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EFFICIENT AND ACCURATE LOG-LÉVY

APPROXIMATIONS TO LÉVY DRIVEN LIBOR MODELS

ANTONIS PAPAPANTOLEON, JOHN SCHOENMAKERS,
AND DAVID SKOVMAND

Abstract. The LIBOR market model is very popular for pricing inter-
est rate derivatives, but is known to have several pitfalls. In addition, if
the model is driven by a jump process, then the complexity of the drift
term is growing exponentially fast (as a function of the tenor length). In
this work, we consider a Lévy-driven LIBOR model and aim at develop-
ing accurate and efficient log-Lévy approximations for the dynamics of
the rates. The approximations are based on truncation of the drift term
and Picard approximation of suitable processes. Numerical experiments
for FRAs, caps and swaptions show that the approximations perform
very well. In addition, we also consider the log-Lévy approximation of
annuities, which offers good approximations for high volatility regimes.

1. Introduction

The LIBOR market model (LMM) has become a standard model for the
pricing of interest rate derivatives in recent years, because the evolution of
discretely compounded, market-observable forward rates is modeled directly
and not deduced from the evolution of unobservable factors, as is the case
in short rate and forward rate (HJM) models. See Miltersen et al. (1997),
Brace et al. (1997) and Jamshidian (1997) for the seminal papers in LIBOR
modeling. In addition, the lognormal LIBOR model provides a theoretical
justification to the market practice of pricing caps according to Black’s for-
mula (cf. Black 1976). However, despite its apparent popularity, the LIBOR
market model has certain well-known pitfalls.

An interest rate model is typically calibrated to the implied volatility
surface from the cap market and the correlation structure of at-the-money
swaptions. The implied volatility from caplets has a “smile” shape as a func-
tion of strike, while its term structure is typically decreasing. The standard
lognormal LMM cannot be calibrated adequately to the observed market
data. Therefore, several extensions of the LMM have been proposed in the
literature using jump-diffusions, Lévy processes or general semimartingales
as the driving motion (cf. e.g. Glasserman and Kou 2003, Eberlein and Özkan
2005, Jamshidian 1999), or incorporating stochastic volatility effects (cf. e.g.
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Andersen and Brotherton-Ratcliffe 2005, Wu and Zhang 2006, Belomestny,
Mathew, and Schoenmakers 2009).

The dynamics of LIBOR models are typically not tractable under differ-
ent forward measures, due to the random terms that enter the dynamics of
LIBOR rates. In particular, LIBOR rates are tractable under their corre-
sponding forward measure only in the lognormal setting or simple pertur-
bations thereof, for example displaced diffusion, CEV or extended with an
uncorrelated volatility process. If the driving process is a general diffusion
process or semimartingale, then the dynamics of LIBOR rates are usually
not tractable even under their own forward measures. Consequently, even
caplets cannot be priced exactly in “closed form” (meaning, e.g. by Fourier
methods), let alone swaptions and other multi-LIBOR products. In order
to calibrate the model, closed form solutions are necessary, and these are
typically involving approximations.

The standard approximation is the so-called “frozen drift” approximation;
it was first proposed by Brace et al. (1997) for the pricing of swaptions and
has been used by several authors ever since. The frozen drift approximation
typically leads to closed-form solutions for caplet pricing in realistic LIBOR
models, see Eberlein and Özkan (2005) and Belomestny et al. (2009). Al-
though some authors (Brace et al. 2001, Dun et al. 2001 and Schlögl 2002)
argue that freezing the drift is justified in the lognormal LMM, it is well-
known that it does not yield acceptable results in more advanced LIBOR
model extensions, especially for exotic derivatives and longer time horizons.
See also the numerical experiments in section 5.

Several alternative approximations have been developed in the literature.
In one line of research, Kurbanmuradov, Sabelfeld, and Schoenmakers (2002)
and Daniluk and Ga̧tarek (2005) have derived lognormal approximations to
the forward LIBOR dynamics (for deterministic volatility structures). Other
authors have been using linear interpolations and predictor-corrector Monte
Carlo methods to get a more accurate discretization of the drift term (cf.
e.g. Hunter et al. 2001 and Glasserman and Zhao 2000). We refer the reader
to Joshi and Stacey (2008) and Gatarek, Bachert, and Maksymiuk (2006,
Ch. 10) for a detailed overview of that literature, some new approximation
schemes and numerical experiments. Although most of this literature focuses
on the lognormal LIBOR market model, Glasserman and Merener (2003b,
2003a) have developed approximation schemes for the pricing of caps and
swaptions in jump-diffusion LIBOR market models, based on freezing the
drift.

In this article, we consider a LIBOR market model driven by a Lévy pro-
cess and aim at deriving efficient and accurate log-Lévy approximations. As
a main result, we develop accurate log-Lévy LIBOR approximations which
may be represented as a deterministic drift term plus a stochastic integral
of a deterministic function with respect to a Lévy process. In particular, in
the context of Monte Carlo simulation the drift term can be computed out-
side the Monte Carlo loop, while the stochastic integrals can be computed
efficiently for each trajectory. In contrast, standard Euler stepping of the
original LIBOR SDE involves, for each LIBOR trajectory, an accurate com-
putation of a complex-structured random drift term at each Euler step and
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is therefore significantly more time-consuming1. Theoretical investigations
as well as numerical experiments show that the log-Lévy approximations
are both fast and accurate when the LIBOR volatilities are not too high,
and thus provide an effective alternative to simulation methods based on
standard Euler discretizations. Finally, as a generalization of Gatarek et al.
(2006), we derive log-Lévy approximations for annuity terms, which allow
for pricing options in high volatility regimes.

The article is structured as follows: in section 2 we review the Lévy-
driven LIBOR model, in section 3 we construct the log-Lévy approximations
to the model and in section 4 we provide some error estimates. Section 5
demonstrates numerically the effect of the approximations, while section
6 deals with approximation of annuities. The final section provides some
recommendations on the construction of multi-dimensional Lévy LIBOR
models, while the appendices collect various calculations.

2. Lévy LIBOR framework

Let 0 = T0 < T1 < · · · < TN < TN+1 = T∗ denote a discrete tenor
structure where δi = Ti+1 − Ti, i = 0, 1, . . . , N, are the so called day-count
fractions. For this tenor structure we consider an arbitrage free system of
zero coupon bond processes Bi, i = 1, . . . , N + 1, on a filtered probability
space (Ω,F , (Ft)0≤t≤T∗ , IP∗), where IP∗ := IPN+1 is a numeraire measure
connected with the terminal bond BN+1. From this bond system we may
deduce a forward rate system, also called LIBOR rate system, defined by

Li(t) :=
1

δi

(
Bi(t)

Bi+1(t)
− 1

)
, 0 ≤ t ≤ Ti, 1 ≤ i ≤ N. (2.1)

Li is the annualized effective forward rate contracted at date t ≤ Ti for the
period [Ti, Ti+1]. Jamshidian (1999) derived a general representation for the
LIBOR dynamics in a semimartingale framework. In this article we consider
a Lévy LIBOR framework as constructed by Eberlein and Özkan (2005); see
also Glasserman and Kou (2003) and Belomestny and Schoenmakers (2011)
for jump-diffusion settings.

Consider a standard Brownian motion W in Rm, m ≤ N , a bounded
deterministic nonnegative scalar function α(s), s ∈ [0, T∗], and a random
measure µ on [0, T∗]×Rm with IP∗-compensator F (s, dx)ds, where µ and W
are mutually independent. Let H = (H(t))0≤t≤T∗ be a time-inhomogeneous
Lévy process with canonical decomposition

H(t) =

t∫
0

√
α(s)dW (s) +

t∫
0

∫
Rm

x(µ(ds, dx)− F (s, dx)ds). (2.2)

We denote by µ̃ the compensated random measure of the jumps of H, that is
µ̃(ds, dx) := µ(ds, dx)−F (s, dx)ds. In order to avoid truncation conventions

1In a previous unpublished manuscript by the first and third author (Papapantoleon
and Skovmand 2010) the efficiency of the standard Euler approach was improved to some
extend also, but there was still a costly random drift involved.
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we assume that F satisfies the (stronger than usual) integrability condition

T∗∫
0

∫
Rm

(
‖x‖ ∧ ‖x‖2

)
F (s, dx)ds <∞.

