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Abstract

In this paper, we demonstrate that jumps in financial asgspare not nearly as common as generally thought, and
that they account for only a very small proportion of totalre variation. We base our investigation on an extensive
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jump variation based on low-frequency tick data tend to isusty attribute a burst of volatility to the jump component
thereby severely overstating the true variation comingnfiomps. Indeed, our estimates based on tick data suggest
that the jump variation is an order of magnitude smaller. sTiriding has a number of important implications for
asset pricing and risk management and we illustrate this avilelta hedging example of an option trader that is short
gamma. Our econometric analysis is build around a pre-giregagheory that allows us to work at the highest available
frequency, where the data are polluted by microstructuisen®Ve extend the theory in a number of directions important
for jump estimation and testing. This also reveals thatgueraging has a built-in robustness property to outliers in
high-frequency data, and allows us to show that some of thedeaining jumps at tick frequency are in fact induced
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1 Introduction

There is a deep consensus in the literature on asset pri@hg tealistic dynamic model should incorporate sevdnahti

all, of the following stylised facts: random walk behavierd. Fama, 1965) at a macroscopic level, market microsireict
effects (e.g. Niederhoffer and Osborne, 1966) at a micpsdevel, as well as stochastic volatility (e.g. Mandetbro
1963), leverage (e.g. Black, 1976), and jumps (e.g. Pré&&¥)1 Extensive support for all these factors can be found in
both the theory of finance as well as the abundantly availdita on all aspects of financial markets. In this paper we
bring to bear new econometric techniques on a comprehessivef tick-by-tick equity and foreign exchange data and
are able to penetrate through the microstructure noisedouen that the jump component appears substantially smalle
than what is currently thought. In particular, we providéewnce that the jump component accounts for about 1% of total
asset price variability (i.e. quadratic variation) in ghaontrast to the consensus in the literature which is anrafle
magnitude larger. Our microscopic look at the tick-by-titzta provides the intuition for this result: a burst of viikgt

is often spuriously identified as a jump at the lower freqiesrcommonly used in the literature. Of course, there is no
doubt that in times of stress, asset prices do move shargy short periods of time, and while occasionally genuine
price jumps do occur, more often than not we find that priceinaity is preserved even when accompanied with severe
deterioration of liquidity.

The foundations of most asset pricing models can be caskicldss of arbitrage-free 1td semimartingales. These
processes are naturally decomposed into a continuoussigigfuBrownian component and a discontinuous jump part.
The importance of being able to separate out and distindagsiveen these two fundamentally different sources of risk
is emphasized in Ait-Sahalia (2004). Specifically, jumpsérprofoundly distinct impact on option pricing (e.g. Cox
and Ross, 1976; Merton, 1976; Duffie, Pan, and Singleton)20&k management (e.g. Duffie and Pan, 2001; Bakshi
and Panayotov, 2010), and asset allocation (e.g. JarroiRasenfeld, 1984; Liu, Longstaff, and Pan, 2003). Empirical
work on identifying and modeling the jump component now spaearly half a century. Table 1 attempts to provide a
representative but necessarily incomplete overview.tiStawith the influential paper of Press (1967), and up toaiori
(1988), a number of papers estimate a (constant volatjlitpp-diffusion model and report very substantial levelgiofip
variation (JV hereafter, defined as the jump variation esged as a fraction of total return variation) in excesz6f. An
important shortcoming of the Press (1967)- or Merton (1Stgle jump-diffusion model is that the jump component is
the only mechanism that can account for fat tails of the elggdireturn distribution so that - in the presence of stotibas
volatility - the JV measurements are potentially inflatedorf the nineties onwards, a large body of work considers
numerous generalizations of the jump-diffusion model iheltide one or several stochastic volatility componentsels

as state-dependent jump components. Estimation methodsiéh models are often highly complex and numerically



Table 1: Selection of literature reporting estimates ofjtimep variation component.

article data period frequency model jump variation
Press (1967) 10 DJIA constituents 1926 — 1960 monthly JD 20%*
Beckers (1981) 47 US large-cap stocks 1975 -1977 daily JD 25%"
Ball and Torous (1983) 47 US large-cap stocks 1975 -1977 vy dail JD 50%°
Ball and Torous (1985) 30 US large-cap stocks 1981 - 1982 vy dail JD 47%¢
Jorion (1988) DM$ spot 1974 -1985 weekly JD 96%
CRSP index 1974 -1985 weekly JD 36%
Bates (1996) DM options 1984 -1991 weekly SVJ 20%
Bakshi, Cao, and Chen (1997) S&P500 options 1988 — 1991  daily SVJ 18.9%
Bates (2000) S&P500 options 1988 — 1993  weekly SVJ  30.3% — 38.5%
Andersen, Benzoni, and Lund (2002) S&P500 spot 1953 — 1996ily da SVJ 5.5%
Bollerslev and Zhou (2002) DN/ 1986 — 1996 5 mins SVJ 7.4%
Pan (2002) S&P500 spot and options 1989 — 1996  weekly SVJ 55.7%
Chernov, Gallant et al. (2003) DJIA spot 1953 -1999 daily SVJ 9.4%
Eraker, Johannes, and Polson (2003) S&P500 spot 1980 — 1999y d SVJ 8.2% — 14.7%
NASDAQ100 spot 1985-1999 daily SVJ 6.0% — 17.0%
Eraker (2004) S&P500 spot and options 1987 — 1990  daily SVJ 17.1%
Johannes (2004) US Treasury bills 1965 —-1999 daily SVJ 50%
Maheu and McCurdy (2004) 11 US large-cap stocks 1962 — 2001ily da GARCH 29%°
DJIA spot 1960 — 2001 daily GARCH 16.6%
NASDAQ100 spot 1985-2001 daily GARCH 14.4%
TXX spot 1995 -2001 daily GARCH 22.8%
Barndorff-Nielsen and Shephard (2004) D/ 1986 — 1996 5 mins RV 3.1%
Huang and Tauchen (2005) S&P500 futures 1982 — 20G2mins RV 4.4%
S&P500 spot 1997 — 2002 5 mins RV 7.3%
Barndorff-Nielsen and Shephard (2006) DIMUSDJPY 1986 —1996 5 — 120 mins RV 5.0% — 21.9%
Bates (2006) S&P500 spot 1953 -1996 daily SVJ 12.7%
Andersen, Bollerslev, and Diebold (2007) DM/ 1986 — 1999 5 mins RV 7.2%
S&P500 spot 1990 — 2002 5 mins RV 14.4%
US Treasury bonds 1990 — 20025 mins RV 12.6%
Bollerslev, Law, and Tauchen (2008) 40 US large-cap stocks 00122005 17.5 mins RV 12%
equally weighted index 2001 — 200517.5 mins RV 9%
Jiang and Oomen (2007) S&P500 spot 1987 — 1995mins S\VA 18.6% — 19.5%
Ait-Sahalia and Jacod (2009b) INTC & MSFT 2006 5—120secs RV 25%
Bollerslev, Kretschmer et al. (2009) S&P500 futures 198964 5 mins RV 6.8%
Corsi and Reno (2009) S&P500 futures 1990 — 200% mins RV 6%
Todorov (2009) S&P500 futures 1990 — 20025 mins RV 15%
Bates (2011) CRSP index, S&P500 1926 — 2006 daily SVJ 6.4% — 7.2%
Patton and Sheppard (2011) S&P500 ETF 1997 — 2068mins” RV 15%
Tauchen and Zhou (2011) S&P500 spot 1986 — 2005mins RV 5.4%
US Treasury bonds 1991 — 20055 mins RV 19.1%
USDJPY 1997 — 2004 5 mins RV 6.5%
Andersen, Bollerslev, and Huang (2011) S&P500 futures 192005 5 mins RV 4.9%
US Treasury bonds 1990 — 20055 mins RV 14.6%

Note.“JD”, “SVJ”, and “GARCH" refer to the Press (1967), Mertor9({@6)-type jump-diffusion model, the class of stochastiatitity plus jump models,
and GARCH-type models respectively. “RV” refers to the slafmodel-free measures of variation, including realisadawmice and power variation.

a. individual JV betweer0% — 100%; b. individual JV between 0% — 55%; c. individual JV betweenl0% — 80%; d. individual JV between
8% — 93%; e. individual JV betweer20% — 41%. Two stocks have shorter sample from 1980s - 2@0thcludes an infinite activity jump component;
g. smoothed JV betweetfo — 20%; h. 5 minute sampling frequency equivalent in trade time



Figure 1: S&P flash-crash episode: Jump or burst in volgRilit
Panel A: 5-minute data Panel B: Trade-by-trade
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Note. We plot data for the Chicago Mercantile Exchange (CME) EH8&P500 futures on May 6, 2010 with time reported in GMT. ImBiB, “Paid”

and “given” denote aggressive buy- and sell-orders, respgc The “given” data has been offset by $1 in order to ioyar the visual layout.

intensive (e.g. Eraker, Johannes, and Polson, 2003). thisp can exploit the information in the spot price (e.g. Aséa,
Benzoni, and Lund, 2002), its associated derivative pifegs Bates, 1996), or both (e.g. Pan, 2002). The majorityisf
literature concentrates on the US large-cap S&P500 equityx and typically finds that the JV is arouh@% — 20%.
The corresponding figure for foreign exchange rates is coaiye and that of Treasury bills and individual stocks still
higher. The most recent work on jumps has seen a shift away fodel-based inference on low-frequency data to
model-free inference based on intra-day data. In an inflalesdries of papers, Barndorff-Nielsen and Shephard (2004
2006); Barndorff-Nielsen, Shephard, and Winkel (2006)adtice the concept of (bi-) power variation — a simple but
very effective technology to identify and measure the vamaof jumps from intra-day data (see Ait-Sahalia and daco
2009b,c; Mancini, 2004, 2009, for a related jump-robustghold estimator). Using this, or variations thereof, gdar
number of recent articles now report model-free JV estiméteyg. Huang and Tauchen, 2005; Andersen, Bollerslev, and
Diebold, 2007) that are around 10% for the S&P500 index auns teinforce the earlier literature that the jump component
is important.

Jumps are defined asstantaneousnddiscretemoves in the price, and it is therefore quite intuitive thulritification
is helped by having available the finest resolution pricenpessible. Indeed, this is precisely what motivates themec
literature to use intra-day data. However, the consensminbite frequency at which returns are typically sampled —

rather than at the finer tick-by-tick resolution — reflect®mpromise where market microstructure effects are sufiiigie



benign for the theory to remain valid. Figure 1 illustratiee tost of doing so: a diminished ability to distinguish juemp
from bursts in volatility. From Panel A, where returns armpted at a 5-minute frequency, we would likely conclude that
the notorious “flash-crash” episode (see e.g. Easley, d#ioPaad O’Hara, 2011, for a discussion of the event) contins
number of very large “jumps”. Indeed, the bipower variatiomp measure is highly significant indicating the preserice o
jumps on formal statistical grounds. Yet, when zooming irtl@relevant sub-period, from Panel B we see that at trade-
by-trade frequency jumps are elusive. In fact, in a recemtystising audit trail data Kirilenko, Kyle, Samadi, and Tazu
(2011) characterize the flash-crash as a “brief period aeemeé market volatility”. The March 11, 2011 earthquake in
Japan led to similar episodes in the USDJPY currency ratetwérperienced a flash-crash type episode on March 16 over
an intense sell-offand on March 18 over a coordinated intervention by Bank o&damd other G7 central banks. Again,
as is clear from Figure 8 later in the paper, both events wbealdlassified as exhibiting large jumps by conventional
realised measures based on 5-minute data, while the tiekrelatal a period of heightened volatility rather than diser
price jumps.

The contribution this paper makes is to provide a detailetl@mprehensive study into the magnitude of the jump
component based on the highest data resolution availabldeTbest of our knowledge, this paper is the first to do so and,
as already mentioned above, we find that the tick data haveyadifeerent story to tell. Our analysis employs the new
pre-averaging techniques of Podolskij and Vetter (2008&)od, Li, Mykland, Podolskij, and Vetter (2009) to conetru
noise-robust jump measures, which allow us to exploit tfi@rmation contained in milli-second time-stamped tickedat
We apply these to a representative dataset comprising ofaldfe-kcap stocks (i.e. the 30 DJIA constituents), equity
indices (i.e. the S&P500 and NASDAQ100), and foreign cuwyerates (i.e. the EURUSD, USDJPY and USDCHF). We
confirm that when sampling at a 5-minute frequency the jummppament does appear very substantial — around 10% in
line with the extant literature — but as we turn on the micopgcand venture into tick space most jumps vanish and we
are left with highly volatile episodes instead. The ovejuaaihp variation measured across all instruments we congder
just over 1%. This finding of a much diminished magnitude ofifi$ clearly carries important implications for various
finance applications as already highlighted above: foramst, an options trader that follows the market on an hourly
basis for the purpose of hedging caxperiencgumps in the price, while an automated hedging algorithnraipeg in
tick-time may not. As we illustrate in the paper, these twenscios will lead to profoundly different pay-off patterns

In addition to the above, the paper makes some further melibgidal contributions. Firstly, to conduct statistical

tests on the jump component, a jump-robust and positive-defimite estimate of the asymptotic covariance matrix

The sell-off is thought to be the result of a combination atéas, including (i) repatriation of funds (or anticipatithereof) to honor insurance
claims and to fund reconstruction efforts, (ii) portfoliebalancing of currency hedged foreign investors after &li&ll, (iii) JPY carry traders

forced to cut positions on margin calls, (iv) retail stogddevels are hit.



is required. We develop and implement a novel estimatordbas exactly this. Secondly, we discuss the distinction
between price-jumps and price-outliers and show how tipéetrof realised variance, bipower variation, and quantile
based realised variance (Christensen, Oomen, and Pgd@BkD) can be used to disentangle the diffusive, jump, and
outlier variation components. To the best of our knowledyis, paper is the first to formally discuss this issaad we

provide a consistency result as well as a central limit tbeor

2 Theoretical framework

We study the evolution of the logarithmic price of a finan@saket, sayX = (Xt)tzo' which is defined on a filtered

probability space(Q, F, (J—“t)t20 ,]P’) and adapted to the filtratiah; that represents the information available to market
participants at time, ¢ > 0. To begin with, we assume that operates in an arbitrage-free frictionless market, which
implies thatX belongs to the class of semimartingale processes (e.g, B88Kk; Delbaen and Schachermayer, 1994).
As standard in the asset pricing literature, we further@msstinatX can be represented by a jump-diffusion model, which

takes the form
N/

t t
X, = Xo+ / asds + / osdWs + Z Jis t >0, (1)
0 0

i=1
where X; is the log-price at time, a = (a;),> is a locally bounded and predictable drift term,= (o), is an

adapted cadlag volatility procesd; = (W;),- is a standard Brownian motioly”’ = (N;/)

andJ = (JZ)

/>0 IS @ counting process

i=1,..N/ is a sequence of non-zero random variables. HErerepresents the total number of jumpsXn

that has occurred up to tinteand.J are the corresponding jump sizes.

