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Abstract

In this paper, we demonstrate that jumps in financial asset prices are not nearly as common as generally thought, and

that they account for only a very small proportion of total return variation. We base our investigation on an extensive

set of ultra high-frequency equity and foreign exchange rate data recorded at milli-second precision, allowing us to

view the price evolution at a microscopic level. We show thatboth in theory and practice, traditional measures of

jump variation based on low-frequency tick data tend to spuriously attribute a burst of volatility to the jump component

thereby severely overstating the true variation coming from jumps. Indeed, our estimates based on tick data suggest

that the jump variation is an order of magnitude smaller. This finding has a number of important implications for

asset pricing and risk management and we illustrate this with a delta hedging example of an option trader that is short

gamma. Our econometric analysis is build around a pre-averaging theory that allows us to work at the highest available

frequency, where the data are polluted by microstructure noise. We extend the theory in a number of directions important

for jump estimation and testing. This also reveals that pre-averaging has a built-in robustness property to outliers in

high-frequency data, and allows us to show that some of the few remaining jumps at tick frequency are in fact induced

by data-cleaning routines aimed at removing the outliers.
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1 Introduction

There is a deep consensus in the literature on asset pricing that a realistic dynamic model should incorporate several, if not

all, of the following stylised facts: random walk behavior (e.g. Fama, 1965) at a macroscopic level, market microstructure

effects (e.g. Niederhoffer and Osborne, 1966) at a microscopic level, as well as stochastic volatility (e.g. Mandelbrot,

1963), leverage (e.g. Black, 1976), and jumps (e.g. Press, 1967). Extensive support for all these factors can be found in

both the theory of finance as well as the abundantly availabledata on all aspects of financial markets. In this paper we

bring to bear new econometric techniques on a comprehensiveset of tick-by-tick equity and foreign exchange data and

are able to penetrate through the microstructure noise to uncover that the jump component appears substantially smaller

than what is currently thought. In particular, we provide evidence that the jump component accounts for about 1% of total

asset price variability (i.e. quadratic variation) in sharp contrast to the consensus in the literature which is an order of

magnitude larger. Our microscopic look at the tick-by-tickdata provides the intuition for this result: a burst of volatility

is often spuriously identified as a jump at the lower frequencies commonly used in the literature. Of course, there is no

doubt that in times of stress, asset prices do move sharply over short periods of time, and while occasionally genuine

price jumps do occur, more often than not we find that price continuity is preserved even when accompanied with severe

deterioration of liquidity.

The foundations of most asset pricing models can be cast in the class of arbitrage-free Itô semimartingales. These

processes are naturally decomposed into a continuous diffusive Brownian component and a discontinuous jump part.

The importance of being able to separate out and distinguishbetween these two fundamentally different sources of risk

is emphasized in Aı̈t-Sahalia (2004). Specifically, jumps have profoundly distinct impact on option pricing (e.g. Cox

and Ross, 1976; Merton, 1976; Duffie, Pan, and Singleton, 2000), risk management (e.g. Duffie and Pan, 2001; Bakshi

and Panayotov, 2010), and asset allocation (e.g. Jarrow andRosenfeld, 1984; Liu, Longstaff, and Pan, 2003). Empirical

work on identifying and modeling the jump component now spans nearly half a century. Table 1 attempts to provide a

representative but necessarily incomplete overview. Starting with the influential paper of Press (1967), and up to Jorion

(1988), a number of papers estimate a (constant volatility)jump-diffusion model and report very substantial levels ofjump

variation (JV hereafter, defined as the jump variation expressed as a fraction of total return variation) in excess of20%. An

important shortcoming of the Press (1967)- or Merton (1976)-style jump-diffusion model is that the jump component is

the only mechanism that can account for fat tails of the empirical return distribution so that - in the presence of stochastic

volatility - the JV measurements are potentially inflated. From the nineties onwards, a large body of work considers

numerous generalizations of the jump-diffusion model thatinclude one or several stochastic volatility components aswell

as state-dependent jump components. Estimation methods for such models are often highly complex and numerically
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Table 1: Selection of literature reporting estimates of thejump variation component.
article data period frequency model jump variation
Press (1967) 10 DJIA constituents 1926 – 1960 monthly JD 20%a

Beckers (1981) 47 US large-cap stocks 1975 – 1977 daily JD 25%b

Ball and Torous (1983) 47 US large-cap stocks 1975 – 1977 daily JD 50%c

Ball and Torous (1985) 30 US large-cap stocks 1981 – 1982 daily JD 47%d

Jorion (1988) DM/$ spot 1974 – 1985 weekly JD 96%

CRSP index 1974 – 1985 weekly JD 36%

Bates (1996) DM/$ options 1984 – 1991 weekly SVJ 20%

Bakshi, Cao, and Chen (1997) S&P500 options 1988 – 1991 daily SVJ 18.9%

Bates (2000) S&P500 options 1988 – 1993 weekly SVJ 30.3% − 38.5%

Andersen, Benzoni, and Lund (2002) S&P500 spot 1953 – 1996 daily SVJ 5.5%

Bollerslev and Zhou (2002) DM/$ 1986 – 1996 5 mins SVJ 7.4%

Pan (2002) S&P500 spot and options 1989 – 1996 weekly SVJ 55.7%

Chernov, Gallant et al. (2003) DJIA spot 1953 – 1999 daily SVJ 9.4%

Eraker, Johannes, and Polson (2003) S&P500 spot 1980 – 1999 daily SVJ 8.2% − 14.7%

NASDAQ100 spot 1985 – 1999 daily SVJ 6.0% − 17.0%

Eraker (2004) S&P500 spot and options 1987 – 1990 daily SVJ 17.1%

Johannes (2004) US Treasury bills 1965 – 1999 daily SVJ 50%

Maheu and McCurdy (2004) 11 US large-cap stocks 1962 – 2001 daily GARCH 29%e

DJIA spot 1960 – 2001 daily GARCH 16.6%

NASDAQ100 spot 1985 – 2001 daily GARCH 14.4%

TXX spot 1995 – 2001 daily GARCH 22.8%

Barndorff-Nielsen and Shephard (2004) DM/$ 1986 – 1996 5 mins RV 3.1%

Huang and Tauchen (2005) S&P500 futures 1982 – 20025 mins RV 4.4%

S&P500 spot 1997 – 2002 5 mins RV 7.3%

Barndorff-Nielsen and Shephard (2006) DM/$, USDJPY 1986 – 1996 5− 120 mins RV 5.0% − 21.9%

Bates (2006) S&P500 spot 1953 – 1996 daily SVJ 12.7%

Andersen, Bollerslev, and Diebold (2007) DM/$ 1986 – 1999 5 mins RV 7.2%

S&P500 spot 1990 – 2002 5 mins RV 14.4%

US Treasury bonds 1990 – 20025 mins RV 12.6%

Bollerslev, Law, and Tauchen (2008) 40 US large-cap stocks 2001 – 2005 17.5 mins RV 12%

equally weighted index 2001 – 200517.5 mins RV 9%

Jiang and Oomen (2007) S&P500 spot 1987 – 19955 mins SVJ 18.6% − 19.5%

Aı̈t-Sahalia and Jacod (2009b) INTC & MSFT 2006 5− 120 secs RV 25%f

Bollerslev, Kretschmer et al. (2009) S&P500 futures 1985 – 2004 5 mins RV 6.8%

Corsi and Renò (2009) S&P500 futures 1990 – 20075 mins RV 6%g

Todorov (2009) S&P500 futures 1990 – 20025 mins RV 15%

Bates (2011) CRSP index, S&P500 1926 – 2006 daily SVJ 6.4% − 7.2%

Patton and Sheppard (2011) S&P500 ETF 1997 – 20085 minsh RV 15%

Tauchen and Zhou (2011) S&P500 spot 1986 – 20055 mins RV 5.4%

US Treasury bonds 1991 – 20055 mins RV 19.1%

USDJPY 1997 – 2004 5 mins RV 6.5%

Andersen, Bollerslev, and Huang (2011) S&P500 futures 1990– 2005 5 mins RV 4.9%

US Treasury bonds 1990 – 20055 mins RV 14.6%

Note.“JD”, “SVJ”, and “GARCH” refer to the Press (1967), Merton (1976)-type jump-diffusion model, the class of stochastic volatility plus jump models,
and GARCH-type models respectively. “RV” refers to the class of model-free measures of variation, including realised variance and power variation.
a. individual JV between0% − 100%; b. individual JV between10% − 55%; c. individual JV between10% − 80%; d. individual JV between
8%− 93%; e. individual JV between20% − 41%. Two stocks have shorter sample from 1980s - 2001;f. Includes an infinite activity jump component;
g. smoothed JV between2%− 20%; h. 5 minute sampling frequency equivalent in trade time
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Figure 1: S&P flash-crash episode: Jump or burst in volatility?

Panel A: 5-minute data Panel B: Trade-by-trade
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Note.We plot data for the Chicago Mercantile Exchange (CME) E-mini S&P500 futures on May 6, 2010 with time reported in GMT. In Panel B, “Paid”

and “given” denote aggressive buy- and sell-orders, respectively. The “given” data has been offset by $1 in order to improve the visual layout.

intensive (e.g. Eraker, Johannes, and Polson, 2003). Also,they can exploit the information in the spot price (e.g. Andersen,

Benzoni, and Lund, 2002), its associated derivative prices(e.g. Bates, 1996), or both (e.g. Pan, 2002). The majority ofthis

literature concentrates on the US large-cap S&P500 equity index and typically finds that the JV is around10% − 20%.

The corresponding figure for foreign exchange rates is comparable and that of Treasury bills and individual stocks still

higher. The most recent work on jumps has seen a shift away from model-based inference on low-frequency data to

model-free inference based on intra-day data. In an influential series of papers, Barndorff-Nielsen and Shephard (2004,

2006); Barndorff-Nielsen, Shephard, and Winkel (2006) introduce the concept of (bi-) power variation – a simple but

very effective technology to identify and measure the variation of jumps from intra-day data (see Aı̈t-Sahalia and Jacod,

2009b,c; Mancini, 2004, 2009, for a related jump-robust threshold estimator). Using this, or variations thereof, a large

number of recent articles now report model-free JV estimates (e.g. Huang and Tauchen, 2005; Andersen, Bollerslev, and

Diebold, 2007) that are around 10% for the S&P500 index and thus reinforce the earlier literature that the jump component

is important.

Jumps are defined asinstantaneousanddiscretemoves in the price, and it is therefore quite intuitive that identification

is helped by having available the finest resolution price view possible. Indeed, this is precisely what motivates the recent

literature to use intra-day data. However, the consensus 5-minute frequency at which returns are typically sampled –

rather than at the finer tick-by-tick resolution – reflects a compromise where market microstructure effects are sufficiently
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benign for the theory to remain valid. Figure 1 illustrates the cost of doing so: a diminished ability to distinguish jumps

from bursts in volatility. From Panel A, where returns are sampled at a 5-minute frequency, we would likely conclude that

the notorious “flash-crash” episode (see e.g. Easley, de Prado, and O’Hara, 2011, for a discussion of the event) containsa

number of very large “jumps”. Indeed, the bipower variationjump measure is highly significant indicating the presence of

jumps on formal statistical grounds. Yet, when zooming in onthe relevant sub-period, from Panel B we see that at trade-

by-trade frequency jumps are elusive. In fact, in a recent study using audit trail data Kirilenko, Kyle, Samadi, and Tuzun

(2011) characterize the flash-crash as a “brief period of extreme market volatility”. The March 11, 2011 earthquake in

Japan led to similar episodes in the USDJPY currency rate which experienced a flash-crash type episode on March 16 over

an intense sell-off1 and on March 18 over a coordinated intervention by Bank of Japan and other G7 central banks. Again,

as is clear from Figure 8 later in the paper, both events wouldbe classified as exhibiting large jumps by conventional

realised measures based on 5-minute data, while the tick data reveal a period of heightened volatility rather than discrete

price jumps.

The contribution this paper makes is to provide a detailed and comprehensive study into the magnitude of the jump

component based on the highest data resolution available. To the best of our knowledge, this paper is the first to do so and,

as already mentioned above, we find that the tick data have a very different story to tell. Our analysis employs the new

pre-averaging techniques of Podolskij and Vetter (2009a),Jacod, Li, Mykland, Podolskij, and Vetter (2009) to construct

noise-robust jump measures, which allow us to exploit the information contained in milli-second time-stamped tick data.

We apply these to a representative dataset comprising of US large-cap stocks (i.e. the 30 DJIA constituents), equity

indices (i.e. the S&P500 and NASDAQ100), and foreign currency rates (i.e. the EURUSD, USDJPY and USDCHF). We

confirm that when sampling at a 5-minute frequency the jump component does appear very substantial – around 10% in

line with the extant literature – but as we turn on the microscope and venture into tick space most jumps vanish and we

are left with highly volatile episodes instead. The overalljump variation measured across all instruments we consideris

just over 1%. This finding of a much diminished magnitude of jumps clearly carries important implications for various

finance applications as already highlighted above: for instance, an options trader that follows the market on an hourly

basis for the purpose of hedging canexperiencejumps in the price, while an automated hedging algorithm operating in

tick-time may not. As we illustrate in the paper, these two scenarios will lead to profoundly different pay-off patterns.

