 4× 10−4 0.403 0.1581 0.468

Notes: The entries are the p-values of the LM-type misspecification tests in Amado and Teräsvirta
(2011). The diagnostic tests are the following: (a) test of no ARCH-in-GARCH against remaining
ARCH of order r in the standardised residuals; (b) test of a GJR-GARCH(1,1) model against a GJR-
GARCH(1,2) model; (c) test of a GJR-GARCH(1,1) model against a GJR-GARCH(2,1) model; (d)
test of no remaining nonlinearity against a Smooth Transition GJR-GARCH (STGJR-GARCH) of
order k = 1.
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Table 8: Misspecification tests for the GJR-GARCH models

(a) LM test of no ARCH in the standardized residuals

Return AXP BA CAT INTC JPM WHR XOM
r = 1 0.557 0.103 0.296 0.695 0.472 2× 10−4 0.194
r = 5 0.281 0.147 0.744 0.931 0.813 0.009 0.386
r = 10 0.338 0.324 0.976 0.971 0.772 0.036 0.231

(b) LM test of GJR-GARCH(1,1) vs. GJR-GARCH(1,2) model

Return AXP BA CAT INTC JPM WHR XOM
0.478 0.167 0.168 0.819 0.693 0.749 0.519

(c) LM test of GJR-GARCH(1,1) vs. GJR-GARCH(2,1) model

Return AXP BA CAT INTC JPM WHR XOM
0.386 0.026 0.295 0.992 0.968 0.100 0.871

(d) LM type test of no STGJR-GARCH model of order 1

Return AXP BA CAT INTC JPM WHR XOM
0.538 0.008 1× 10−5 0.023 0.498 0.007 0.180

Notes: The entries are the p-values of the LM-type misspecification tests in Amado and Teräsvirta
(2011). The diagnostic tests are the following: (a) test of no ARCH-in-GARCH against remaining
ARCH of order r in the standardised residuals; (b) test of a GJR-GARCH(1,1) model against a GJR-
GARCH(1,2) model; (c) test of a GJR-GARCH(1,1) model against a GJR-GARCH(2,1) model; (d)
test of no remaining nonlinearity against a Smooth Transition GJR-GARCH (STGJR-GARCH) of
order k = 1.
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Table 9: Log-likelihood values from the bivariate normal density for the CC-GJR-GARCH
estimated models

Pairs of CCC DCC TVCC
Assets GJR TV-GJR GJR TV-GJR GJR TV-GJR

AXP−BA −10153.3 −8214.5 −10127.1 −8194.3 −10120.2 −8190.2

AXP−CAT −10207.7 −8563.1 −10187.2 −8544.1 −10183.8 −8542.9

AXP−INTC −10809.2 −8533.0 −10780.2 −8503.9 −10779.8 −8510.3

AXP−JPM −9707.6 −6911.8 −9688.0 −6892.1 −9702.6 −6907.4

AXP−WHR −10415.9 −8629.3 −10378.7 −8588.2 −10385.6 −8594.9

AXP−XOM −9532.4 −7699.4 −9483.3 −7653.1 −9490.5 −7664.2

BA−CAT −10390.1 −9356.9 −10373.1 −9346.6 −10365.2 −9336.3

BA−INTC −11015.0 −9349.6 −10994.8 −9333.9 −10986.7 −9325.9

BA−JPM −10275.1 −8092.4 −10256.9 −8080.2 −10252.4 −8078.6

BA−WHR −10586.4 −9410.7 −10566.1 −9393.5 −10561.9 −9388.1

BA−XOM −9659.0 −8442.8 −9630.5 −8421.8 −9629.6 −8420.0

CAT−INTC −11114.9 −9750.3 −11082.2 −9720.7 −11073.6 −9715.6

CAT−JPM −10341.4 −8451.0 −10304.6 −8419.3 −10309.7 −8425.8

CAT−WHR −10614.0 −9730.6 −10580.6 −9696.8 −10594.8 −9708.3

CAT−XOM −9737.9 −8812.9 −9698.3 −8781.2 −9693.2 −8776.6

INTC−JPM −10921.4 −8403.0 −10910.3 −8390.3 −10900.7 −8388.9

INTC−WHR −11307.3 −9790.0 −11283.3 −9763.8 −11282.9 −9762.5

INTC−XOM −10412.6 −8858.8 −10373.7 −8816.2 −10374.9 −8824.1

JPM−WHR −10494.8 −8456.6 −10470.0 −8430.9 −10475.9 −8432.8

JPM−XOM −9670.9 −7596.9 −9629.9 −7558.1 −9634.8 −7565.0

WHR−XOM −9982.3 −8913.8 −9961.5 −8892.8 −9969.9 −8900.8

Notes: The table contains the log-likelihood values for each of the bivariate CC-GJR-GARCH
model. The conditional variances are modelled as GJR-GARCH(1,1). The GJR-GARCH column
indicates that the unconditional variances are time-invariant functions. The TV-GJR-GARCH
column indicates that the unconditional variances vary over time according to function (8). The
maximised values for the log-likelihood are shown in boldface.
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Table 10: Estimation results for the bivariate TVCC-GJR-GARCH models
Pairs of assets ρ(1) ρ(2) γ c

