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Abstract

We analyze and compare the properties of various methods for bias-correcting pa-
rameter estimates in vector autoregressions. First, we show that two analytical
bias formulas from the existing literature are in fact identical. Next, based on a
detailed simulation study, we show that this simple and easy-to-use analytical bias
formula compares very favorably to the more standard but also more computer in-
tensive bootstrap bias-correction method, both in terms of bias and mean squared
error. Both methods yield a notable improvement over both OLS and a recently
proposed WLS estimator. We also investigate the properties of an iterative scheme
when applying the analytical bias formula, and we �nd that this can imply slightly
better �nite-sample properties for very small sample sizes while for larger sample
sizes there is no gain by iterating. Finally, we also pay special attention to the
risk of pushing an otherwise stationary model into the non-stationary region of the
parameter space during the process of correcting for bias.
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1 Introduction

It is well-known that standard ordinary least squares (OLS) estimates of autoregressive

parameters are biased in �nite samples. Such biases may have important implications

for models in which estimated autoregressive parameters serve as input, e.g. in forecast-

ing experiments or in hypothesis testing. For example, small sample bias may severely

distort statistical inference (Bekaert et al., 1997), estimation of impulse response func-

tions (Kilian, 1998; Patterson, 2000), estimation of optimal portfolio choices in dynamic

asset allocation models (Engsted and Pedersen, 2010), and estimation of dynamic term

structure models (Bauer et al., 2011).

Simple analytical formulas for bias-correction in univariate autoregressive models are

given in Marriott and Pope (1954), Kendall (1954), White (1961), and Shaman and Stine

(1988). In particular the bias in the simple univariate AR(1) model has been analyzed in

many papers over the years using both analytical expressions, numerical computations,

and simulations, e.g. Orcutt and Winokur (1969), Sawa (1978), MacKinnon and Smith

(1998), and Bao and Ullah (2007). In a multivariate context analytical expressions for

the �nite-sample bias in estimated vector-autoregressive models have been developed

by Tjøstheim and Paulsen (1983), Yamamoto and Kunitomo (1984), Nicholls and Pope

(1988), Pope (1990), and Bao and Ullah (2007). However, there are no detailed analyses

of the properties of these multivariate analytical bias formulas.

Vector autoregressive (VAR) models are used extensively in empirical research within

economics and �nance. Surprisingly, however, the �nite-sample bias of estimated VAR

models and its implications have been largely ignored in the empirical literature, although

some recent studies in empirical �nance explicitly correct for bias in estimated VAR

parameters, either using Monte Carlo or bootstrap methods (e.g. Bekaert et al., 1997;

Kilian, 1998; Engsted and Tanggaard, 2001; Bauer et al., 2011), or using analytical

bias expressions (e.g. Amihud and Hurvich, 2004; Engsted and Tanggaard, 2004, 2007;

Amihud et al., 2009; Engsted and Pedersen, 2010).

As noted above, in the multivariate setting an open question is what the properties

of the various bias-adjustment methods are and how the di¤erent methods compare to

each other. Should one use bootstrap methods to adjust for bias, or should one use the

available analytical bias formulas? Although the analytical bias expressions are easy and

straightforward to implement, while the bootstrap methods often are computer intensive

and involve many technicalities and subtleties (c.f. e.g. Davison and Hinckley, 1997, and

Horowitz, 2001), most studies that conduct bias-adjustment in multivariate models resort
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to bootstrap or other simulation based methods. If bias-adjustment using the analytical

formulas has better or equally good properties compared to the more computer intensive

bootstrap bias-adjustment methods, this gives a strong rationale for using the analytical

formulas rather than bootstrapping.

In the present paper we investigate these and related questions. First, we show that

the analytical bias expressions developed (apparently independently) by Yamamoto and

Kunitomo (1984) one the one hand and Nicholls and Pope (1988) and Pope (1990) on

the other hand, are identical. To our knowledge this equivalence has not been noticed in

the existing literature.1

Second, we investigate - through a simulation experiment - the properties of the ana-

lytical bias formula and we compare these properties with the properties of both standard

OLS, Monte Carlo/bootstrap generated bias-adjusted estimates, and the weighted least

squares (WLS) approximate restricted likelihood estimator recently developed by Chen

and Deo (2010) which should have reduced bias compared to standard least squares. We

investigate both bias and mean squared error of these estimators. Since in general the

bias depends on the true unknown parameter values, correcting for bias is not necessar-

ily desirable because it may increase the variance, thus leading to higher mean squared

errors compared to uncorrected estimates, c.f. e.g. MacKinnon and Smith (1998).

Third, when looking at the analytical bias formula and the WLS estimator, we inves-

tigate both a simple one-step �plug-in�approach where the initial least squares estimates

are used in place of the true unknown values to obtain the bias-adjusted estimates, and a

more elaborate multi-step iterative scheme where we repeatedly substitute bias-adjusted

estimates into the bias formulas until convergence.

Fourth, we address the often encountered problem of obtaining non-stationary roots

when doing bias-adjustment in nearly non-stationary systems. In many empirical ap-

plications the variables involved are highly persistent which may lead to both the least

squares and the bias-adjusted VAR parameter matrix containing unit or explosive roots.

Kilian (1998) proposes a very simple method for eliminating non-stationary roots when

bias-adjusting VAR parameter estimates. To secure stationary roots in the �rst step

an often used alternative to OLS is the Yule-Walker estimator which is guaranteed to

deliver stationary roots. We investigate the �nite-sample properties of the Yule-Walker

1As noted by Pope (1990), the expression for the bias of the least squares estimator in Nicholls and
Pope (1988) and Pope (1990) is equivalent to the bias expression in Tjøstheim and Paulsen (1983).
Neither Pope nor Tjøstheim and Paulsen refer to Yamamoto and Kunitomo (1984) who, on the other
hand, do not refer to Tjøstheim and Paulsen (1983).
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estimator and we compare it to OLS both with and without bias correction. We also

investigate how the use of Kilian�s approach a¤ect the �nite-sample properties of the

bias-correction methods.