We further assume that

T∗∫
0

∫
‖x‖>1

exp
(
uTx

)
F (s, dx)ds <∞, (2.3)

for all ‖u‖ ≤ (1 + ε)M , with M, ε > 0 constants. Thus, by construction, the
process (H(t))0≤t≤T∗ is a IP∗-martingale. The cumulant generating function
of H(t), t ∈ [0, T∗], is provided by

ln IE
[
eu

TH(t)
]

= κt(u) =
α(t)

2
‖u‖2 +

∫
Rm

(
eu

Tx − 1− uTx
)
F (t,dx). (2.4)

Along with the Lévy martingale (2.2) we introduce a set of bounded de-
terministic vector-valued functions λi(s) ∈ Rm, i = 1, . . . , N, usually called
loading factors. In order to avoid local redundances we assume that the ma-
trix [λ1, . . . , λN ](s) has full rank m for all s ∈ [0, T∗]. Moreover, we assume
that ‖λi(s)‖ ≤ M , for all i, and ‖

∑
i λi(s)‖ ≤M , for all s ∈ [0, T∗].

The Lévy martingale and the set of loading factors then constitute an
arbitrage free LIBOR system consistent with (2.1), whose dynamics under
the terminal measure IP∗ are given by

Li(t) = Li(0) exp

 t∫
0

bi(s)ds+

t∫
0

λTi (s)dH(s)

 , (2.5)

i = 1, . . . , N , where the drift terms in the exponent are given by

bi = −1

2
α |λi|2 −

N∑
j=i+1

δjLj−
1 + δjLj−

αλTi λj (2.6)

−
∫
Rm

(eλ
T
i x − 1

) N∏
j=i+1

1 +
δjLj−

(
eλ

T
i x − 1

)
1 + δjLj−

− λTi x
F (·, dx);

for details see Eberlein and Özkan (2005). For notational convenience, we
set Lj−(s) := Lj(s−) in (2.6), while the time variable is suppressed.

Due to the drift term (2.6), a straightforward Monte Carlo simulation of
(2.5) would involve a numerical integration at each time step, since the ran-

dom terms
δjLj−

1+δjLj−
appear under the integral sign. In order to overcome this

problem, we will re-express the drift in terms of random quotients multiplied
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with cumulants of the driving process. We have that

bi = −κ(λi)−
N∑

j=i+1

δjLj−
1 + δjLj−

αλTi λj

−
N−i∑
p=1

∑
i<j1<···<jp≤N

δj1Lj1−
1 + δj1Lj1−

· · ·
δjpLjp−

1 + δjpLjp−

×
p+1∑
q=1

(−1)p+q+1
∑

0≤r1<···<rq≤p
κ̂(λjr1 + · · ·+ λjr1 ); (2.7)

the derivation is deferred to Appendix A, for brevity. Here κ̂ denotes the
part of the cumulant κ stemming from the jumps of L, that is

κ̂s(u) =

∫
Rm

(
eu

Tx − 1− uTx
)
F (s, dx). (2.8)

Therefore, we can now avoid the numerical integration when simulating LI-
BOR rates. However, another problem becomes apparent in this representa-
tion: the number of terms to be computed in (2.7) grows exponentially fast
as a function of the number of LIBOR rates N , namely it has order O(2N ).

Remark 2.1. In a practically applicable model, the loading factors λi may
be decomposed as follows:

λi(t) = cig(Ti − t)ei−m(t) ∈ Rm,

m(t) := inf{i : Ti ≥ t}, ‖ei‖ = 1, eTi ej = ρij , 1 ≤ i, j ≤ N,

for constants ci > 0, some (e.g. parametric) scalar function g > 0, and a
correlation structure (ρij) which resembles the correlations between forward
LIBORs observed in the market. For instance, (ρij) may be obtained as a
rank-m approximation of a suitably parameterized full rank-N correlation
structure; see Schoenmakers (2005) for details. Further, the scalar function
α may be taken as a constant that controls the influence of the Wiener noise
with respect to the jump noise.

Remark 2.2. The Lévy-driven LIBOR model is constructed under the ter-
minal measure IPN+1 in this paper, for definiteness. As an alternative, for
products with shorter maturity for instance, one may consider for some
T
Ñ
< TN+1, a Lévy-driven LIBOR model for t ≤ T

Ñ
under the measure

IP
Ñ

, with respect to the numeraire bond B
Ñ

. Another possibility is to con-
sider as numeraire the spot LIBOR rolling over account

B◦(0) := 1, B◦(t) :=
Bm(t)(t)

B1(0)

m(t)−1∏
i=1

(1 + δiLi(Ti)),

m(t) := min{m : Tm ≥ t}, 0 < t ≤ TN+1,

and the numeraire measure IP◦ associated with it. If one prefers to work in
one of these other measures, the drift term (2.6) has to be modified in the
following way: for the Libor model in the measure IP

Ñ
, replace in (2.6), if

i ≤ Ñ , the sum −
∑N

j=i+1 and the product
∏N
j=i+1 by −

∑Ñ−1
j=i+1 and

∏Ñ−1
j=i+1
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respectively, and if i > Ñ , by
∑i

j=Ñ
and 1/

∏i
j=Ñ

respectively. Likewise, for

a LIBOR model in the measure IP◦, replace in (2.6) −
∑N

j=i+1 by
∑i

j=m(t)

and the product
∏N
j=i+1 by 1/

∏i
j=m(t). We refer to Jamshidian (1999) for

more details. The proper choice of a numeraire measure under which the
Lévy-driven LIBOR model is constructed may depend on the set of LIBORs
involved in a particular (structured) product which has to be evaluated by
simulation. In principle, one should choose the measure in such a way that
the respective sum and product in the drift (2.6) involve as few terms as
possible.

3. Efficient and accurate log-Lévy approximations

The aim of this section is to derive efficient and accurate log-Lévy approx-
imations for the dynamics of the LIBOR rates under the terminal measure.
This is based on an appropriate approximation of the drift term, cf. (2.6),
which has two pillars:

(1) expansion and truncation of the drift term,
(2) Picard approximation of suitably defined processes.

We will first provide an overview of the approximation argument, and then
present the full details in some particular cases.

3.1. Outline of the method. Let us denote the log-LIBOR rates by Gi.
They are defined via

Gi(t) := logLi(t),

and satisfy the integrated linear SDE, see (2.5),

Gi(t) = Gi(0) +

t∫
0

bi(s)ds+

t∫
0

λTi (s)dH(s), (3.1)

0 ≤ t ≤ Ti, 1 ≤ i ≤ N . The semimartingale characteristics of Gi are

Bi =

∫ ·
0
bi(s)ds

Ci =

∫ ·
0
|λi|2(s)α(s)ds (3.2)∫ ·

0

∫
R

1A(x)F i(s, dx)ds =

∫ ·
0

∫
Rm

1A
(
λTi (s)x

)
F (s, dx)ds,

where A ∈ B(R \ {0}).
Inspired by the lognormal approximation developed by Kurbanmuradov

et al. (2002) in the context of the lognormal LIBOR market model, we
will derive log-Lévy approximations for the dynamics of Li, or equivalently
Lévy approximations for the dynamics of Gi. The standard remedy for the
numerical problems arising in LMMs is to “freeze the drift”, that is to replace
the random terms in (2.6) – or (2.7) – by their deterministic initial values. In
the present model, this obviously leads to a log-Lévy approximation, which
however is not accurate enough.

The method for deriving efficient and accurate log-Lévy approximations
we propose can be summarized in the following steps:
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• consider the different product terms
δj1Lj1

1+δj1Lj1
· · · δjpLjp

1+δjpLjp
=: Xj1...jp

in (2.7), where i+ 1 ≤ j1 < · · · < jp ≤ N ;
• define functions h : Rjp → R such that

h(Gj1 , . . . , Gjp) = Xj1...jp ;

• apply Itô’s formula to Xj1...jp , which leads to an SDE of the form

dXj1...jp(s) = Aj1...jp(s, L(s))ds+Bj1...jp(s, L(s))TdW (s)

+

∫
Rm

Cj1...jp(s, x, L(s))µ̃(ds, dx), (3.3)

with L = [L1, . . . , LN ];
• use the first step of a Picard iteration to approximate Xj1...jp by the

Lévy process

X
(1)
j1...jp

(t) = Xj1...jp(0) +

t∫
0

Aj1...jp(s, L(0))ds (3.4)

+

t∫
0

Bj1...jp(s, L(0))TdWs +

t∫
0

∫
Rm

Cj1...jp(s, x, L(0))µ̃(ds, dx);

• plug the Lévy processes X
(1)
j1...jp

into bi, cf. (2.7), which leads to a

Lévy approximation for bi;
• finally, integrate by parts to deduce a Lévy approximation for Gi.

Remark 3.1. Note that the “frozen drift” approximation can be easily
embedded in this scheme. It corresponds to using just the initial values

Xj1...jp(0) instead of the Lévy process X
(1)
j1...jp

in (3.4).

3.2. Log-Lévy approximation schemes. In the sequel, we are going to
follow this recipe for deriving efficient and accurate log-Lévy approximations,
and present the full details of the method. However, we will first truncate
the drift terms at the second order, in order to reduce the number of terms
that need to be calculated.