In addition to the above, the paper makes some further methodological contributions. Firstly, to conduct statistical

tests on the jump component, a jump-robust and positive semi-definite estimate of the asymptotic covariance matrix

1The sell-off is thought to be the result of a combination of factors, including (i) repatriation of funds (or anticipation thereof) to honor insurance

claims and to fund reconstruction efforts, (ii) portfolio rebalancing of currency hedged foreign investors after Nikkei fall, (iii) JPY carry traders

forced to cut positions on margin calls, (iv) retail stop-loss levels are hit.
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is required. We develop and implement a novel estimator thatdoes exactly this. Secondly, we discuss the distinction

between price-jumps and price-outliers and show how the triplet of realised variance, bipower variation, and quantile-

based realised variance (Christensen, Oomen, and Podolskij, 2010) can be used to disentangle the diffusive, jump, and

outlier variation components. To the best of our knowledge,this paper is the first to formally discuss this issue2 and we

provide a consistency result as well as a central limit theorem.

2 Theoretical framework

We study the evolution of the logarithmic price of a financialasset, sayX = (Xt)t≥0, which is defined on a filtered

probability space
(
Ω,F , (Ft)t≥0 ,P

)
and adapted to the filtrationFt that represents the information available to market

participants at timet, t ≥ 0. To begin with, we assume thatX operates in an arbitrage-free frictionless market, which

implies thatX belongs to the class of semimartingale processes (e.g. Back, 1991; Delbaen and Schachermayer, 1994).

As standard in the asset pricing literature, we further assume thatX can be represented by a jump-diffusion model, which

takes the form

Xt = X0 +

∫ t

0
asds+

∫ t

0
σsdWs +

NJ
t∑

i=1

Ji, t ≥ 0, (1)

whereXt is the log-price at timet, a = (at)t≥0 is a locally bounded and predictable drift term,σ = (σt)t≥0 is an

adapted càdlàg volatility process,W = (Wt)t≥0 is a standard Brownian motion,NJ =
(
NJ
t

)
t≥0

is a counting process

andJ = (Ji)i=1,...,NJ
t

is a sequence of non-zero random variables. Here,NJ represents the total number of jumps inX

that has occurred up to timet andJ are the corresponding jump sizes.

The total quadratic variation of the cumulative return process is then given by

[X]t =

∫ t

0
σ2sds+

NJ
t∑

i=1

J2
i , (2)

i.e. the integrated diffusive variation plus the sum of squared jumps. As such, the quadratic variation is composed of two

distinct sources of risk, and it is their relative importance that we are interested in measuring. Specifically, the object of

econometric interest is the jump variation defined on the unit interval as:

JV =
[X]−

∫
σ2sds

[X]
(3)

It should be pointed out that quadratic variation has very close ties with the, perhaps, more familiar concept of conditional

variance, which plays a key role in financial economics (e.g.Andersen, Bollerslev, Diebold, and Labys, 2003). We also

2Christensen, Oomen, and Podolskij (2010) show robustness of their quantile-based realised variance measure with respect to outliers. Aı̈t-

Sahalia and Jacod (2009a) also highlight the relevance of “bounce-backs” in the context of data filtering.
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note that[X]t can equivalently be defined as follows

[X]t = p-lim
N→∞

N∑

i=1

(
Xti −Xti−1

)2
, (4)

for any sequence of partitions0 = t0 < t1 < ... < tN = t with supi {ti − ti−1} → 0 asN → ∞ (e.g. Protter, 2004). It is

this fundamental result from stochastic calculus that has motivated the increasing use of high-frequency data to estimate

financial volatility.

To prove our central limit theorems (CLTs) below, we impose some structure onσ.

Assumption (V) σ does not vanish (V1) and it satisfies the equation:

σt = σ0 +

∫ t

0
a′sds+

∫ t

0
σ′sdWs +

∫ t

0
v′sdB

′
s, t ≥ 0, (V2)

wherea′ = (a′t)t≥0, σ
′ = (σ′t)t≥0 and v′ = (v′t)t≥0 are adapted c̀adlàg, B′ = (B′

t)t≥0 is a Brownian motion, and

W ⊥⊥ B′ (hereA ⊥⊥ B means that A and B are stochastically independent).3

2.1 Realised variation and market microstructure noise

We base our analysis on the theory of realised variation, where tick-by-tick data are used to make inference about the

latent diffusive volatility and jumps.4 More specifically, we assume that an equidistant high-frequency record ofX is

available at time pointsti = i/N , for i = 0, 1, . . . , N . Here and throughout the remainder of the paper, we normalize the

time window to the unit interval[0, 1] for ease of exposition. We constructN continuously compounded returns as

∆N
i X = Xi/N −X(i−1)/N , for i = 1, . . . N. (5)

Then, an estimator of[X]1 is given by the realised variance (RV hereafter)

RVN [X] =

N∑

i=1

|∆N
i X|2. (6)

3Assumption (V) amounts to saying thatσ is of continuous semimartingale form. We should note the appearance ofW in σ, which allows

for leverage effects (e.g. Christie, 1982). IfX itself is a continuous process, then the assumption is a weakregularity condition, which is fulfilled

for many financial models. LetX be a unique, strong solution of a stochastic differential equation. Then, for example, under some smoothness

conditions on the volatility functionσ = σ(t,Xt), assumption (V2) (with v′s = 0 for all s) is a direct consequence of Itô’s Lemma. IfX is not

continuous, as in Eq. (1), thenσ is potentially discontinuous as well. In fact, there is someempirical support for allowingσ to jump, e.g. Eraker,

Johannes, and Polson (2003). We could include that case hereat the cost of substantial extra technical rigor. Thus, eventhough assumption (V) is

not a necessary condition, it simplifies some of our proofs considerably. A more general treatment in the high-frequencysetting, including the case

whereσ jumps, is covered in Barndorff-Nielsen, Graversen, Jacod,Podolskij, and Shephard (2006). We rule out these technicaldetails here, as they

are not important to our exposition.
4Comprehensive reviews of this literature can be found in Andersen, Bollerslev, and Diebold (2010); Barndorff-Nielsenand Shephard (2007).
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Consistency follows as a direct consequence of Eq. (4), i.e.RVN [X]
p→ [X]1 asN → ∞.

A popular way to separate out the diffusive- and jump-variation components from[X]1 is via the use of a jump-robust

estimator of the integrated variance. To this end, Barndorff-Nielsen and Shephard (2004) introduce bipower variation(BV

hereafter)5:

BVN [X] =
N

N − 1

1

µ2

N∑

i=2

|∆N
i−1X||∆N

i X|, (7)

whereµ = E[|N(0, 1)|] =
√

2/π and the factorN/(N − 1) is a small sample correction. BecauseBVN [X]
p→
∫ 1
0 σ

2
sds

asN → ∞, the jump variation component – in the noiseless case – can beestimated consistently as:

RVN [X]−BVN [X]
p→

NJ
1∑

i=1

J2
i . (8)

It is long-established that the trading process pollutes the underlying efficient price with measurement error that is aresult

of market imperfections such as bid-ask spreads and price discreteness (e.g. Niederhoffer and Osborne, 1966; Roll, 1984;

Black, 1986). This microstructure noise has been shown to have a detrimental impact on the standard realised measures

of return variation (such as RV and BV above) and renders thembiased and inconsistent when computed using noisy data

(see, e.g., Zhou, 1996; Hansen and Lunde, 2006). Below, we explicitly account for the presence of microstructure noise

by assuming that the observed price processY is related to the underlying price processX as:

Y = X + u. (9)

whereu is an i.i.d. noise process withE(u) = 0 andE(u2) = ω2, andu is independent ofX, or u ⊥⊥ X.6 Thus, the

challenge we need to address is to how infer the diffusive- and jump-variation components from discretely sampled and

noisy observations of the underlying price process.

5Alternative ways of estimating the integrated variance in the presence of jumps exist. Aı̈t-Sahalia and Jacod (2009b,c); Mancini (2004, 2009),

for example, propose to robustify the RV directly via threshold elimination of “large” returns, while Andersen, Dobrev, and Schaumburg (2008);

Christensen, Oomen, and Podolskij (2010) suggest to infer diffusive volatility from the quantiles of high-frequency returns. We shall draw upon

both these strands of the literature below. Recent developments also show how to improve the finite sample jump robustness of the BV or make it

more efficient, see Corsi, Pirino, and Renò (2010); Mykland, Shephard, and Sheppard (2010).
6The i.i.d, independent ofX, noise assumption is analytically convenient and also has some empirical support at moderate sampling frequencies

(e.g. Hansen and Lunde, 2006; Diebold and Strasser, 2008), but it is not binding. The interested reader can consult Jacod, Li, Mykland, Podolskij,

and Vetter (2009), where a more general treatment of the noise is given. Our results extend along those lines as well.
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2.2 Noise-robust jump estimation

To make inference about[X]1 and its components using observations ofY , we make use of the pre-averaging approach

introduced by Jacod, Li, Mykland, Podolskij, and Vetter (2009); Podolskij and Vetter (2009a,b).7 Intuitively, the pre-

averaging method locally smooths the observed asset priceY so that the microstructure componentu (almost) disappears

under averaging. The resulting pre-averaged returns can then be used to construct consistent measures of the diffusive-

and jump-variation components as we outline below.

First, we choose a pre-averaging horizon; a sequence of integersK = K(N), which satisfies

K = θ
√
N + o(N−1/2). (10)

Throughout the paper, we useK = ⌈θ
√
N⌉. Second, we choose a real-valued weight function used to conduct the

averagingg : [0, 1] → R.8

We are also going to use the following constants that are associated withg:

ψ1 =

∫ 1

0

(
g′ (s)

)2
ds, ψ2 =

∫ 1

0
g2 (s)ds. (11)

Remark 1 In practice, we use the Riemann approximations

ψK1 = K

K∑

j=1

[
g

(
j

K

)
− g

(
j − 1

K

)]2
, ψK2 =

1

K

K−1∑

j=1

g2
(
j

K

)
(12)

of ψ1 andψ2 to improve finite sample accuracy.

With this equipment in place, we can pre-average noisy returns

Ȳ N
i =

K−1∑

j=1

g

(
j

K

)
∆N
i+jY, for i = 0, . . . , N −K + 1. (13)

In what follows, we use the weight functiong(x) = min(x, 1 − x). This is a natural candidate in our setting, because

with this choice ofg and ifK is even, it holds that

Ȳ N
i =

1

K

K−1∑

j=K/2

Y i+j
N

− 1

K

K/2−1∑

j=0

Y i+j
N

, (14)

7When the object to be estimated is quadratic variation, the pre-averaging approach is to first-order equivalent to the realised kernel-based

estimator of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) and the two-scale or multi-scale subsampler of Zhang, Mykland, and Aı̈t-

Sahalia (2005) and Zhang (2006).
8At a technical level,g has to be continuous, piecewise continuously differentiable such that its derivativeg′ is piecewise Lipschitz. Moreover,

we requireg(0) = g(1) = 0 and
∫ 1

0
g2(u)du > 0.
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which makes the use of the term “pre-averaging” transparent.

We should point out that while pre-averaging smooths out noise, it does not impair our ability to identify the jump

component. The intuition for this is that, although pre-averaging does enforce some continuity on the price path, it also

smooths out the diffusive return variation by an equivalentfactor, thereby keeping the relative contribution of stochastic

volatility and jumps intact. We further demonstrate this with the convergence results in Proposition 1 and with finite

sample experiments in the simulation section.

Next, we can introduce noise-robust versions of the RV and BV:

RV ∗
N [Y ] =

N

N −K + 2

1

KψK2

N−K+1∑

i=0

|Ȳ N
i |2 − ψK1

θ2ψK2
ω2, (15)

BV ∗
N [Y ] =

N

N − 2K + 2

1

KψK2 µ
2
1

N−2K+1∑

i=0

|Ȳ N
i ||Ȳ N

i+K | −
ψK1
θ2ψK2

ω2. (16)

The termsN/(N − K + 2) andN/(N − 2K + 2) are small sample corrections, which adjust for the actual number of

summands involved in the computations. The factorψK
1

θ2ψK
2
ω2 is a bias-correction removing a leftover effect of the noise,

which is needed because pre-averaging does not completely wipe out the influence of the noise. The bias depends on

the unknown noise varianceω2, which can be estimated using a variety of available estimators, e.g. the sum-of-squares

estimator proposed by Bandi and Russell (2006):ω̂2
RV = 1

2N

∑N
i=1 |∆N

i Y |2; the autocovariance estimator:̂ω2
AC =

− 1
N−1

∑N
i=2 ∆

N
i−1Y∆N

i Y as in Oomen (2006) or a parametric maximum likelihood estimator of Aı̈t-Sahalia, Mykland,

and Zhang (2005), see Gatheral and Oomen (2010) for a comparison of these and other estimators. In the simulations

and empirical application below, we useω̂2
AC, while noting that our results are largely unaffected by thespecific choice of

noise variance estimator (in part, because the bias correction term drops out when constructing the differenceRV ∗
N [Y ]−

BV ∗
N [Y ]).

2.3 Consistency and asymptotic distribution

The next proposition, which is adapted directly from previous work by Podolskij and Vetter (2009a), states the probability

limit of the pre-averaging estimators in the pure noise model, and their joint asymptotic distribution under the null hy-

pothesis of no jumps. A robustness analysis given below further extends the proposition by showing that it remains true

in a generalisation of the model in Eq. (9), which incorporates the presence of finite-activity outlier processes.