Finally, we analyze the �nite-sample properties of bias-correction methods (both

bootstrap and analytical methods) in the presence of skewed and fat-tailed data, and

we compare a parametric bootstrap procedure, based on a normal distribution, with a

residual-based bootstrap procedure when in fact data are non-normal. Among other

things, this analysis will shed light on the often used practice in empirical studies of im-

posing a normal distribution when generating bootstrap samples from parameter values

estimated on non-normal data samples.

The main results of our simulation study are as follows. First, we �nd that analytical

and bootstrap bias-correction yield a very large reduction in bias compared to both

OLS and the WLS estimator. In some cases the variance of the bias-adjusted estimates

are larger than the variance of the OLS estimates, but due to the large reduction in

bias the mean squared errors of the bias-adjusted estimates are always smaller than the

mean squared errors of the OLS estimates. Second, the properties in terms of bias and

variance of the analytical and bootstrap methods are very similar. Third, the iterative

scheme when applying the analytical bias formula results in a minor improvement over the

simple one-step �plug-in�approach for very small sample sizes, but for larger sample sizes

there is no gain by iterating. These results suggest that when bias-adjusting parameter

estimates in vector autoregressive systems, a simple one-step procedure based on an easy-

to-use analytical formula, performs just as well as the more computer intensive bootstrap

procedure. Finally, in the presence of skewed and fat-tailed data we �nd that analytical

and bootstrap bias-correction continue to perform equally well, and they both continue

to dominate OLS and WLS. Somewhat surprisingly, however, there is no evidence that

the bootstrap procedure based on the non-normal residuals performs better than the

parametric bootstrap based on the normal distribution.

The rest of the paper is organized as follows. In the next section we present the

various bias-correction methods, based on either a bootstrap procedure or analytical

bias formulas, and the reduced-bias WLS estimator. Section 3 reports the results of

the simulation study where we analyze and compare the properties of the di¤erent bias-

correction methods. Section 4 contains some concluding remarks. The appendix contains

a proof that two analytical bias formulas from the literature are identical.
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2 Bias correction in a VAR model

In this section we discuss ways to correct for the bias of least squares estimates of VAR

parameters. For simplicity we only consider the VAR(1) model

Yt = � + �Yt�1 + ut; t = 1; :::; T (1)

where Yt and ut are k�1 vectors consisting of the dependent variable and the innovations,
respectively. � is a k� 1 vector of intercepts and � is a k� k matrix of slope coe¢ cients.
The covariance matrix of the innovations is given by the k� k matrix 
u. Alternatively,
if the intercept is of no special interest the VAR(1) model can be formulated in a mean-

corrected version as

Xt = �Xt�1 + ut; t = 1; :::; T (2)

where Xt = Yt � � with � = (Ik � �)�1 �. The focus on VAR(1) models is without loss
of generality since higher-order models can be stated in �rst-order form by using the

companion form.

Usually, in applied econometrics bias-adjustment is done using computer-intensive

Monte Carlo or bootstrap procedures. The general procedure in bias-adjusting the OLS

estimate of � can be summarized as follows: Estimate the VAR model (2) using OLS.

Denote this estimate b�. Denote by b�� an estimate of � based on a bootstrap sample of
size T . Furthermore, denote by � = E�(b��) the expectation under the distribution for
�� (conditional on b�). This expectation can be calculated with arbitrary precision by
taking the average of b�� acrossM bootstrap samples (each of size T ). Then, BBT = �� b�
is an estimate of the bias term, b�� �. Accordingly, 2b�� � is a bias-adjusted estimate
of �.2

As an alternative to bootstrapping there also exist analytical bias formulas which

provide an easy and simple approach to bias-adjustment in VAR models. Yamamoto and

Kunitomo (1984) derive analytical expressions for the bias of the least squares estimator

in VAR models. Based on (1), Yamamoto and Kunitomo derive the following expression

for the asymptotic bias of the OLS estimator of the slope coe¢ cient matrix �

BY KT = �b
Y K

T
+O

�
T�3=2

�
; (3)

2If the intercept is of special interest a similar procedure can be applied to the VAR model (1).
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where

bY K = 
u

1X
i=0

h
(�0)

i
+ (�0)

i
tr
�
�i+1

�
+ (�0)

2i+1
i " 1X

j=0

�j
u (�
0)
j

#�1
: (4)

Yamamoto and Kunitomo also show that the asymptotic bias of the OLS estimator of

the intercept � follows by post-multiplying bY K by � (Ik � �)�1 �.

The bias expression is derived under the assumption that the innovations are inde-

pendent and identically distributed with covariance matrix 
u, and that the VAR system

is stationary such that � does not contain unit or explosive roots. A few additional as-

sumptions are required (see Yamamoto and Kunitomo, 1984, for details), and it can be

noted that a su¢ cient but not necessary condition for these assumptions to be satis�ed

is Gaussian innovations. The �nite-sample error in the bias formula vanishes at the rate

T�3=2 which is at least as fast as in standard Monte Carlo or bootstrap bias-adjustment.