The total quadratic variation of the cumulative return @sxis then given by

¢ NY
X, = /O o2ds+ 3 2, )
=1

i.e. the integrated diffusive variation plus the sum of sgdgumps. As such, the quadratic variation is composed of tw
distinct sources of risk, and it is their relative importartbat we are interested in measuring. Specifically, thecoloje
econometric interest is the jump variation defined on théiaterval as:

[X] — [o%ds

JV = X]

3)

It should be pointed out that quadratic variation has vergeties with the, perhaps, more familiar concept of cooaki

variance, which plays a key role in financial economics (Arglersen, Bollerslev, Diebold, and Labys, 2003). We also

2Christensen, Oomen, and Podolskij (2010) show robustrfe®iv quantile-based realised variance measure withesp outliers. Ait-

Sahalia and Jacod (2009a) also highlight the relevancemfrite-backs” in the context of data filtering.



note that X'|; can equivalently be defined as follows
N
[X]e = prlim > (X, - X, )%, (4)

N—roo iy
for any sequence of partitiois= ¢ty < t; < ... < ty = t withsup, {t; — t;_1} — 0asN — oo (e.g. Protter, 2004). Itis
this fundamental result from stochastic calculus that hasvated the increasing use of high-frequency data to esém
financial volatility.

To prove our central limit theorems (CLTs) below, we imposme structure on.

Assumption (V) o does not vanish (J and it satisfies the equation:

t t t
oy =00+ / alds + / oldWy + / vldBL, t>0, (Vo)
0 0 0

wherea’ = (a});5q, 0" = (07);50 @andv’ = (vy),5, are adapted adlag, B’ = (B;),-, is a Brownian motion, and
W 1L B’ (hereA 1. B means that A and B are stochastically independént)

2.1 Realised variation and market microstructure noise

We base our analysis on the theory of realised variation revtiek-by-tick data are used to make inference about the
latent diffusive volatility and jump$. More specifically, we assume that an equidistant high-iequ record ofX is
available at time points; = i/N, fori = 0,1,..., N. Here and throughout the remainder of the paper, we norentiliz

time window to the unit intervald, 1] for ease of exposition. We construt continuously compounded returns as
ANX =X,y — Xi-yn, fori=1,...N. (5)

Then, an estimator dfX]; is given by the realised variance (RV hereafter)

N
RVy[X] =) |ANXP. (6)
i=1

8Assumption (V) amounts to saying thatis of continuous semimartingale form. We should note theeapmce of¥V in o, which allows
for leverage effects (e.g. Christie, 1982).Xfitself is a continuous process, then the assumption is a wesaKarity condition, which is fulfilled
for many financial models. LeX be a unique, strong solution of a stochastic differentialatign. Then, for example, under some smoothness
conditions on the volatility functior = o (¢, X:), assumption (V) (with v; = 0 for all s) is a direct consequence of Itd’s Lemma.Xfis not
continuous, as in Eqg. (1), thenis potentially discontinuous as well. In fact, there is s@n®irical support for allowingr to jump, e.g. Eraker,
Johannes, and Polson (2003). We could include that casexh#re cost of substantial extra technical rigor. Thus, ¢kengh assumption (V) is
not a necessary condition, it simplifies some of our proofssiterably. A more general treatment in the high-frequesgtting, including the case
whereo jumps, is covered in Barndorff-Nielsen, Graversen, JaPodlskij, and Shephard (2006). We rule out these techdetalls here, as they

are not important to our exposition.
“Comprehensive reviews of this literature can be found ingksein, Bollerslev, and Diebold (2010); Barndorff-Nielsen Shephard (2007).



Consistency follows as a direct consequence of Eq. (4)Riléy[X] 2 [X]; asN — .

A popular way to separate out the diffusive- and jump-vastatomponents fromX]; is via the use of a jump-robust
estimator of the integrated variance. To this end, Bariiddidlsen and Shephard (2004) introduce bipower variatiwvi
hereafter):

N
1
BVy[X] = ——2 S AN, x (AN x|, (7)
=2

wherey = E[|N(0,1)|] = \/2/= and the factorN/(N — 1) is a small sample correction. Becaus&y[X] 5 fol o2ds

asN — oo, the jJump variation component — in the noiseless case — castbeated consistently as:

Ni]
RVy[X] - BVN[X] & ) J7 (8)
i=1

It is long-established that the trading process pollutesitiderlying efficient price with measurement error thatrissailt

of market imperfections such as bid-ask spreads and prsceaténess (e.g. Niederhoffer and Osborne, 1966; Rol4;198
Black, 1986). This microstructure noise has been shownie haletrimental impact on the standard realised measures
of return variation (such as RV and BV above) and renders thieased and inconsistent when computed using noisy data
(see, e.g., Zhou, 1996; Hansen and Lunde, 2006). Below, pleitly account for the presence of microstructure noise

by assuming that the observed price procéss related to the underlying price processas:
Y =X+u. 9)

whereu is an i.i.d. noise process with(u) = 0 and E(u?) = w?, andu is independent of, oru 1. X.® Thus, the
challenge we need to address is to how infer the diffusivd-jamp-variation components from discretely sampled and

noisy observations of the underlying price process.

SAlternative ways of estimating the integrated variancenmpresence of jumps exist. Ait-Sahalia and Jacod (200%ancini (2004, 2009),
for example, propose to robustify the RV directly via thralshelimination of “large” returns, while Andersen, Dobyand Schaumburg (2008);
Christensen, Oomen, and Podolskij (2010) suggest to irfleisive volatility from the quantiles of high-frequencegturns. We shall draw upon
both these strands of the literature below. Recent devedopsralso show how to improve the finite sample jump robustoéthe BV or make it

more efficient, see Corsi, Pirino, and Reno (2010); Myk|aBtiephard, and Sheppard (2010).
5The i.i.d, independent ok, noise assumption is analytically convenient and also bamesempirical support at moderate sampling frequencies

(e.g. Hansen and Lunde, 2006; Diebold and Strasser, 2008},ib not binding. The interested reader can consult Jdcodykland, Podolskij,

and Vetter (2009), where a more general treatment of then®igiven. Our results extend along those lines as well.



2.2 Noise-robust jump estimation

To make inference abolX ], and its components using observationg’gfwe make use of the pre-averaging approach
introduced by Jacod, Li, Mykland, Podolskij, and Vetter@2)) Podolskij and Vetter (2009a,b)Intuitively, the pre-
averaging method locally smooths the observed asset pramthat the microstructure componentalmost) disappears
under averaging. The resulting pre-averaged returns @anlib used to construct consistent measures of the diffusive
and jump-variation components as we outline below.

First, we choose a pre-averaging horizon; a sequence gierg& = K (NN), which satisfies
K =0V N +o(N~Y/?). (10)

Throughout the paper, we ugé = [#v/N]. Second, we choose a real-valued weight function used tdumrthe
averagingy : [0,1] — R.8

We are also going to use the following constants that areceded withg:

1 1
= /0 (¢ (5)°ds, o= /0 g? (s) ds. (11)

Remark 1 In practice, we use the Riemann approximations
NNg i—1\]? 1 o (d
K J) B K _ - 2 4
o =x3 (%) o)) # -2 (%) (12

of ¢ and, to improve finite sample accuracy.

With this equipment in place, we can pre-average noisy mstur
K-1 .
zNZZg<i>A§YHY, fori=0,...,N — K + 1. (13)

: K
7=1

In what follows, we use the weight functiaf{z) = min(z,1 — z). This is a natural candidate in our setting, because
with this choice ofy and if K is even, it holds that

K/2-1

K-1
_ 1 1
N _ E s E s
}/;' — % ‘ YLXJ - E ‘ le]’ (14)

"When the object to be estimated is quadratic variation, teeageraging approach is to first-order equivalent to tkadised kernel-based
estimator of Barndorff-Nielsen, Hansen, Lunde, and Shep(2008) and the two-scale or multi-scale subsampler ohghalykland, and Ait-

Sahalia (2005) and Zhang (2006).
8At a technical levelg has to be continuous, piecewise continuously differefgiabch that its derivative’ is piecewise Lipschitz. Moreover,

we requireg(0) = g(1) = 0 and [ g*(u)du > 0.



which makes the use of the term “pre-averaging” transparent

We should point out that while pre-averaging smooths ousanagt does not impair our ability to identify the jump
component. The intuition for this is that, although preraging does enforce some continuity on the price path, d@ als
smooths out the diffusive return variation by an equivafantor, thereby keeping the relative contribution of ststic
volatility and jumps intact. We further demonstrate thighathe convergence results in Proposition 1 and with finite
sample experiments in the simulation section.

Next, we can introduce noise-robust versions of the RV and BV

N—-K-+1
RVl = — N LN g (15)
N-K+2Ky5 —= ' 024
N—-2K+1 K
, N 1 N1 o
BV [Y] > NIV K] - e (16)

N 2K +2K5] = 02K

The termsN/(N — K + 2) and N/(N — 2K + 2) are small sample corrections, which adjust for the actuaiber of
summands involved in the computations. The fa%gpeq%w? is a bias-correction removing a leftover effect of the npise
which is needed because pre-averaging does not compleiledyomt the influence of the noise. The bias depends on
the unknown noise variance’, which can be estimated using a variety of available estirsae.g. the sum-of-squares
estimator proposed by Bandi and Russell (2006%, = o+ >, |ANY|?; the autocovariance estimatofi. =

— SN, AN Y ANY as in Oomen (2006) or a parametric maximum likelihood egtimaf Ait-Sahalia, Mykland,
and Zhang (2005), see Gatheral and Oomen (2010) for a casopaof these and other estimators. In the simulations
and empirical application below, we u@%c, while noting that our results are largely unaffected bygpecific choice of
noise variance estimator (in part, because the bias cimmetetrm drops out when constructing the differedtey [Y] —

BV [Y)).

2.3 Consistency and asymptotic distribution

The next proposition, which is adapted directly from presiovork by Podolskij and Vetter (2009a), states the protgbil
limit of the pre-averaging estimators in the pure noise maaled their joint asymptotic distribution under the null-hy
pothesis of no jumps. A robustness analysis given belovinéureéxtends the proposition by showing that it remains true

in a generalisation of the model in Eq. (9), which incorpesahe presence of finite-activity outlier processes.

Proposition 1 Assume that” follows Eq.(9) and thatE(u*) < co. ASN — oo, it holds that

RVEY] S X1, BV3[Y] S / 1 o2ds. (17)
0



Moreover, suppose in addition thaf is a continuous semimartingale, i.& follows Eq. (1) but with N/ = 0 for all ¢,
and with condition (V) fulfilled. Finally, assume th&t{u®) < co. ASN — oo, it then further holds that
RV{[Y] — [ o2ds ]
N4 % MN(0,%%), (18)
BVi[Y] — [ o2ds

a mixed normal distribution with conditional covariance tma ~*, whereX* is defined in Appendix B.
Proof See Podolskij and Vetter (2009a).

The consistency result of Theorem 1 unveils that, in thegmes of noise, we can measure jumps by taking

Ni]
RV{[Y] = BVR[Y] 5 > J2. (19)
i=1

The CLT then supplies the basis for a nonparametric noisestgump test. We should point out that the /4 rate
of convergence, which is slow compared to the noiseless @astll the fastest possible that can be achieved in noisy
diffusion models (Gloter and Jacod, 2001a,b).

Taking differences betweeRV[Y] and BV [Y], and using the properties of stable convergence, we cay #ppl
delta method to the distribution theory in Proposition 1 éduace that under the null of no jumps

NYHRVZIY] - BVRY])
VI X5 — 28,

4 N(0,1), (20)

where (X7;)1<;,j<2 denote the individual entries af*. Under the alternative hypothesis, the convergeRe&;[Y] —
BVy3Y] RN Ef\f’l J? follows from Eq. (19), which means that conditional on thegemce of jumps, the test is consistent

asN — co.

2.4 Estimating ©*

As usual, the CLT in Proposition 1 is an infeasible resultduse the matrixX*, which holds the covariance structure of
the bivariate vecto(RVy[Y], BV [Y]), is not known in practice. In order to construct a feasibls@&wobust jump test

that can be implemented on actual data, we therefore neetinoateX*.

9Throughout the paper, the symboffi‘" is used to denote convergence in law stably. We refer to @affyNielsen, Hansen, Lunde, and
Shephard (2008) for a formal definition of stable convergeindaw and the motivation for using this type of convergeimcthe high-frequency

volatility setting.
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Figure 2: lllustration of block subsampler.

RVGAY] RV Y] - RVS 4[Y]

e

Note This figure illustrates the construction of the subsammgd; ,,,[Y] estimators, which are used as input to compute the block

subsample estimator of the covariance malfiix

Podolskij and Vetter (2009a) propose consistent estiraaibthe elements af*, (X7;)1<; j<2. We could adopt this

approach as well by designing consistent estimators oftigidual entries of-*, for example using

N_1/2 N—-2K-+1 K-1

Sk Y, p *

1= g > |YiN|2< > <| TR AN )) = X1 (21)
2 =K I=—K+1

The problem with this way of getting at* is that once we put the pieces back together, the estimatie &fil covariance
matrix 3* is not guaranteed to be positive semi-definite.