1. The first step is to expand and truncate the drift term at the second
order; these computations have been deferred to Appendix A for brevity, see
(A.5). We will approximate bi by b′′i , where

b′′i = −θi −
∑

i+1≤j≤N

δjLj−
1 + δjLj−

ηij

−
∑

i+1≤k<l≤N

δkLk−
1 + δkLk−

δlLl−
1 + δlLl−

ζikl, (3.5)

where

θi = κ(λi), ηij = κ(λi + λj)− κ(λi)− κ(λj) (3.6)

and

ζikl = κ̂(λi + λk + λl)− κ̂(λi + λk)− κ̂(λi + λl)

− κ̂(λk + λl) + κ̂(λi) + κ̂(λk) + κ̂(λl). (3.7)
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The number of terms to be calculated is thus reduced from O(2N ) to O(N2),
while the error induced is

bi = b′′i +O(N2δ3‖L‖3). (3.8)

Therefore, the gain in computational time is significant, while the loss in
accuracy is usually relatively small. The numerical examples verify this, see
section 5.1 for more details.

2. The second step is to approximate the random terms

Zj(t) :=
δjLj(t)

1 + δjLj(t)
and Ykl(t) :=

δkLk(t)

1 + δkLk(t)

δlLl(t)

1 + δlLl(t)
(3.9)

in (3.5) by a time-inhomogeneous Lévy process. Define the functions

f(x) =
δje

x

1 + δjex
and g(xk, xl) =

δke
xk

1 + δkexk
δle

xl

1 + δlexl
,

where

f ′(x) =
δje

x

(1 + δjex)2
and f ′′(x) =

δje
x(1− δjex)

(1 + δjex)3
.

The partial derivatives of g can be computed equally easily, and are denoted

gk =
∂

∂xk
g, gl =

∂

∂xl
g, gkl =

∂2

∂xk∂xl
g, (3.10)

and so forth. We obviously have that

Zj(t) = f
(
Gj(t)

)
and Ykl(t) = g

(
Gk(t), Gl(t)

)
. (3.11)

The functions f and g are C2-differentiable, hence we can apply Itô’s for-
mula for semimartingales (cf. e.g. Jacod and Shiryaev 2003, Theorem I.4.57)
to Zj and Ykl. Using (3.1) we may derive (with time variable s suppressed
or denoted by · in the integrands)

dZj =

( ∫
Rm

(
f(Gj + λTj x)− f(Gj)− f ′ (Gj)λTj x

)
F (·, dx) (3.12)

+ f ′ (Gj) b
′′
j +

1

2
f ′′ (Gj) |λj |2 α

)
ds+ f ′ (Gj)

√
αλTj dW

+

∫
Rm

(
f(Gj− + λTj x)− f(Gj−)

)
(µ(ds, dx)− F (·, dx)ds) .

The derivation is given in Appendix B. Hence, we have that

dZj(s) = Aj(s, L(s))ds+BT
j (s, Lj(s))dW (s)

+

∫
Rm

Cj(s, Lj(s), x) (µ(ds, dx)− F (·,dx)ds) , (3.13)

with obvious definitions of the deterministic functions Aj , Bj , and Cj . Due
to the drift term b′′j , the function Aj depends on the whole LIBOR vector L
rather than Lj only.
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Similarly, we have for Ykl that

dYkl(s) = Akl(s, L(s))ds+BT
kl(s, Lkl(s))dW (s)

+

∫
Rm

Ckl(s, Lkl(s), x) (µ(ds, dx)− F (·, dx)ds) , (3.14)

where Akl, Bkl, and Ckl are deterministic functions; see Appendix C for all
the details. Analogously to (3.13), Akl depends on the whole LIBOR vector
L, while Bkl and Ckl depend on Lk and Ll only; this is denoted by Lkl.

3. The next step is to approximate Zj and Ykl by suitable Lévy processes.
This approximation is based on a Picard iteration for the SDEs in (3.13)
and (3.14). Regarding Z, the initial value of the Picard iteration is

Z
(0)
j = Zj(0) =

δjLj(0)

1 + δjLj(0)
, (3.15)

while the first order Picard iteration is provided by

Z
(1)
j (t) = Zj(0) +

t∫
0

Aj(s, L(0))ds+

t∫
0

BT
j (s, Lj(0))dW (s)

+

t∫
0

∫
Rm

Cj(s, Lj(0), x) (µ(ds, dx)− F (·, dx)ds) . (3.16)

We can easily deduce that Z(1) is a time-inhomogeneous Lévy process, since
the coefficients Aj(·, L(0)), Bj(·, Lj(0)), and Cj(·, Lj(0), ·) in (3.16) are de-
terministic. Indeed, we have that

Aj(s, L(0)) = f ′ (Gj(0)) b
(0)
j (s) +

1

2
f ′′ (Gj(0)) |λj |2 (s)α(s)

+

∫
Rm

(
f(Gj(0) + λTj (s)x)− f(Gj(0))− f ′ (Gj(0))λTj (s)x

)
F (·,dx), (3.17)

where

b
(0)
j (s) := −θi(s) −

∑
i+1≤j≤N

δjLj−(0)

1 + δjLj−(0)
ηij(s)

−
∑

i+1≤k<l≤N

δkLk−(0)

1 + δkLk−(0)

δlLl−(0)

1 + δlLl−(0)
ζikl(s),

and

Bj(s, Lj(0)) = f ′ (Gj(0))
√
α(s)λj(s), (3.18)

Cj(s, Lj(0), x) = f
(
Gj(0) + λTj (s)x

)
− f(Gj(0)). (3.19)

Analogously, the initial value of the Picard iteration for (3.14) is

Y
(0)
kl = Ykl(0) =

δkLk(0)

1 + δkLk(0)

δlLl(0)

1 + δlLl(0)
, (3.20)
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and the first order iteration is

Y
(1)
kl (t) = Ykl(0) +

t∫
0

Akl(s, L(0))ds+

t∫
0

BT
kl(s, Lkl(0))dW (s)

+

t∫
0

∫
Rm

Ckl(s, Lkl(0), x) (µ(ds, dx)− F (·,dx)ds) , (3.21)

and we can again deduce that Y
(1)
kl is an additive Lévy process.

4. The fourth step is to apply the Lévy approximations of the random

terms to (3.5). Let us denote by b̂i the resulting approximate drift term; we
have that

b′′i ≈ b̂i := −θi −
∑

i+1≤j≤N
ηijZ

(1)
j −

∑
i+1≤k<l≤N

ζiklY
(1)
kl . (3.22)

Keeping in mind that b̂i will be integrated over time, we define

Vij(s, t) =

t∫
s

ηij(r)dr, and V ikl(s, t) =

t∫
s

ζikl(r)dr,

which are obviously deterministic processes of finite variation. Now, for fixed
t > 0, we can apply integration by parts, which yields

t∫
0

ηij(s)Z
(1)
j (s)ds

(3.16)
= Vij(0, t)Zj(0) +

t∫
0

Vij(s, t)Aj(s, L(0))ds

+

t∫
0

Vij(s, t)B
T
j (s, Lj(0))dW (s) (3.23)

+

t∫
0

Vij(s, t)

∫
Rm

Cj(s, Lj(0), x)µ̃(ds, dx).

Similarly for the other term we get

t∫
0

ζikl(s)Y
(1)
kl (s)ds

(3.21)
= V ikl(0, t)Ykl(0) +

t∫
0

V ikl(s, t)Akl(s, L(0))ds

+

t∫
0

V ikl(s, t)B
T
kl(s, Lkl(0))dW (s) (3.24)

+

t∫
0

V ikl(s, t)

∫
Rm

Ckl(s, Lkl(0), x)µ̃(ds, dx).

5. Finally, collecting all the pieces together we can derive a Lévy approx-
imation for the log-LIBOR rates. The approximate log-LIBOR is denoted



APPROXIMATIONS TO LÉVY LIBOR MODELS 11

by Ĝi and has the following dynamics

Ĝi(t) = Gi(0) +

t∫
0

b̂i(s)ds+

t∫
0

λTi (s)dH(s), (3.25)

which using (3.22), (3.23) and (3.24) leads to

Ĝi(t) = Ĝi(0, t)−
t∫

0

θi(s) +
∑

i+1≤j≤N
Vij(s, t)Aj(s, L(0))

+
∑

i+1≤k<l≤N
V ikl(s, t)Akl(s, L(0))

ds

+

t∫
0

√α(s)λTi (s)−
∑

i+1≤j≤N
Vij(s, t)B

T
j (s, Lj(0))

−
∑

i+1≤k<l≤N
V ikl(s, t)B

T
kl(s, Lkl(0))

dW (s)

+

t∫
0

∫
Rm

λTi (s)x−
∑

i+1≤j≤N
Vij(s, t)Cj(s, Lj(0), x)

−
∑

i+1≤k<l≤N
V ikl(s, t)Ckl(s, Lkl(0), x)

 µ̃(ds, dx), (3.26)

with

Ĝi(0, t) := Gi(0)−
∑

i+1≤j≤N
Vij(0, t)Zj(0)−

∑
i+1≤k<l≤N

V ikl(0, t)Ykl(0).