Yamamoto and Kunitomo also derive the asymptotic bias of the slope coe¢ cient

matrix in the special case where � = 0:

bY K�=0 = 
u

1X
i=0

h
(�0)

i
tr
�
�i+1

�
+ (�0)

2i+1
i " 1X

j=0

�j
u (�
0)
j

#�1
: (5)

Compared to the case with intercept, the term (�0)i is no longer included in the �rst

summation. This illustrates the general point that the bias of slope coe¢ cients in au-

toregressive models is smaller in models without intercept than in models with intercept,

see e.g. Shaman and Stine (1988) for the univariate case. In a univariate autoregressive

model the above bias expressions can by simpli�ed. For example, in an AR(1) model,

yt = � + �yt�1 + "t, the bias of the OLS estimator of � is given by � (1 + 3�) =T which
is consistent with the well-known expression by Kendall (1954). If � = 0 the bias of

the OLS estimator of � is given by �2�=T which is consistent with the work by White
(1961).

Also based on the VAR model (2), but with Xt measured as Yt in deviation from its

sample mean b�, Pope (1990) derives the following analytical bias formula for the OLS
estimator of the slope coe¢ cient matrix �

BPT = �
bP

T
+O

�
T�3=2

�
; (6)
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where

bP = 
u

"
(Ik � �0)�1 + �0

�
Ik � (�0)2

��1
+

kX
i=1

�i (Ik � �i�0)�1
#

�1x : (7)

�i denotes the i�th eigenvalue of � and 
x is the covariance matrix of Xt. Pope obtains

this expression by using a higher-order Taylor expansion and, as seen, the approximation

error in the bias formula vanishes at the rate T�3=2, which is of the same magnitude

as the �nite-sample error in Yamamoto and Kunitomo�s asymptotic bias formula. The

underlying assumptions are quite mild (see Pope, 1990, for details). Among the assump-

tions are that the VAR system is stationary, and that the VAR innovations ut constitute

a martingale di¤erence sequence with constant covariance matrix 
u. The expression

does not, however, require Gaussian innovations.3

By comparing the two expressions (4) and (7) we see that they appear very similar

and, in fact, they turn out to be identical. We show this formally in the appendix. In

applying (4), Yamamoto and Kunitomo (1984) suggest to truncate the in�nite sums by

taking the summation from 0 to T , based on the argument that the remaining terms are

of the order o (T�1). However, due to the equivalence of (4) and (7) there is no need to

apply (4) with such a truncation. In practice the formula in (7) should be used.

In contrast to Yamamoto and Kunitomo, Pope does not consider the bias in the

estimated intercepts b�. Engsted and Pedersen (2010) suggest the following approach
to obtain a bias-adjusted intercept: The unconditional sample arithmetic average of a

stationary variable is an unbiased estimate of its true mean, and standard OLS �ts the

mean of the variables in the VAR excluding the �rst observation. Thus, by �tting the

VAR under the restriction that the unconditional means of the variables implied by the

VAR coe¢ cients estimates are equal to their full-sample arithmetic counterparts, and by

bias-adjusting the OLS estimator of �, it is also possible to obtain bias-adjusted estimates

of the intercept �. Naturally, using Yamamoto and Kunitomo�s bias expression for b� is a
more straightforward way of bias-correcting the intercepts.

The bias formulas above hold for the true values of the VAR parameters and hence

in applying them we need to use estimates of � and � (and 
u and 
x) in place of

the unknown true values. The standard approach in the literature on bias-correction

is to use the biased OLS estimates. This is the approach used by e.g. Engsted and

3In earlier work, Nicholls and Pope (1988) derive the same expression for the least squares bias in
Gaussian VAR models, and Pope (1990) basically shows that this expression also applies to a general
VAR model without the restriction of Gaussian innovations.
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Pedersen (2010), while Amihud and Hurvich (2004) and Amihud et al. (2009) apply a

more elaborate iterative scheme in which bias-adjusted estimates of � are recursively

inserted in the bias formula. In the simulation study we examine both the simple �plug-

in�approach and whether an iterative procedure yields an improvement to this. A more

detailed explanation of the di¤erent approaches follows in the next section.

As an alternative to estimating the VAR model using OLS and subsequently correct

for bias using the procedures outlined above, it is also possible to use a di¤erent estimation

method that has better bias properties than OLS. In recent work, Chen and Deo (2010)

propose a weighted least squares approximate restricted likelihood estimator of the slope

coe¢ cient matrix in a VAR(p) model with intercept, which has a smaller bias than OLS.

In fact, they show that this estimator has bias properties similar to that of the OLS

estimator without intercept. The estimator for a VAR(1) model is given as

vec (�WLS) =

"
TX
t=2

LtL
0
t 
 
�1u + UU 0 
 
�1=2u (Ik +D

0
uD)
�1

�1=2u

#�1

� vec
"

�1u

TX
t=2

�
Yt � Y (1)

�
L0t + 


�1=2
u (Ik +D

0
uD)
�1

�1=2u RU 0

#
; (8)

where L0t = Yt�1�Y (0); U 0 = (T � 1)
�1=2PT

t=2 (Yt�1 � Y1)
0 ; R = (T � 1)�1=2

PT
t=2 (Yt � Y1) ;

D0 = (T � 1)1=2 (Ik � �)0
�1=2u ; Y (0) = (T � 1)�1
PT

t=2 Yt�1; and Y (1) = (T � 1)
�1PT

t=2 Yt.


u and � are unknown but Chen and Deo suggest to estimate these using any con-

sistent estimator such as OLS, and then use these consistent estimates instead. In the

next section the properties of (8) will be analyzed in a simulation experiment along

with (7), and their properties will be compared to the properties of OLS and bootstrap

bias-adjusted estimates.

3 Simulation study

In this section we present the results of the simulation study. In section 3.1 we simulate

from two di¤erent bivariate VAR systems. The �rst system is identical to one of the

systems used by Amihud and Hurvich (2004) and Amihud et al. (2009). The second

system is an estimated VAR model for log returns and the log dividend-price ratio from

the US stock market. For both systems we assume that the residuals follow a multivariate

normal distribution. In this sub-section we only consider the simple one-step �plug-in�
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procedure based on the OLS estimates when applying the analytical bias formula. In

section 3.2 we consider a more elaborate iterative scheme. In section 3.3 we address

the problems of obtaining unit or explosive roots when bias-adjusting parameters in a

nearly non-stationary VAR system. Secton 3.4 reports the results of drawing data from

a skewed and fat-tailed distribution instead of from the normal distribution.