Instead, we propose a novel block subsample estimatr* pfvhich has a very intuitive form and is positive semi-
definite by definitiont®. To describe the construction of this estimator, we firsbsiedtwo frequencieg and L, such that
L>>K,dL =0o(N)andL,d — co asN — oo. Here,d is the number of subsamples ahds a block length.

Second, we let

RV]:},m = K Z ‘ ZN’ 927/} wAC? (22)
2 i€im 2

form=1,...,d,whereJ,, ={i:0<i< N—K+land(m—1+jd)L <i < (m+jd)L— K + 1 for somej € N}.
As such,RV];;m[Y] is a subsampled version of the pre-averaged RV defined above.

The construction oiRV];}’m[Y] is depicted in Figure 2, which shows how we block, allocatd pre-average the
noisy return serie¢éANY') to assemble the various subsample estimates. Note that/praging is done locally within

each block of length, and that there is no pre-averaging carried out betweerk®loss a consequence, the sequence

0This relates to recent work by Kalnina (2011).
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RVﬁvm[Y], m = 1,...,d, all fulfill the CLT of RV}[Y] from Proposition 1, except with a slower rate of convergence
N'/4/d'2. It also follows that theRV} | [Y] estimates are mutually independent, asymptotically, imeeahey are

computed from non-intersecting increments.

. 1< N4 1 )
=7 > el <RV]:</,m[Y] —/0 Usd3> (23)

is a good proxy fo};. But the integrated variance is latent, so we replace &bY;[Y] — the original pre-averaged RV.

Hence, it is intuitive that

Now, we can construct the sequen8&7y;, [Y] using the exact same principles. Then, we define

Ty nlY] = Tz (RVA Y] — RVAY], BV, [Y] — BVN[Y]),> (24)
and compute
d
Sk 1 * *
2= > TR VTR YT (25)
m=1

Proposition 2 Assume that” follows Eq. (9), where X follows the jump-diffusion model in Eql) and E(u*) < oo.

Moreover, we assume thefN /d? — 0. ASN — oo, it then holds that

* Doy, (26)

M

Proof See appendix.

We can then execute the feasible jump test by plugging thma&tsts in Eq. (25) into Eq. (20).

A couple of further remarks are in place here. First, thedisample corrections that help to improve small sample
accuracy of RV [Y] and BV [Y] are also applied té&Vy; . [Y] and RVy | [Y]. Second, as the unobserved integrated
variance is replaced by an estimator, we find better finitepdamccuracy by correcting the covariance matrix estimator
for a “loss of degree of freedom”, which is why we are dividingd — 1 in Eq. (25). Third, the condition/ N /d?> — 0
implies thatd = O(N¢), for some0.25 < ¢ < 0.50, which ensures that* is consistent fob2* both under the null and
alternative hypothesis, as shown in the proof of Propas®ioThis point is important, because it means that in priacip
we do not need to worry about eroding the power of the jump(&atndorff-Nielsen and Shephard, 2006). Still, the
estimator appears sensitive to jumps in finite samples, angrapose one further adjustmentf in the simulation
section below. Fourth, while the choice @fnd L affect the efficiency of the estimator, a theory for derivargoptimal
choice of these tuning parameters is at best complicatetvaneave this analysis for future research. Instead, wesghoo

a simple calibration ob*, which seems to work reasonably well in simulations andtjmac
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Table 2: Properties of the pre-averaging estimators.

RV [Y] BVi[Y) BVZ[Y)(r)

6= 010 0.25 0.50 0.10 0.25 0.50 0.10 0.25 0.50
BM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SV2F 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BMJ 1.25 125 1.25 1.03 1.04 1.05 1.00 1.00 1.00
BMO 1.00 1.00 1.00 0.99 1.00 1.00 1.01 1.00 1.00

Note This table reports the mean of the pre-averaging estimatdfy, [Y], BV}, [Y], and BV} [Y](7) (normalised by
fol o2ds) over10, 000 simulation runs wher&V = 10, 000, v = 0.50.

3 Simulation study

In this section, we perform controlled Monte Carlo expenmitseto gauge the finite sample accuracy of the noise-robust
pre-averaging theory introduced above. In particular, xaréne the ability of these estimators to back out the difts
and jump-variation components in the presence of microgtra noise. We also inspect the statistical propertieb®f t
jump testing framework.

Below, we simulate log-priceX from four distinct models, namely (i) a Brownian motion orNMB model where
dX; = o, dW; with o2 = 0.0391 corresponding to a return volatility of about 20% annualizg) a two-factor stochastic
volatility model with leverage or “SV2F” proposed by Chevn&allant, Ghysels, and Tauchen (2003), using calibrated
parameter values reported in Huang and Tauchen (200%)a @rownian motion plus jump or “BMJ” model, where we
position a jump of random size at a random point in the segasuring that on average it accounts 26f% of total
variation, and (iv) a Brownian motion plus outlier or “BMQO”adel, where we position an outlier of random size at a
random point in the series, ensuring that on average it atsdor20% of total variation. These choices of models allow
us to gauge the ability of the pre-averaged estimators towstdor stochastic volatility and study their robustness t
jumps and outliers (the latter case is discussed in mord Betaw, see Section 6). Using an Euler discretization suhe
we simulatel 0, 000 independent price paths for each model, fixing the sampéeatizy = 10, 000. To obtain the noise
contaminated observed price pathwe selectv? by fixing the noise ratio (Oomen, 2006)= / Nw?/ fol o2ds = 0.50.

As can be seen from Table 3, our choiceyadnd NV are realistic albeit relatively conservative.

Table 2 reports the mean of the pre-averaging estima@dis[Y| and BV [Y] — normalised by the diffusive variation
componentfo1 o2ds — for three choices of the tuning paramefier= {0.10;0.25;0.50} where K = [6+/N]. From the
above, we would expect thd(RV[Y]) = 1 for the BM, SV2F, and BMO modelsy(RV[Y]) = 1.25 for BMJ,
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and E(BVy[Y]) = 1 for all models due to its robustness to jumps. The simulatddes largely agree with these
figures irrespective of the pre-averaging paraméte®©nly for the pre-averaged BV measure in the presence ofgump
do we observe a (small) upward bias that grows withif left untreated, this bias translates into a downward lm&
the estimated jump proportion and will also reduce the pawehe jump test. Motivated by this, we supplement the
jump-robustBVy [Y] with a threshold filter, which is discussed in the next sutisec The last column of Table 2 shows

that this modified measure largely eliminates the bias andtuzs be used to conduct reliable inference about jumps.

3.1 Threshold pre-averaged bipower variation

To reduce the finite sample bias induced by jumps in the orgiB¥ defined by Eq. (7), Corsi, Pirino, and Reno (2010)
propose to augment the estimator with a threshold filter. Mh& idea is to first pre-trim the data in order to eliminate
large jumps, and then rely on the machinery of the BV to wiptettoeismall jumps. It appears natural to use such a device
for our pre-averaged jump-robust estimator of integrasaibwce as well. As already mentioned, this should also teelp
improve the power of the jump test by providing a less dowilWaased measure of jumps.

Setting a good threshold can be accomplished by noting tiddra scaled Brownian motion with i.i.d noise, as in

model BM above, the asymptotic distribution (85— oc) of Y,V is given by:
NV | Fiy N (0.620% + 1y ) @n

Thus, we can define a threshold by taking

1
T = (Qq X \/1&50294—1%(&125 XN_w,

whereg, is the a-quantile from theN (0, 1) distribution andew € (0,0.25). Of course, in order to set a value ofin
practice, we substitute plug-in estimators for unknowrapaeters, i.es? andw?. Moreover, it requires selection of
andw. Throughout, the noise variance is estimated wifa and we usex = 0.999 andw = 0.20, which produces
satisfactory results in the simulations across modelss proxied withBVy [Y], noting that, as the pre-averaged BV is
slightly upward biased in finite samples with jumps in theag#te last step should lead to setting conservative thigtsho
levels, thereby avoiding overtrimming the data.

After 7 is set, we could proceed by excluding all terms for wHiZh'| > =, when computing théV;[Y]. However,
we found this to be suboptimal, as it tends to remove too l&mgions of data in finite samples. To understand this
feature, it helps to consider Figure 3. In Panel A, we ploffifs 100 noisy returns from a replication of the BMJ model,
while the corresponding 77 pre-averaged data, uging 0.25 for purpose of illustration, are shown in Panel B. The

threshold levelr is computed as detailed above. A large jump occurs in the BBy return, and it creates a hump in
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Figure 3: lllustration of threshold filtering procedure.
Panel A: Noisy returnsANY Panel B: Pre-averaged returis’’

—"
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Note To the left is the noisy return serigg) ™ V), while the pre-averaged return serigg;" ), is to the right. The thresholdis the
plotted with dashed red lines-). The orange area( in the left panel shows the part @A NY") taken out for inspection, while the

black circle @) highlights the return that is selected to be discarded.

the pre-averaged returns, corresponding roughly to thehgo&the weight functiory(x) = min(x, 1 — x). This induces
a long sequence of breachesrofand if the naive filter was to be used, this single large juadfs dor discarding no less
than twelve pre-averaged returns in this example — all thweefall outside the threshold boundaries. Moreover, nany
the surrounding observations not crossingmain inflated.

Set against this backdrop, we proceed with a matching ahgorihat exploits the link between tiay, ) and (YY)
series. To illustrate the mechanics, we consider Figureathagn Panel B, when a breach ofis found, we go back
and inspect the subset of all noisy returns, which are usedrtgoute that particular sequence of pre-averaged returns,
as highlighted in both subpanels. Finally, we select thgelstr noisy return, in magnitude, to be discarded. In anyngive
simulation, if multiple violations of- are observed, we repeat this step until all extreme noisynethave been removed,
after which we reconstruct the pre-averaged return sedsscon the reduced sampte.

Table 2 highlights the properties of the truncated versibpre-averaged BV: the estimator continues to deliver
unbiased estimates of the integrated variance for thesilBM and SV2F models but it now also largely eliminates the

finite sample bias in the presence of jumps.

110Of course, the trimming step can be iterated on the new seeediyeraged data, but we found no or little gains from doiiig t
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3.2 Jump testing

To arrive at a feasible version of the jump test, we implentkatblock subsampler estimator proposed in Section 2.4
usingd = 20 subsample estimates and a block length.of 5K. Unreported simulations show that this choice of
tuning parameters delivers estimatesf which are roughly unbiased. To check if a transformatiok@f (20) could
enhance finite sample approximation of the asymptoticibigion, we also experiment with a log-based and ratio-type
statistic, as in, e.g., Huang and Tauchen (2005). We fouatchibith transformations improved upon the raw distribution
result, while delivering almost identical finite sample @@xy between the two. Hence, to save space we only report the
outcome of the log-based distribution theory, relying aadelta method for stable convergence to obtain

NY4(In RV [Y] — In BVE[Y](7))

VEIL T S5 - 25,/ [y o2ds

Note that we use the threshold pre-averaged BV to form thejtsstatistic. To obtain a feasible limit theorem, we

4 N(0,1). (28)

substitute the integrated variance appearing in the devaiori with BV [Y](7).

The results on size and power are reported in Figure 4 for seswb the simulated models. Panels A and B uncover
the size properties of the above t-statistic for model BM 8W@F. In model BM, the actual fraction of rejections is close
to the nominal size of the test for all choicestoéind the distribution looks close to Gaussian. Turning nexhodel
SV2F, the standard normal still offers a good descriptiofirofe sample variability of the t-statistic, but we note iglst
size distortion wher = 0.1. Although the distortion shrinks a@sincreases, it does not vanish completely. Under model
SV2F, the path of volatility is very erratic and some parth# size distortion is undoubtedly related to the fact that we
are setting a global threshold in our computations, whigiedds on a constant measure of variance, rather than a local,
spot estimate of volatility. However, although in prin@pt is straightforward to extend the threshold theory towalfor
a time-varying barrier, it requires highly non-trivial cpotational efforts compared to the small gains associattddity
Therefore, we do not venture down this path here.

In Panel C-D, we inspect the rejection rate of the test in tiesgnce of jumps using model BMJ. The following
conclusions can be made. First, in Panel C we see that ali®atlye time N = 10,000, the simulated power of the
test is good and lies in the range of about 65 — 77%, dependbigam the specific choice af. Again, N = 10,000
is a conservative sample size for our ultra high-frequendi-second data employed in the empirical section. Indeed
as shown in the web appendix, model BMJ has the weakest panengst all the jump-diffusion models considered.
Nonetheless, there is a tendency for power to drofy &screases, so the results caution against using too extralmes
of 6 in practice. Second, Panel D conducts a sensitivity aralygishowing the distribution of the log-based jump t-
statistic, when we surpass the thresholding step. As eitléa has a pernicious impact on the rejection rate cauged b

two complementary factors, as detailed in the upper rigimghcorner of each subpanel. There, we report the average
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Figure 4: Log-based jump t-statistic — Size and power.
Panel A: Size - Model BM Panel B: Size - Model SV2F
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Note The histograms show the simulated distribution of thebaged jump t-statistic defined by Eq. (28) usthg: {0.10; 0.25; 0.50}.
In the upper left-hand corner of each subpanel, we reporfrétion of t-statistics that exceed the- and5 — % critical value in the
right tail of the standard normal distribution. To the rigive show the average value of the numerator and denominatmssathel 0, 000

repetitions. The density function of the standard normaujserimposed for reference.

value of the numerator and denominator of Eq. (28). The fastor is the upward bias in the pre-averaged BV revealed
above, which depress@g!/*(In RV} [Y] —In BV3[Y]). The second is buried in the construction of our block sulpsam

covariance matrix estimator, which is sensitive to jumpf8nite samples, when the number of subsamgléssmall. If
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one of the subsample estimates deviates from the rest dhe fésence of jumps, this will cause a significant increase
in the sample variation of the subsampled RV and BV. This peed a large upward bias ¥, which in the end deflates

the t-statistic. Thus, it appears crucial to use the thidsfiiter in practice to preserve power.