Proposition 1 Assume thatY follows Eq.(9) and thatE(u4) <∞. AsN → ∞, it holds that

RV ∗
N [Y ]

p→ [X]1, BV ∗
N [Y ]

p→
∫ 1

0
σ2sds. (17)
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Moreover, suppose in addition thatX is a continuous semimartingale, i.e.X follows Eq.(1) but withNJ
t ≡ 0 for all t,

and with condition (V) fulfilled. Finally, assume thatE(u8) <∞. AsN → ∞, it then further holds that

N1/4




RV ∗
N [Y ]−

∫ 1
0 σ

2
sds

BV ∗
N [Y ]−

∫ 1
0 σ

2
sds


 ds→MN(0,Σ∗), (18)

a mixed normal distribution with conditional covariance matrix Σ∗, whereΣ∗ is defined in Appendix B.9

Proof See Podolskij and Vetter (2009a).

The consistency result of Theorem 1 unveils that, in the presence of noise, we can measure jumps by taking

RV ∗
N [Y ]−BV ∗

N [Y ]
p→

NJ
1∑

i=1

J2
i . (19)

The CLT then supplies the basis for a nonparametric noise-robust jump test. We should point out that theN−1/4 rate

of convergence, which is slow compared to the noiseless case, is still the fastest possible that can be achieved in noisy

diffusion models (Gloter and Jacod, 2001a,b).

Taking differences betweenRV ∗
N [Y ] andBV ∗

N [Y ], and using the properties of stable convergence, we can apply the

delta method to the distribution theory in Proposition 1 to deduce that under the null of no jumps

N1/4(RV ∗
N [Y ]−BV ∗

N [Y ])√
Σ∗
11 +Σ∗

22 − 2Σ∗
12

d→ N(0, 1), (20)

where(Σ∗
ij)1≤i,j≤2 denote the individual entries ofΣ∗. Under the alternative hypothesis, the convergenceRV ∗

N [Y ] −
BV ∗

N [Y ]
p→∑NJ

1
i=1 J

2
i follows from Eq. (19), which means that conditional on the presence of jumps, the test is consistent

asN → ∞.

2.4 EstimatingΣ∗

As usual, the CLT in Proposition 1 is an infeasible result, because the matrixΣ∗, which holds the covariance structure of

the bivariate vector(RV ∗
N [Y ], BV ∗

N [Y ]), is not known in practice. In order to construct a feasible noise-robust jump test

that can be implemented on actual data, we therefore need to estimateΣ∗.

9Throughout the paper, the symbol “
ds→” is used to denote convergence in law stably. We refer to Barndorff-Nielsen, Hansen, Lunde, and

Shephard (2008) for a formal definition of stable convergence in law and the motivation for using this type of convergencein the high-frequency

volatility setting.
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Figure 2: Illustration of block subsampler.

1 L 2L ... (d−1)L dL (d+1)L (d+2)L ... N
∆N

i Y

RV ∗

N,1[Y ] RV ∗

N,2[Y ] . . . RV ∗

N,d[Y ]

. . . . . .

...
...

...
...

...
...

...
...Ȳ N

i Ȳ N
i Ȳ N

i Ȳ N
i Ȳ N

i
. . . . . .

Note. This figure illustrates the construction of the subsampledRV ∗

N,m[Y ] estimators, which are used as input to compute the block

subsample estimator of the covariance matrixΣ∗.

Podolskij and Vetter (2009a) propose consistent estimators of the elements ofΣ∗, (Σ∗
ij)1≤i,j≤2. We could adopt this

approach as well by designing consistent estimators of the individual entries ofΣ∗, for example using

Σ̂∗
11 =

N−1/2

θ2ψ2
2

N−2K+1∑

i=K

|Ȳ N
i |2

(
K−1∑

l=−K+1

(
|Ȳ N
i+l|2 − |Ȳ N

i+K |2
))

p→ Σ∗
11. (21)

The problem with this way of getting atΣ∗ is that once we put the pieces back together, the estimate of the full covariance

matrix Σ̂∗ is not guaranteed to be positive semi-definite.

Instead, we propose a novel block subsample estimator ofΣ∗, which has a very intuitive form and is positive semi-

definite by definition.10. To describe the construction of this estimator, we first choose two frequenciesd andL, such that

L >> K, dL = o(N) andL, d→ ∞ asN → ∞. Here,d is the number of subsamples andL is a block length.

Second, we let

RV ∗
N,m[Y ] =

d

KψK2

∑

i∈Jm

|Ȳ N
i |2 − ψK1

θ2ψK2
ω̂2

AC, (22)

for m = 1, . . . , d, whereJm = {i : 0 ≤ i ≤ N −K+1 and(m−1+ jd)L ≤ i < (m+ jd)L−K+1 for somej ∈ N}.

As such,RV ∗
N,m[Y ] is a subsampled version of the pre-averaged RV defined above.

The construction ofRV ∗
N,m[Y ] is depicted in Figure 2, which shows how we block, allocate and pre-average the

noisy return series(∆N
i Y ) to assemble the various subsample estimates. Note that pre-averaging is done locally within

each block of lengthL, and that there is no pre-averaging carried out between blocks. As a consequence, the sequence

10This relates to recent work by Kalnina (2011).
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RV ∗
N,m[Y ], m = 1, . . . , d, all fulfill the CLT of RV ∗

N [Y ] from Proposition 1, except with a slower rate of convergence

N1/4/d1/2. It also follows that theRV ∗
N,m[Y ] estimates are mutually independent, asymptotically, because they are

computed from non-intersecting increments.

Hence, it is intuitive that

Σ̂∗
11 =

1

d

d∑

m=1

(
N1/4

d1/2

(
RV ∗

N,m[Y ]−
∫ 1

0
σ2sds

))2

(23)

is a good proxy forΣ∗
11. But the integrated variance is latent, so we replace it byRV ∗

N [Y ] – the original pre-averaged RV.

Now, we can construct the sequenceBV ∗
N,m[Y ] using the exact same principles. Then, we define

T ∗
N,m[Y ] =

N1/4

d1/2

(
RV ∗

N,m[Y ]−RV ∗
N [Y ], BV ∗

N,m[Y ]−BV ∗
N [Y ]

)′
, (24)

and compute

Σ̂∗ =
1

d− 1

d∑

m=1

T ∗
N,m[Y ]T ∗

N,m[Y ]′. (25)

Proposition 2 Assume thatY follows Eq. (9), whereX follows the jump-diffusion model in Eq.(1) andE(u4) < ∞.

Moreover, we assume that
√
N/d2 → 0. AsN → ∞, it then holds that

Σ̂∗ p→ Σ∗. (26)

Proof See appendix.

We can then execute the feasible jump test by plugging the estimates in Eq. (25) into Eq. (20).

A couple of further remarks are in place here. First, the finite sample corrections that help to improve small sample

accuracy ofRV ∗
N [Y ] andBV ∗

N [Y ] are also applied toBV ∗
N,m[Y ] andRV ∗

N,m[Y ]. Second, as the unobserved integrated

variance is replaced by an estimator, we find better finite sample accuracy by correcting the covariance matrix estimator

for a “loss of degree of freedom”, which is why we are dividingby d − 1 in Eq. (25). Third, the condition
√
N/d2 → 0

implies thatd = O(N ǫ), for some0.25 < ǫ < 0.50, which ensures that̂Σ∗ is consistent forΣ∗ both under the null and

alternative hypothesis, as shown in the proof of Proposition 2. This point is important, because it means that in principle

we do not need to worry about eroding the power of the jump test(Barndorff-Nielsen and Shephard, 2006). Still, the

estimator appears sensitive to jumps in finite samples, and we propose one further adjustment ofΣ̂∗ in the simulation

section below. Fourth, while the choice ofd andL affect the efficiency of the estimator, a theory for derivingan optimal

choice of these tuning parameters is at best complicated andwe leave this analysis for future research. Instead, we choose

a simple calibration of̂Σ∗, which seems to work reasonably well in simulations and practice.
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Table 2: Properties of the pre-averaging estimators.

RV ∗
N [Y ] BV ∗

N [Y ] BV ∗
N [Y ](τ)

θ = 0.10 0.25 0.50 0.10 0.25 0.50 0.10 0.25 0.50

BM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SV2F 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

BMJ 1.25 1.25 1.25 1.03 1.04 1.05 1.00 1.00 1.00

BMO 1.00 1.00 1.00 0.99 1.00 1.00 1.01 1.00 1.00

Note. This table reports the mean of the pre-averaging estimatorsRV ∗

N
[Y ],BV ∗

N
[Y ], andBV ∗

N
[Y ](τ) (normalised by

∫ 1
0
σ2sds) over10, 000 simulation runs whereN = 10, 000, γ = 0.50.

3 Simulation study

In this section, we perform controlled Monte Carlo experiments to gauge the finite sample accuracy of the noise-robust

pre-averaging theory introduced above. In particular, we examine the ability of these estimators to back out the diffusive-

and jump-variation components in the presence of microstructure noise. We also inspect the statistical properties of the

jump testing framework.

Below, we simulate log-pricesX from four distinct models, namely (i) a Brownian motion or “BM” model where

dXt = σtdWt with σ2t = 0.0391 corresponding to a return volatility of about 20% annualized, (ii) a two-factor stochastic

volatility model with leverage or “SV2F” proposed by Chernov, Gallant, Ghysels, and Tauchen (2003), using calibrated

parameter values reported in Huang and Tauchen (2005), (iii) a Brownian motion plus jump or “BMJ” model, where we

position a jump of random size at a random point in the series,ensuring that on average it accounts for20% of total

variation, and (iv) a Brownian motion plus outlier or “BMO” model, where we position an outlier of random size at a

random point in the series, ensuring that on average it accounts for20% of total variation. These choices of models allow

us to gauge the ability of the pre-averaged estimators to account for stochastic volatility and study their robustness to

jumps and outliers (the latter case is discussed in more detail below, see Section 6). Using an Euler discretization scheme,

we simulate10, 000 independent price paths for each model, fixing the sample size atN = 10, 000. To obtain the noise

contaminated observed price pathY , we selectω2 by fixing the noise ratio (Oomen, 2006)γ =
√
Nω2/

∫ 1
0 σ

2
sds = 0.50.

As can be seen from Table 3, our choice ofγ andN are realistic albeit relatively conservative.

Table 2 reports the mean of the pre-averaging estimatorsRV ∗
N [Y ] andBV ∗

N [Y ] – normalised by the diffusive variation

component
∫ 1
0 σ

2
sds – for three choices of the tuning parameterθ = {0.10; 0.25; 0.50} whereK = ⌈θ

√
N⌉. From the

above, we would expect thatE(RV ∗
N [Y ]) = 1 for the BM, SV2F, and BMO models,E(RV ∗

N [Y ]) = 1.25 for BMJ,
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andE(BV ∗
N [Y ]) = 1 for all models due to its robustness to jumps. The simulated values largely agree with these

figures irrespective of the pre-averaging parameterθ. Only for the pre-averaged BV measure in the presence of jumps

do we observe a (small) upward bias that grows withθ. If left untreated, this bias translates into a downward bias of

the estimated jump proportion and will also reduce the powerof the jump test. Motivated by this, we supplement the

jump-robustBV ∗
N [Y ] with a threshold filter, which is discussed in the next subsection. The last column of Table 2 shows

that this modified measure largely eliminates the bias and can thus be used to conduct reliable inference about jumps.

3.1 Threshold pre-averaged bipower variation

To reduce the finite sample bias induced by jumps in the ordinary BV defined by Eq. (7), Corsi, Pirino, and Renò (2010)

propose to augment the estimator with a threshold filter. Themain idea is to first pre-trim the data in order to eliminate

large jumps, and then rely on the machinery of the BV to wipe out the small jumps. It appears natural to use such a device

for our pre-averaged jump-robust estimator of integrated variance as well. As already mentioned, this should also helpto

improve the power of the jump test by providing a less downward biased measure of jumps.

Setting a good threshold can be accomplished by noting that under a scaled Brownian motion with i.i.d noise, as in

model BM above, the asymptotic distribution (asN → ∞) of Ȳ N
i is given by:

N1/4Ȳ Ni | Fi/N
a∼ N

(
0, ψ2σ

2θ + ψ1ω
2 1

θ

)
. (27)

Thus, we can define a threshold by taking

τ = qα ×
√
ψK2 σ

2θ + ψK1 ω
2
1

θ
×N−̟,

whereqα is theα-quantile from theN(0, 1) distribution and̟ ∈ (0, 0.25). Of course, in order to set a value ofτ in

practice, we substitute plug-in estimators for unknown parameters, i.e.σ2 andω2. Moreover, it requires selection ofα

and̟. Throughout, the noise variance is estimated withω̂2
AC and we useα = 0.999 and̟ = 0.20, which produces

satisfactory results in the simulations across models.σ2 is proxied withBV ∗
N [Y ], noting that, as the pre-averaged BV is

slightly upward biased in finite samples with jumps in the data, the last step should lead to setting conservative threshold

levels, thereby avoiding overtrimming the data.

After τ is set, we could proceed by excluding all terms for which|Ȳ N
i | > τ , when computing theBV ∗

N [Y ]. However,

we found this to be suboptimal, as it tends to remove too largefractions of data in finite samples. To understand this

feature, it helps to consider Figure 3. In Panel A, we plot thefirst 100 noisy returns from a replication of the BMJ model,

while the corresponding 77 pre-averaged data, usingθ = 0.25 for purpose of illustration, are shown in Panel B. The

threshold levelτ is computed as detailed above. A large jump occurs in the 52ndnoisy return, and it creates a hump in

14



Figure 3: Illustration of threshold filtering procedure.