3.1 Analytical bias formulas or bootstrapping?

In this section we compare the �nite-sample properties of the analytical bias formula

(7) to those of bootstrapping. We also report results for OLS and the WLS estimator

(8). We perform 10,000 simulations for a number of di¤erent VAR(1) models and for a

number of di¤erent sample sizes. In each simulation we draw the inital value of the series

from a multivariate normal distribution with mean (Ik � �)�1 � and covariance matrix
vec(
x) = (Ik�k � � 
 �)�1vec(
u). Likewise, the innovations are drawn randomly
from a multivariate normal distribution with mean 0 and covariance matrix 
u. Based

on the starting value and innovations we simulate the series forward in time until we

have a sample of size T . For each simulation we estimate a VAR(1) model using OLS

and WLS. Furthermore, we correct the OLS estimate for bias using the analytical bias

formula (7) (denoted ABF) and using a bootstrap procedure (denoted BOOT). Based on

the 10,000 simulations we calculate the mean slope coe¢ cients, bias, variance, and root

mean squared error for each approach.

The bootstrap procedure follows the outline presented in the previous section. The

innovations are drawn randomly with replacement from the normally distributed residu-

als, and we also randomly draw a starting value from the simulated data. This procedure

is repeated 1,000 times for each simulation.4 Regarding the analytical bias formula and

WLS, which in practice require estimates of � and 
u, we in this section simply use the

OLS estimate. In the analytical bias formula (7) we calculate the covariance matrix of

Xt as vec(b
x) = (Ik�k � b�
 b�)�1vec(b
u).
An important problem in adjusting for bias using bootstrap and the analytical bias

formula is that the bias-adjusted estimate of � may fall into the non-stationary region

of the parameter space. The analytical bias formula is derived under the assumption of

stationarity and, hence, the presence of unit or explosive roots will be inconsistent with

4We have experimented with a larger number of bootstraps. However, the results presented in subse-
quent tables do not change much when increasing the number of bootstraps. Hence, for computational
tractability we just use 1,000 bootstraps.
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the underlying premise for the VAR system we are analyzing. Kilian (1998) suggests an

approach to ensure that we always get a bias-adjusted estimate that does not contain

unit or explosive roots. This approach is used by e.g. Engsted and Tanggaard (2001,

2004, 2007) and Engsted and Pedersen (2010) and is as follows: First, estimate the

bias and obtain a bias-adjusted estimate of � by subtracting the bias from the OLS

estimate. Second, check if the bias-adjusted estimate falls within the stationary region of

the parameter space. If this is the case, use this bias-adjusted estimate. Third, if this is

not the case correct the bias-adjusted estimate by multiplying the bias with a parameter

� 2 [0; 0:01; 0:02; :::; 0:99] before subtracting it from the OLS estimate. This will ensure

that the bias-adjusted estimate is within the stationary region of the parameter space. In

using this approach we choose the largest value of � that ensures that the bias-adjusted

estimate no longer contains unit or explosive roots. Note, for a given simulation it

is possible that the OLS estimate itself is in the non-stationary region of the parameter

space. If this is the case, we do not perform any bias-adjustment and set the bias-adjusted

estimate equal to the (non-stationary) OLS estimate.

Table 1 reports the simulation results for the following VAR(1) model

� =

"
0

0

#
; � =

"
0:80 0:10

0:10 0:85

#
; 
u =

"
2 1

1 2

#
;

where the eigenvalues of � are 0.722 and 0.928. This VARmodel is also used in simulation

studies by Amihud and Hurvich (2004) and Amihud et al. (2009). The table shows the

mean slope coe¢ cients and the average squared bias, variance, and RMSE across the

four slope coe¢ cients for T = f50; 100; 200; 500g. The �nal column shows the number
of simulations in which the approach results in an estimate of � in the non-stationary

region of the parameter space. For example, for T = 50 using OLS to estimate the

VAR(1) model implies that 25 out of 10,000 simulations result in a non-stationary model.

The estimates from these 25 simulations are included in the reported numbers, but as

mentioned previously when OLS yields a non-stationary model, we do not perform any

bias-adjustment. This implies that in 25 simulations the (non-stationary) OLS estimate

is included in the numbers for ABF and BOOT. For these bias-adjustment procedures

the number in the �nal column shows the number of simulations where OLS yields a

stationary model, but where the bias-adjustment procedure pushes the model into the

non-stationary region of the parameter space, and we use the approach by Kilian (1998)

to ensure a stationary model.

From Table 1 it is clear that OLS yields severely biased estimates in small samples.
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Also, consistent with the univariate case we see that the autoregressive coe¢ cients (�11
and �22) are downward biased. For example, for T = 50, the OLS estimate of �22 is

0.7519 compared to the true value of 0.85. As expected both bias and variance decrease

when the sample size increases. Chen and Deo (2010) advocate the use of their weighted

least squares estimator due to the smaller bias associated with this estimator compared

to OLS, a small-sample property that is also clearly visible in Table 1. However, the

variance of WLS is larger than that of OLS for T � 100, and for T � 200 this increase
in variance more than o¤sets the decrease in bias resulting in a higher RMSE for WLS

compared to OLS.