4 Empirical application

In this section, we use the pre-averaged RV and BV measurpstide an in-depth study into the role of the jump
component for a representative set of US equity and foreighange rate data. To the best of our knowledge this is the
first study to take a comprehensive look at the magnitudeeofuimp variation component as measured from noisy tick
data sampled at ultra-high frequencies. We also reporttselsased on 5- and 15-minute sampling frequencies as these

are widely used in the literature and provide a natural egfee point.

4.1 Data description

We have available a large set of tick data covering a reptatben set of foreign exchange rates and large cap US equity
and US equity-index data. The sample period is from Janu@®y Zhrough to March 2011 (or 1170 trading days) and
includes several episodes of exceptional turbulence ssitteaglobal housing and credit crisis, the S&P500 flashk¢ras
the European sovereign debt crisis and the bail-out of @eswl the Japanese earthquake.

For the equities, we consider all thirty Dow Jones Industigrage (DJIA) index constituents as of October, 2010,
as well as two market-wide indices traded as highly liquid-E,Tnamely QQQ tracking the NASDAQ100 index and the
SPY (or spiders) tracking the S&P500 index. The latter onmecisided because it is used in many other studies (see Table
1) and thus provides a good benchmark. The data is extradedthe NYSE TAQ database, and includes both quote
and trade data with milli-second precision time-stampavatig for a very fine grained view of the price evolution. We
restrict attention to the official trading hours from 9:306:d0 local New York time.

For the foreign currency data, we have the three major rdtesro, Japanese Yen, and Swiss Franc all traded against
the US dollar, i.e. EURUSD, USDJPY, and USDCHF, respegtivEhe data comes from the EBSLive data feed that also
provides both trade and quote data with milli-second titaeaps. We restrict attention to the most liquid London and
New York trading hours from 7:00 - 19:00 (GMT).

We pre-cleaned the data following the routines proposedaim@orff-Nielsen, Hansen, Lunde, and Shephard (2009),
and compute all results both on trade and (mid-) quote ddtar Aleaning, we are looking at a total sample size of well

over 4 billion observations! To conserve space, we only ntejpe results for the trade data.
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Table 3: Jump variation estimates for equity and FX higlefiency data.

tick frequency 5-minute frequency 15-minute frequency

N 5 RV™ BV* JV RV BV Jv RV BV JV
Panel A : Equity indices
QQQ 48,336 0.38 22.8 23.0 -1.6 22.8 22.4 3.7 22.7 21.6 8.9
SPY 112,921 0.35 211 21.2 -0.3 20.9 20.5 4.1 20.7 19.8 8.1
Panel B : Individual stocks
AA 31,263 0.51 48.4 48.0 1.7 48.9 47.6 5.1 47.2 44.8 9.9
AXP 31,205 0.27 46.7 46.3 1.6 46.6 45.0 6.9 45.8 43.2 11.0
BA 20,961 0.26 30.5 30.3 15 30.5 294 6.5 30.4 28.5 11.8
BAC 82,426 0.82 59.0 59.3 -0.8 58.9 56.2 8.9 58.2 54.6 11.8
CAT 27,227 0.25 36.6 36.6 0.4 36.6 35.6 5.3 36.2 34.6 8.8
CSCO 54,114 0.64 317 315 15 32.2 31.2 5.9 314 30.0 9.1
CVvX 34,685 0.26 30.0 30.1 -0.6 29.6 29.0 4.6 28.7 27.4 8.9
DD 20,222 0.28 32.3 32.2 0.7 32.7 31.6 6.7 31.9 30.3 9.7
DIS 24,864 0.36 29.9 29.5 2.2 30.2 29.1 7.4 29.6 28.0 10.7
GE 56,107 0.76 38.2 38.0 1.0 38.2 36.6 8.0 38.1 35.4 13.6
HD 30,037 0.37 34.5 34.3 1.2 34.4 33.3 6.3 33.6 315 11.9
HPQ 35,482 0.33 29.8 29.3 3.2 29.8 28.9 6.2 29.0 27.1 12.1
IBM 25,173 0.26 26.0 25.9 11 254 24.6 6.3 24.7 23.2 11.6
INTC 54,601 0.65 32.1 32.0 0.6 324 31.2 7.4 31.3 29.3 12,5
JNJ 29,792 0.37 18.7 18.5 2.0 18.8 18.1 7.9 18.2 16.9 13.6
JPM 67,426 0.34 48.7 48.8 -0.4 48.5 47.2 5.3 47.8 45.2 10.8
KFT 20,451 0.44 22.8 22.3 4.6 23.1 21.9 9.8 22.1 20.5 13.9
KO 24,760 0.33 21.1 21.0 1.6 215 20.3 10.5 20.5 18.9 14.5
MCD 23,482 0.29 23.7 23.5 1.3 23.8 22.7 8.7 22.7 21.2 12.6
MMM 16,880 0.26 26.2 26.0 0.9 25.9 25.0 6.5 24.7 23.3 11.2
MRK 30,000 0.37 30.1 29.7 3.0 315 29.8 10.2 29.8 27.5 14.5
MSFT 59,840 0.59 28.3 28.2 0.8 28.3 27.4 5.8 27.5 25.7 12.1
PFE 37,371 0.81 26.5 26.2 2.2 26.7 25.6 8.4 255 24.0 11.2
PG 30,091 0.33 22.7 22.4 2.6 21.2 20.3 8.0 20.1 18.8 12.9
T 38,051 0.55 28.9 28.6 2.6 29.7 28.9 5.7 27.9 26.4 10.7
TRV 15,889 0.26 375 36.5 5.1 38.9 37.0 9.4 37.3 33.7 18.6
UTX 18,616 0.26 27.0 26.9 1.2 26.7 25.9 6.3 25.9 24.6 9.8
\Vd 29,970 0.46 27.5 27.2 2.1 28.0 27.0 7.3 27.0 25.4 11.2
WMT 35,611 0.35 23.5 234 0.6 23.6 22.7 7.5 22.6 21.2 11.8
XOM 55,005 0.31 28.2 28.2 -0.3 27.7 27.0 5.1 26.8 255 9.9
Panel C : FX pairs
EURUSD 22,483 0.48 9.9 9.9 -1.1 9.8 9.4 7.9 9.6 9.2 8.3
USDJPY 8,177 0.29 10.8 10.8 -0.3 10.8 10.3 9.4 10.4 9.8 10.0
USDCHF 4,357 0.35 10.4 10.3 1.7 10.7 10.2 9.5 10.4 9.8 11.0
Panel D : Cross sectional average by asset class
Equities 38,214 0.41 31.0 30.8 1.3 311 30.0 6.9 30.2 284 115
Currencies 11,672 0.37 10.4 10.3 0.1 10.4 9.9 8.9 10.1 9.6 9.8

Note. The numbers printed in the table are time series averagegutethacross the sample period, which covers January, Bé@rgh March, 2011

(both included).N is the sample sizey = 1/ Nw?/ fol o2ds the noise ratio. The integrated variance is proxied3dy* andw? is estimated with
a;gc. Variational measures are reported as annualized staddsiation. Noise-robust estimators are based ea 1.0. The relative jump variation
(JV) is expressed in percent.
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4.2 The magnitude of the jump variation component

The results below center around measuring the magnitudeeginp variation component, i.e the quantity defined in
Eg. (3) and subject to numerous past studies. To computeulaistity from tick data, we estimai&’]; and fol o2ds as

the average daily pre-averaged RV and BV measures as defiriegsi (15) — (16), respectively. To compute JV from
low-frequency data, where the impact of noise is negligiMe use the standard RV and BV measures as defined in EqQs.
(6) — (7) based on previous-tick sampling.

Table 3 reports the results for the two equity indices (Pa)ethirty individual equities (Panel B), three currencies
(Panel C), and the cross-sectional averages by asset B&ssl ©). The single most important observation to be made is
that the estimated jump variation computed from tick datmsll. Much smaller than what is computed from 5- or 15-
minute data and much smaller than what is reported by theierature as summarised in Table 1. The cross-sectional
averages by asset class convey the message most clearly:tiokidata we find that jumps account for a mere 1.3% of
total return variation for equities and a negligible 0.1%darrencies! The corresponding figures for the widely used 5
(and 15-) minute sampling frequency are in line with therditere at a much more substantial 6.9% (11.5%) and 8.9%
(9.8%) for equity and FX data, respectively. It is also iatting to note that for each asset there is a strict ordenidy i
by sampling frequency where the tick data gives the lowasl (@e argue most accurate) value and the 15-minute data
the highest.

The results in Table 3 use a pre-averaging parametér-ef1. To show that our results are robust to this choice
of tuning parameter consider Figure 5. Panels A and B reperttoss-sectional average of the annualized (estimated)
standard deviation, as a function fanging from 0.1 to 2.0, for the noise-robust RV and BV, theetaboth with and
without threshold elimination. As a reference point, wenaisport the corresponding levels of volatility estimatéa v
the low-frequencyRVs,,, and BV5,,. Consistent with the findings of Hautsch and Podolskij (204@ see that the pre-
averaging estimators produce a pronounced, systematiovwdand bias if the selection df is too low to fully obliterate
the impact of microstructure noise. Here, that intervalespp to be roughly 0.1 — 0.5. For valuesfiohbove 0.5, the
estimated levels of volatility are fairly stable around 3@#@ 10% for equity and FX respectively, wiiti/y;[Y'] and the
jump-robust estimators tending to track each other quitsety. We should note that threshold elimination has only a
modest effect on the estimated level of volatility, sugigesthat “large” jumps are relatively infrequent. Panelsrid ®
of Figure 5 drawd-signature plots — the estimated jump variation againsiesbfd — and indicate good robustness of
our main finding. In particular, for values 6fabove 0.5 the estimated JV is very stable and in a tight rah@&do 2%
for equity data and-0.5% to 0.5% for FX data.

Next, to show robustness of our finding over time Figure 6spthe JV for the equities and currencies by calendar
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Annualized volatility

Jump proportion

Note In the upper row, we report the average annualized vdiatli the noise-robust estimators, averaged across the-sexgion of

stocks and FX pairs included in our empirical applicationagunction off in the range 0.1 — 2.0. As a comparison, we also show the

32

Figure 5:0-signature plot of annualized volatility and jump proponti

Panel A: Annualized volatility, equity data
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Panel B: Anrigadl volatility, FX data
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average value oRV5,, and BVs,,. In the bottom row, we createéasignature plot for the estimated jump proportion using tifterent

jump-robust pre-averaging statistics. Here, as a refereme report the jump proportion inferred BV5,,, and BVs,,,.

quarter over the full four year sample period. The dashesslindicate the full-sample average for reference. The main
observation to make here is that the results are stabléheestimated jump variation from tick data is consistendyy

small for equities (never exceeding 4% on any given quasted) negligible for currencies. Also note the low-frequency
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Figure 6: Jump proportion, quarter-by-quarter.
Panel A: Equity data Panel B: FX data
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Note We plot the estimated jump proportion, quarter-by-quaftem Q1, 2007 through Q1, 2011 using ultra high-frequeestimators

(tick) and low-frequency estimators based on 5- and 15-taiptevious-tick sampling.

estimates always lie strictly above the tick estimates Wigjins of around 15% and 20% for equities and FX.

A nice way of summarizing our results for the whole sampledagicted in the scatter plots in Figure 7. In Panel
A-B, we show the threshold pre-averaged BV plotted agaimstpre-averaged RV using = 1.0. It is evident that
the pairwise observations scatter closely around the gBedeline. To highlight this, we run a regression, where the
jump-robust estimator is projected onto the measure of tetarn variation. In Panel A-B, the regression equation is
BV3[Y|(r) = bo+ b1 RV [Y]+ €, which yields OLS coefficient estimatesipf= —0.061 andb; = 1.002 for the equity
data andAyo = —0.000 andgl = 1.000 for the FX data. To strengthen the analysis, we carry outtaofabe hypothesis
bp = 0 andb; = 1. In our setting this essentially amounts to asking, if ondkierage the data are compatible with
being generated from a model without jumps. As seen in thpasdds, the test statistig, —; is borderline significantly
different from unity for the equity data, while there is nadance in favor of rejecting the null using any of the othet te
statistics. By stark contrast, in Panel C-D the cloud of ola@ns is much more skewed underneath and to the right of
the 45-degree line, and when we run the regres&i®®,,[Y] = by + b1 RVsn,[Y] + ¢, it results in intercept and slope
coefficient estimates cifo = 0.026 and@l = 0.925 for the equity data anao = 0.022 and@l = 0.859 for the FX data.

It should be pointed out that the estimatebpffor the equity data matches closely with the jump proportémoughly
7% that was discovered above in Table 3, while the slope cgaifi for the FX data is somewhat lower than what is

implied by the jump proportion above. The test statisiic.; = —5.21 andt,,—; = —4.47 leads to a clear rejection of

22



Figure 7: Regression analysis.
Panel A:RVy[Y] vs. BV [Y](7), equity data Panel BRVy[Y] vs. BV [Y](7), FX data
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Note The plot shows pairwise values of RV and BV. Upper panelshased on noise-robust pre-averaging estimators, whilétier
panels are based on 5-minute low-frequency data. A red p)usdrks a daily pairwise observation for each ticker in olect#on of stocks
and fx pairs. The blue circles) show the time series average value of RV and BV for an ind&idecurity. We fit a regression line to the
values of RV and BV and conduct a test of the hypothésis- 0 andb; = 1 (t-statistics based on White’s heteroscedasticity-stest

standard errors are reported in subpanels).

the null hypothesis, thus showing that even after adjusbngampling uncertaintyBV5,,, remains significantly smaller

than RVs,,.
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4.3 Significance testing

To attach a measure of significance to our daily estimatasgbg, we again implement the noise-robust jump test defined
by Eq. (28) by selecting a block length 6f= 5K and constructl = 20 subsample estimates of the pre-averaged RV
and BV!? We base the 5-minute low-frequency jump test on the modifid-statistic (with maximum correction), as
advocated by Barndorff-Nielsen and Shephard (2006) anahi¢iaad Tauchen (2005), Whefé otds is estimated with

the realised quadpower quarticity statistic.