Panel A: Noisy returns,∆N
i Y Panel B: Pre-averaged returns,Ȳ N
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Note. To the left is the noisy return series,(∆N
i Y ), while the pre-averaged return series,(Ȳ N

i ), is to the right. The thresholdτ is the

plotted with dashed red lines (- -). The orange area (�) in the left panel shows the part of(∆N
i Y ) taken out for inspection, while the

black circle (o) highlights the return that is selected to be discarded.

the pre-averaged returns, corresponding roughly to the graph of the weight functiong(x) = min(x, 1 − x). This induces

a long sequence of breaches ofτ , and if the naive filter was to be used, this single large jump calls for discarding no less

than twelve pre-averaged returns in this example – all thosethat fall outside the threshold boundaries. Moreover, manyof

the surrounding observations not crossingτ remain inflated.

Set against this backdrop, we proceed with a matching algorithm that exploits the link between the(∆Y N
i ) and(Ȳ N

i )

series. To illustrate the mechanics, we consider Figure 3 again. In Panel B, when a breach ofτ is found, we go back

and inspect the subset of all noisy returns, which are used tocompute that particular sequence of pre-averaged returns,

as highlighted in both subpanels. Finally, we select the largest noisy return, in magnitude, to be discarded. In any given

simulation, if multiple violations ofτ are observed, we repeat this step until all extreme noisy returns have been removed,

after which we reconstruct the pre-averaged return series based on the reduced sample.11

Table 2 highlights the properties of the truncated version of pre-averaged BV: the estimator continues to deliver

unbiased estimates of the integrated variance for the diffusive BM and SV2F models but it now also largely eliminates the

finite sample bias in the presence of jumps.

11Of course, the trimming step can be iterated on the new set of pre-averaged data, but we found no or little gains from doing this.
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3.2 Jump testing

To arrive at a feasible version of the jump test, we implementthe block subsampler estimator proposed in Section 2.4

usingd = 20 subsample estimates and a block length ofL = 5K. Unreported simulations show that this choice of

tuning parameters delivers estimates ofΣ∗, which are roughly unbiased. To check if a transformation ofEq. (20) could

enhance finite sample approximation of the asymptotic distribution, we also experiment with a log-based and ratio-typet-

statistic, as in, e.g., Huang and Tauchen (2005). We found that both transformations improved upon the raw distributional

result, while delivering almost identical finite sample accuracy between the two. Hence, to save space we only report the

outcome of the log-based distribution theory, relying on the delta method for stable convergence to obtain

N1/4(lnRV ∗
N [Y ]− lnBV ∗

N [Y ](τ))
√

Σ∗
11 +Σ∗

22 − 2Σ∗
12/
∫ 1
0 σ

2
sds

d→ N(0, 1). (28)

Note that we use the threshold pre-averaged BV to form the jump t-statistic. To obtain a feasible limit theorem, we

substitute the integrated variance appearing in the denominator withBV ∗
N [Y ](τ).

The results on size and power are reported in Figure 4 for a subset of the simulated models. Panels A and B uncover

the size properties of the above t-statistic for model BM andSV2F. In model BM, the actual fraction of rejections is close

to the nominal size of the test for all choices ofθ and the distribution looks close to Gaussian. Turning next to model

SV2F, the standard normal still offers a good description offinite sample variability of the t-statistic, but we note a slight

size distortion whenθ = 0.1. Although the distortion shrinks asθ increases, it does not vanish completely. Under model

SV2F, the path of volatility is very erratic and some part of the size distortion is undoubtedly related to the fact that we

are setting a global threshold in our computations, which depends on a constant measure of variance, rather than a local,

spot estimate of volatility. However, although in principle it is straightforward to extend the threshold theory to allow for

a time-varying barrier, it requires highly non-trivial computational efforts compared to the small gains associated with it.

Therefore, we do not venture down this path here.

In Panel C–D, we inspect the rejection rate of the test in the presence of jumps using model BMJ. The following

conclusions can be made. First, in Panel C we see that alreadyby the timeN = 10, 000, the simulated power of the

test is good and lies in the range of about 65 – 77%, depending abit on the specific choice ofθ. Again,N = 10, 000

is a conservative sample size for our ultra high-frequency milli-second data employed in the empirical section. Indeed,

as shown in the web appendix, model BMJ has the weakest power amongst all the jump-diffusion models considered.

Nonetheless, there is a tendency for power to drop asK increases, so the results caution against using too extremevalues

of θ in practice. Second, Panel D conducts a sensitivity analysis by showing the distribution of the log-based jump t-

statistic, when we surpass the thresholding step. As evident, this has a pernicious impact on the rejection rate caused by

two complementary factors, as detailed in the upper right-hand corner of each subpanel. There, we report the average
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Figure 4: Log-based jump t-statistic – Size and power.
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Note. The histograms show the simulated distribution of the log-based jump t-statistic defined by Eq. (28) usingθ = {0.10; 0.25; 0.50}.

In the upper left-hand corner of each subpanel, we report thefraction of t-statistics that exceed the1− and5 − % critical value in the

right tail of the standard normal distribution. To the right, we show the average value of the numerator and denominator across the10, 000

repetitions. The density function of the standard normal issuperimposed for reference.

value of the numerator and denominator of Eq. (28). The first factor is the upward bias in the pre-averaged BV revealed

above, which depressesN1/4(lnRV ∗
N [Y ]− lnBV ∗

N [Y ]). The second is buried in the construction of our block subsample

covariance matrix estimator, which is sensitive to jumps infinite samples, when the number of subsamplesd is small. If
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one of the subsample estimates deviates from the rest due to the presence of jumps, this will cause a significant increase

in the sample variation of the subsampled RV and BV. This produces a large upward bias in̂Σ∗, which in the end deflates

the t-statistic. Thus, it appears crucial to use the threshold filter in practice to preserve power.

4 Empirical application

In this section, we use the pre-averaged RV and BV measures toprovide an in-depth study into the role of the jump

component for a representative set of US equity and foreign exchange rate data. To the best of our knowledge this is the

first study to take a comprehensive look at the magnitude of the jump variation component as measured from noisy tick

data sampled at ultra-high frequencies. We also report results based on 5- and 15-minute sampling frequencies as these

are widely used in the literature and provide a natural reference point.

4.1 Data description

We have available a large set of tick data covering a representative set of foreign exchange rates and large cap US equity

and US equity-index data. The sample period is from January 2007 through to March 2011 (or 1170 trading days) and

includes several episodes of exceptional turbulence such as the global housing and credit crisis, the S&P500 flash-crash,

the European sovereign debt crisis and the bail-out of Greece, and the Japanese earthquake.

For the equities, we consider all thirty Dow Jones Industrial Average (DJIA) index constituents as of October, 2010,

as well as two market-wide indices traded as highly liquid ETFs, namely QQQ tracking the NASDAQ100 index and the

SPY (or spiders) tracking the S&P500 index. The latter one isincluded because it is used in many other studies (see Table

1) and thus provides a good benchmark. The data is extracted from the NYSE TAQ database, and includes both quote

and trade data with milli-second precision time-stamps allowing for a very fine grained view of the price evolution. We

restrict attention to the official trading hours from 9:30 - 16:00 local New York time.

For the foreign currency data, we have the three major rates of Euro, Japanese Yen, and Swiss Franc all traded against

the US dollar, i.e. EURUSD, USDJPY, and USDCHF, respectively. The data comes from the EBSLive data feed that also

provides both trade and quote data with milli-second time-stamps. We restrict attention to the most liquid London and

New York trading hours from 7:00 - 19:00 (GMT).

We pre-cleaned the data following the routines proposed in Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009),

and compute all results both on trade and (mid-) quote data. After cleaning, we are looking at a total sample size of well

over 4 billion observations! To conserve space, we only report the results for the trade data.
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Table 3: Jump variation estimates for equity and FX high-frequency data.

tick frequency 5-minute frequency 15-minute frequency
N γ RV ∗ BV ∗ JV RV BV JV RV BV JV

Panel A : Equity indices
QQQ 48,336 0.38 22.8 23.0 -1.6 22.8 22.4 3.7 22.7 21.6 8.9
SPY 112,921 0.35 21.1 21.2 -0.3 20.9 20.5 4.1 20.7 19.8 8.1

Panel B : Individual stocks
AA 31,263 0.51 48.4 48.0 1.7 48.9 47.6 5.1 47.2 44.8 9.9
AXP 31,205 0.27 46.7 46.3 1.6 46.6 45.0 6.9 45.8 43.2 11.0
BA 20,961 0.26 30.5 30.3 1.5 30.5 29.4 6.5 30.4 28.5 11.8
BAC 82,426 0.82 59.0 59.3 -0.8 58.9 56.2 8.9 58.2 54.6 11.8
CAT 27,227 0.25 36.6 36.6 0.4 36.6 35.6 5.3 36.2 34.6 8.8
CSCO 54,114 0.64 31.7 31.5 1.5 32.2 31.2 5.9 31.4 30.0 9.1
CVX 34,685 0.26 30.0 30.1 -0.6 29.6 29.0 4.6 28.7 27.4 8.9
DD 20,222 0.28 32.3 32.2 0.7 32.7 31.6 6.7 31.9 30.3 9.7
DIS 24,864 0.36 29.9 29.5 2.2 30.2 29.1 7.4 29.6 28.0 10.7
GE 56,107 0.76 38.2 38.0 1.0 38.2 36.6 8.0 38.1 35.4 13.6
HD 30,037 0.37 34.5 34.3 1.2 34.4 33.3 6.3 33.6 31.5 11.9
HPQ 35,482 0.33 29.8 29.3 3.2 29.8 28.9 6.2 29.0 27.1 12.1
IBM 25,173 0.26 26.0 25.9 1.1 25.4 24.6 6.3 24.7 23.2 11.6
INTC 54,601 0.65 32.1 32.0 0.6 32.4 31.2 7.4 31.3 29.3 12.5
JNJ 29,792 0.37 18.7 18.5 2.0 18.8 18.1 7.9 18.2 16.9 13.6
JPM 67,426 0.34 48.7 48.8 -0.4 48.5 47.2 5.3 47.8 45.2 10.8
KFT 20,451 0.44 22.8 22.3 4.6 23.1 21.9 9.8 22.1 20.5 13.9
KO 24,760 0.33 21.1 21.0 1.6 21.5 20.3 10.5 20.5 18.9 14.5
MCD 23,482 0.29 23.7 23.5 1.3 23.8 22.7 8.7 22.7 21.2 12.6
MMM 16,880 0.26 26.2 26.0 0.9 25.9 25.0 6.5 24.7 23.3 11.2
MRK 30,000 0.37 30.1 29.7 3.0 31.5 29.8 10.2 29.8 27.5 14.5
MSFT 59,840 0.59 28.3 28.2 0.8 28.3 27.4 5.8 27.5 25.7 12.1
PFE 37,371 0.81 26.5 26.2 2.2 26.7 25.6 8.4 25.5 24.0 11.2
PG 30,091 0.33 22.7 22.4 2.6 21.2 20.3 8.0 20.1 18.8 12.9
T 38,051 0.55 28.9 28.6 2.6 29.7 28.9 5.7 27.9 26.4 10.7
TRV 15,889 0.26 37.5 36.5 5.1 38.9 37.0 9.4 37.3 33.7 18.6
UTX 18,616 0.26 27.0 26.9 1.2 26.7 25.9 6.3 25.9 24.6 9.8
VZ 29,970 0.46 27.5 27.2 2.1 28.0 27.0 7.3 27.0 25.4 11.2
WMT 35,611 0.35 23.5 23.4 0.6 23.6 22.7 7.5 22.6 21.2 11.8
XOM 55,005 0.31 28.2 28.2 -0.3 27.7 27.0 5.1 26.8 25.5 9.9

Panel C : FX pairs
EURUSD 22,483 0.48 9.9 9.9 -1.1 9.8 9.4 7.9 9.6 9.2 8.3
USDJPY 8,177 0.29 10.8 10.8 -0.3 10.8 10.3 9.4 10.4 9.8 10.0
USDCHF 4,357 0.35 10.4 10.3 1.7 10.7 10.2 9.5 10.4 9.8 11.0

Panel D : Cross sectional average by asset class
Equities 38,214 0.41 31.0 30.8 1.3 31.1 30.0 6.9 30.2 28.4 11.5
Currencies 11,672 0.37 10.4 10.3 0.1 10.4 9.9 8.9 10.1 9.6 9.8

Note.The numbers printed in the table are time series averages computed across the sample period, which covers January, 2007 through March, 2011

(both included).N is the sample size,γ =
√

Nω2/
∫ 1
0
σ2sds the noise ratio. The integrated variance is proxied byBV ∗ andω2 is estimated with

ω̂2
AC. Variational measures are reported as annualized standarddeviation. Noise-robust estimators are based onθ = 1.0. The relative jump variation

(JV) is expressed in percent.
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4.2 The magnitude of the jump variation component

The results below center around measuring the magnitude of the jump variation component, i.e the quantity defined in

Eq. (3) and subject to numerous past studies. To compute thisquantity from tick data, we estimate[X]1 and
∫ 1
0 σ

2
sds as

the average daily pre-averaged RV and BV measures as defined in Eqs. (15) – (16), respectively. To compute JV from

low-frequency data, where the impact of noise is negligible, we use the standard RV and BV measures as defined in Eqs.