AXP−BA 0.1172
(0.0407)

0.4203
(0.0109)

500
(−)

0.2391
(0.0012)

AXP−CAT 0.2264
(0.0392)

0.4719
(0.0086)

500
(−)

0.2321
(0.0007)

AXP−INTC 0.1922
(0.0407)

0.4695
(0.0087)

500
(−)

0.2359
(0.0007)

AXP−JPM 0.5658
(0.0250)

0.6427
(0.0055)

500
(−)

0.2324
(0.0006)

AXP−WHR 0.1473
(0.0452)

0.4495
(0.0275)

33.43
(22.67)

0.2139
(0.0215)

AXP−XOM 0.0790
(0.0399)

0.4243
(0.0097)

500
(−)

0.2650
(0.0009)

BA−CAT 0.1412
(0.0474)

0.3985
(0.0104)

500
(−)

0.2891
(0.0007)

BA−INTC 0.0718
(0.0453)

0.3587
(0.0104)

500
(−)

0.2624
(0.0009)

BA−JPM 0.1450
(0.0377)

0.3987
(0.0099)

500
(−)

0.2399
(0.0011)

BA−WHR 0.0870
(0.0423)

0.3608
(0.0129)

500
(−)

0.2336
(0.0014)

BA-XOM 0.0645
(0.0429)

0.3663
(0.0270)

17.25
(8.07)

0.2653
(0.0504)

CAT−INTC 0.0471
(0.0420)

0.4119
(0.0333)

32.89
(21.16)

0.2338
(0.0164)

CAT−JPM 0.1538
(0.0402)

0.4634
(0.0085)

500
(−)

0.2017
(0.0003)

CAT−WHR 0.1669
(0.0481)

0.4386
(0.0088)

500
(−)

0.1398
(0.0015)

CAT-XOM 0.0746
(0.0463)

0.4486
(0.0284)

11.21
(3.51)

0.2606
(0.0260)

INTC−JPM 0.2124
(0.0503)

0.4555
(0.0084)

500
(−)

0.2091
(0.0008)

INTC−WHR 0.0893
(0.0354)

0.3647
(0.0105)

500
(−)

0.2538
(0.0007)

INTC−XOM −0.0184
(0.0364)

0.3323
(0.0116)

500
(−)

0.2750
(0.0012)

JPM-WHR 0.1689
(0.0954)

0.4668
(0.0310)

5.41
(1.83)

0.1825
(0.0778)

JPM−XOM 0.0490
(0.0421)

0.3871
(0.0107)

500
(−)

0.2352
(0.0005)

WHR-XOM 0.1053
(0.0390)

0.3091
(0.0311)

15.86
(11.62)

0.2881
(0.0490)

Notes: The table contains the estimation results for each of the bivariate
TVCC-GJR-GARCH model. The conditional variances are modelled as
GJR-GARCH(1,1) and the unconditional variances are time-invariant
functions. The numbers in parentheses are the standard errors.
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Table 11: Estimation results for the bivariate TVCC-TVGJR-GARCH models
Pairs of assets ρ(1) ρ(2) γ c

AXP−BA 0.1349
(0.0421)

0.4073
(0.0104)

500
(−)

0.2393
(0.0011)

AXP−CAT 0.2360
(0.0406)

0.4695
(0.0084)

500
(−)

0.2322
(0.0007)

AXP−INTC 0.2029
(0.0450)

0.4580
(0.0251)

42.29
(14.53)

0.2305
(0.0210)

AXP−JPM 0.6557
(0.0064)

0.5953
(0.0078)

500
(−)

0.5189
(0.0003)

AXP−WHR 0.1378
(0.0453)

0.4538
(0.0252)

34.24
(15.56)

0.2162
(0.0187)

AXP−XOM 0.0723
(0.0677)

0.4110
(0.0327)

35.58
(125.43)

0.2481
(0.1146)

BA−CAT 0.1343
(0.0502)

0.3919
(0.0254)

93.48
(98.54)

0.2323
(0.0221)

BA−INTC 0.0787
(0.0458)