Table 4: Significant jump days of equity and FX high-frequedata.

ZRVE[Y] (A) ZRVism, (B) ANB ZRV} (Y] (A) ZRVsm, (B) ANnB
Panel A : Equity indices Panel B (cont'd)
QQQ 6 113 0 MCD 27 179 5
SPY 28 118 5 MMM 29 159 10

MRK 42 204 13

Panel B : Individual stocks MSFT 51 162 8
AA 20 140 4 PFE 65 191 23
AXP 27 145 6 PG 35 163 6
BA 21 168 6 T 59 185 21
BAC 36 141 7 TRV 47 158 12
CAT 14 120 2 UTX 21 150 6
CSCO 66 152 12 VvZ 31 173 10
CVvX 13 113 2 WMT 16 174 6
DD 28 151 7 XOM 16 123 3
DIS 42 164 11
GE 50 161 9 Panel C : FX pairs
HD 25 147 6 EURUSD 12 122 5
HPQ 42 155 13 USDJPY 5 139 2
IBM 28 165 6 USDCHF 23 110 5
INTC 29 168 10
JINJ 42 190 11 Panel D : Cross sectional average by asset class
JPM 14 111 2 Equities 33 158 8
KFT 64 213 16 Currencies 13 124 4
KO 30 185 7

Note We report the number of rejections flagged by the indivigualp test-statistics (out of 1170 days). All numbers are poted at the 1-% level of
significance. The intersectiom(N B) is defined as the number of days with jump signals in common.

Table 4 holds the outcome. As expected, we see that the ralsst jump testzry; [v]s has substantially fewer
significant jump days compared to the low-frequency 5-n@nrsion,zry;,,, which mirror images the results on jump
proportions above. On averagg;y;,, Signals the appearance of jumps by a factor 5 — 10 relativg‘];](\g[y}.13 In reality,

we believe jump proportions are even smaller and that theréesver significant jump days than what our noise-robust

12The sole exception is the USDCHF cross, which is based enl0 subsamples. This is because for the USDCHF, the total anudulaita at

our disposal is often insufficient to get reliable covarentatrix estimates using= 20 subsamples.
BNote that some of the rejections in Table 4 merely reflect Huéoe of significance levely, inducing on averageT false rejections of the null
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ultra high-frequency jump test suggests, because manyeqgtithp signals we investigated by manual inspection appear

not to be real jumps, but we will dig deeper into this discoissh Section 6.

4.4 The burst of volatility hypothesis

The results reported so far all point towards a much reduckdifor jumps in explaining the total return variation for
equity and currency data. Indeed, we find that the jump vanatomputed from tick data is an order of magnitude
smaller than the consensus view of a very substantial botliecdture that uses 5-minute or lower frequency data. How
can these findings be reconciled?

A plausible explanation is that our ability to tell trdescretejumps fromcontinuoudiffusive variation diminishes, as
we lower the sampling frequency,. Specifically, it is likely that a short-lived burst of val#l is mistakenly identified as
a jump with less frequent sampling. The flash-crash epis@tissed in the introduction is a prominent example of such
a scenario. The Japanese earthquake provides anothee fourttency data. Figure 8 plots the evolution of the USDJPY
rate in Panels A and B for the period in question. From the Buiei data, two very substantial jumps are evident. One,
on March 16, when a panicked USDJPY sell-off led to a “flaskskt type drop in the rate and one, on March 18, on a
coordinated central bank intervention aimed at devaluiregJPY. Panels C and D draw the tick data for the respective
episodes and tell a very different story where price jumpsaia elusive. Searching through the full sample period and
all the 35 securities considered here, we confirm this “lfrgblatility” pattern is the dominant explanation for theiah
reduced role of jump variation.

To provide some additional support for the burst of volgtiionjecture, we consider a simple simulation study. In
particular, we draw noise-free prices from a scaled Browmition, d\; = ¢,dW, for ¢t € [0, 1], whereo; = 50* for
t € [16/32,17/32] ando, = o* otherwise, where™ is fixed at a level corresponding to 40% in annualized terms. |
this scenariog, is piecewise constant and increases five-fold in strenggh ashort interval of the day (equivalent to a
15-minute interval based on an 8-hour trading sessiony theating a jump in volatility, but there are no jumps in the
price, implying that the true jump variation is zero. We slate noisy log-prices as abov®, = X + u, using i.i.d.
noise with a noise ratio parameter-pt= 0.5 and then round” to the nearest cent to induce price discreteness, based on
a starting price of $50 in levels. Finally, we construct theHfrequency RV and BV at varying sampling intervals and
calculate the average jump variation across 10,000 sifoal&tals.

Figure 9 illustrates our findings using a signature plot tlatvs the measured jump variation as a function of sampling
frequency on a log-log scale. Panel A is based on the abovelatied data, and we see quite clearly that the jump

variation is severely inflated at lower sampling intervalg, that it steadily drops as we move from half-hourly sangpli

hypothesis, wher&' is the number of days in the sample.
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Figure 8: USDJPY earthquake episode: Jump or burst in lip}ati

Panel A: Earthquake episode Panel B: Sell-off and intef@rr#t 5-minute intervals
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Note. EBSLive USDJPY spot data for March 7 — 18, 2011 with time réggubin GMT. “Paid” and “given” denote aggressive buy- and-ealers,
respectively.

to 2-minute sampling. Beyond this point, the microstruetaoise kicks in and the traditional statistics inflate thagu
variation again, as the sampling frequency increasesdurthanel B of the figure plots the corresponding resultshier t
cross-sectional average of the full sample of equity imsemts. The results are strikingly similar to the simulati@sed

evidence, thus reinforcing and supporting the burst oftilitlahypothesis'* Note that, by contrast to the low-frequency

The jump variation signature plot for the foreign exchanage data display a similar, but less pronounced, U-shapeal®e we are only
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estimators, our pre-averaged noise-robust jump variatieasures can be applied to tick data and doing this we observe
a jump variation ending up at around 1% for the equity datteréstingly, this closely coincides with the trend congkye

by the conventional statistics based on the infeasiblesAioee data in Panel A of Figure 9.

Figure 9: Jump variation signature plot.

Panel A: Simulated data Panel B: Equity data
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Note. Average jump variation estimates as a function of the samgghiequency. Left panel is based on simulated data, whileight panel covers the full
sample of equity instruments (both cross-sectionally aret tme). The red plus marks) denote the estimates based on noisy prices by comparing the
standard RV and BV measures (which are not valid in the poesefinoise). In Panel A, the blue circley flenote the infeasible jump variation computed

from the noise-free prices, while in Panel B it indicates woise-robust jump variation estimate based on tick data.

Finally, to shed some theoretical light on the above hymitheve obtain the following expression for the uncondi-

tional bias of BV (see Appendix A for assumptions and thevadion):

E (BVN[X] - /01 agds> _ —%E (1—12 /01 Z—:zds> +o(ND, 29)

wherev is the “volatility of volatility”.

Based on this expression, we learn that with time-varyinktilty, and in the absence of noise, BVy[X] is
downward biased in finite samples, translating into an ieflakv measure, (ii) the effect is stronger with a high vatstil
of volatility v or a lowering of the sampling frequengy. Stated differently, a short-lived burst of volatility mgguriously
be attributed to the jump variation component and this rkéstaincreasingly likely as the sampling frequency of theada

is lowered. This line of thought is also consistent with-8&halia and Jacod (2009c¢), who emphasize that jumps can onl

considering three FX pairs, there is less averaging takiagep which could explain the less clear-cut pattern.
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be identified by increasing the sampling frequency to thé liwhich is what this paper does and leads us to argue for a

much reduced role of jumps (and by implication an elevatésl wbthe volatility process).

5 lllustrative example: Option trading with rehedging

In this section, we briefly illustrate the economic relevantthe above finding using an option pricing example (ptiafo
allocation and risk management are two other areas of finavioere our findings have profound implications). Specifi-
cally, we consider a scenario where a market maker proviljgdity in short-term at-the-money call options getsgai
on a quote one day before maturity of the contract. As a restitiis trade, the market maker is now short the call option
and decides to remove the first order price risk by coverimgdiita of the position using the underlying instrument.
To maintain a simple setting, we simulate log-prices frontaesd Brownian motion with no driftX; = ¢W;, and we
price the option with the Black-Scholes formdfas is fixed at 40% in terms of annualized volatility. The numbér o
steps in each simulation i§ = 1,000 and we generate a total of 10,000 independent price patlesinitial equity price

is set to 100, which also equals the strike price of the calbap As already mentioned, the option has one day left to
maturity and expires at the end of trading, where the pasiscsettled. The equity pays no dividends during this time.
The risk-free rate is set to zero.

The market maker receives a premium for selling the opti@hisumitially delta neutral because of the hedge, but he
is left short gamma and accumulates losses that are propaltio the square of the change in price of the underlying. Of
course, in a perfect, frictionless market, the trader caficae the option by continuously rehedging, and the puemi
will exactly offset the losses associated with his rebdtanactivities. However, market microstructure noise icekl
transaction costs, so we assume our imaginary trader hadedeto rehedge his equity exposure only after every 50
basis point move in the underlying. At each rebalancing, alldwss is locked in due to the negative gamma profile. At
expiry, if the option is in-the-money, the equity is deligdrto the buyer and a further loss is taken, else the optioinesxp

worthless and the market maker closes his position in therlyidg at the prevailing market price. Finally, we keegka

Bwriting a call option contract, while simultaneously puasing a delta equivalent number of shares in the underlyukss also known as a

“buy-write” covered call strategy.
5The Black-Scholes call option pricing formula is given l6y:= N (d1)S — N(d2)Ke™ ", whereS is the stock pricek is the strikes is the

volatility, r is the risk-free rate;, is the time to maturity)V (-) is the distribution function of a standard normal randomatarand

In (i) + <r—|——02)t
K 2
di = o , dy = di — oVt

The delta and gamma are defined as the first- and second-@ndative of C' with respect taS and equalA = N(d1), T =
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Figure 10: Simulated price path and P&L distribution.
Panel A: Simulated price path Panel B: P&L distribution
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Note In Panel A, we plot an example of simulated price paths ferdption trader exercising the covered call strategy wittedging. In

Panel B, we show the distribution of his P&L and also repogtdlierage loss to the trader expressed in percent of theypremi

of the traders bank roll and calculate the total profit and [@&L) for the trade.

Now, in each simulation, at a random point in time, we hit tharket with two forms of unforeseen news, which
causes a revaluation of the stock. In scenario A, we place a@%jump in price, while, in scenario B, we put a 2%
“burst of volatility”. The latter induces a swift, but contious, change in price. Panel A of Figure 10 helps to highligh
the distinction between these two types of shodkst shows an example of a simulated set of sample paths, and we
provide an ultra high-frequency zoom on the price aroundstirprise move. As seen in the figure, and in contrast to a
pure jump, scenario B provides the market maker with a véduapportunity of rehedging his exposure, as the market
declines. This shows up prominently in Panel B of the figureers the distribution of the P&L is reported. Note that,
because the realised volatility i is larger than the volatility used for pricing the optiongttrader loses money on
average in both scenarios. A typical loss amounts to -29.848012.40% of the premium charged in scenario A and B,
respectively. Thus, not only is the average loss smallethifer‘burst of volatility” trader, the distribution of his R&is

also less dispersed.

Technically, the burst in volatility scenario is obtainegdreconnecting the sample path in the jump scenario, usingarBan bridge on the

observations that lie 10 steps before and after the jumfiuagrated in the figure.
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6 Robustness analysis: High-frequency data with outliers

In practice, tick data are often corrupted by outliers (elge to delayed trade reporting, fat-finger errors, bugkerdata
feed, misprints, decimal misplacement, incorrect oradpofdata, etc). As a result, empirical researchers are afigised
to build “pre-cleaning” algorithms that use systematiesufor filtering out suspicious observations. A promineregle
is the Barndorff-Nielsen, Hansen, Lunde, and Shephard(2filter applied above. An obvious drawback of these filters
is that they typically depend on underlying tuning paramsetieat control tolerance levels and the user consequéaskly r
removing too much or too little data. In this section, we shbet pre-averaging has an embedded robustness property
against outliers and that pre-filtering of the data appeabetcausing some of jumps we detect in practice.

To model outliers, we take

Yi/n = Xin +uyn + Oy, (30)

where, on top of the components defined abo¥ey = 1;/ve4,1S:- Here, Ay is arandom set holding the appearance

times of outliers, while their sizes are given &) .no- We assume thatly is a.s. finite and model it by

i=1,..

ANz{[NNT”:osngl}, (31)

where(T;);_,  yo are the arrival times of another counting procass = (NP) In what follows, we assume thax

[ARAS] tZO-
is mutually independent ok andu, O L (X,u). This, in turn, implies thatv/ 1L N, i.e. the two counting processes
generating jumps and outliers are also independent, whither means that the probability of observing both a jump

and an outlier in a small time interval is asymptotically liggle.

Proposition 3 Assume that” follows Eq.(30) and that the conditions oX andu yielding the consistency and CLT of

Proposition 1 are satisfied. Then, the conclusions of Pritjpos1 are unchanged.
Proof See appendix.

Compared to Section 2.3, Proposition 3 shows that pre-giveyastimators are, in addition to microstructure noiss a
robust to the presence of finite-activity outliers. To gieeng intuition for this result, we assume that the diffusiant p

of X is zero. Then, almost all observations are i.i.d, exceptelynimany (which are also independent) that have a mean
different from O (coming from outliers). An immediate cogsence of this is that those finitely many outliers can not

be statistically identified. At a more technical level, wjitobability approaching one, there is at most a single eutli

in the window([+;, 5], If present, the outlier influences two consecutive noigyrres, sayAYN ; Y and A} Y.