(6) – (7) based on previous-tick sampling.

Table 3 reports the results for the two equity indices (PanelA), thirty individual equities (Panel B), three currencies

(Panel C), and the cross-sectional averages by asset class (Panel D). The single most important observation to be made is

that the estimated jump variation computed from tick data issmall. Much smaller than what is computed from 5- or 15-

minute data and much smaller than what is reported by the extant literature as summarised in Table 1. The cross-sectional

averages by asset class convey the message most clearly: using tick data we find that jumps account for a mere 1.3% of

total return variation for equities and a negligible 0.1% for currencies! The corresponding figures for the widely used 5-

(and 15-) minute sampling frequency are in line with the literature at a much more substantial 6.9% (11.5%) and 8.9%

(9.8%) for equity and FX data, respectively. It is also interesting to note that for each asset there is a strict ordering in JV

by sampling frequency where the tick data gives the lowest (and we argue most accurate) value and the 15-minute data

the highest.

The results in Table 3 use a pre-averaging parameter ofθ = 1. To show that our results are robust to this choice

of tuning parameter consider Figure 5. Panels A and B report the cross-sectional average of the annualized (estimated)

standard deviation, as a function ofθ ranging from 0.1 to 2.0, for the noise-robust RV and BV, the latter both with and

without threshold elimination. As a reference point, we also report the corresponding levels of volatility estimated via

the low-frequencyRV5m andBV5m. Consistent with the findings of Hautsch and Podolskij (2010), we see that the pre-

averaging estimators produce a pronounced, systematic downward bias if the selection ofθ is too low to fully obliterate

the impact of microstructure noise. Here, that interval appears to be roughly 0.1 – 0.5. For values ofθ above 0.5, the

estimated levels of volatility are fairly stable around 30%and 10% for equity and FX respectively, withRV ∗
N [Y ] and the

jump-robust estimators tending to track each other quite closely. We should note that threshold elimination has only a

modest effect on the estimated level of volatility, suggesting that “large” jumps are relatively infrequent. Panels C and D

of Figure 5 drawθ-signature plots – the estimated jump variation against values ofθ – and indicate good robustness of

our main finding. In particular, for values ofθ above 0.5 the estimated JV is very stable and in a tight range of 1% to 2%

for equity data and−0.5% to 0.5% for FX data.

Next, to show robustness of our finding over time Figure 6 plots the JV for the equities and currencies by calendar
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Figure 5:θ-signature plot of annualized volatility and jump proportion.

Panel A: Annualized volatility, equity data Panel B: Annualized volatility, FX data
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Note. In the upper row, we report the average annualized volatility of the noise-robust estimators, averaged across the cross-section of

stocks and FX pairs included in our empirical application, as a function ofθ in the range 0.1 – 2.0. As a comparison, we also show the

average value ofRV5m andBV5m. In the bottom row, we create aθ-signature plot for the estimated jump proportion using twodifferent

jump-robust pre-averaging statistics. Here, as a reference, we report the jump proportion inferred byRV5m andBV5m.

quarter over the full four year sample period. The dashed lines indicate the full-sample average for reference. The main

observation to make here is that the results are stable, i.e.the estimated jump variation from tick data is consistentlyvery

small for equities (never exceeding 4% on any given quarter)and negligible for currencies. Also note the low-frequency
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Figure 6: Jump proportion, quarter-by-quarter.

Panel A: Equity data Panel B: FX data
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Note. We plot the estimated jump proportion, quarter-by-quarter, from Q1, 2007 through Q1, 2011 using ultra high-frequencyestimators

(tick) and low-frequency estimators based on 5- and 15-minute previous-tick sampling.

estimates always lie strictly above the tick estimates withhighs of around 15% and 20% for equities and FX.

A nice way of summarizing our results for the whole sample aredepicted in the scatter plots in Figure 7. In Panel

A-B, we show the threshold pre-averaged BV plotted against the pre-averaged RV usingθ = 1.0. It is evident that

the pairwise observations scatter closely around the 45-degree line. To highlight this, we run a regression, where the

jump-robust estimator is projected onto the measure of total return variation. In Panel A-B, the regression equation is

BV ∗
N [Y ](τ) = b0+ b1RV

∗
N [Y ]+ ǫ, which yields OLS coefficient estimates ofb̂0 = −0.061 andb̂1 = 1.002 for the equity

data and̂b0 = −0.000 and b̂1 = 1.000 for the FX data. To strengthen the analysis, we carry out a test of the hypothesis

b0 = 0 andb1 = 1. In our setting this essentially amounts to asking, if on theaverage the data are compatible with

being generated from a model without jumps. As seen in the subpanels, the test statistictb1=1 is borderline significantly

different from unity for the equity data, while there is no evidence in favor of rejecting the null using any of the other test

statistics. By stark contrast, in Panel C-D the cloud of observations is much more skewed underneath and to the right of

the 45-degree line, and when we run the regressionBV5m[Y ] = b0 + b1RV5m[Y ] + ǫ, it results in intercept and slope

coefficient estimates of̂b0 = 0.026 and b̂1 = 0.925 for the equity data and̂b0 = 0.022 and b̂1 = 0.859 for the FX data.

It should be pointed out that the estimate ofb1 for the equity data matches closely with the jump proportionof roughly

7% that was discovered above in Table 3, while the slope coefficient for the FX data is somewhat lower than what is

implied by the jump proportion above. The test statistictb1=1 = −5.21 andtb1=1 = −4.47 leads to a clear rejection of
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Figure 7: Regression analysis.
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Note. The plot shows pairwise values of RV and BV. Upper panels arebased on noise-robust pre-averaging estimators, while thelower

panels are based on 5-minute low-frequency data. A red plus (+) marks a daily pairwise observation for each ticker in our selection of stocks

and fx pairs. The blue circles (o) show the time series average value of RV and BV for an individual security. We fit a regression line to the

values of RV and BV and conduct a test of the hypothesisb0 = 0 andb1 = 1 (t-statistics based on White’s heteroscedasticity-consistent

standard errors are reported in subpanels).

the null hypothesis, thus showing that even after adjustingfor sampling uncertainty,BV5m remains significantly smaller

thanRV5m.
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4.3 Significance testing

To attach a measure of significance to our daily estimates of jumps, we again implement the noise-robust jump test defined

by Eq. (28) by selecting a block length ofL = 5K and constructd = 20 subsample estimates of the pre-averaged RV

and BV.12 We base the 5-minute low-frequency jump test on the modified ratio-statistic (with maximum correction), as

advocated by Barndorff-Nielsen and Shephard (2006) and Huang and Tauchen (2005), where
∫ 1
0 σ

4
sds is estimated with

the realised quadpower quarticity statistic.

Table 4: Significant jump days of equity and FX high-frequency data.

zRV ∗

N
[Y ](A) zRV5m

(B) A ∩B zRV ∗

N
[Y ](A) zRV5m

(B) A ∩B

Panel A : Equity indices Panel B (cont’d)
QQQ 6 113 0 MCD 27 179 5
SPY 28 118 5 MMM 29 159 10

MRK 42 204 13
Panel B : Individual stocks MSFT 51 162 8
AA 20 140 4 PFE 65 191 23
AXP 27 145 6 PG 35 163 6
BA 21 168 6 T 59 185 21
BAC 36 141 7 TRV 47 158 12
CAT 14 120 2 UTX 21 150 6
CSCO 66 152 12 VZ 31 173 10
CVX 13 113 2 WMT 16 174 6
DD 28 151 7 XOM 16 123 3
DIS 42 164 11
GE 50 161 9 Panel C : FX pairs
HD 25 147 6 EURUSD 12 122 5
HPQ 42 155 13 USDJPY 5 139 2
IBM 28 165 6 USDCHF 23 110 5
INTC 29 168 10
JNJ 42 190 11 Panel D : Cross sectional average by asset class
JPM 14 111 2 Equities 33 158 8
KFT 64 213 16 Currencies 13 124 4
KO 30 185 7

Note. We report the number of rejections flagged by the individualjump test-statistics (out of 1170 days). All numbers are computed at the 1-% level of
significance. The intersection (A ∩B) is defined as the number of days with jump signals in common.

Table 4 holds the outcome. As expected, we see that the noise-robust jump test,zRV ∗

N
[Y ], has substantially fewer

significant jump days compared to the low-frequency 5-minute version,zRV5m , which mirror images the results on jump

proportions above. On average,zRV5m signals the appearance of jumps by a factor 5 – 10 relative tozRV ∗

N
[Y ].

13 In reality,

we believe jump proportions are even smaller and that there are fewer significant jump days than what our noise-robust

12The sole exception is the USDCHF cross, which is based ond = 10 subsamples. This is because for the USDCHF, the total amountof data at

our disposal is often insufficient to get reliable covariance matrix estimates usingd = 20 subsamples.
13Note that some of the rejections in Table 4 merely reflect the choice of significance level,α, inducing on averageαT false rejections of the null
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ultra high-frequency jump test suggests, because many of the jump signals we investigated by manual inspection appear

not to be real jumps, but we will dig deeper into this discussion in Section 6.

4.4 The burst of volatility hypothesis

The results reported so far all point towards a much reduced role for jumps in explaining the total return variation for

equity and currency data. Indeed, we find that the jump variation computed from tick data is an order of magnitude

smaller than the consensus view of a very substantial body ofliterature that uses 5-minute or lower frequency data. How

can these findings be reconciled?

A plausible explanation is that our ability to tell truediscretejumps fromcontinuousdiffusive variation diminishes, as

we lower the sampling frequency,N . Specifically, it is likely that a short-lived burst of volatility is mistakenly identified as

a jump with less frequent sampling. The flash-crash episode discussed in the introduction is a prominent example of such

a scenario. The Japanese earthquake provides another for the currency data. Figure 8 plots the evolution of the USDJPY

rate in Panels A and B for the period in question. From the 5-minute data, two very substantial jumps are evident. One,

on March 16, when a panicked USDJPY sell-off led to a “flash-crash” type drop in the rate and one, on March 18, on a

coordinated central bank intervention aimed at devaluing the JPY. Panels C and D draw the tick data for the respective

episodes and tell a very different story where price jumps remain elusive. Searching through the full sample period and

all the 35 securities considered here, we confirm this “burstof volatility” pattern is the dominant explanation for the much

reduced role of jump variation.

To provide some additional support for the burst of volatility conjecture, we consider a simple simulation study. In

particular, we draw noise-free prices from a scaled Brownian motion, dXt = σtdWt for t ∈ [0, 1], whereσt = 5σ∗ for

t ∈ [16/32, 17/32] andσt = σ∗ otherwise, whereσ∗ is fixed at a level corresponding to 40% in annualized terms. In

this scenario,σt is piecewise constant and increases five-fold in strength over a short interval of the day (equivalent to a

15-minute interval based on an 8-hour trading session), thus creating a jump in volatility, but there are no jumps in the

price, implying that the true jump variation is zero. We simulate noisy log-prices as above,Y = X + u, using i.i.d.

noise with a noise ratio parameter ofγ = 0.5 and then roundY to the nearest cent to induce price discreteness, based on

a starting price of $50 in levels. Finally, we construct the low-frequency RV and BV at varying sampling intervals and

calculate the average jump variation across 10,000 simulation trials.

Figure 9 illustrates our findings using a signature plot thatdraws the measured jump variation as a function of sampling

frequency on a log-log scale. Panel A is based on the above simulated data, and we see quite clearly that the jump

variation is severely inflated at lower sampling intervals,but that it steadily drops as we move from half-hourly sampling

hypothesis, whereT is the number of days in the sample.
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Figure 8: USDJPY earthquake episode: Jump or burst in volatility?

Panel A: Earthquake episode Panel B: Sell-off and intervention at 5-minute intervals

Panel C: Sell-off trade-by-trade Panel D: Intervention trade-by-trade
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Note. EBSLive USDJPY spot data for March 7 – 18, 2011 with time reported in GMT. “Paid” and “given” denote aggressive buy- and sell-orders,

respectively.

to 2-minute sampling. Beyond this point, the microstructure noise kicks in and the traditional statistics inflate the jump

variation again, as the sampling frequency increases further. Panel B of the figure plots the corresponding results for the

cross-sectional average of the full sample of equity instruments. The results are strikingly similar to the simulation-based

evidence, thus reinforcing and supporting the burst of volatility hypothesis.14 Note that, by contrast to the low-frequency

14The jump variation signature plot for the foreign exchange rate data display a similar, but less pronounced, U-shape. Because we are only
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estimators, our pre-averaged noise-robust jump variationmeasures can be applied to tick data and doing this we observe

a jump variation ending up at around 1% for the equity data. Interestingly, this closely coincides with the trend conveyed

by the conventional statistics based on the infeasible noise-free data in Panel A of Figure 9.

Figure 9: Jump variation signature plot.

Panel A: Simulated data Panel B: Equity data
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Finally, to shed some theoretical light on the above hypothesis, we obtain the following expression for the uncondi-

tional bias of BV (see Appendix A for assumptions and the derivation):

E

(
BVN [X] −

∫ 1

0
σ2sds

)
= − 1

N
E

(
1

12

∫ 1

0

υ2s
σ2s

ds

)
+ o(N−1), (29)

whereυ is the “volatility of volatility”.