Turning to the bias correction methods we �nd that both ABF and BOOT yield a very

large reduction in bias compared to both OLS and WLS. However, for very small samples

even the use of these methods does still imply fairly biased estimates. For example, for

T = 50 the bias corrected estimate of �22 is roughly 0.82 for both methods compared to

the true value of 0.85. It is also worth to notice that the variance of ABF and BOOT

is smaller than the variance of OLS. Hence, the decrease in bias does in this case not

come at a prize of increased variance. Comparing ABF and BOOT we see that using

a bootstrap procedure yields a smaller bias than the use of the analytical bias formula.

The di¤erence in bias is, however, very small across these two methods. For example, for

T = 50 the estimate of �22 is 0.8252 for BOOT compared to 0.8210 for ABF. In contrast,

the variance is lower for ABF than for BOOT, and this even to such a degree that ABF

yields the lowest RMSE. These results suggest that the simple analytical bias formula (7)

has at least as good �nite-sample properties as a more elaborate bootstrap procedure.

In Table 2 we report the results for an empirically relevant VAR(1) model that is

often used in the �nancial econometrics literature. The �true�VAR(1) model used in the

table is the estimated VAR(1) model for log returns on stocks (rt) and log dividend-price

ratio (dt � pt) based on annual S&P data obtained from Robert Shiller�s website. Thus,

we can write the model as"
rt+1

dt+1 � pt+1

#
=

"
�1

�2

#
+

"
�11 �12

�21 �22

#"
rt

dt � pt

#
+

"
ur;t+1

udp;t+1

#
:

Panel A is based on the sample period from 1871-2008, while Panel B is based on the

post-war period 1946-2008. Overall, the results in Table 2 follow the same pattern as in

Table 1, i.e. OLS yields highly biased estimates, WLS is able to reduce this bias but at

the cost of increased variance, and both ABF and BOOT provide a large bias reduction

compared to OLS and WLS. However, Table 2 also displays some interesting di¤erences.
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First, in contrast to Table 1, the OLS estimates of the o¤-diagonal coe¢ cients are now

severely biased. For example, in Panel B the OLS estimate of �12 is 0.1728 compared

to the true value of 0.108. �12 is the coe¢ cient on the lagged dividend-price ratio in

the return equation and, hence, measures the degree of stock return predictability by

the dividend-price ratio. The large upward bias is due to the large negative correlation

between the innovations, which is consistent with e.g. Stambaugh (1999) who studies

the e¤ect of small-sample bias on return predictability in a restricted VAR(1) system

where �11 = �21 = 0. Based on Kendall�s (1954) bias formula for an AR(1) process,

Stambaugh shows that the bias in the OLS estimate of �12 has the opposite sign to the

sign of the innovation correlation, which in this case is highly negative. Engsted and

Pedersen (2010) show that this conclusion does not hold in general for a multivariate

system. Based on a VAR(1) system consisting of the return on a 90-day T-bill, excess

returns on stocks and bonds, short nominal yield, log dividend-price ratio, and term

spread, they �nd using the analytical bias formula that the bias can in fact have the

opposite sign compared to the univariate case. In other words, in the multivariate case

the entire correlation structure has an impact on the sign and size of the bias. Regarding

the bias in the estimate of �12, Table 2 also shows that in small samples (Panel B) neither

ABF nor BOOT is able to completely eliminate the bias. And this in spite of a relatively

low persistence in the dividend-price ratio. Hence, even after correcting for bias there

is still a risk of overstating the degree of stock return predictaility by the dividend-price

ratio.

The second di¤erence in Table 2 compared to Table 1 is that the variances of the bias

correction methods are now larger than that of OLS. This prompts the questions: What

has caused this relative change in variances, and can the change imply a larger RMSE

when correcting for bias than when not? Regarding the �rst question, the relative change

in variances is a consequence of the change in � (and not 
u). In Table 1 both variables

in the VAR(1) system are fairly persistent, while in Table 2 this is only the case for the

second variable. The relative change in variance is clear from Figure 1, which in the

left-hand panel shows the variance of OLS, WLS, and ABF as a function of �11 with the

remaining slope coe¢ cients equal to those used in Table 1. The variance is calculated as

the average variance across the four slope coe¢ cients based on 10,000 simulations with

T = 100. For �11 smaller (larger) than roughly 0:4 the variance of OLS is smaller (larger)

than the variance of ABF. Furthermore, the �gure shows that for all values of �11 WLS

yields the largest variance. Regarding the second question, the right-hand panel of Figure

1 shows that the RMSE for ABF remains below that of OLS for all values of �11. Hence,

despite a smaller variance for certain values of �11, the larger bias using OLS results in
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a higher RMSE than in the case of ABF.5

3.2 Iteration in the analytical bias formula

The procedure used to adjust for bias based on the analytical bias formula is very simple

and easy to use, since it only requires substituting the biased OLS estimates into bP in

(7) to obtain an estimate of the bias which we can then subtract from the OLS estimates.

However, since the bias formula holds for the true values of the VAR parameters it is

possible that we can obtain estimates with smaller bias if we use a more elaborate iterative

scheme in which we repeatedly substitute bias-adjusted estimates into the analytical bias

formula. This issue is also relevant when using Chen and Deo�s (2010) weighted least

squares estimator. In a simulation study, Chen and Deo use what they call the iterated

weighted least squares estimator. They obtain this estimator by �rst using the ordinary

least squares estimator in (8), and then by inserting this result back into (8). In this

section we compare the simple �plug-in�approach for the analytical bias formula and the

weighted least squares estimator to a more elaborate iterative approach both in terms of

bias and variance.

The use of an iterative scheme in the analytical bias formula is only relevant if the

bias varies as a function of �. Figure 2 shows the bias as a function of �22 in a bivariate

VAR(1) system with the remaining slope coe¢ cients equal to those used in Table 1. As

expected the bias function varies most for small sample sizes, but even for T = 50 the

bias function for �11 is relatively �at. For �12 and �21 the bias function is relatively steep

when the sample size is small and the second variable in the system is fairly persistent.