Therefore, it appears with a factd?(]g(%) — g(%)]) in the construction o/, for somel < j < K. But
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Figure 11: Transaction price data for S&P 500 Depositorydies (SPY), September 18th, 2007.

Panel A: Filtered data Panel B: Unfiltered data
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Note The data plotted are transaction prices for SPY on Septeb@itle, 2007. Panel A holds the filtered data, using the prarthg rules
of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008ile Panel B shows the raw data, as extracted from the TAQbdae. The

dashed, red line is the pre-averaging approximation of ffi@ent price, while the thick, green line shows the unckxmidquote data.

|g(%) — g(%>| = O(K~') (uniformly), thus the impact of outliers on the pre-averhgeturns is asymptotically
negligible.

To demonstrate the potential of Proposition 3, we provideaatral example of what we term a “cleaning-induced”
jump. To this end, consider Figure 11, which shows the cléamel uncleaned transaction price data for SPY on Septem-
ber 18th, 2007 over the 2-minute window running from 2:14180- 2:16:30pn1® At 2:15pm, the FED announced an
unexpected rate cut of 50 basis points, in an attempt todsthiel economy from the accelerating mortgage crisis. The
stock market rallied upon receiving this news, moving th& 8gher from approximately index 149.00 to 151.25 in the
following 60 seconds, equivalent to a log-return of abo&4.. Looking at the cleaned data in Panel A, although some
trading activity is observed in the 1-minute window from 2pin to 2:16pm, the move largely stands out as a pure jump
in price. On this day, we compute an annualized valu& ;Y] and BV [Y] at 25.15% and 13.34%, respectively.
Moreover, with the variance ratib — BV [Y]/RV[Y] equal to 71.89%, it suggests that jump variation accounts fo
more than two-thirds of total variation and both the noisledsst and low-frequency jump test are in fact significanbat t

1% level.

By stark contrast, a different story is told by looking at BB, which shows the raw data prior to cleaning, as they

8This day has also been highlighted as a significant jump dayétent paper by Patton and Sheppard (2011).
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are extracted from the TAQ databdSeThe red, dashed line in this plot is based on the pre-avegagipresentation
in Eq. (14), which uses the neXf/2 transaction prices to approximate the underlying, efficfgite. Looking at this
graph, the sample path variation instead appears to be adjurslatility episode. But, it is clear that there are quite
a few suspect observations in the data. Nonetheless, whapplg the pre-averaged RV and BV directly to the noisy,
uncleaned data in Panel B, we now arrive at an annualizedilitglaf 17.40% and 17.35% for th&V 3 [Y] and BV [Y]
and our estimate of jump variation is very close to zero &d0.6

A genuine concern regarding the price appreciation seergaré 11 is that it was borne by a relatively illiquid
market, in which traders were not able to intermediate. éddé¢he trade feed over the episode is substantially delayed
relative to the quote feed. However, the illiquidity or nivadeable market argument does not hold up. In fact, in the 1-
minute interval following the announcement, the raw dagalfeeveals that a total of 3,343,500 shares of SPY exchanged
hands, trading at all intermediate levels, and represgmtinotional value of about $500 million or more than 10 times
the comparable average traded voluthe.

Proposition 3 indicates the opportunity of weakening @xgsfiltering rules and doing less aggressive data cleaning,
when the processing of data is combined with the pre-avegagoncept. It then induces some comfort in that even if
you do not manage to build a “perfect” filter, you can effeeljvrely on pre-averaging to wipe out any leftovers in the
data, as verified in our simulation section. Still, some @eaning of data is advised in practice, because outlians ca
be so abundant or extreme that it takes too long for the astioptto kick in?! In addition, the assumptions behind
the proposition do not cover all forms of outliers, althoubts can potentially be relaxed to some extent. Indeed, the
above empirical results suggest that pre-averaging camnanodate data, which are seriously erroneous. However, at
this stage we do not fully understand just how far this rabess property can be stretched, so we resist the temptdtion o
performing a full-blown empirical analysis on uncleanetadd his will certainly be an interesting topic to study irute

work.

19A large portion of the entries flagged for deletion in Figufiefall victim to the so-called (T4) rule of Barndorff-NielseHansen, Lunde,
and Shephard (2009), whereby transactions are matchedrailihg quotes. This suggests that the intensive tradindpé aftermath of the FED
announcement might have clogged the dissemination systerdshat a bulk of the subsequent trades were reported tmtismlidated tape with
some delay, making them appear out-of-line with currentketaconditions, as also indicated by the discrepancy betwiee midquote data and

transaction prices in Panel B of the figure.
The average daily 1-minute volume of SPY for the month of Sebter, 2007 was 309,734 (352,192) shares based on thedleaeaned)

high-frequency data, while the average volume for the luteiinterval from 2:15pm — 2:16pm totalled 21,611 (175,%Hgres.
ZLAn example of this is March 5, 2007, where the high-frequedtatya for a number of companies in our analysis are seversiygted. This day

was also noticed by Andersen, Dobrev, and Schaumburg (20h@) developed additional filtering rules to handle it. Im empirical application,

we decided to leave this day out of the analysis.
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6.1 The noiseless case. = 0

To the best of our knowledge, the addition of the outlier cormgmnt is new to this paper, so here we complete this analysis
by studying the marginal effect of adding outliers to thead@t the noiseless case:= 0. As expected, the robustness
property to outliers is not shared by the raw estimators énrbiseless case, as we now document. Note that, as we do
not implement or otherwise use the results derived in thisection, the investigation will be brief and focus solety o
the theoretical side of things and not the practical aspsfdtseir applicability??

But, in this subsection,

Yi/n = Xi/n + Oy, (32)

fori=0,1,... N.

To estimate and test for jumps in this model, we are going edreethird estimator, the so-called quantile-based

realised variance (QRV hereafter) of Christensen, Oonah Papdolskij (2010), which is defined in Appendix C.

Theorem 1 Assume that there are outliers in the data but no microstmechoise, i.eY;,y = X;/n + O;/n, Where the

processX follows Eq.(1). Moreover, we assume that m@y) < 1 — 1/m. AsN — oo, it holds that

RVy[Y] 112 | [ fo2ds
BwlY] |21 0 a2 || M2 | (33)
QRrvylY] ) |10 o |\ xMe?

Proof See appendix.

Remark 2 The conditionmax()\;) < 1 — 1/m in Theorem 1 means th&@RVy[Y] discards at least the two largest
absolute returns, which it requires to gain robustness rigpguand outlierd® It is of course possible to find multiple
jumps and outliers in the data over small, but non-neglgitiime intervals in practice. As discussed in Christensen,
Oomen, and Podolskij (2010), we can control the finite sampeistness of the QRV to these joint effects by placing
stronger restrictions omax(\;) andm. For example, suppose that there is an outlieta jump in a small time interval,

thus calling for the three largest increments to be remoVais can be achieved by takingax();) < 1 —2/m.

22Moreover, in practice when data are pre-filtered for owtliéris typically rather unlikely to accidentally sampletlying returns, when low-
frequency versions of the RV and BV are used to avoid the impiamicrostructure noise, as in our empirical section. Hgmee really think of
analyzing the impact on these estimators under the jointeénfte of noise and outliers using ultra high-frequency dathpre-averaging, as it was

given above. Nonetheless, the results in this subsect®mtaresting from a theoretical point of view.
s already pointed out by Christensen, Oomen, and Pod@Rij0), this excludes, for example, the so-called MinRV sediRV of Andersen,

Dobrev, and Schaumburg (2008), which are both special cishe QRV.
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To some extent, Theorem 1 is not surprising, as an outlidrdrobserved log-pric® translates into two consecutive
jumps of roughly the same magnitude, but with opposite sigthe return data\?'Y". It implies that neither the RV nor
the BV are consistent for the object, they are originallyigiesd to estimate.

Moreover, even in the absence ofjumbg{ = 0 for all ¢,

Ny
RVN[Y] - BW[Y] % (2—7/2)> 07 >0, (34)
i=1
and thus a test for jumps based on the original RV and BV wj#latethe null hypothesis with a probability converging to

one, if outliers are present in the data but unaccountedrideed, we cannot estimate the jumps using only the RV and

BV, which is why we need help from the QRV, because under tieeredtive of jumps

N/ NP
RVN[Y]— BW[Y] 5 Y T2+ (2—7/2))_ 0} (35)
=1 i=1

In order to estimate all three sources of empirical quadnariation in this model, we proceed by inverting the matrix
of coefficients appearing in Eqg. (33) and use the resultimggli combinations ofRVy[Y], BVy[Y], QRVN[Y]) . The
appropriate mix needed to estimate jumps is givemb (Y] — 2 BVy[Y] - (1 — 1) QRVN[Y] 5 ZZle J?2, and this
convergence is robust to the presence of finite-activitjieytrocesses by Theorem 1.

To conduct an empirical test for jumps, we need a joint digtion theory for the triplet of estimators under the null
of no jumps or outliers. We present the CLT next, but, to easeekposition, we concentrate on the QRV with a single

quantile implementation = \.

Theorem 2 Assume that;,y = Xy, whereX is a continuous semimartingale, i.&. follows Eq.(1) but with N/ =0

for all . Moreover, we assume condition (V) is fulfilled. Xs— oo, it holds that
RVN[Y] — [ o%ds
1
N1/2 BVy[Y] — fol o2ds 9 MN (O,/ olds x E) , (36)
0

QRVN[Y] — [ o2ds

whereX is a3 x 3 matrix with elements

7T2 m
Y1 = X2 =2, E22:Z+7T_3’ Yi13=—

(0) \2 772
Vl (m’ )\) COV((|U|(m>\)) 7U1>

—4

_ _ (0) 2 (0) 2
2y (= Deov (G2 U110a1) + 200w (U132 Winl U

m

1 2 = (0) 2 (k) 2
Y33 = —0O(m,\) + ——— E U U
33 (m, A) + vi(m, \) k=1 COV(“ ‘(mA)) (] ’(m)‘)) ) ’
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whereU® = {U;}r,, UW = {U;}74%,  {U;}71" is an independent standard normal sample and

va(m, \) — v2(m, \) .

©O(m,\) =m 2

Proof See appendix.

Finally, the only missing piece to perform a test for jumpgoigxploit the linear combination given above, which is
robust to outliers under the alternative, and then invokedidta method on the joint asymptotic distribution in Thezor

2 to find the appropriate asymptotic distribution of the jurgpatistic under the null.

Remark 3 The integrated quartici%l otds, appearing in the conditional variance of the limit distitibn in Theorem 2

can be robustly estimated in the presence of jumps and udgeoutlined in Christensen, Oomen, and Podolskij (2010).

7 Concluding remarks

This paper uses new econometric techniques for separatirtgediffusive variation component from the jump variatio
component, and applies these to a comprehensive set ofdiakcdvering both equity and foreign exchange rate data to
find evidence of a much reduced role for the jump componenkta@ing total return variation. Specifically, we find
that the jump variation is an order of magnitude smaller tivaat is widely reported in the literature over the past four
decades. The explanation for this can be found in the sagpleguency. The inability of the leading jump variation
measures to account for market microstructure noise or ehdfiction” has prevented the literature from using tick
data. Thus, in recent years a compromise 5-minute sampiéugiéncy has been used. However, at this frequency we
show that bursts of volatility are easily mistaken for jumieereby obscuring the “fact” that jumps are not nearly as
common as generally thought. It goes without saying thatlaaed role for jumps, and by implication an increased role
for the volatility process, has many important implicador empirical finance applications such as option priciigk
management, and portfolio allocation.

To conclude, we emphasize that price continuity as focuseith this paper is a rather narrow concept and that one
may instead focus on “liquidity” as a more meaningful andghtful measure of market state. It is indisputable that
markets are often subject to tremendous amount of stregsw@iind this rarely leads to a substantial discontinuity in
the price path at a milli-second tick resolution. Insteaatwve do find is severe shocks to liquidity. Figure 12 illatds
this point using USDJPY data over the March 16, 2011 seld@&tussed above. Looking at the price path in Figure 8

we found little evidence of a price jump. Yet, from Panel A iglire 12 we see that the inside spread which normally is
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Figure 12: USDJPY liquidity shock over the March 16, 2011-g#l
Panel A: USDJPY spread Panel B: Regular bid/offer quotes
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Note Panel A reports the inside spread for USDJPY in pips. Pamieai¥'s the “regular” quotes, i.e. the best bid and ask priceldor up

to 50 mio.

around 1 or 2 pips, becomes highly volatile and reachesdémaixcess of 100 pips in the midst of the sell‘ffPanel

B plots the “regular” quote (i.e. the best bid and offer aalgli¢ for a fixed amount of 50 mio) over the same period and
from here it is clear that the book is very sparse over theadbind that the ability to quickly trade out of large posits
was severely impaired. Both these observations highliggit while price continuity was preserved over this episdde o
extreme volatility, liquidity on the other hand severelytat®orated. This is a point also recently emphasized in @Ha

(2010) and we believe it indicates an important avenue furéuresearch.

1t is interesting to note that the spread also turns sukiathnbegative at times. In the OTC FX market (where courdetips need to provide
credit to each other) a negative spread can be observed piitieipant that aggresses the market does not have cgalitsi the counterparties
providing liquidity at the top of book. Over the sell-off \&zal participants were forced to pay for liquidity by hitgideep into the opposite side of
the orderbook reflecting their lack of credit. So in this amste, a large spread of either sign can indicate marketlambe. On a centrally cleared

market one would not expect to see this behavior.

36



References

Ait-Sahalia, Y., 2004, “Disentangling diffusion from jy®,” Journal of Financial Economic§4(3), 487-528.

Ait-Sahalia, Y., and J. Jacod, 2009a, “Analyzing the spectof asset returns: Jump and volatility components in fiighuency
data,” Working paper, Princeton University.

, 2009b, “Estimating the degree of activity of jumps in higaduency dataAnnals of Statistics37(5), 2202—-2244.