Based on this expression, we learn that with time-varying volatility, and in the absence of noise, (i)BVN [X] is

downward biased in finite samples, translating into an inflated JV measure, (ii) the effect is stronger with a high volatility

of volatility υ or a lowering of the sampling frequencyN . Stated differently, a short-lived burst of volatility mayspuriously

be attributed to the jump variation component and this mistake is increasingly likely as the sampling frequency of the data

is lowered. This line of thought is also consistent with Aı̈t-Sahalia and Jacod (2009c), who emphasize that jumps can only

considering three FX pairs, there is less averaging taking place, which could explain the less clear-cut pattern.
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be identified by increasing the sampling frequency to the limit, which is what this paper does and leads us to argue for a

much reduced role of jumps (and by implication an elevated role of the volatility process).

5 Illustrative example: Option trading with rehedging

In this section, we briefly illustrate the economic relevance of the above finding using an option pricing example (portfolio

allocation and risk management are two other areas of finance, where our findings have profound implications). Specifi-

cally, we consider a scenario where a market maker providingliquidity in short-term at-the-money call options gets paid

on a quote one day before maturity of the contract. As a resultof this trade, the market maker is now short the call option

and decides to remove the first order price risk by covering the delta of the position using the underlying instrument.15

To maintain a simple setting, we simulate log-prices from a scaled Brownian motion with no drift:Xt = σWt, and we

price the option with the Black-Scholes formula.16 σ is fixed at 40% in terms of annualized volatility. The number of

steps in each simulation isN = 1, 000 and we generate a total of 10,000 independent price paths. The initial equity price

is set to 100, which also equals the strike price of the call option. As already mentioned, the option has one day left to

maturity and expires at the end of trading, where the position is settled. The equity pays no dividends during this time.

The risk-free rate is set to zero.

The market maker receives a premium for selling the option and is initially delta neutral because of the hedge, but he

is left short gamma and accumulates losses that are proportional to the square of the change in price of the underlying. Of

course, in a perfect, frictionless market, the trader can replicate the option by continuously rehedging, and the premium

will exactly offset the losses associated with his rebalancing activities. However, market microstructure noise induces

transaction costs, so we assume our imaginary trader has decided to rehedge his equity exposure only after every 50

basis point move in the underlying. At each rebalancing, a small loss is locked in due to the negative gamma profile. At

expiry, if the option is in-the-money, the equity is delivered to the buyer and a further loss is taken, else the option expires

worthless and the market maker closes his position in the underlying at the prevailing market price. Finally, we keep track

15Writing a call option contract, while simultaneously purchasing a delta equivalent number of shares in the underlying stock is also known as a

“buy-write” covered call strategy.
16The Black-Scholes call option pricing formula is given by:C = N(d1)S −N(d2)Ke−rt, whereS is the stock price,K is the strike,σ is the

volatility, r is the risk-free rate,t is the time to maturity,N(·) is the distribution function of a standard normal random variate and

d1 =

ln

(

S

K

)

+

(

r +
σ2

2

)

t

σ
√
t

, d2 = d1 − σ
√
t.

The delta and gamma are defined as the first- and second-order derivative ofC with respect toS and equal:∆ = N(d1), Γ =
N ′(d1)

Sσ
√
t

.
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Figure 10: Simulated price path and P&L distribution.

Panel A: Simulated price path Panel B: P&L distribution
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Note. In Panel A, we plot an example of simulated price paths for the option trader exercising the covered call strategy with rehedging. In

Panel B, we show the distribution of his P&L and also report the average loss to the trader expressed in percent of the premium.

of the traders bank roll and calculate the total profit and loss (P&L) for the trade.

Now, in each simulation, at a random point in time, we hit the market with two forms of unforeseen news, which

causes a revaluation of the stock. In scenario A, we place a 2%pure jump in price, while, in scenario B, we put a 2%

“burst of volatility”. The latter induces a swift, but continuous, change in price. Panel A of Figure 10 helps to highlight

the distinction between these two types of shocks.17 It shows an example of a simulated set of sample paths, and we

provide an ultra high-frequency zoom on the price around thesurprise move. As seen in the figure, and in contrast to a

pure jump, scenario B provides the market maker with a valuable opportunity of rehedging his exposure, as the market

declines. This shows up prominently in Panel B of the figure, where the distribution of the P&L is reported. Note that,

because the realised volatility inX is larger than the volatility used for pricing the option, the trader loses money on

average in both scenarios. A typical loss amounts to -29.04%and -12.40% of the premium charged in scenario A and B,

respectively. Thus, not only is the average loss smaller forthe “burst of volatility” trader, the distribution of his P&L is

also less dispersed.

17Technically, the burst in volatility scenario is obtained by reconnecting the sample path in the jump scenario, using a Brownian bridge on the

observations that lie 10 steps before and after the jump, as illustrated in the figure.
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6 Robustness analysis: High-frequency data with outliers

In practice, tick data are often corrupted by outliers (e.g., due to delayed trade reporting, fat-finger errors, bugs in the data

feed, misprints, decimal misplacement, incorrect ordering of data, etc). As a result, empirical researchers are oftenadvised

to build “pre-cleaning” algorithms that use systematic rules for filtering out suspicious observations. A prominent example

is the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009) filter applied above. An obvious drawback of these filters

is that they typically depend on underlying tuning parameters that control tolerance levels and the user consequently risks

removing too much or too little data. In this section, we showthat pre-averaging has an embedded robustness property

against outliers and that pre-filtering of the data appears to be causing some of jumps we detect in practice.

To model outliers, we take

Yi/N = Xi/N + ui/N +Oi/N , (30)

where, on top of the components defined above,Oi/N = 1I{i/N∈AN}Si. Here,AN is a random set holding the appearance

times of outliers, while their sizes are given by(Si)i=1,...,NO
1

. We assume thatAN is a.s. finite and model it by

AN =

{
[NTi]

N
: 0 ≤ Ti ≤ 1

}
, (31)

where(Ti)i=1,...,NO
1

are the arrival times of another counting processNO =
(
NO
t

)
t≥0

. In what follows, we assume thatO

is mutually independent ofX andu,O ⊥⊥ (X,u). This, in turn, implies thatNJ ⊥⊥ NO, i.e. the two counting processes

generating jumps and outliers are also independent, which further means that the probability of observing both a jump

and an outlier in a small time interval is asymptotically negligible.

Proposition 3 Assume thatY follows Eq.(30) and that the conditions onX andu yielding the consistency and CLT of

Proposition 1 are satisfied. Then, the conclusions of Proposition 1 are unchanged.

Proof See appendix.

Compared to Section 2.3, Proposition 3 shows that pre-averaging estimators are, in addition to microstructure noise, also

robust to the presence of finite-activity outliers. To give some intuition for this result, we assume that the diffusion part

of X is zero. Then, almost all observations are i.i.d, except finitely many (which are also independent) that have a mean

different from 0 (coming from outliers). An immediate consequence of this is that those finitely many outliers can not

be statistically identified. At a more technical level, withprobability approaching one, there is at most a single outlier

in the window [ iN ,
i+K
N ]. If present, the outlier influences two consecutive noisy returns, say∆N

i+j−1Y and∆N
i+jY .

Therefore, it appears with a factorO
(
|g
(
j
K

)
− g

(
j−1
K

)
|
)

in the construction of̄Y N
i , for some1 ≤ j ≤ K. But
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Figure 11: Transaction price data for S&P 500 Depository Receipts (SPY), September 18th, 2007.

Panel A: Filtered data Panel B: Unfiltered data
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Note. The data plotted are transaction prices for SPY on September 18th, 2007. Panel A holds the filtered data, using the pre-cleaning rules

of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009),while Panel B shows the raw data, as extracted from the TAQ database. The

dashed, red line is the pre-averaging approximation of the efficient price, while the thick, green line shows the uncleaned midquote data.

|g
(

j
kN

)
− g
(
j−1
kN

)
| = O(K−1) (uniformly), thus the impact of outliers on the pre-averaged returns is asymptotically

negligible.

To demonstrate the potential of Proposition 3, we provide a practical example of what we term a “cleaning-induced”

jump. To this end, consider Figure 11, which shows the cleaned and uncleaned transaction price data for SPY on Septem-

ber 18th, 2007 over the 2-minute window running from 2:14:30pm – 2:16:30pm.18 At 2:15pm, the FED announced an

unexpected rate cut of 50 basis points, in an attempt to shield the economy from the accelerating mortgage crisis. The

stock market rallied upon receiving this news, moving the SPY higher from approximately index 149.00 to 151.25 in the

following 60 seconds, equivalent to a log-return of about 1.5%. Looking at the cleaned data in Panel A, although some

trading activity is observed in the 1-minute window from 2:15pm to 2:16pm, the move largely stands out as a pure jump

in price. On this day, we compute an annualized value ofRV ∗
N [Y ] andBV ∗

N [Y ] at 25.15% and 13.34%, respectively.

Moreover, with the variance ratio1 − BV ∗
N [Y ]/RV ∗

N [Y ] equal to 71.89%, it suggests that jump variation accounts for

more than two-thirds of total variation and both the noise-robust and low-frequency jump test are in fact significant at the

1% level.

By stark contrast, a different story is told by looking at Panel B, which shows the raw data prior to cleaning, as they

18This day has also been highlighted as a significant jump day ina recent paper by Patton and Sheppard (2011).
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are extracted from the TAQ database.19 The red, dashed line in this plot is based on the pre-averaging representation

in Eq. (14), which uses the nextK/2 transaction prices to approximate the underlying, efficient price. Looking at this

graph, the sample path variation instead appears to be a burst of volatility episode. But, it is clear that there are quite

a few suspect observations in the data. Nonetheless, when weapply the pre-averaged RV and BV directly to the noisy,

uncleaned data in Panel B, we now arrive at an annualized volatility of 17.40% and 17.35% for theRV ∗
N [Y ] andBV ∗

N [Y ]

and our estimate of jump variation is very close to zero at 0.6%!

A genuine concern regarding the price appreciation seen in Figure 11 is that it was borne by a relatively illiquid

market, in which traders were not able to intermediate. Indeed, the trade feed over the episode is substantially delayed

relative to the quote feed. However, the illiquidity or non-tradeable market argument does not hold up. In fact, in the 1-

minute interval following the announcement, the raw data feed reveals that a total of 3,343,500 shares of SPY exchanged

hands, trading at all intermediate levels, and representing a notional value of about $500 million or more than 10 times

the comparable average traded volume.20

Proposition 3 indicates the opportunity of weakening existing filtering rules and doing less aggressive data cleaning,

when the processing of data is combined with the pre-averaging concept. It then induces some comfort in that even if

you do not manage to build a “perfect” filter, you can effectively rely on pre-averaging to wipe out any leftovers in the

data, as verified in our simulation section. Still, some pre-cleaning of data is advised in practice, because outliers can

be so abundant or extreme that it takes too long for the asymptotics to kick in.21 In addition, the assumptions behind

the proposition do not cover all forms of outliers, althoughthis can potentially be relaxed to some extent. Indeed, the

above empirical results suggest that pre-averaging can accommodate data, which are seriously erroneous. However, at

this stage we do not fully understand just how far this robustness property can be stretched, so we resist the temptation of

performing a full-blown empirical analysis on uncleaned data. This will certainly be an interesting topic to study in future

work.
19A large portion of the entries flagged for deletion in Figure 11 fall victim to the so-called (T4) rule of Barndorff-Nielsen, Hansen, Lunde,

and Shephard (2009), whereby transactions are matched withtrailing quotes. This suggests that the intensive trading in the aftermath of the FED

announcement might have clogged the dissemination systems, and that a bulk of the subsequent trades were reported to theconsolidated tape with

some delay, making them appear out-of-line with current market conditions, as also indicated by the discrepancy between the midquote data and

transaction prices in Panel B of the figure.
20The average daily 1-minute volume of SPY for the month of September, 2007 was 309,734 (352,192) shares based on the cleaned (uncleaned)

high-frequency data, while the average volume for the 1-minute interval from 2:15pm – 2:16pm totalled 21,611 (175,974)shares.
21An example of this is March 5, 2007, where the high-frequencydata for a number of companies in our analysis are severely disrupted. This day

was also noticed by Andersen, Dobrev, and Schaumburg (2010), who developed additional filtering rules to handle it. In our empirical application,

we decided to leave this day out of the analysis.
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6.1 The noiseless case:u = 0

To the best of our knowledge, the addition of the outlier component is new to this paper, so here we complete this analysis

by studying the marginal effect of adding outliers to the data, in the noiseless case:u = 0. As expected, the robustness

property to outliers is not shared by the raw estimators in the noiseless case, as we now document. Note that, as we do

not implement or otherwise use the results derived in this subsection, the investigation will be brief and focus solely on

the theoretical side of things and not the practical aspectsof their applicability.22

But, in this subsection,

Yi/N = Xi/N +Oi/N , (32)

for i = 0, 1, . . . N .

To estimate and test for jumps in this model, we are going to need a third estimator, the so-called quantile-based

realised variance (QRV hereafter) of Christensen, Oomen, and Podolskij (2010), which is defined in Appendix C.