For �22 the bias function is mainly downward sloping. Overall, Figure 2 suggests that

the use of an iterative scheme could potentially be useful if the sample size is small, while

for larger sample sizes the gain appears to be limited. Of course these plots depend on

� and the correlation between the innovations. The relatively steep bias functions for

�12 and �21 when the sample size is small and the second variable in the system is fairly

persistent suggest that if the o¤-diagonal coe¢ cients are of special interest, such as in

the case of evaluating return predictability as in Table 2, using an iterative scheme could

potentially prove useful. However, the very steep bias function for �12 and �21 is only

present when both variables in the system are fairly persistent, and this is not the case

in the bivariate system consisting of returns and the dividend-price ratio, since returns

5We have made similar plots for other sample sizes, but the conclusions remain the same so to conserve
space we do not show them here.
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usually have a small autoregressive coe¢ cient.

To illustrate the e¤ect of changing � and 
u, Figure 3 shows the bias functions

when �11 = 0:1 and the correlation between the innovations is �0:9 but the remaining
parameters are identical to those in Figure 2. These parameter choices match fairly

well those in Table 2 based on annual log returns and the log dividend-price ratio from

S&P data.6 Comparing Figure 3 with Figure 2 it is clear that the bias functions are

quite di¤erent. For example, all the bias functions are now very �at when the second

variable is highly persistent. This means that in terms of evaluating return predictability,

iteration is not expected to yield a large gain when correcting for bias.

The iterative scheme applied here is basically an extension of the simple �plug-in�

approach. For the analytical bias formula we, �rst, reestimate the covariance matrix

of the innovations, 
u, after adjusting for bias using the �plug-in�approach and then

substitute this covariance matrix into the formula together with the bias-adjusted slope

coe¢ cients obtained from the �plug-in�approach. This yields another set of bias-adjusted

estimates, which we can then use to reestimate the covariance matrix and the bias. We

continue this procedure until the slope coe¢ cient estimates converge. The convergence

criteria used here is that the maximum di¤erence across the slope coe¢ cients between

two consecutive iterations must be smaller than 10�4.7 In the �plug-in� approach we

check if the bias-adjusted estimates are in the stationary region of the parameter space,

and if not, we follow Kilian (1998) to ensure that we always get a stationary VAR

system. In the iterative scheme we also check for stationarity at each iteration, and if

the system contains unit or explosive roots we use Kilian�s procedure and terminate the

iterative procedure. Hence, if the VAR system falls into the non-stationary region during

the iterative procedure, we will not obtain convergence in the estimates. The iterative

approach for the weighted least squares estimator follows the same scheme, with the

exception that we do not check for stationarity.

An important issue in applying an iterative scheme when using the analytical bias

formula is how to treat the covariance matrix of Xt, 
x. In Section 3.1 we calculated this

covariance matrix as vec(
x) = (Ik�k��
�)�1vec(
u), which implies that we can also
reestimate 
x for each iteration based on the �new�estimates of � and 
u. Alternatively,

6We have also made the plots for the VAR(1) models in Table 2 and they are more or less identical
to those in Figure 3. Note that only the correlation between the innovations has an impact on the bias,
not the variances.

7Amihud and Hurvich (2004) and Amihud et al. (2009) also use an iterative scheme in their applica-
tion of the analytical bias formula. However, they use a �xed number of iterations (10) while we iterate
until convergence. Convergence is usually obtained within a small number of iterations (4-6), but in a
few cases around 20 iterations are needed for the coe¢ cients to converge.
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we can leave 
x unchanged throughout the iterative procedure. It is not obvious which

strategy yields the best �nite-sample properties and, hence, we examine both approaches

in this section.

Table 3 shows the results based on 10,000 simulations using the same VAR(1) model

as in Table 1. Data are generated as described in Section 3.1. For ease of comparison

the table also contains the results based on the simple �plug-in�approach as reported in

Table 1. Regarding WLS, Table 3 shows that iteration reduces the bias but increases the

variance. Only for T = 50 is the bias reduction of a su¢ cient magnitude to o¤set the

increase in variance implying a decrease in RMSE. For T � 100 RMSE increases when
iterating on Chen and Deo�s (2010) weighted least squares estimator. For the analytical

bias formula with reestimation of 
x (ABF), iteration yields an improvement over the

simple �plug-in�approach both in terms of bias and variance when T � 100. The bias

reduction is, however, only present in �11 and �22 (results not shown). In fact, bias in

the o¤-diagonal coe¢ cients increase in contrast to what we might expect based on the

very steep bias functions in Figure 2. Although the increase is fairly small this illustrates

a potential pitfall in iterating on the analytical bias formula in a multivariate setup. For

larger sample sizes there is no gain by iterating, which is consistent with the relatively

�at bias functions displayed in Figure 2.

Iterating on the analytical bias formula without reestimating 
x (ABF�) yields rather

di¤erent results. First, using this approach yields a bias function that is not monoton-

ically decreasing in sample size. Note also that for T = 50 the bias is smaller than for

both the �plug-in�procedure and the iterative procedure with reestimation of 
x, while

for T � 100 it is larger. Second, the variance is much higher. Combined, these results im-
ply that this procedure yields a higher RMSE than when reestimating 
x and when using

the simple �plug-in�approach. Another important di¤erence between the two iterative

procedures is that the VAR system much more frequently ends up in the non-stationary

region of the parameter space when 
x is not reestimated.