, 2009c, “Testing for jumps in a discretely observed progessnals of Statistics37(1), 184—222.

Ait-Sahalia, Y., P. A. Mykland, and L. Zhang, 2005, “How @ftto sample a continuous-time process in the presence d&kemar
microstructure noiseReview of Financial Studie48(2), 351-416.

Andersen, T. G., L. Benzoni, and J. Lund, 2002, “An empiriogestigation of continuous-time equity return modelgurnal of
Finance 57(4), 1239-1284.

Andersen, T. G., T. Bollerslev, and F. X. Diebold, 2007, “Rbing it up: Including jJump components in the measurementeting
and forecasting of return volatilityReview of Economics and Statisti89(4), 701—-720.

, 2010, “Parametric and nonparametric volatility measwetjiin Handbook of Financial Econometriosd. by L. P. Hansen,
and Y. Ait-Sahalia. North-Holland, pp. 67-138.

Andersen, T. G., T. Bollerslev, F. X. Diebold, and P. Laby802, “Modeling and forecasting realized volatilitygconometrica
71(2), 579-625.

Andersen, T. G., T. Bollerslev, and X. Huang, 2011, “A redufimm framework for modeling volatility of speculative pes based
on realized variation measuresdgurnal of Econometrigsl60(1), 176-189.

Andersen, T. G., D. Dobrev, and E. Schaumburg, 2008, “Jurbpstovolatility estimation using nearest neighbour truiocg”’
Working paper, Northwestern University.

, 2010, “Integrated quarticity estimation: Theory and picat implementation,” Working paper, Northwestern Unisigy.
Back, K., 1991, “Asset prices for general processéasiirnal of Mathematical Economic20(4), 371-395.

Bakshi, G. S., C. Cao, and Z. Chen, 1997, “Empirical perfaroeeof alternative option pricing modeldpurnal of Finance52(2),
2003-2049.

Bakshi, G. S., and G. Panayotov, 2010, “First-passage pilitipajump models, and intra-horizon riskJournal of Financial Eco-
nomics 95(1), 20—40.

Ball, C. A., and W. N. Torous, 1983, “A simplified jump procdes common stock returnsJournal of Financial and Quantitative
Analysis 18(1), 53-65.

, 1985, “On jumps in common stock prices and their impact diroggion pricing,” Journal of Finance40(1), 155-173.

Bandi, F. M., and J. R. Russell, 2006, “Separating micrastme noise from volatility,"Journal of Financial Economi¢s79(3),
655—-692.

Barndorff-Nielsen, O. E., S. E. Graversen, J. Jacod, M. B&gdpand N. Shephard, 2006, “A central limit theorem foalized power
and bipower variations of continuous semimartingales,Fiom Stochastic Calculus to Mathematical Finance: The yaigr
Festschriff ed. by Y. Kabanov, R. Lipster, and J. Stoyanov. Springetage pp. 33-68.

Barndorff-Nielsen, O. E., P. R. Hansen, A. Lunde, and N. 8heg 2008, “Designing realised kernels to measure theosk-p
variation of equity prices in the presence of noigggbnometrica76(6), 1481-1536.

, 2009, “Realized kernels in practice: trades and quoEsghometrics Journall2(3), 1-32.

37



Barndorff-Nielsen, O. E., and N. Shephard, 2004, “Power lsipdwer variation with stochastic volatility and jumpggurnal of
Financial Econometrics2(1), 1-48.

, 2006, “Econometrics of testing for jumps in financial ecanes using bipower variationJournal of Financial Economet-
rics, 4(1), 1-30.

——, 2007, “Variation, jumps, market frictions and high freqag data in financial econometrics,” i/dvances in Economics
and Econometrics: Theory and Applications, Ninth World @ess ed. by R. Blundell, P. Torsten, and W. K. Newey. Cambridge
University Press.

Barndorff-Nielsen, O. E., N. Shephard, and M. Winkel, 20Q6mit theorems for multipower variation in the presenceips,”
Stochastic Processes and their Applicatiohk6(5), 796—806.

Bates, D. S., 1996, “Jumps and stochastic volatility: Excjeerate processes implicitin Deutsche Mark optioRgView of Financial
Studies9(1), 69-107.

, 2000, “Post-‘87 crash fears in the S&P500 futures optionketsd Journal of Econometric®94, 181-238.

, 2006, “Maximum likelihood estimation of latent affine pesses,Review of Financial Studie49(3), 909-965.

, 2011, “U.S. stock market crash risk, 1926 - 2010,” Workiager, University of lowa.

Beckers, S., 1981, “A note on estimating the parameterseofiifiusion-jump model of stock returnsjournal of Financial and
Quantitative Analysisl6(1), 127-140.

Black, F., 1976, “Studies of stock market volatility chaagjén Proceedings of the American Statistical Associatiop. 177-181.
Business and Economic Statistics Section.

, 1986, “Noise,"Journal of Finance41(3), 529-543.

Bollerslev, T., U. Kretschmer, C. Pigorsch, and G. Tauct2®@9, “A discrete-time model for daily S&P500 returns andlized
variations: jumps and leverage effectdjurnal of Econometrigsl50(2), 151-166.

Bollerslev, T., T. H. Law, and G. Tauchen, 2008, “Risk, jungusd diversification,Journal of Econometricsl44(1), 234—-256.

Bollerslev, T., and H. Zhou, 2002, “Estimating stochastiatility diffusion using conditional moments of integealt volatility,”
Journal of Econometricsl09(1), 33-65.

Chernov, M., A. R. Gallant, E. Ghysels, and G. Tauchen, 2008&rnative models for stock price dynamicgpurnal of Economet-
rics, 116(1-2), 225-257.

Christensen, K., R. C. A. Oomen, and M. Podolskij, 2010, 1Red quantile-based estimation of the integrated vaagdournal
of Econometrics159(1), 74-98.

Christie, A. A., 1982, “The stochastic behavior of commoaocktvariances: Value, leverage and interest rate effedtsifnal of
Financial Economicsl10(4), 407-432.

Corsi, F., D. Pirino, and R. Reno, 2010, “Threshold bipowasiation and the impact of jumps on volatility forecastingpurnal of
Econometrics159(2), 276-288.

Corsi, F., and R. Reno, 2009, “Volatility determinants: téfegeneity, leverage, and jumps,” Working paper, avéeladt
http://ssrn.com/abstract=1316953.

Cox, J. C., and S. A. Ross, 1976, “The valuation of optionsafternative stochastic processeijurnal of Financial Economigs
3(1-2), 145-166.

Delbaen, F., and W. Schachermayer, 1994, “A general vedfithre fundamental theorem of asset pricifgdthematische Annalen
300, 463-520.

38



Diebold, F. X., and G. H. Strasser, 2008, “On the correlasioncture of microstructure noise in theory and practiééiking paper,
University of Pennsylvania.

Duffie, D., and J. Pan, 2001, “Analytical Value-at-Risk wjitimps and credit risk,Finance and Stochastic§, 155-180.

Duffie, D., J. Pan, and K. J. Singleton, 2000, “Transform gsialand asset pricing for affine jump-diffusionS¢onometrica68(6),
1343-1376.

Easley, D., M. M. L. de Prado, and M. O’'Hara, 2011, “The mitrosture of the flash crash: Flow toxicity, liquidity crashend the
probability of informed trading,Journal of Portfolio Managemen87(2), 118-128.

Eraker, B., 2004, “Do stock prices and volatility jump? Reciting evidence from spot and option pricedjurnal of Finance59(3),
1367-1403.

Eraker, B., M. Johannes, and N. Polson, 2003, “The impactropg in volatility and returnsJournal of Finance58(3), 1269-1300.
Fama, E. F., 1965, “The behavior of stock-market pricésiirnal of Business38(1), 34—105.
Gatheral, J., and R. C. A. Oomen, 2010, “Zero-intelligeradized variance estimatiorffinance and Stochastic$4(2), 249-283.

Gloter, A., and J. Jacod, 2001a, “Diffusions with measumgnagrors. | - local asymptotic normalityESAIM: Probability and
Statistics 5, 225—-242.

, 2001b, “Diffusions with measurement errors. Il - measwgeherrors, ESAIM: Probability and Statisti¢c$, 243—-260.

Hansen, P. R., and A. Lunde, 2006, “Realized variance anlaharicrostructure noiseJournal of Business and Economic Statistics
24(2), 127-161.

Hautsch, N., and M. Podolskij, 2010, “Pre-averaging basgination of quadratic variation in the presence of noisé jamps:
Theory, implementation, and empirical evidence,” Workipagper, Humboldt-Universitat zu Berlin.

Huang, X., and G. Tauchen, 2005, “The relative contributbjumps to total price varianceJournal of Financial Econometri¢s
3(4), 456-499.

Jacod, J., 2008, “Statistics and high frequency data,”ureatotes.

Jacod, J., Y. Li, P. A. Mykland, M. Podolskij, and M. VetteQ@®, “Microstructure noise in the continuous case: Thegueraging
approach,'Stochastic Processes and their Applicatiohk9(7), 2249-2276.

Jacod, J., M. Podolskij, and M. Vetter, 2010, “Limit theorefar moving averages of discretized processes plus ndlsmals of
Statistics 38(3), 1478-1545.

Jarrow, R. A., and E. R. Rosenfeld, 1984, “Jump risks andrttextemporal capital asset pricing moddiurnal of Busines$7(3),
337-351.

Jiang, G. J., and R. C. A. Oomen, 2007, “Estimating lateritbées and jump diffusion models using high-frequency dataurnal
of Financial Econometrigs(1), 1-30.

Johannes, M., 2004, “The statistical and economic rolemfjsiin continuous-time interest rate modelgurnal of Finance59(1),
227-260.

Jorion, P., 1988, “On jump processes in the foreign exchandestock marketsReview of Financial Studie&(4), 427—-445.
Kalnina, 1., 2011, “Subsampling high frequency datltrnal of Econometricsl61(2), 262—283.

Kirilenko, A. A., A. S. Kyle, M. Samadi, and T. Tuzun, 2011,i& flash crash: The impact of high frequency trading on arireleic
market,” Working paper, available at ssrn.com/abstra@86004.

39



Liu, J., F. Longstaff, and J. Pan, 2003, “Dynamic asset atioo with event risk,Journal of Finance58(1), 231-259.

Maheu, J. M., and T. H. McCurdy, 2004, “News arrival, jump dymics, and volatility components for individual stock meis;’
Journal of Finance59(2), 755-793.

Mancini, C., 2004, “Estimation of the characteristics ahjuof a general Poisson-diffusion mode3£andinavian Actuarial Journal
2004(1), 42-52.

, 2009, “Non parametric threshold estimation for modelshvgitochastic diffusion coefficient and jump&tandinavian
Journal of Statistics36(2), 270—296.

Mandelbrot, B. B., 1963, “The variation of certain specukaprices,”Journal of Business36(4), 394—419.

Merton, R. C., 1976, “Option pricing when underlying sto@turns are discontinuousJournal of Financial Economi¢s3(1-2),
125-144.

Mykland, P. A., N. Shephard, and K. Sheppard, 2010, “Ecoriomanalysis of financial jumps using efficient bipower aion,”
Working paper, Oxford-Man Institute, University of Oxford

Niederhoffer, V., and M. F. M. Osborne, 1966, “Market makiagd reversal on the stock exchangdjurnal of the American
Statistical Associatior61(316), 897-916.

O’Hara, M., 2010, “What is a quote?Journal of Trading 5(2), 10-16.

Oomen, R. C. A, 2006, “Comment on 2005 JBES invited addrRsslized variance and market microstructure noise” byrfete
Hansen and Asger Lundelournal of Business and Economic Statist@®4(2), 195 — 202.

Pan, J., 2002, “The jump-risk premia implicit in options: iEence from an integrated time-series studjgurnal of Financial
Economics63(1), 3-50.

Patton, A. J., and K. Sheppard, 2011, “Good volatility, bathtility: Signed jumps and the persistence of volatiliforking paper,
Duke University.

Podolskij, M., and M. Vetter, 2009a, “Bipower-type estiinatin a noisy diffusion setting,Stochastic Processes and their Applica-
tions 119(9), 2803—-2831.

, 2009b, “Estimation of volatility functionals in the sintaheous presence of microstructure noise and juneshoulli,
15(3), 634-658.

Press, S. J., 1967, “A compound events model for securitgpfiJournal of Busines210(3), 317-335.
Protter, P. E., 20045tochastic Integration and Differential Equatioi@pringer-Verlag, 1 edn.

Roll, R., 1984, “A simple implicit measure of the effectivieliask spread in an efficient markedpurnal of Finance39(4), 1127—
1139.

Tauchen, G., and H. Zhou, 2011, “Realized jumps on financakets and predicting credit spread3gdurnal of Econometrigs
160(1), 102-118.

Todorov, V., 2009, “Estimation of continuous-time stodi@solatility models with jumps using high-frequency dataournal of
Econometrics148(2), 131-148.

Zhang, L., 2006, “Efficient estimation of stochastic vdigtiusing noisy observations: A multi-scale approaddernoulli, 12(6),
1019-1043.

Zhang, L., P. A. Mykland, and Y. Ait-Sahalia, 2005, “A taleteo time scales: determining integrated volatility withisy high-
frequency data,Journal of the American Statistical Associatjd®0(472), 1394-1411.

Zhou, B., 1996, “High-frequency data and volatility in f@ye-exchange ratesJournal of Business and Economic Statistib4(1),
45-52,

40



A Finite sample bias in bipower variation

In a simple model, it is possible to work out an approximatpregsion for the finite sample bias in the BV defined by

Eq. (7) in the main text in the paper. To this end, considemnibdel
t
Xt :/ O'SdWS,
0
whereo 1L . Moreover, we assume that the variance proeéss bounded away from 0 and has the form
t t
O‘t2 = ag —1—/ nsds—l—/ vsdBy,
0 0
whereB is another Brownian motion witfs 11 1/, Let
R
BYNIX] = 5 ) IAL XIIATX].
i=2

Here, we initially leave out the correctiol/(N — 1) used to define BV in the main text. We add it back later.