Let us abbreviate (3.26) by

Ĝi(t) = Ĝi(0, t) +

t∫
0

Hi(t, s)ds+

t∫
0

ΘT
i (t, s)dW (s) +

t∫
0

Ii(t, s, x)µ̃(ds, dx)

=: X
(t)
i (t),

where the process X
(t)
i (r), 0 ≤ r ≤ t is defined by

X
(t)
i (r) := Ĝi(0, r) +

r∫
0

Hi(t, s)ds+

r∫
0

ΘT
i (t, s)dW (s) +

r∫
0

Ii(t, s, x)µ̃(ds, dx).

Obviously, X
(t)
i (r), 0 ≤ r ≤ t is a time-inhomogeneous Lévy process whose

characteristic function may be expressed by the Lévy–Khintchine formula
in terms of Hi, Θi and Ii in a straightforward manner.

Remark 3.2. We will call the approximation in (3.26) the second order
log-Lévy approximation of the LIBOR rate. If we ignore the second order
terms (i.e. those depending on Lk and Ll), we immediately arrive at the
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first order approximation. The numerical results in section 5 document the
improvement from the first to the second order approximation.

Remark 3.3. If we restrict our model to the Brownian motion case, the ap-
proximation in (3.26) coincides with the “fully lognormal model” of Daniluk
and Ga̧tarek (2005); see also Kurbanmuradov et al. (2002).

Remark 3.4. Note that the approximation methods developed in the pre-
vious sections do not depend crucially on the choice of the measure. If we
work under the spot measure, cf. Remark 2.2, then the Picard approxima-
tions can be carried out similarly. However, an additional approximation is
required to represent the drift in terms of cumulants as in eq. (2.7) (because
of the 1/

∏
j terms).

3.3. Efficient simulation of the log-Lévy approximation. In this sec-
tion, we outline how simulation of the Lévy approximation

Ĝi(t) = Ĝi(0, t) +

t∫
0

Hi(t, s)ds+

t∫
0

ΘT
i (t, s)dW (s) +

t∫
0

Ii(t, s, x)µ̃(ds, dx)

(3.27)

can be carried out in an effective way due to the fact that Ĝi(0, t) and the
integrands in (3.27) are explicitly known deterministic functions.

(I) The terms Ĝi(0, t) and
∫ t

0 Hi(t, s)ds are deterministic integrals which
may be computed outside any Monte Carlo loop using some quadrature for-
mula.

(II) The Gaussian part

ςi(t) :=

t∫
0

ΘT
i (t, s)dW (s) (3.28)

may be computed either by usual Euler stepping, or even directly at some

fixed time t if only the distribution of Ĝ(t) matters. In this respect, the distri-
bution of any vector (ςi1(t), ..., ςik(t)) — for simulating a set of log-LIBORs

(Ĝi1(t), ..., Ĝik(t))) — is Gaussian with explicitly known covariance struc-
ture, and thus can be simulated straightforwardly.

(III) Finally, consider the practically important case where the Lévy mea-
sure itself is time homogeneous, i.e. F (dx) ≡ F (·, dx). After truncating
this measure with respect to jumps with size smaller than some ε > 0 (if
needed), simulation of a realization of the jump term in (3.27) may effec-
tively be carried out as follows. First sample on the interval (0, t) the num-
ber Nt (of jump times) according to a Poisson distribution with intensity
tF ({||x|| > ε}). Next distribute Nt jump points {s1, ..., sNt} uniformly over
the interval (0, t), and sample independently for each jump point sl a jump
xl, 1 ≤ l ≤ Nt from the probability measure

F (dx ∩ {||x|| > ε})
F ({||x|| > ε})

.
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Then a realization of the (compensated) jump term is obtained as

ςJi (t) :=

Nt∑
l=1

Ii(t, sl−, xl)−
t∫

0

∫
||x||>ε

Ii(t, s, x)F (dx)ds, (3.29)

where the deterministic integral term can be computed outside any Monte
Carlo loop by standard methods. Note that a realization of the whole log-
LIBOR vector (ςJ1 (t), . . . , ςJN (t)) will be computed using the same set of
jumps (sl, xl), l = 1, ..., Nt.

The main benefit from the log-Lévy approximation as outlined above, is

the fact that for the simulation of a log-LIBOR vector (Ĝi(t), ..., ĜN (t)),
the computation of the terms in (2.5) via (2.7) or (3.5) based on each re-
alization of the Brownian motion and the jump process on a fine enough
time grid is not required. This is in clear contrast to the Euler (or predictor-
corrector) discretization of (2.5) and (2.7). It is obvious that in view of the
complex structure of (3.5) only, such a simulation would require the (accu-

rate enough) construction of a whole log-LIBOR system (Ĝi(tj), ..., ĜN (tj))
for 0 < t1 < · · · < tn := t involving the evaluation of the function b′′ at each
grid point tj . In contrast, simulation of the log-Lévy LIBOR approximation
only involves the evaluation of (3.29) at the jump times and the relatively
efficient simulation of the Wiener integral (3.28) inside a Monte Carlo loop.

4. Error estimates

In this section, we will provide some error estimates for the log-Lévy ap-
proximations in order to offer a theoretical justification for the proposed
approximations. The error estimates are rather qualitative in nature, how-
ever they allow for useful conclusions.

In view of (3.25) we have for the pathwise error of the (log-)LIBOR ap-
proximation,∣∣∣∣∣ L̂i(t)Li(t)

∣∣∣∣∣ ≤ exp
∣∣∣Ĝj(t)−Gj(t)∣∣∣ ≤ exp

 t∫
0

∣∣∣̂bi(s)− bi(s)∣∣∣ds
 ,

thus we need to study the difference |̂bi − bi|. Since the main contribution
of this error is due to the first and second order term in (2.7), we consider
instead (see (3.5))∣∣∣̂bi − b′′i ∣∣∣ ≤ ∑

i+1≤j≤N

∣∣∣Zj − Z(1)
j

∣∣∣ |ηij |+ ∑
i+1≤k<l≤N

∣∣∣Ykl − Y (1)
kl

∣∣∣ |ζikl| .
Let us assume for simplicity that α(s) ≡ 1, and that Kη and Kζ are (dimen-
sionless) constants such that

max
1≤i<j≤N

|ηij | ≤ Kη max
1≤i≤N

sup
0≤t≤T

‖λi(t)‖22 =: Kηλ
2
max,

max
1≤i<k<l≤N

|ζikl| ≤ Kζ max
1≤i≤N

sup
0≤t≤T

‖λi(t)‖22 =: Kζλ
2
max.
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We then have∥∥∥∥∥log

∣∣∣∣∣ L̂i(t)Li(t)

∣∣∣∣∣
∥∥∥∥∥
L2(P∗)

≤ Kηλ
2
max max

i+1≤j≤N

t∫
0

∥∥∥Z(1)
i (s)− Zi(s)

∥∥∥
L2(P∗)

ds

+Kζλ
2
max max

i+1≤k<l≤N

t∫
0

∥∥∥Y (1)
kl (s)− Ykl(s)

∥∥∥
L2(P∗)

ds =: (I) + (II).

For the term (I) we get from (3.13) and (3.16)

∥∥∥Z(1)
j (s)− Zj(s)

∥∥∥
L2(P∗)

≤
s∫

0

|Aj(u, L(0))−Aj(u, L(u))|L2(P∗) du

+

 s∫
0

E ‖Bj(u, Lj(0))−Bj(u, Lj(u))‖22 du

1/2

+

 s∫
0

∫
Rm

E (Cj(u, Lj(0), x)− Cj(u, Lj(u), x))2 F (u,dx)du

1/2

.