3.3 Bias-correction in nearly non-stationary models

Although the true VAR system is stationary, we often face the risk of �nding unit or

explosive roots when estimating the system based on a �nite sample. In Table 1 for

T = 50 we found that in 25 out of 10,000 simulations, OLS yields a non-stationary

system. When correcting for bias using either the analytical bias formula or a bootstrap

procedure this number increases considerably. However, in these cases we can apply
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the approach by Kilian (1998) to ensure a stationary system. These results prompt two

questions. First, how should we tackle bias-correction if the use of OLS leads to a non-

stationary system when we know or suspect (perhaps based on economic theory) that

the true VAR system is stationary? Second, how does the use of Kilian�s approach a¤ect

the �nite-sample properties of the bias-correction methods?

Regarding the �rst question, an alternative to OLS is to use the Yule-Walker (YW)

estimator, which is guaranteed to ensure a stationary system. However, YW has a larger

bias than OLS and, hence, the �nite-sample properties might be considerably worse.

Pope (1990) derives the bias of the YW estimator of the slope coe¢ cient matrix � in (2)

as

BYWT = �b
YW

T
+O

�
T�3=2

�
; (9)

where

bYW = �+ 
u

"
(Ik � �0)�1 + �0

�
Ik � (�0)2

��1
+

kX
i=1

�i (Ik � �i�0)�1
#

�1x : (10)

�i denotes the i�th eigenvalue of � and 
x is the covariance matrix of Xt. The approach

and assumptions are identical to those used by Pope to derive the bias of the OLS

estimator.8 Comparing this result to (7) we see that bYW = �+ bP . In an AR(1) model,

yt = �+ �yt�1+ "t, the bias of the YW estimator of � can be simpli�ed to � (1 + 4�) =T .
Hence, applying YW instead of OLS ensures stationarity but increases the bias. However,

since we have an analytical bias formula for the YW estimator we can correct for bias in

the same way as we did for OLS. In this section we examine the �nite-sample properties

of the YW estimator and compare it to OLS both with and without correction for bias.

Regarding the question of how the use of Kilian�s approach a¤ect the �nite-sample

properties of the bias-correction methods, Kilian�s approach has a practical aim, namely

that of ensuring stationary systems. It does not have a theoretical foundation and some

deem it to be ad hoc (e.g. Sims and Zha, 1999). The important question from a practical

perspective is, however, not whether the approach is theoretically grounded but if we

distort the �nite-sample properties by applying it.9

8Tjøstheim and Paulsen (1983) obtain a similar expression for the bias of the Yule-Walker estimator,
but under the assumption of Gaussian innovations.

9As Kilian (1998) points out, the approach has no e¤ect asymptotically and does not restrict the
parameter space of the OLS estimator. However, it will a¤ect the �nite-sample properties and the
question is: by how much?
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Table 4 reports simulation results for the following VAR(1) model

� =

"
0

0

#
; � =

"
0:80 0:10

0:10 0:94

#
; 
u =

"
2 1

1 2

#
;

where the eigenvalues of � are 0.748 and 0.992. This VAR(1) model is also used in a

simulation study by Amihud et al. (2009). Data are generated as described in Section 3.1.

This VAR(1) model is more persistent than the ones used in Tables 1-3, which increases

the risk of estimating a non-stationary model using OLS and entering the non-stationary

region of the parameter space when correcting for bias. Panel A shows the �nite-sample

properties of the OLS, YW, and WLS estimators. Panel B reports the results when using

Kilian�s approach to ensure stationarity when correcting for bias using the analytical bias

formulas (7) and (10) (both OLS and YW) and bootstrapping (only OLS), while Panel

C shows the corresponding results without applying Kilian�s approach. The sample size

is 100.10

From Panel A it is clear that YW has a much larger bias than OLS. This is also the

case for the variance and, hence, the RMSE for YW is larger than for OLS. However,

in contrast to OLS, YW always results in a stationary system, which implies that it is

always possible to adjust for bias using the analytical bias formula. In Table 4, OLS

yields a non-stationary model in 250 out of 10,000 simulations. The question now is if

using the analytical bias formula for YW yields similar �nite-sample properties as in the

case of OLS. Panel B (where the procedure by Kilian, 1998, is applied) shows that this

is not the case. YW still has a larger bias than OLS and the variance is more that three

times as large. Comparing the results for YW with and without bias correction we see

that the bias is clearly reduced by applying the analytical bias formula, but the variance

also more than doubles. It is also worth to notice that in 7,055 out of 10,000 simulations

the system ends up in the non-stationary region when correcting YW for bias compared

to only 3,567 for OLS.11

Until now we have used the approach by Kilian (1998) to ensure a stationary VAR

system after correcting for bias. Based on the same 10,000 simulations as in Panel B,

Panel C shows the �nite-sample properties without applying Kilian�s approach. For OLS

10We have done the same analysis for other sample sizes and we arrive at the same qualitative con-
clusions, so to conserve space we do not report them here.
11Amihud and Hurvich (2004) and Amihud et al. (2009) use the Yule-Walker estimator in a slightly

di¤erent way. In their iterative procedure they �rst estimate the model using OLS, and if this yields a
non-stationary system, they reestimate the model using Yule-Walker. However, when correcting for bias
they still use the analytical bias formula for OLS.
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(using both the analytical bias formula and a bootstrap procedure) bias decreases and

variance increases slightly when we allow the system to be non-stationary. This result

is not surprising. The VAR system is highly persistent and very small changes in �

can result in a non-stationary system, e.g. if �22 is 0.95 instead of 0.94 the system

has a unit root. Hence, when applying Kilian�s approach, we often force the estimated

coe¢ cients to be smaller than the true values. In contrast, when we allow the system

to be non-stationary some of the estimated coe¢ cients will be smaller than the true

values and some will be larger and, hence, positive and negative bias will o¤set each

other across the 10,000 simulations. Likewise, this will also imply that the variance is

larger when we do not apply Kilian�s approach. However, comparing the results for OLS

in Panel B and Panel C it is clear that these di¤erences are very small, which implies

that Kilian�s approach does not severely distort the �nite-sample properties of the bias-

correction methods. And this even though we apply the approach in roughly 4,000 out

of 10,000 simulations. In contrast, for YW it turns out to be essential to use Kilian�s

approach as seen from Panel C. Note also that allowing the system to be non-stationary

(i.e. not applying Kilian�s approach) is not consistent with the fact that the analytical

bias formula is derived under the assumption of stationarity.