Then, the conditional bias @V [X] is given as

1 N—1 ﬁ 1/2 i]+\r1 1/2 % 1
(osin e E{([y) ()" fyo) [
0 im1 i—1 KA i—1 N—1

N

To simplify notation, we defing (xz) = /= and set

¥ o,

a; =N o;ds.
i—1
N

E (BVN[X] -/ o%ds) a) - <aN+ S Fa)(Fass) f(cu)))-

By Burkholder’s inequality, we get

Hence,

E(|aiy1 — a;]?) < ONP/2

for anyp > 0. Thus,

1 N-1 aey
FE <BVN[X] —/0 Ugds | O‘) = %(CZN + Z f(ai){f/(ai)(ai—i-l — az-) + f (2 Z)(ai+1 — ai)2}> —|—0p(N_1).

Note thatf’(z) = Sz~ /2 and f”(z) = —12~3/2. Using this, we deduce that

1N1 1 1,

2 fla J(aip1 —a;) = 2N(CLN —ay) = W(Ul —05) + op(N 7).
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On the other hand,

(@it1 — =—— -
_ i+1 N 8 ai

Becauser? is a continuous semlmartmgale, a standard approxmaubense yields

i+1

N—-1 0?2 i+l i
15 1a2+1_a2 - _N %UZN1</NBSds—/N
] ; K i—1

2
Bsds> +o0p(N7Y).

N 2
N i=1 8 i i=1 U’i;\,l N N
Moreover, as
it1 i 2
N N 2
E( . BSdS — /z‘l Bst ) = m,
N N
we conclude that Vo
11 (air1 — a;)? 11 /1 v? .
- — = —— —=d N7,
N8 N1z Jy o2 TN

Putting everything together, we find that

! 2 1 1 1”? 1, 5 2 -1
E BVN[X]— o O'st’O' :—N E 0_2d +2(01+00) +0p(N )

Now, applying the finite sample correctia¥i/(N — 1) cancels out the effect of the “missing” summand and adds an

additionalfo1 o2ds/N term to the conditional bias:

Jof QEEA [X]—/1 2ds | S 1/1”§d +1(2+ 2)—/1 2ds ) + 0,(N 1)

Note that this expression is not negative in general, buittigasign and magnitude of the dependence are unaffected

by the adjustment. Finally, taking unconditional expdotat and assuming that is a stationary process, we find that

N 1 1 1 (12
E | ——BVy[X] - 2ds )| =——FE(— | =d N,
(N—l VilA] /008 3) N (12/0 o2 3>+°( )

This is the expression given in the main text, which is negatp to terms of ordes(N ~1).

B The explicit form of X*

In the main text, we proposed a consistent estimator of thepttic covariance matrix appearing in Propositiorti,

without giving the exact form of*. Here, a formula for it is provided. We sét: R? — R, i = 1,2, equal to

T T
filw) = a2, fal) = 1'}2 2l
Then, forx € R,u € [0,1] andl = —1, ..., 2, we define
FY = cov(fi(S), f;(T)  1<ij<2,

whereS = (51, S2), T = (T1,T»)" are centered and jointly normal with
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(i) S;LS;, T; LT foralli# j.
(i) var(S;) = var(T;) = 0z + “Lw? for all 4.
(iii) cov(Siti—1,T;) = Owy(u)z* 4+ $wy (u)w? for all 4.
(iv) cov(Siy, T;) = Owy(1 — u)z? + fwy (1 — u)w? for alli.
(v) cov(S;,T;) =0forall |i +1—j—1| > 1.

Here, the functionu,(u) is given by

1—u
wg (u) :/0 9 () g (y+u)dy.

¥ = / / Fj 5, »dsdu.
91/;2[ basu

C The definition of QRV in the absence of noise

Finally, we get that

As a starter, we should note that the QRV can be defined orr eétiveor absolute returns, see Christensen, Oomen, and
Podolskij (2010) for details. In this paper, we base the QRMlosolute returns, which fits nicely into the extant literat
on realised variation.
Let
DY = (AYY)

i<k<i+m-—1’

for i > 1. Moreover, we define the quantile functign: R™ — R such that

gk (T) = 21y,

wherex ;) is thekth order statistic ok = (z1,...,z.,).

Then, the (subsampled) QRV based on absolute returns iedefm
QRVN[Y] = /QRVy(m, N,

whereX = (A1,..., \x) with \; € [0,1) is a vector of quantiles);m is a natural number for all, o = («ay, ..., ax)

with o; > 0 andZé‘?:l o = 1 are quantile weights, and théh element of) RV (m, A) is given by:

QRViy(m, ;) = Nlmz
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forj=1,...,k, where

q,-(m,A)zgim(\/N\Diva\) and Vr(m,)\):E[OU\(/\m))%]

D Appendix of proofs

Proof of Proposition 2 Here, we only show the convergence in probability of thamnbri)’{l. The consistency of the
other matrix entriesfc’{2 and 2;2) can be proved in exactly the same way. Also, in this part efdioof, we assume that
the processX is continuous. Later, we add jumps back and show that thé isnainchanged.

It should be spelled out that, X is continuous,
1
RVE[Y] - /O o2ds = 0,(N~1/4),
see Proposition 1. Hence, it implies thj%]tagds can be replaced bV [Y] in the definition ofi{l without affecting
its limit.
As a first step, we note that due to a standard localizatidmiqae, we can assume that the processasdo are

bounded. Moreover, as has been shown in Jacod, Li, MyklaodhIBkij, and Vetter (2009), the following approximations

hold (uniformly inm):

d [(N/L=m+1)/d] /L—K - WK
RV]Tf,m[Y] Z <Z |U(m*1%d)LVViN + Z_‘£\7|2> — W’ + op(1),

~Kuf =0 i=0 WW
1 , dL [(N/L—m+1)/d] ,
/0 o ds = ~ ; Tt + 0p(1).
Setting
L-K )
Xj'\,[m = ; ‘Uwfl]jjd)L W +a |,
we deduce that
. 1 ) [(N/L—m+1)/d] N N
RVy mlY] —/0 oids = i 2. Xjim — E[Xj’m|]:(m71;jd)L]) + 0p(1).

This yields the decomposition
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with

d_[(N/L—m+1)/d]

[ 2
= K23 2 2 (Xé'vvm B E[Xfm|fm]) ;
2 m=1 7=0 N

oN1/2 &
Bo= e >0 > (6 = Bl Feominan]) (6 = B il Fenoriznr ).
2 N N
By relying on the results of Jacod, Li, Mykland, Podolskipdavetter (2009), we already know that
V, 5y,

Thus, all that is left to prove is that,, 0.
We start by noting that the summands in the definitiorRgfare mutually uncorrelated for ath, j1, jo. Moreover,

the termsy® | — E[x;)

le,m’f(mflledﬂ'] andxg,m - E[ N

Xy m|Fm-114,az | are also uncorrelated fgy # jo. Appealing
’ N

again to Jacod, Li, Mykland, Podolskij, and Vetter (2008halds that
C
HO-(’HL 1+Jd)LW +u ‘ ] N,
if E(u*) < occ. Inaddition, the term& (150 WA + 4l | and|o on14,00 W 4@l |* are uncorrelated fdi; —iz| >
N N

K, which taken together implies that

KL
E[’Xfm‘z] < N

for all m andj. Finally, some straightforward calculations show that

2 2 N
var(Ry) K41/}4 Z Z (X]L [le m | F (n=1+5) a)1 1ﬂld)L]> E<X§\2[,m o E[ngmu:i(m*l;j?d”‘]) S CW'
m=1j17j2

As K = O(v/N) andd — oo, we thus find that
R, 50,

which completes the proof of Proposition 2 fis continuous.
To finish the proof, we now consider the general case, wAepmssesses finite-activity jumps. In this situation, the
subsampled estimatoBVﬁ,m[Y] are affected by jumps only for finitely many’s (due to finite-activity of the jump

part). From Jacod, Podolskij, and Vetter (2010), it follctvat

1
RVilY] - [ atds = 0,(0)
0
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if RVX,M[Y] is affected by jumps for a givem. Thus, we conclude that

N1/4 . 1 ?
(W (RVN,m[Z]—/O 03d8>> + Op(VN /),

whereZ = X° + u and X ¢ denotes the continuous part&f Butv/N /d?> — 0, and so we are done. [ ]

Proof of Proposition 3 To show that the results of Proposition 1 are robust to thegmee of outliers, as we model it by
Eqg. (30), we first recall that the definition in Eq. (31) imglithat there are only finitely man$s such thatO; , # 0.
Here, we confine attention to proving the outlier robustraése RV, Y] estimator. The robustness property2i Y]
can be proved using almost identical tools.

Thus, recall that

N-—K+1
N

N
N — K+2K¢K Z:: Y- 92% Ve

RVy[Y] =
where
e = Z AN Y ANY.
To show thatv? is robust to outliersdgZ can be replaced by the estimatig, defined in the main text without altering

the validity of the proof), we note that

N
1
(Z)%C = —mZAi\LIUAivU‘FOp(N_l)
i=2

So, in particularw;c is robust to the presence of finite-activity outliers. In thext step, we know that with probability
converging to one any interval of the forfiY N, (i + K')/N] contains at most a single outlier. Moreover, by expressing

YZN via an identity using log-prices, it follows that

-3 o(55) o) e

where itis used thaj(0) = g(1) = 0. Hence, an outlieO,,y in [i/N, (i + K)/N] induces a bias of the forr{y(%) -

g(l_;{‘”)} O,/ and, as there are finitely many outliers, o6lyK') of the pre-averaging returﬁ_sN are affected by these.
Thus, by putting the parts together, we conclude that

N N-K+1 N 1 N—-K+1
VN2 ZNP?+o
N — K+2K¢K Z_: Yol =5 K +2 Ky¥ Z_: 127 + Op( KT,

whereZ = X + u. Thus, the law of large numbers and CLT #8¥/y; are robust to the presence of outliers. |

46



Proof of Theorem 1 We are dealing with finitely many jumps and outliers in theagdaind they never appear together,
becauseéV’ 1L N©. Thus, with probability approaching one, we observe at raashgle jump or outlier (and not both)
on any interval of the fornii /N, (i + m)/N] with m fixed.

Take QRVy[Y] first. If a jump appears on some interyalN, (i + m)/N], it affects one return o¥", which will
asymptotically dominate all other returns (in absoluteugglon[i/N, (i + m)/N], because the rest originate from the
continuous part of. Meanwhile, if an outlier appears on the interi@lV, (i +m)/N], it affects two consecutive returns
of Y, and they again asymptotically dominate all other retumg AV, (i +m)/N|. The conditionmax(\;) <1 —1/m
then ensures that those dominating terms are not takendotmat, when computing th@ RV [Y], i.e. this estimator is

robust to the presence of jumps and outliers:
1
QRVy[Y] S / o2ds.
0

Next, BVy[Y] is well-known to be robust against jumps (Barndorff-Nielsnd Shephard, 2004). To figure out the
influence of outliers on this estimator, we decompile it ivt@ components
By = 2L AN YIANY AN YIANY
N ]_N—l/ﬂ Z’ 1 Y|4 H‘Z’ 1Y |[AY]

i€BN i€BS,

with By = {i | O;/y # 0}. It readily follows that
1 1 Nlo
BVy[Y] 5 / o2ds + = > st
0 i=1

Last but not least, we decompoB&/y Y] into three parts

RVn[Y]= Y ANYP+ > ANYP+ > (ANYP,

’iE(ANUBN)C iEAN iEBN
whereAy = {i | X jumps on[(i —1)/N,i/N]} andBy = {i | Oj_1y,n # 0 0r O;/x # 0}. Note that the setd y and
By are asymptotically disjoint, a7 1. N©. Again, this readily implies that

1 Ny Ny
RVy[Y] & / olds+ Y TP +2) S
0 i=1 i=1
and the proof is complete. |

Proof of Theorem 2 The stable CLT fof RVy[Y], BVy[Y]) has been shown in Barndorff-Nielsen, Graversen, Jacod,
Podolskij, and Shephard (2006), while the correspondisgltdéor Q RV [Y'] has been proved in Christensen, Oomen,
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and Podolskij (2010). Here, we show a joint CLT for the ve¢®Bi/y Y], BVy[Y], QRVN[Y]) via Theorem 7.1 from
Jacod (2008).

We define
N

i—1
wheref = (fi1, f2, f3) : R™ — R3 is given by

fl(l’) = 1'2 f ( ) — "Tlezl fg(l') — |m|%m)\)
" Nz ’ Vl(m,)\)

with z = (x1,...,2,,). Then, for anyy € R, we set
py(f) = E[f(yUs,...,yUn)] €R®,  (Uy,...,Up) ~ Npu(0, Iy,).

This gives us the identity

RVN[Y] — [ o%ds

V| iy - et | = (x vy - [ 1 pr (05 )

QRVN[Y] — [, o2ds

Applying Theorem 7.1 in Jacod (2008), we deduce that
N/ (N—1V<f>N - /0 1 pos<f>ds> % MN <0, /0 1 Ros(f)d8>,

whereR,(f) = (RI*(f))1<jx<s is defined by
. m—1
Rg/k(f) = Z E[f] (yUrm cee 7yU2m—1)fk(yUl+m7 cee 7yUl+2m—1)]
l=—m+1

- (2m - 1)E[fj(yU1> . >yUm)]E[fk(yUla . ,yUm)],

where(U;)1<;<m are i.i.d. N(0,1).2° Finally, a simple computation shows that

1 1
/ R, (f)ds = / olds x %,
0 0

where the matrix_ is given in Theorem 2. This completes the proof. |

Bstrictly speaking, Theorem 7.1 in Jacod (2008) cannot béeapgirectly, because the functiorfs and f3 are not everywhere differentiable.
However, the problem of non-differentiability was solvedBarndorff-Nielsen, Graversen, Jacod, Podolskij, ancpBael (2006) for the function
f2 and in Christensen, Oomen, and Podolskij (2010) for thetfang's.
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