In view of (3.17), (3.18) and (3.19), let KA, KB, KC be dimensionless Lip-
schitz constants such that for all 1 ≤ j ≤ N and 0 ≤ u ≤ T∗,∣∣Aj(u, y)−Aj(u, y′)

∣∣ ≤ KAλ
2
max

∥∥y − y′∥∥
2
,∥∥Bj(u, yj)−Bj(u, y′j)∥∥2

≤ KBλmax

∣∣yj − y′j∣∣ ,∫
Rm

(
Cj(u, yj , x)− Cj(u, y′j , x)

)2
F (u,dx) ≤ K2

Cλ
2
max

∣∣yj − y′j∣∣2 .
Then, using

∥∥∥Z(1)
j (s)− Zj(s)

∥∥∥
L2(P∗)

≤ KAλ
2
max

s∫
0

‖L(0)− L(u)‖2,L2(P∗) du

+ (KB +KC)λmax

 s∫
0

E |Lj(0))− Lj(u)|2 du

1/2

,

we obtain the estimate

(I) ≤ λ4
maxKηKA

t∫
0

 s∫
0

‖L(0)− L(u)‖2,L2(P∗) du

 ds

+ λ3
maxKη (KB +KC)

t∫
0

max
i+1≤j≤N

 s∫
0

E |Lj(0))− Lj(u)|2 du

1/2

ds,

and a similar expression may be obtained for the second term (II).
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On an intuitive level we may interpret the estimates (I) and (II) in the
following way: if we roughly consider that (the approximate squared vari-

ance) E |Lj(0))− Lj(u)|2 / λ2
maxu, then for (I) we obtain

(I) / λ5
maxKηKA

t∫
0

s∫
0

√
u duds

+ λ4
maxKη (KB +KC)

t∫
0

 s∫
0

udu

1/2

ds

=
4

15
λ5

maxKηKAt
5/2 +

√
2

4
λ4

maxKη (KB +KC) t2,

and a similar result for (II). Hence, for some dimensionless constants K1

and K2, ∥∥∥∥∥log

∣∣∣∣∣ L̂i(t)Li(t)

∣∣∣∣∣
∥∥∥∥∥
L2(P∗)

/ K1

(
λ2

maxt
)5/2

+K2

(
λ2

maxt
)2
.

Concluding, the log-Lévy LIBOR approximations are extremely good as
long as λ2

maxt is small enough but, may become poor as soon as this product
grows very large. This issue is confirmed in our numerical experiments.

5. Numerical illustrations

Throughout this section, we will consider a simple example with a flat and
constant volatility structure. Similarly zero coupon rates are generated from
a flat term structure of interest rates: B(0, Ti) = exp(−0.04·Ti). We consider
a tenor structure with 6 month increments (i.e. δi = 1

2). As stated in the
introduction, the Brownian motion case is already well studied; therefore we
set α = 0, thus limiting ourselves to the case where H is a pure jump Lévy
process. We consider two univariate specifications, for simplicity. The first
is a tempered stable or CGMY process (cf. Carr, Geman, Madan, and Yor
2002 and Madan and Yor 2008) with parameters M = G = 13, Y = 0.25
and C = 48.4201, resulting in a process with mean zero and variance 1
(at t = 1), infinite activity and finite variation. The CGMY process has
cumulant generating function defined for all u ∈ C with |<u| ≤ min(G,M),

κCGMY(u) = Γ(−Y )GY
{(

1− u

G

)Y
− 1 +

uY

G

}
+ Γ(−Y )MY

{(
1 +

u

G

)Y
− 1− uY

M

}
. (5.1)

The necessary conditions are then satisfied for term structures up to at least
10 years of length because M = min(G,M), hence

∑20
i=1 |λi| ≤ 12 < M . Ex-

act simulation of the increments can be performed without approximation
using the approach in Poirot and Tankov (2006). This approach can be used
when simulating from (3.1) with or without drift expansions, but cannot be
employed in the case of the log-Lévy approximation in (3.26) where jump
sizes are transformed in a non-linear fashion. Instead we employ an approxi-
mation where we replace jumps smaller than ε with their expectation which
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is zero since the jumps are compensated. This means that jumps bigger than
ε follow a compound Poisson process which can be easily simulated using the
so-called Rosinski rejection method (see Rosiński 2001 and Asmussen and
Glynn 2007, p. 338). We set the truncation point sufficiently low, at ε = 10−3,
thus making the variance of the truncated term

∫ ε
−ε x

2ν(dx) = 3.11× 10−4,
which can be considered small enough to safely disregard. To be consistent,
we employ this procedure everywhere we simulate from the CGMY process.

The second specification is a compound Poisson process with normally
distributed jump sizes — often referred to as the Merton model. The cumu-
lant generating function for u ∈ C is

κMerton(u) = λ̄
(
exp(µ̄u+ σ̄2u2)− 1− µ̄u

)
. (5.2)

We set λ̄ = 5, µ̄ = 0 and σ̄ =
√

1/λ̄ yielding a process with mean zero and
variance 1 (at t = 1), as before.

In order to verify the validity of our approximations we consider both
linear and nonlinear payoffs; in particular, forward rate agreements (FRAs),
caplets and swaptions. To price FRAs and caplets with strike K maturing
at time Ti, we compute the following expectations:

FRA0 = δB(0, T∗) IEIP∗

[ N∏
l=i+1

(
1 + δLl(Ti+1)

)
(Li(Ti)−K)

]
, (5.3)

C0 = δB(0, T∗) IEIP∗

[ N∏
l=i+1

(
1 + δLl(Ti+1)

)
(Li(Ti)−K)+

]
. (5.4)

Following Kluge (2005, pp. 78), we have that the price of a payer swaption
with strike rate K, where the underlying swap starts at time Ti and matures
at Tm (i < m ≤ N) is given by

S0 = B(0, T∗) IEIP∗

(− m∑
k=i

(
ck

N∏
l=k

(1 + δLl(Ti))

))+
 , (5.5)

where

ck =

 −1, k = i,
δkK, i+ 1 ≤ k ≤ m− 1,
1 + δkK, k = m.

(5.6)

5.1. Performance of the drift expansion. As we have argued in section
3.2, the truncation of the drift term in equation (2.6) is necessary in order
to build a model that is computationally tractable. This section illustrates
the effect of this truncation using the standard Euler discretization of the
actual dynamics, i.e. equations (2.5) and (2.7).

Due to the complexity of calculating the true drift we limit ourselves to
setting N = 10, corresponding to a 5 year term structure. Furthermore we
consider volatility structures constant and flat at λi = 0.2 and λi = 0.6 re-
spectively. We simulate 10000 paths and plot the absolute difference between
the prices from the drift expansions and the price without expansion (i.e.
the full drift in (2.6)) in Figures 5.1 and 5.2. Each Monte Carlo simulation
is done using the same random shocks for each method, thus eliminating
the Monte Carlo noise as an error source. The figures demonstrate that the
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effect of the truncation depends mostly on the level of volatility λi and less
in the choice of product to price or the driving process. Furthermore, we
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Figure 5.1. Drift expansion: low volatility scenario.

notice that for low volatility even the first order expansion can be considered
adequate, since the maximum of the absolute error is smaller than 0.2 bp.
Conversely, for the high volatility case, the second order expansion is nec-
essary to get proper accuracy. However, going to the third order expansion
or beyond appears to be unnecessary as there is no visible gain in accuracy
(< 10−5 bp). Hence, in the next sections we will use the second order drift
expansion as our benchmark case since any resulting error is small enough
to be disregarded.

In Table 5.1, CPU times are shown when simulating 10000 paths on an
Intel i7 PC running Matlab. Here we can see that highly significant speed-
up is achieved when truncating the higher order drift terms, whereas the
decrease in speed when taking higher order approximations into account is
relatively negligible. The CGMY is slower than the Merton model due to
the much higher jump intensity needed in its approximation. We conjecture
that the efficiency can be improved using the methods of Kohatsu-Higa and
Tankov (2010), but this lies outside the focus of this article.

Finally, to conclude the subsection we should also mention that pricing
errors for swaptions (not shown here) are of similar order of magnitude as
in case of caplets.

5.2. Performance of the log-Lévy approximations. Next we study the
performance of the log-Lévy approximations. We increase the number of
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Figure 5.2. Drift expansion: high volatility scenario.

Full Drift 1st order 2nd order 3rd order
Merton 358.5 3.95 4.48 4.79
CGMY 471.9 16.29 16.59 16.74

Table 5.1. CPU Times (secs) for 10000 paths

rates to the more realistic setting of N = 20 and consider the pricing of
FRAs, caplets and swaptions; the latter are maturing at time Ti and ending
at (Ti + 3) years. Since we have established that errors from the drift ex-
pansion can be disregarded, we consider as the benchmark case the second
order drift expansion studied in the previous section. In Figure 5.3 we plot
prices from the frozen drift, the first and second order log-Lévy approxima-
tions of section 3, and include the annuity approximation of the following
section for completeness. We use both the Merton and the CGMY model.
We can observe that the frozen drift is consistently beaten by both the 1st
and 2nd order approximation in both models and for all three products.
The 1st and 2nd order log-Lévy approximations have a quite similar perfor-
mance suggesting that second order approximation may not be necessary.
Note that other parameter values (higher/lower intensity for Merton and
fatter tails/slower tail decay for CGMY) have also been studied and again
the results are qualitatively the same.
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Figure 5.3. Prices for the Merton and CGMY models.