Theorem 1 Assume that there are outliers in the data but no microstructure noise, i.e.Yi/N = Xi/N + Oi/N , where the

processX follows Eq.(1). Moreover, we assume that max(λj) < 1− 1/m. AsN → ∞, it holds that




RVN [Y ]

BVN [Y ]

QRVN [Y ]




p→




1 1 2

1 0 π/2

1 0 0







∫ 1
0 σ

2
sds

∑NJ
1

i=1 J
2
i

∑NO
1

i=1 S2
i



. (33)

Proof See appendix.

Remark 2 The conditionmax(λj) < 1 − 1/m in Theorem 1 means thatQRVN [Y ] discards at least the two largest

absolute returns, which it requires to gain robustness to jumps and outliers.23 It is of course possible to find multiple

jumps and outliers in the data over small, but non-negligible, time intervals in practice. As discussed in Christensen,

Oomen, and Podolskij (2010), we can control the finite samplerobustness of the QRV to these joint effects by placing

stronger restrictions onmax(λj) andm. For example, suppose that there is an outlieranda jump in a small time interval,

thus calling for the three largest increments to be removed.This can be achieved by takingmax(λj) < 1− 2/m.

22Moreover, in practice when data are pre-filtered for outliers, it is typically rather unlikely to accidentally sample outlying returns, when low-

frequency versions of the RV and BV are used to avoid the impact of microstructure noise, as in our empirical section. Hence, we really think of

analyzing the impact on these estimators under the joint influence of noise and outliers using ultra high-frequency dataand pre-averaging, as it was

given above. Nonetheless, the results in this subsection are interesting from a theoretical point of view.
23As already pointed out by Christensen, Oomen, and Podolskij(2010), this excludes, for example, the so-called MinRV andMedRV of Andersen,

Dobrev, and Schaumburg (2008), which are both special casesof the QRV.
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To some extent, Theorem 1 is not surprising, as an outlier in the observed log-priceY translates into two consecutive

jumps of roughly the same magnitude, but with opposite sign,in the return data∆N
i Y . It implies that neither the RV nor

the BV are consistent for the object, they are originally designed to estimate.

Moreover, even in the absence of jumps,NJ
t ≡ 0 for all t,

RVN [Y ]−BVN [Y ]
p→ (2− π/2)

NO
1∑

i=1

O2
i > 0, (34)

and thus a test for jumps based on the original RV and BV will reject the null hypothesis with a probability converging to

one, if outliers are present in the data but unaccounted for.Indeed, we cannot estimate the jumps using only the RV and

BV, which is why we need help from the QRV, because under the alternative of jumps

RVN [Y ]−BVN [Y ]
p→

NJ
1∑

i=1

J2
i + (2− π/2)

NO
1∑

i=1

O2
i . (35)

In order to estimate all three sources of empirical quadratic variation in this model, we proceed by inverting the matrix

of coefficients appearing in Eq. (33) and use the resulting linear combinations of(RVN [Y ], BVN [Y ], QRVN [Y ]) . The

appropriate mix needed to estimate jumps is given byRVN [Y ]− 4
πBVN [Y ]−

(
1− 4

π

)
QRVN [Y ]

p→∑NJ
1

i=1 J
2
i , and this

convergence is robust to the presence of finite-activity outlier processes by Theorem 1.

To conduct an empirical test for jumps, we need a joint distribution theory for the triplet of estimators under the null

of no jumps or outliers. We present the CLT next, but, to ease the exposition, we concentrate on the QRV with a single

quantile implementation̄λ = λ.

Theorem 2 Assume thatYi/N = Xi/N , whereX is a continuous semimartingale, i.e.X follows Eq.(1) but withNJ
t ≡ 0

for all t. Moreover, we assume condition (V) is fulfilled. AsN → ∞, it holds that

N1/2




RVN [Y ]−
∫ 1
0 σ

2
sds

BVN [Y ]−
∫ 1
0 σ

2
sds

QRVN [Y ]−
∫ 1
0 σ

2
sds




ds→MN

(
0,

∫ 1

0
σ4sds× Σ

)
, (36)

whereΣ is a3× 3 matrix with elements

Σ11 = Σ12 = 2, Σ22 =
π2

4
+ π − 3, Σ13 =

m

ν21(m,λ)
cov

(
(|U |(0)(mλ))

2, U2
1

)

Σ23 =
µ−4

ν21(m,λ)

(
(m− 1)cov

(
(|U |(0)(mλ))

2, |U1||U2|
)
+ 2cov

(
(|U |(0)(mλ))

2, |Um||Um+1|
))

Σ33 =
1

m
Θ(m,λ) +

2

ν21(m,λ)

m∑

k=1

cov
(
(|U |(0)(mλ))

2, (|U |(k)(mλ))
2
)
,
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whereU (0) = {Ui}mi=1, U (k) = {Ui}m+k
i=1+k, {Ui}m+k

i=1 is an independent standard normal sample and

Θ(m,λ) = m
ν2(m,λ)− ν21(m,λ)

ν21(m,λ)
.

Proof See appendix.

Finally, the only missing piece to perform a test for jumps isto exploit the linear combination given above, which is

robust to outliers under the alternative, and then invoke the delta method on the joint asymptotic distribution in Theorem

2 to find the appropriate asymptotic distribution of the jumpt-statistic under the null.

Remark 3 The integrated quarticity,
∫ 1
0 σ

4
sds, appearing in the conditional variance of the limit distribution in Theorem 2

can be robustly estimated in the presence of jumps and outliers as outlined in Christensen, Oomen, and Podolskij (2010).

7 Concluding remarks

This paper uses new econometric techniques for separating out the diffusive variation component from the jump variation

component, and applies these to a comprehensive set of tick data covering both equity and foreign exchange rate data to

find evidence of a much reduced role for the jump component in explaining total return variation. Specifically, we find

that the jump variation is an order of magnitude smaller thanwhat is widely reported in the literature over the past four

decades. The explanation for this can be found in the sampling frequency. The inability of the leading jump variation

measures to account for market microstructure noise or market “friction” has prevented the literature from using tick

data. Thus, in recent years a compromise 5-minute sampling frequency has been used. However, at this frequency we

show that bursts of volatility are easily mistaken for jumps, thereby obscuring the “fact” that jumps are not nearly as

common as generally thought. It goes without saying that a reduced role for jumps, and by implication an increased role

for the volatility process, has many important implications for empirical finance applications such as option pricing,risk

management, and portfolio allocation.

To conclude, we emphasize that price continuity as focused on in this paper is a rather narrow concept and that one

may instead focus on “liquidity” as a more meaningful and insightful measure of market state. It is indisputable that

markets are often subject to tremendous amount of stress. But we find this rarely leads to a substantial discontinuity in

the price path at a milli-second tick resolution. Instead, what we do find is severe shocks to liquidity. Figure 12 illustrates

this point using USDJPY data over the March 16, 2011 sell-offdiscussed above. Looking at the price path in Figure 8

we found little evidence of a price jump. Yet, from Panel A in Figure 12 we see that the inside spread which normally is
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Figure 12: USDJPY liquidity shock over the March 16, 2011 sell-off.

Panel A: USDJPY spread Panel B: Regular bid/offer quotes
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Note. Panel A reports the inside spread for USDJPY in pips. Panel Bdraws the “regular” quotes, i.e. the best bid and ask price good for up

to 50 mio.

around 1 or 2 pips, becomes highly volatile and reaches levels in excess of 100 pips in the midst of the sell-off.24 Panel

B plots the “regular” quote (i.e. the best bid and offer available for a fixed amount of 50 mio) over the same period and

from here it is clear that the book is very sparse over the sell-off and that the ability to quickly trade out of large positions

was severely impaired. Both these observations highlight that while price continuity was preserved over this episode of

extreme volatility, liquidity on the other hand severely deteriorated. This is a point also recently emphasized in O’Hara

(2010) and we believe it indicates an important avenue for future research.

24It is interesting to note that the spread also turns substantially negative at times. In the OTC FX market (where counterparties need to provide

credit to each other) a negative spread can be observed if theparticipant that aggresses the market does not have credit against the counterparties

providing liquidity at the top of book. Over the sell-off, several participants were forced to pay for liquidity by hitting deep into the opposite side of

the orderbook reflecting their lack of credit. So in this instance, a large spread of either sign can indicate market turbulence. On a centrally cleared

market one would not expect to see this behavior.
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A Finite sample bias in bipower variation

In a simple model, it is possible to work out an approximate expression for the finite sample bias in the BV defined by

Eq. (7) in the main text in the paper. To this end, consider themodel

Xt =

∫ t

0
σsdWs,

whereσ ⊥⊥W . Moreover, we assume that the variance processσ2 is bounded away from 0 and has the form

σ2t = σ20 +

∫ t

0
ηsds+

∫ t

0
υsdBs,

whereB is another Brownian motion withB ⊥⊥W . Let

BVN [X] =
1

µ2

N∑

i=2

|∆N
i−1X||∆N

i X|.

Here, we initially leave out the correctionN/(N − 1) used to define BV in the main text. We add it back later.

Then, the conditional bias ofBVN [X] is given as

E

(
BVN [X]−

∫ 1

0
σ2sds | σ

)
=

N−1∑

i=1





(∫ i
N

i−1
N

σ2sds

)1/2(∫ i+1
N

i
N

σ2sds

)1/2

−
∫ i

N

i−1
N

σ2sds



−

∫ 1

N−1
N

σ2sds

To simplify notation, we definef(x) =
√
x and set

ai = N

∫ i
N

i−1
N

σ2sds.

Hence,

E

(
BVN [X]−

∫ 1

0
σ2sds | σ

)
=

1

N

(
aN +

N−1∑

i=1

f(ai)(f(ai+1)− f(ai))

)
.

By Burkholder’s inequality, we get

E(|ai+1 − ai|p) ≤ CN−p/2

for anyp > 0. Thus,

E

(
BVN [X]−

∫ 1

0
σ2sds | σ

)
=

1

N

(
aN +

N−1∑

i=1

f(ai){f ′(ai)(ai+1 − ai) +
f ′′(ai)

2
(ai+1 − ai)

2}
)

+ op(N
−1).

Note thatf ′(x) = 1
2x

−1/2 andf ′′(x) = −1
4x

−3/2. Using this, we deduce that

1

N

N−1∑

i=1

f(ai)f
′(ai)(ai+1 − ai) =

1

2N
(aN − a1) =

1

2N
(σ21 − σ20) + op(N

−1).
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On the other hand,

1

N

N−1∑

i=1

f(ai)
f ′′(ai)

2
(ai+1 − ai)

2 = − 1

N

N−1∑

i=1

1

8

(ai+1 − ai)
2

ai
.

Becauseσ2 is a continuous semimartingale, a standard approximation scheme yields

− 1

N

N−1∑

i=1

1

8

(ai+1 − ai)
2

ai
= −N

N−1∑

i=1

1

8

υ2i−1
N

σ2i−1
N

(∫ i+1
N

i
N

Bsds−
∫ i

N

i−1
N

Bsds

)2

+ op(N
−1).

Moreover, as

E

([∫ i+1
N

i
N

Bsds−
∫ i

N

i−1
N

Bsds

]2)
=

2

3N3
,

we conclude that

− 1

N

N−1∑

i=1

1

8

(ai+1 − ai)
2

ai
= − 1

N

1

12

∫ 1

0

υ2s
σ2s

ds+ op(N
−1).

Putting everything together, we find that

E

(
BVN [X] −

∫ 1

0
σ2sds | σ

)
= − 1

N

(
1

12

∫ 1

0

υ2s
σ2s

ds+
1

2
(σ21 + σ20)

)
+ op(N

−1).

Now, applying the finite sample correctionN/(N − 1) cancels out the effect of the “missing” summand and adds an

additional
∫ 1
0 σ

2
sds/N term to the conditional bias:

E

(
N

N − 1
BVN [X] −

∫ 1

0
σ2sds | σ

)
= − 1

N

(
1

12

∫ 1

0

υ2s
σ2s

ds+
1

2
(σ21 + σ20)−

∫ 1

0
σ2sds

)
+ op(N

−1).

Note that this expression is not negative in general, but that the sign and magnitude of the dependence onυ are unaffected

by the adjustment. Finally, taking unconditional expectations and assuming thatσ2 is a stationary process, we find that

E

(
N

N − 1
BVN [X]−

∫ 1

0
σ2sds

)
= − 1

N
E

(
1

12

∫ 1

0

υ2s
σ2s

ds

)
+ o(N−1).

This is the expression given in the main text, which is negative up to terms of ordero(N−1).

B The explicit form of Σ∗

In the main text, we proposed a consistent estimator of the asymptotic covariance matrix appearing in Proposition 1,Σ∗,

without giving the exact form ofΣ∗. Here, a formula for it is provided. We setfi : R2 → R, i = 1, 2, equal to

f1(x) = x21, f2(x) =
|x1||x2|
µ2

.

Then, forx ∈ R, u ∈ [0, 1] andl = −1, . . . , 2, we define

F
(ij)
l,x,u = cov(fi(S), fj(T )) 1 ≤ i, j ≤ 2,

whereS = (S1, S2)
′, T = (T1, T2)

′ are centered and jointly normal with
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(i) Si⊥Sj, Ti⊥Tj for all i 6= j.

(ii) var(Si) = var(Ti) = θψ2x
2 + ψ1

θ ω
2 for all i.

(iii) cov(Si+l−1, Ti) = θwg(u)x
2 + 1

θwg′(u)ω
2 for all i.

(iv) cov(Si+l, Ti) = θwg(1− u)x2 + 1
θwg′(1− u)ω2 for all i.