0.3518
(0.0102)

500
(−)

0.2503
(0.0010)

BA−JPM 0.1905
(0.0405)

0.3911
(0.0103)

500
(−)

0.2749
(0.0005)

BA−WHR 0.0984
(0.0445)

0.3611
(0.0115)

500
(−)

0.2449
(0.0009)

BA−XOM 0.0632
(0.0420)

0.3420
(0.0106)

500
(−)

0.2287
(0.0007)

CAT−INTC 0.0550
(0.0462)

0.4006
(0.0346)

33.03
(25.81)

0.2363
(0.0173)

CAT−JPM 0.1725
(0.0431)

0.4621
(0.0084)

500
(−)

0.2014
(0.0004)

CAT−WHR 0.1381
(0.0818)

0.4556
(0.0328)

9.94
(2.53)

0.1488
(0.0450)

CAT−XOM 0.0855
(0.0460)

0.4274
(0.0092)

500
(−)

0.2305
(0.0003)

INTC−JPM 0.2407
(0.0519)

0.4455
(0.0086)

500
(−)

0.2184
(0.0010)

INTC−WHR 0.0892
(0.0333)

0.3736
(0.0105)

500
(−)

0.2538
(0.0007)

INTC−XOM −0.0288
(0.0375)

0.3189
(0.0115)

500
(−)

0.2688
(0.0009)

JPM−WHR 0.2219
(0.0377)

0.4745
(0.0091)

500
(−)

0.2141
(0.0007)

JPM−XOM 0.0479
(0.0452)

0.3795
(0.0106)

500
(−)

0.2353
(0.0005)

WHR−XOM 0.0859
(0.0381)

0.2951
(0.0120)

500
(−)

0.2222
(0.0008)

Notes: The table contains the estimation results for each of the bi-
variate TVCC-TVGJR-GARCH model. The conditional variances
are modelled as GJR-GARCH(1,1) and the unconditional variances
vary over time according to function (8). The numbers in paren-
theses are the standard errors.
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Appendix B: Figures
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Figure 1: The seven stock returns of the S&P 500 composite index from September 29, 1998
until October 7, 2008 (2521 observations).
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Figure 2: Estimated gt functions for the seven stock returns of the S&P 500 composite index.
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Figure 3: Estimated conditional standard deviations from the GJR-GARCH(1,1) model for the
seven stock returns of the S&P 500 composite index.
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Figure 4: Sample autocorrelation functions of the absolute value for the seven stock returns
of the S&P 500 composite index. The horizontal lines are the corresponding 95% confidence
interval under the iid normality assumption.
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Figure 5: Estimated conditional standard deviations from the GJR-GARCH(1,1) model for the
standardised variable εt/ĝ

1/2
t for the seven stock returns of the S&P 500 composite index.

31



10 20 30 40 50 60 70 80 90 100

0.0

0.1

0.2

0.3

(a) AXP returns
10 20 30 40 50 60 70 80 90 100

0.0

0.1

0.2

0.3

(b) BA returns
10 20 30 40 50 60 70 80 90 100

0.0

0.1

0.2

0.3

(c) CAT returns

10 20 30 40 50 60 70 80 90 100

0.0

0.1

0.2

0.3

(d) JPM returns
10 20 30 40 50 60 70 80 90 100

0.0

0.1

0.2

0.3

(e) INTC returns
10 20 30 40 50 60 70 80 90 100

0.0

0.1

0.2

0.3

(f) WHR returns

10 20 30 40 50 60 70 80 90 100

0.0

0.1

0.2

0.3

(g) XOM returns

Figure 6: Sample autocorrelation functions of the absolute value of the standardised variable
εt/ĝ

1/2
t for the seven stock returns of the S&P 500 composite index. The horizontal lines are

the corresponding 95% confidence interval under the iid normality assumption.
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Figure 10: Estimated estimated time-varying news impact surfaces for the covariance between
the BA and XOM returns under the CCC-TVGJR-GARCH model in the (a) lower regime and
in the (b) upper regime of volatility.
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Figure 11: Estimated time-varying news impact surfaces for the conditional variance of the BA
returns under the CCC-TVGJR-GARCH model in the (a) lower regime and (b) upper regime
of volatility.
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Figure 12: Estimated time-varying news impact surfaces for the conditional variance of the
XOM returns under the CCC-TVGJR-GARCH model in the (a) lower regime and (b) upper
regime of volatility.
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Upper regime for the correlations
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Figure 13: Estimated time-varying news impact surfaces for the covariance between the BA and
XOM returns under the TVCC-TVGJR-GARCH model in the (a) lower regime and in the (b)
upper regime of volatility.
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