Concluding, the log-Lévy approximations offer an alternative to the Euler
(or predictor-corrector) discretization of the actual dynamics which can be
simulated faster and yields almost as accurate options prices.

6. Approximation of annuities

In the lognormal LIBOR market model, it is well documented that prob-
lems may occur for high volatilities due to a proportionally large Monte
Carlo variance in the annuity term used for discounting under the terminal
measure, see Beveridge (2010) and Gatarek et al. (2006). Motivated by this
numerical problem, we will derive an approximation of the annuity term in
the spirit of Gatarek et al. (2006, §10.13).
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Let us define the annuity term

Ai(t) =
N∏

j=i+1

(1 + δLj(t)), (6.1)

and consider the vector of log-LIBOR rates G = [Gi+1, . . . , GN ]. We define

a function f : RN−(i+1) → R such that

(xi+1, . . . , xn) = x 7−→
N∏

j=i+1

(1 + δexj ).

The partial derivatives of f are provided by

fk(x) =
∂

∂xk
f(x) =

N∏
j=i+1
j 6=k

(1 + δexj )δexk = f(x)
δexk

1 + δexk
,

for all i+ 1 ≤ k ≤ N , while we obviously have that

f(G(t)) = Ai(t). (6.2)

Applying Itô’s formula to f(G), we have that

f(G(t)) = Ai(t) = Ai(0) +
N∑

j=i+1

t∫
0

fj(G(s−))dGj(s)

+
1

2

N∑
j,k=i+1

t∫
0

fj,k(G(s−))d〈Gk, Gj(s)〉c(s)

+
∑
s≤t

∆f(G(s))−
N∑

j=i+1

fj(G(s−))∆Gj(s)

 . (6.3)

Noting that the annuity is a IP∗-martingale, we will focus on the martingale
parts of (6.3) in the sequel. Using (3.1) and the fact that H is also a IP∗-
martingale, we get that the martingale part of the first summand is

N∑
j=i+1

t∫
0

fj(G(s−))λj(s)dH(s) =

N∑
j=i+1

t∫
0

δLj(s−)

1 + δLj(s−)
f(G(s−))λj(s)dH(s)

=

t∫
0

Ai(s−)
N∑

j=i+1

δLj(s−)

1 + δLj(s−)
λj(s)dH(s).
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The second summand is omitted, while the final summands yields that

∑
s≤t

∆f(G(s))−
N∑

j=i+1

fj(G(s−))∆Gj(s)


=
∑
s≤t

∆Ai(s)−Ai(s−)
N∑

j=i+1

δLj(s−)

1 + δLj(s−)
∆Gj(s)


=
∑
s≤t

∆Ai(s)−Ai(s−)
N∑

j=i+1

δLj(s−)

1 + δLj(s−)
λj(s)∆H(s)


=

t∫
0

∫
Rm

Ai(s)−Ai(s−)−Ai(s−)
N∑

j=i+1

δLj(s−)

1 + δLj(s−)
λj(s)x

 µ̃(ds, dx)

−
t∫

0

∫
Rm

Ai(s)−Ai(s−)−Ai(s−)

N∑
j=i+1

δLj(s−)

1 + δLj(s−)
λj(s)x

F (s, dx)ds,

(6.4)

where the quantity Ai in the last two integrals should be understood as

Ai(s) =
N∏

j=i+1

(
1 + δ exp

{
Gj(s−) + λTj (s)x

})
. (6.5)

Collecting all the pieces together, we have that the annuity Ai satisfies
the following integrated SDE

Ai(t) = Ai(0) +

t∫
0

Ai(s−)Λi(s−)dH(s)

+

t∫
0

∫
Rm

{Ai(s)−Ai(s−)−Ai(s−)Λi(s−)} µ̃(ds, dx)

= Ai(0) +

t∫
0

Ai(s−)Λi(s−)dH(s)

+

t∫
0

∫
Rm

Ai(s−)

{
Ai(s)

Ai(s−)
− 1− Λi(s−)x

}
µ̃(ds, dx), (6.6)

where

Λi(s−) =

N∑
j=i+1

δLj(s−)

1 + δLj(s−)
λj(s). (6.7)
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The solution of the SDE (6.6) is the stochastic exponential, thus we get that

Ai(t) = Ai(0) exp

 t∫
0

Λi(s−)dW (s)− 1

2

t∫
0

(
Λi(s−)

)2
ds

+

t∫
0

∫
Rm

{
Ai(s)

Ai(s−)
− 1

}
µ̃(ds, dx) (6.8)

−
t∫

0

∫
Rm

(
log

{
Ai(s)

Ai(s−)

}
− Ai(s)

Ai(s−)
+ 1

)
µ(ds, dx)

 ,

where again Ai(s) should be understood as in (6.5). By freezing the ran-
dom terms in the drifts and jump sizes in the above dynamics we get an
alternative approximation for the annuity term. Note that the resulting ap-
proximation is also a log-Lévy approximation.

We can now use this approximation to price caplets and swaptions, noting
that their respective payoffs can be written in terms of annuities:

C0 = δB(0, T∗) IEIP∗

[
(Ai−1(Ti+1) + (1− δiK)Ai(Ti+1))+

]
, (6.9)

S0 = B(0, T∗) IEIP∗

[(
−

m∑
k=i

ckAk−1(Ti)

)+]
, (6.10)

where the ck’s are defined in (5.6). Any other payoff can be expressed in
terms of annuities in a similar fashion.

6.1. Performance of the annuity approximation. In Figure 6.1, the
quality of the various approximations is studied for a number of at-the-
money caplets as a function of the volatility. As before we set the number of
rates to N = 20, and simulate 50000 paths for each volatility level. The plot
is for the Merton model while the results are similar for CGMY. Using that
at-the-money call option prices are increasing and roughly linear functions
of volatility (see for example Wilmott 1998, Brenner and Subrahmanyam
1994 and Backus, Foresi, and Wu 2004 for the case of non-Gaussian dis-
tributions), we can observe that only the annuity approximation produces
sensible option prices at all levels of volatility. Moreover, even the benchmark
case fails when volatility grows beyond 30%, meaning that the Monte Carlo
simulation has failed to converge. The frozen drift fails at even lower levels of
volatility, while the log-Lévy approximations fail at a higher level, similar to
the benchmark case. The annuity approximation works for all (higher) levels
and also, as we have seen in Figure 5.3, for the low levels. One should there-
fore be careful when the average (across maturity) at-the-money implied
volatilities are above 30% which is indeed the case in the current market
for USD denominated LIBOR caplets where volatilities range from roughly
80% in the short end to 25% in the long end (source: Bloomberg).

Moreover, in Figure 6.2 we observe that this problem becomes significantly
less severe when limiting the number of rates to 10 with δi = 1 instead of
20 with δi = 0.5. Needless to say, limiting the number of rates is rarely a
possibility in practice.
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Figure 6.1. Caplet prices as a function of volatility (N = 20).
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Figure 6.2. Caplet prices as a function of volatility (N = 10).

In order to intuitively understand why this approximation performs bet-
ter in the high volatility case than the other methods (e.g. the standard
Euler scheme or the log-Lévy approximations), let us just concentrate on
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the lognormal case. We have from (6.8) that

logAi(t) ∼=
N∑

j=i+1

δLj(0)

1 + δLj(0)
λj ·
√
tN + deterministic terms, (6.11)

where N denotes a standard normal random variate. On the other hand,
from (6.1), we get that

logAi(t) ∼=
N∑

j=i+1

δ exp
(
λj ·
√
tN + random terms

)
, (6.12)

where actually the method of approximation will only affect the random
terms. We can easily conclude from (6.11) and (6.12) that the variance of the
annuity approximation is significantly lower that the variance of the stan-
dard representation, which results in the faster convergence of the Monte
Carlo method. Thus, the annuity log-Lévy approximation should be inter-
preted as a variance reduction technique for the LIBOR market model.

7. Economically meaningful multi-dimensional Lévy measures
via subordination

Next, we reflect on the properties the driving process should have for
practical applications and provide some recommendations. In an economi-
cally realistic Lévy LIBOR model the very structure of the Lévy measure
is important. Since, from an economic point of view, any jump in the daily
rate typically affects all segments of the yield curve, we require in our mod-
eling that, at a jump time, all the LIBORs jump, not only the first or second
half of the LIBOR curve for example. Moreover, this requirement should be
fulfilled regardless of the structure of the loading factors λi; the latter may
be inferred from some calibration procedure for instance. A natural way to
meet this property is to take Lévy measures which are absolutely continuous.
In a jump-diffusion setting this can be easily established by taking as Lévy
measure the product of one dimensional absolutely continuous probability
measures pi, i.e.