(v) cov(Si, Tj) = 0 for all |i+ l − j − 1| > 1.

Here, the functionwg(u) is given by

wg (u) =

∫ 1−u

0
g (y) g (y + u) dy.

Finally, we get that

Σ∗ =
1

θψ2
2

2∑

l=−1

∫ 1

0

∫ 1

0
Fl,σs,udsdu.

C The definition of QRV in the absence of noise

As a starter, we should note that the QRV can be defined on either raw or absolute returns, see Christensen, Oomen, and

Podolskij (2010) for details. In this paper, we base the QRV on absolute returns, which fits nicely into the extant literature

on realised variation.

Let

Di,mY =
(
∆N
k Y
)
i≤k≤i+m−1

,

for i ≥ 1. Moreover, we define the quantile functiongk : Rm → R such that

gk (x) = x(k),

wherex(k) is thekth order statistic ofx = (x1, . . . , xm).

Then, the (subsampled) QRV based on absolute returns is defined as

QRVN [Y ] ≡ α′QRVN (m,λ),

whereλ̄ = (λ1, . . . , λk) with λj ∈ [0, 1) is a vector of quantiles,λjm is a natural number for allj, α = (α1, . . . , αk)

with αj ≥ 0 and
∑k

j=1 αj = 1 are quantile weights, and thejth element ofQRVN (m,λ) is given by:

QRVN (m,λj) =
1

N −m

N−m∑

i=1

qi(m,λj)

ν1(m,λj)
,
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for j = 1, . . . , k, where

qi(m,λ) = g2λm

(√
N |Di,mY |

)
and νr (m,λ) = E

[(
|U |(λm)

)2r]
.

D Appendix of proofs

Proof of Proposition 2 Here, we only show the convergence in probability of the estimatorΣ̂∗
11. The consistency of the

other matrix entries (̂Σ∗
12 andΣ̂∗

22) can be proved in exactly the same way. Also, in this part of the proof, we assume that

the processX is continuous. Later, we add jumps back and show that the limit is unchanged.

It should be spelled out that, ifX is continuous,

RV ∗
N [Y ]−

∫ 1

0
σ2sds = Op(N

−1/4),

see Proposition 1. Hence, it implies that
∫ 1
0 σ

2
sds can be replaced byRV ∗

N [Y ] in the definition ofΣ̂∗
11 without affecting

its limit.

As a first step, we note that due to a standard localization technique, we can assume that the processesa andσ are

bounded. Moreover, as has been shown in Jacod, Li, Mykland, Podolskij, and Vetter (2009), the following approximations

hold (uniformly inm):

RV ∗
N,m[Y ] =

d

KψK2

[(N/L−m+1)/d]∑

j=0

(
L−K∑

i=0

|σ (m−1+jd)L
N

W̄N
i + ūNi |2

)
− ψK1
θ2ψK2

ω2 + op(1),

∫ 1

0
σ2sds =

dL

N

[(N/L−m+1)/d]∑

j=0

σ2(m−1+jd)L
N

+ op(1).

Setting

χNj,m =
L−K∑

i=0

|σ (m−1+jd)L
N

W̄N
i + ūNi |2,

we deduce that

RV ∗
N,m[Y ]−

∫ 1

0
σ2sds =

d

Kψ2

[(N/L−m+1)/d]∑

j=0

(
χNj,m − E[χNj,m|F (m−1+jd)L

N

]
)
+ op(1).

This yields the decomposition

Σ̂∗
11 =

1

d

d∑

m=1

(
N1/4

d1/2

(
RV ∗

N,m[Y ]−
∫ 1

0
σ2sds

))2

= Vn +Rn + op(1),
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with

Vn =
N1/2

K2ψ2
2

d∑

m=1

[(N/L−m+1)/d]∑

j=0

(
χNj,m − E[χNj,m|F (m−1+jd)L

N

]
)2
,

Rn =
2N1/2

K2ψ2
2

d∑

m=1

∑

j1 6=j2

(
χNj1,m − E[χNj1,m|F (m−1+j1d)L

N

]
)(
χNj2,m − E[χNj2,m|F (m−1+j2d)L

N

]
)
.

By relying on the results of Jacod, Li, Mykland, Podolskij, and Vetter (2009), we already know that

Vn
p→ Σ∗

11.

Thus, all that is left to prove is thatRn
p→ 0.

We start by noting that the summands in the definition ofRn are mutually uncorrelated for allm, j1, j2. Moreover,

the termsχNj1,m−E[χNj1,m|F (m−1+j1d)L

N

] andχNj2,m−E[χNj2,m|F (m−1+j2d)L

N

] are also uncorrelated forj1 6= j2. Appealing

again to Jacod, Li, Mykland, Podolskij, and Vetter (2009), it holds that

E[|σ (m−1+jd)L
N

W̄N
i + ūNi |4] ≤

C

N
,

if E(u4) <∞. In addition, the terms|σ (m−1+jd)L
N

W̄N
i1
+ ūNi1 |2 and|σ (m−1+jd)L

N

W̄N
i2
+ ūNi2 |2 are uncorrelated for|i1−i2| >

K, which taken together implies that

E[|χNj,m|2] ≤ C
KL

N

for all m andj. Finally, some straightforward calculations show that

var(Rn) =
4N

K4ψ4
2

d∑

m=1

∑

j1 6=j2

E
(
χNj1,m − E[χNj1,m|F (m−1+j1d)L

N

]
)2
E
(
χNj2,m − E[χNj2,m|F (m−1+j2d)L

N

]
)2

≤ C
N

dK2
.

AsK = O(
√
N) andd→ ∞, we thus find that

Rn
p→ 0,

which completes the proof of Proposition 2, ifX is continuous.

To finish the proof, we now consider the general case, whereX possesses finite-activity jumps. In this situation, the

subsampled estimatorsRV ∗
N,m[Y ] are affected by jumps only for finitely manym’s (due to finite-activity of the jump

part). From Jacod, Podolskij, and Vetter (2010), it followsthat

RV ∗
N,m[Y ]−

∫ 1

0
σ2sds = Op(1),
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if RV ∗
N,m[Y ] is affected by jumps for a givenm. Thus, we conclude that

Σ̂∗
11 =

1

d

d∑

m=1

(
N1/4

d1/2

(
RV ∗

N,m[Z]−
∫ 1

0
σ2sds

))2

+Op(
√
N/d2),

whereZ = Xc + u andXc denotes the continuous part ofX. But
√
N/d2 → 0, and so we are done. �

Proof of Proposition 3 To show that the results of Proposition 1 are robust to the presence of outliers, as we model it by

Eq. (30), we first recall that the definition in Eq. (31) implies that there are only finitely manyi’s such thatOi/N 6= 0.

Here, we confine attention to proving the outlier robustnessof theRV ∗
N [Y ] estimator. The robustness property ofBV ∗

N [Y ]

can be proved using almost identical tools.

Thus, recall that

RV ∗
N [Y ] =

N

N −K + 2

1

KψK2

N−K+1∑

i=0

|Ȳ N
i |2 − ψK1

θ2ψK2
ω̂2

AC,

where

ω̂2
AC = − 1

N − 1

N∑

i=2

∆N
i−1Y∆N

i Y.

To show that̂ω2
AC is robust to outliers (̂ω2

AC can be replaced by the estimatorω̂2
RV defined in the main text without altering

the validity of the proof), we note that

ω̂2
AC = − 1

N − 1

N∑

i=2

∆N
i−1u∆

N
i u+Op(N

−1).

So, in particular,̂ω2
AC is robust to the presence of finite-activity outliers. In thenext step, we know that with probability

converging to one any interval of the form[i/N, (i +K)/N ] contains at most a single outlier. Moreover, by expressing

Ȳ N
i via an identity using log-prices, it follows that

Ȳ N
i =

K∑

j=1

[
g
(j − 1

K

)
− g
( j
K

)]
Y(i+j−1)/N ,

where it is used thatg(0) = g(1) = 0. Hence, an outlierOl/N in [i/N, (i+K)/N ] induces a bias of the form
[
g
(
l−i
K

)
−

g
(
l−i+1
K

)]
Ol/N and, as there are finitely many outliers, onlyO(K) of the pre-averaging returns̄Y N

i are affected by these.

Thus, by putting the parts together, we conclude that

N

N −K + 2

1

KψK2

N−K+1∑

i=0

|Ȳ N
i |2 = N

N −K + 2

1

KψK2

N−K+1∑

i=0

|Z̄Ni |2 +Op(K
−1),

whereZ = X + u. Thus, the law of large numbers and CLT forRV ∗
N are robust to the presence of outliers. �
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Proof of Theorem 1 We are dealing with finitely many jumps and outliers in the data, and they never appear together,

becauseNJ ⊥⊥ NO. Thus, with probability approaching one, we observe at mosta single jump or outlier (and not both)

on any interval of the form[i/N, (i +m)/N ] with m fixed.

TakeQRVN [Y ] first. If a jump appears on some interval[i/N, (i + m)/N ], it affects one return ofY , which will

asymptotically dominate all other returns (in absolute value) on[i/N, (i + m)/N ], because the rest originate from the

continuous part ofY . Meanwhile, if an outlier appears on the interval[i/N, (i+m)/N ], it affects two consecutive returns

of Y , and they again asymptotically dominate all other returns on [i/N, (i+m)/N ]. The conditionmax(λj) < 1− 1/m

then ensures that those dominating terms are not taken into account, when computing theQRVN [Y ], i.e. this estimator is

robust to the presence of jumps and outliers:

QRVN [Y ]
p→
∫ 1

0
σ2sds.

Next, BVN [Y ] is well-known to be robust against jumps (Barndorff-Nielsen and Shephard, 2004). To figure out the

influence of outliers on this estimator, we decompile it intotwo components

BVN [Y ] =
N

N − 1

1

µ2

( ∑

i∈BN

|∆N
i−1Y ||∆N

i Y |+
∑

i∈Bc
N

|∆N
i−1Y ||∆N

i Y |
)

with BN = {i | Oi/N 6= 0}. It readily follows that

BVN [Y ]
p→
∫ 1

0
σ2sds+

1

µ2

NO
1∑

i=1

S2
i .

Last but not least, we decomposeRVN [Y ] into three parts

RVN [Y ] =
∑

i∈(ĀN∪B̄N )c

|∆N
i Y |2 +

∑

i∈ĀN

|∆N
i Y |2 +

∑

i∈B̄N

|∆N
i Y |2,

whereĀN = {i | X jumps on[(i− 1)/N, i/N ]} andB̄N = {i | O(i−1)/N 6= 0 orOi/N 6= 0}. Note that the sets̄AN and

B̄N are asymptotically disjoint, asNJ ⊥⊥ NO. Again, this readily implies that

RVN [Y ]
p→
∫ 1

0
σ2sds+

NJ
1∑

i=1

J2
i + 2

NO
1∑

i=1

S2
i

and the proof is complete. �

Proof of Theorem 2 The stable CLT for(RVN [Y ], BVN [Y ]) has been shown in Barndorff-Nielsen, Graversen, Jacod,

Podolskij, and Shephard (2006), while the corresponding result forQRVN [Y ] has been proved in Christensen, Oomen,
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and Podolskij (2010). Here, we show a joint CLT for the vector(RVN [Y ], BVN [Y ], QRVN [Y ]) via Theorem 7.1 from

Jacod (2008).

We define

V (f)N =
N∑

i=1

f(
√
N∆N

i Y, . . . ,
√
N∆N

i+m−1Y ),

wheref = (f1, f2, f3) : R
m → R

3 is given by

f1(x) = x21, f2(x) =
|x1||x2|
µ2

, f3(x) =
|x|2(mλ)
ν1(m,λ)

with x = (x1, . . . , xm). Then, for anyy ∈ R, we set

ρy(f) = E[f(yU1, . . . , yUm)] ∈ R
3, (U1, . . . , Um) ∼ Nm(0, Im).

This gives us the identity

N1/2




RVN [Y ]−
∫ 1
0 σ

2
sds

BVN [Y ]−
∫ 1
0 σ

2
sds

QRVN [Y ]−
∫ 1
0 σ

2
sds




= N1/2

(
N−1V (f)N −

∫ 1

0
ρσs(f)ds

)
.

Applying Theorem 7.1 in Jacod (2008), we deduce that

N1/2

(
N−1V (f)N −

∫ 1

0
ρσs(f)ds

)
ds→MN

(
0,

∫ 1

0
Rσs(f)ds

)
,

whereRy(f) = (Rjky (f))1≤j,k≤3 is defined by

Rjky (f) =

m−1∑

l=−m+1

E[fj(yUm, . . . , yU2m−1)fk(yUl+m, . . . , yUl+2m−1)]

− (2m− 1)E[fj(yU1, . . . , yUm)]E[fk(yU1, . . . , yUm)],

where(Ui)1≤i≤m are i.i.d.N(0, 1).25 Finally, a simple computation shows that

∫ 1

0
Rσs(f)ds =

∫ 1

0
σ4sds× Σ,

where the matrixΣ is given in Theorem 2. This completes the proof. �

25Strictly speaking, Theorem 7.1 in Jacod (2008) cannot be applied directly, because the functionsf2 andf3 are not everywhere differentiable.

However, the problem of non-differentiability was solved in Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard (2006) for the function

f2 and in Christensen, Oomen, and Podolskij (2010) for the function f3.
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