ν(dx) = p1(dx1) · · · pm(dxm); (7.1)

see Belomestny and Schoenmakers (2011). In this paper we consider LIBOR
models based on Lévy processes with possibly infinite activity, thus having
available flexible and realistic LIBOR models possibly without Wiener part
(i.e. α ≡ 0). However, Lévy measures of infinite activity cannot be obtained
by simply taking the product of a set of one-dimensional Lévy measures
of infinite activity. Nonetheless, we seek for absolutely continuous infinite
activity Lévy measures such that the entailed jump processes maintain cer-
tain (weak) independence properties. Such measures may be constructed by
Brownian subordination (see e.g. Cont and Tankov 2004) as outlined below.

Let W be a Wiener process on Rm. The characteristic function of W (t)
is given by

IE
[
eizW (t)

]
= e−

t
2
‖z‖2 =: etΨ(z), z ∈ Rm.
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We now consider a subordinator (St)t≥0 on R+, with Lévy triplet (0, 0, ρ),
and with Laplace exponent Ξ, i.e.

IE
[
euSt

]
= etΞ(u) := exp

(
t

∫
(0,∞)

(esu − 1) ρ(ds)
)
, u ≤ 0.

Then the m-dimensional process Y defined by

Y (t) := W (St)

has characteristic function

IE
[
eiz

TY (t)
]

= IE
[
IE
[
eiz

TW (St)|St
]]

= IE
[
eStΨ(z)

]
= etΞ(Ψ(z))

= exp

t ∫
(0,∞)

(
esΨ(z) − 1

)
ρ(ds)


= exp

t ∫
(0,∞)

(
e−

s
2
‖z‖2 − 1

)
ρ(ds)

 =: exp [tΦ(z)]

As a result, Y is a pure jump martingale Lévy process with Lévy measure
νY satisfying

Φ(z) =

∫
(0,∞)

(
e−

s
2
‖z‖2 − 1

)
ρ(ds) =

∫
Rm

(eiz
Tx − 1− izTx)νY (dx). (7.2)

It is easily checked that

νY (dx) =

∞∫
0

1(√
2πs
)m e−

1
2s
||x||2ρ(ds)dx, (7.3)

which is a measure with absolutely continuous support.

Example 7.1. Let (St)t≥0 be the inverse Gaussian subordinator with

ρ(ds) =
ce−λs

s3/2
1{s>0}ds, and IE

[
euSt

]
= e−2ct

√
π(
√
λ−u−

√
λ).

Then, (7.2) is known explicitly as

Φ(z) = −2c
√
π

(√
λ+

σ2

2
‖z‖2 −

√
λ

)
,

e.g. see Cont and Tankov (2004).

Example 7.2. Let (St)t≥0 be a Lévy subordinator with the following prop-
erties:

ρ(dt) = Ce−
t
4
GD−Y (G)1{t>0}dt,

Ξ(u) = 2CΓ(−Y )

[
(G2 − 2u)Y/2 cos

(
Y arctan

(√
−2u

G

))
−GY

]
,

where D is the parabolic cylinder function. Then, (7.2) is known explicitly
as the Lévy exponent of the CGMY process, cf. (5.1), with G = M ; see
Madan and Yor (2008).
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Remark 7.3. By taking in (2.2) F (s, dx) := νY (dx) with νY given by (7.3),
the jump-part of (2.2) is represented by the process Y constructed above.
It is easy to see that Y has uncorrelated components, although they are
generally not independent. Indeed, Y (t) has mean zero and we have that

IE
[
Y (k)(t)Y (l)(t)

]
= IE

[
IE
[
W (k)(St)W

(l)(St) | St
]]

= 0, 1 ≤ k < l ≤ m.

Thus in contrast to the jump-diffusion situation in Belomestny and Schoen-
makers (2011) where all components jump at the same time independently,
here the components of Y still jump at the same time but in an uncorrelated
rather than in an independent way.

Appendix A. Computation of the drift

A.1. Full expansion in terms of cumulants. We will derive a repre-
sentation for the integral term of the drift (2.6) which does not involve an
integration over random terms. Let us denote the integral term by

Bi :=

∫
Rm

(eλ
T
i x − 1

) N∏
j=i+1

1 +
δjLj−

(
eλ

T
i x − 1

)
1 + δjLj−

− λTi x
F (·, dx).

Observe that

l∏
j=1

(1 + wj) = 1 +
∑

1≤j≤l
wj +

∑
1≤j1<j2≤l

wj1wj2

+
∑

1≤j1<j2<j3≤l
wj1wj2wj3 + ...+ w1 · · ·wl

= 1 +
l∑

p=1

Slp(w1, ..., wl),

where Slp denotes the elementary symmetric polynomial of degree p in l
variables, i.e.

Slp(w1, ..., wl) :=
∑

1≤j1<···<jp≤l
wj1 · · ·wjp , 1 ≤ p ≤ l.

Thus Bi may be rearranged as follows:

Bi =

∫ (
eλ

T
i x − 1− λTi x

)
F (·,dx) +

N−i∑
p=1

∫ (
eλ

T
i x − 1

)
×

SN−ip

δi+1Li+1−

(
eλ

T
i+1x − 1

)
1 + δi+1Li+1−

, . . . ,
δNLN−

(
eλ

T
Nx − 1

)
1 + δNLN−

F (·, dx)

:= (I) + (II).
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Let us consider in (II) for p ≥ 1 the term

∫ (
eλ

T
i x − 1

)
SN−ip

δi+1Li+1−

(
eλ

T
i+1x− 1

)
1 + δi+1Li+1−

, . . . ,
δNLN−

(
eλ

T
Nx − 1

)
1 + δNLN−

F (·, dx)

=
∑

i<j1<···<jp≤N

δj1Lj1−
1 + δj1Lj1−

· · ·
δjpLjp−

1 + δjpLjp−

×
∫ (

eλ
T
i x − 1

)(
e
λTj1

x − 1
)
· · ·
(

e
λTjpx − 1

)
F (·, dx).

With j0 := i, we may write

(
eλ

T
i x − 1

)(
e
λTj1

x − 1
)
· · ·
(

e
λTjpx − 1

)
(A.1)

= (−1)p+1
(

1− e
λTj0

x
)(

1− e
λTj1

x
)
· · ·
(

1− e
λTjpx

)
= (−1)p+1

1 +

p+1∑
q=1

Sp+1
q (−e

λTj0
x
, . . . ,−e

λTjpx)

 = (−1)p+1 [1 + (∗)]

where

(∗) =

p+1∑
q=1

(−1)qSp+1
q (e

λTj0
x
, . . . , e

λTjpx) =

p+1∑
q=1

(−1)q
∑

0≤r1<···<rq≤p
e
λTjr1

x · · · eλ
T
jrq

x

=

p+1∑
q=1

(−1)q
∑

0≤r1<···<rq≤p

(
e
λTjr1

x+···+λTjrq x − 1− (λTjr1
x+ · · ·+ λTjrqx)

)
︸ ︷︷ ︸

O(‖x‖2)

+

p+1∑
q=1

(−1)q
∑

0≤r1<···<rq≤p

(
1 + λTjr1

x+ · · ·+ λTjrqx
)
.

Obviously, expression (A.1) is of order O(‖x‖2) for any p ≥ 1, hence (!) it
must hold

1 +

p+1∑
q=1

(−1)q
∑

0≤r1<···<rq≤p

(
1 + λTjr1

x+ · · ·+ λTjrqx
)

= 0.
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Therefore, we can deduce the following representation for the integral term

Bi =

∫ (
eλ

T
i x − 1− λTi x

)
F (·,dx)

+
N−i∑
p=1

∑
i<j1<···<jp≤N

δj1Lj1−
1 + δj1Lj1−

· · ·
δjpLjp−

1 + δjpLjp−

p+1∑
q=1

(−1)p+q+1

×
∑

0≤r1<···<rq≤p

∫ (
e

(
λjr1

+···+λjrq
)T
x − 1−

(
λjr1 + · · ·+ λjrq

)T
x

)
F (·, dx)

= κ̂(λi) +
N−i∑
p=1

∑
i<j1<···<jp≤N

δj1Lj1−
1 + δj1Lj1−

· · ·
δjpLjp−

1 + δjpLjp−

×
p+1∑
q=1

(−1)p+q+1
∑

0≤r1<···<rq≤p
κ̂
(
λjr1 + · · ·+ λjrq

)
. (A.2)

A.2. First order expansion of (A.2). Let us consider the first order ex-
pansion of Bi; we get

Bi = κ̂(λi) +
∑
i<j<n

δjLj−
1 + δjLj−

2∑
q=1

(−1)q
∑

0≤r1<···<rq≤1

κ̂
(
λjr1 + · · ·+ λjrq

)
+O(‖L‖2).

Note that

2∑
q=1

(−1)q
∑

0≤r1<···<rq≤1

κ̂
(
λjr1 + · · ·+ λjrq

)
= −

∑
0≤r1≤1

κ̂
(
λjr1

)
+

∑
0≤r1<r2≤1

κ̂
(
λjr1 + λjr2

)
= −κ̂ (λj0)− κ̂ (λj1) + κ̂ (λj0 + λj1) .

Thus we obtain the following expression for the first order expansion of the
integral term Bi

B′i = κ̂(λi) +
∑

i<j≤N

δjLj−
1 + δjLj−

(
κ̂(λi + λj)− κ̂(λi)− κ̂(λj)

)
, (A.3)

which leads to the following approximation for the drift term bi in (2.6)

b′i = κ(λi) +
∑

i<j≤N

δjLj−
1 + δjLj−

(
κ(λi + λj)− κ(λi)− κ(λj)

)
, (A.4)

taking also the terms stemming from the diffusion into account.
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A.3. Second order expansion of (A.2). Analogously, we can also derive
a second order expansion of Bi; we get

Bi = κ̂(λi) +
∑

i<j≤N

δjLj−
1 + δjLj−

(
κ̂(λi + λj)− κ̂(λi)− κ̂(λj)

)
+

∑
i+1≤k<l≤N

δkLk−
1 + δkLk−

δlLl−
1 + δlLl−

(
κ̂(λi + λk + λl)− κ̂(λi + λk)

− κ̂(λi + λl)− κ̂(λk + λl) + κ̂(λi) + κ̂(λk) + κ̂(λl)
)

+O(‖L‖3),

which leads to the following second order expansion of bi in (2.6)

b′′i = κ(λi) +
∑

i<j≤N

δjLj−
1 + δjLj−

(
κ(λi + λj)− κ(λi)− κ(λj)

)
+

∑
i+1≤k<l≤N

δkLk−
1 + δkLk−

δlLl−
1 + δlLl−

(
κ̂(λi + λk + λl)− κ̂(λi + λk)

− κ̂(λi + λl)− κ̂(λk + λl) + κ̂(λi) + κ̂(λk) + κ̂(λl)
)
. (A.5)

Appendix B. Derivation of (3.12)

Using the Itô formula for general semimartingales (cf. Jacod and Shiryaev
2003, Theorem I.4.57) we have

Zj = Zj(0) +

·∫
0

f ′(Gj(s−))dGj +
1

2

·∫
0

f ′′(Gj)d〈Gcj , Gcj〉

+
∑

0<s≤·

(
f(Gj(s))− f (Gj(s−))− f ′ (Gj(s−)) ∆Gj(s)

)
, (B.1)

where 〈Gcj , Gcj〉 denotes the quadratic variation of the continuous martingale
part of Gj , that is

d〈Gcj , Gcj〉(s) = |λj |2 (s)α(s)ds. (B.2)

The sum in (B.1), using (3.2), may be written as∑
0<s≤·

(
f(Gj(s−) + ∆Gj(s))− f (Gj(s−))− f ′ (Gj(s−)) ∆Gj(s)

)
(B.3)

=

·∫
0

∫
Rm

(
f(Gj(s−) + λTj x)− f (Gj(s−))− f ′ (Gj(s−))λTj x

)
µ(ds, dx)

=

·∫
0

∫
Rm

(
f(Gj(s−) + λTj x)− f (Gj(s−))− f ′ (Gj(s−))λTj x

)
F (s, dx)ds

+

·∫
0

∫
Rm

(
f(Gj(s−) + λTj x)− f (Gj(s−))− f ′ (Gj(s−))λTj x

)
µ̃(ds, dx).
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Moreover,

·∫
0

f ′(Gj(s−))dGj =

·∫
0

f ′(Gj(s−))bjds+

t∫
0

f ′(Gj(s−))
√
αλTj dW

+

·∫
0

∫
Rm

f ′(Gj(s−))λTj x µ̃(ds, dx). (B.4)

Finally, by plugging (B.2), (B.3) and (B.4) into (B.1), (3.12) follows.

Appendix C. Derivation of (3.14)

Applying Itô’s formula for general semimartingales again, we have

Ykl = Ykl(0) +
∑
i=k,l

·∫
0

gi(Gk(s−), Gl(s−))dGi

+
1

2

∑
i,j=k,l

·∫
0

gij(Gk(s−), Gl(s−))d〈Gci , Gcj〉 (C.1)

+
∑

0<s≤·

∆g(Gk(s), Gl(s))−
∑
i=k,l

gi(Gk(s−), Gl(s−))∆Gi(s)

 ,

where

d〈Gci , Gcj〉(s) = λi(s)λj(s)α(s)ds. (C.2)

The sum in (C.1), using (3.2), may be written as

∑
0<s≤·

∆g(Gk(s), Gl(s))−
∑
i=k,l

gi(Gk(s−), Gl(s−))∆Gi(s)


=

·∫
0

∫
Rm

(
g(Gk(s−) + λTk x,Gl(s−) + λTl x)− g(Gk(s), Gl(s))

−
∑
i=k,l

gi(Gk(s−), Gl(s−))λTi x

)
µ(ds, dx)

=

·∫
0

∫
Rm

(
g(Gk(s−) + λTk x,Gl(s−) + λTl x)− g(Gk(s), Gl(s))

−
∑
i=k,l

gi(Gk(s−), Gl(s−))λTi x

)
F (s, dx)ds

+

·∫
0

∫
Rm

(
g(Gk(s−) + λTk x,Gl(s−) + λTl x)− g(Gk(s), Gl(s))

−
∑
i=k,l

gi(Gk(s−), Gl(s−))λTi x

)
µ̃(ds, dx). (C.3)
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Moreover
·∫

0

gi(Gk, Gl)dGi =

·∫
0

gi(Gk, Gl)bids+

t∫
0

gi(Gk, Gl)
√
αλTj dW

+

·∫
0

∫
Rm

gi(Gk, Gl)λ
T
j x µ̃(ds, dx). (C.4)

Finally, putting all the pieces together we have that

Ykl(t) = Ykl(0) +

t∫
0

Akl(s, L(s))ds+

t∫
0

BT
kl(s, Lkl(s))dW (s)

+

t∫
0

∫
Rm

Ckl(s, Lkl(s), x) (µ(ds, dx)− F (·,dx)ds) , (C.5)

where

Akl(s, L(s)) =
∑
i=k,l

gi(Gk(s−), Gl(s−))bi(s)

+
1

2

∑
i,j=k,l

·∫
0

gij(Gk(s−), Gl(s−))λi(s)λj(s)α(s)

+

∫
Rm

(
g(Gk(s−) + λTk x,Gl(s−) + λTl x)− g(Gk(s), Gl(s))

−
∑
i=k,l

gi(Gk(s−), Gl(s−))λTi x

)
F (s, dx), (C.6)

BT
kl(s, Lkl(s)) =

∑
i=k,l

gi(Gk(s−), Gl(s−))
√
α(s)λTi (s) (C.7)

and

Ckl(s, Lkl(s), x) =
∑
i=k,l

gi(Gk(s−), Gl(s−))λTi (s)x

+ g
(
Gk(s−) + λTk x,Gl(s−) + λTl x

)
− g
(
Gk(s), Gl(s)

)
−
∑
i=k,l

gi(Gk(s−), Gl(s−))λTi x. (C.8)

Here Lkl(s) := (Lk(s), Ll(s)) and denotes that Bkl and Ckl depend on Lk
and Ll (via Gk and Gl).
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APPROXIMATIONS TO LÉVY LIBOR MODELS 33

Jamshidian, F. (1999). LIBOR market model with semimartingales. Work-
ing Paper, NetAnalytic Ltd.

Joshi, M. and A. Stacey (2008). New and robust drift approximations for
the LIBOR market model. Quant. Finance 8, 427–434.

Kluge, W. (2005). Time-inhomogeneous Lévy processes in interest rate
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schemes for Lévy-driven SDEs. Stochastic Process. Appl. 120, 2258–
2285.

Kurbanmuradov, O., K. Sabelfeld, and J. Schoenmakers (2002). Lognor-
mal approximations to LIBOR market models. J. Comput. Finance 6,
69–100.

Madan, D. B. and M. Yor (2008). Representing the CGMY and Meixner
processes as time changed Brownian motions. J. Comput. Finance 12,
27–47.

Miltersen, K. R., K. Sandmann, and D. Sondermann (1997). Closed form
solutions for term structure derivatives with log-normal interest rates.
J. Finance 52, 409–430.

Papapantoleon, A. and D. Skovmand (2010). Picard approximation of
stochastic differential equations and application to LIBOR models.
Preprint, arXiv/1007:3362.

Poirot, J. and P. Tankov (2006). Monte Carlo option pricing for tempered
stable (CGMY) processes. Asia-Pac. Finan. Markets 13, 327–344.
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