3.4 Bias-correction when data are skewed and fat-tailed

Until now we have generated data from a multivariate normal distribution. However, in

many empirically relevant models the normality assumption often fails. The analytical

bias formula is not derived under a normality assumption, but it is unclear how the

�nite-sample properties of bias-correction using ABF compare to those of bootstrapping

if the data are, for example, very skewed and fat-tailed. Furthermore, in the literature

researchers often use a parametric bootstrap based on a normal distribution instead of the

usual residual-based bootstrap procedure. The obvious question here is: do we commit

errors when using this parametric bootstrap approach when data are very skewed and

fat-tailed? In this section, we address these issues.

To obtain data that are skewed and has fat tails we estimate a bivariate VAR(1) model

containing log returns and log dividend-price ratio on monthly NYSE/AMEX/NASDAQ

data from CRSP over the period 1985M1-2008M12. In this period log returns have

a skewness of around -1.4 and a kurtosis of approximately 8, while the corresponding

numbers for the log dividend-price ratio are 0 and 1.8, respectively. Hence, log returns are

far from normally distributed, and given our earlier discussion about return predictability
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it is relevant to evaluate how the di¤erent bias correction procedures compare in this case.

Estimating this bivariate VAR(1) model yields

� =

"
0:0558

�0:0418

#
; � =

"
0:126 0:013

�0:082 0:989

#
:

Table 5 shows simulation results based on these values of � and �, and where the initial

values are drawn from the actual data and the innovations are drawn from the residuals

instead of from a normal distribution. The sample size is 100.12 Overall, the results

in Table 5 are in line with our previous �ndings, namely that OLS yields highly biased

estimates, WLS is able to reduce this bias but at the cost of increased variance, and the

bias correction methods provide a large bias reduction compared to both OLS and WLS.

Comparing ABF and BOOT, we see that similar to the results in Tables 1, 2, and 4,

BOOT yields a slightly smaller bias than ABF, but in contrast the variance is now also

lowest for BOOT. The di¤erences are, however, very small. In addition to the residual-

based bootstrap approach, Table 5 also shows the results when applying a parametric

bootstrap procedure based on an assumption of normally distributed data (PARBOOT).

Given that log returns are very skewed and fat-tailed we would expect this approach

to have inferior properties compared to both the residual-based bootstrap that directly

takes into account the non-normality of the data, and the analytical bias formula that is

derived without the assumption of normality. Surprisingly, however, the results in Table

5 show the exact opposite. PARBOOT has both smaller bias and lower variance than

BOOT (although the di¤erences are very small). A potential explanation for the very

small di¤erence between BOOT and PARBOOT is that the bias is mainly driven by

the log dividend-price ratio due to its high persistence, and since this variable is close

to being normally distributed the two bootstrap procedures give more or less identical

results. In other words, the e¤ects of the non-normal distribution of the less persistent

return series have no impact in this context. These results lend some support to the use

of a parametric bootstrap procedure when data do not match the assumed distribution,

but we refrain from making any general conclusions as it cannot be ruled out that data

distributed in a di¤erent way would lead to the opposite result.

12We have done the same analysis for other sample sizes and we arrive at the same qualitative con-
clusions, so to conserve space, we do not report them here.
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4 Concluding remarks

In this paper we have analyzed and compared the �nite-sample properties of various

methods for bias-correcting parameter estimates in vector autoregressive models. It is

well-known that standard OLS estimates of autoregressive parameters are biased in �nite

samples, but in the empirical literature using VAR models this is often ignored. In

some cases researchers acknowledge the bias but state that bias-correction is complex in

multivariate systems and, hence, they refrain from performing the correction. However,

the existing literature provides a simple and easy-to-use analytical bias formula, and in

this paper we have shown that the �nite-sample properties of this formula in terms of bias

and mean squared error are comparable to those of a more computer-intensive bootstrap

procedure. We have also shown that the analytical and bootstrap bias-correction yield

a very large reduction in bias compared to both OLS and a recently developed reduced-

bias estimator by Chen and Deo (2010). In some cases we �nd that the variance of the

bias-adjusted estimates is larger than the variance of the OLS estimates, but due to the

large reduction in bias the mean squared errors of the bias-adjusted estimates are always

smaller than the mean squared errors of the OLS estimates. Hence, through the use of

the analytical bias formula correcting for bias in multivariate systems is very simple and

without deterioration of �nite-sample properties.

We have also analyzed the analytical bias formula in terms of a comparison of a simple

one-step �plug-in�approach, where the initial least squares estimates are used in place

of the true unknown values to obtain the bias-adjusted estimates, and a more elaborate

multi-step iterative scheme where we repeatedly substitute bias-adjusted estimates into

the bias formulas until convergence. The iterative procedure can potentially yield a

smaller bias than the one-step �plug-in�approach if the bias varies as a function of the

slope coe¢ cient matrix. We have shown that the bias functions are highly sensitive

to both the slope coe¢ cient matrix and the covariance matrix of the innovations and,

hence, it is not clear from the outset how the iterative procedure compares to the �plug-in�

approach. In a simulation study we have found that iterating on the bias formula results

in minor improvements for very small sample sizes while for larger sample sizes there is

no gain by iterating.

An important issue when correcting for bias is the potential risk of pushing an other-

wise stationary model into the non-stationary region of the parameter space, especially

if the true system is nearly non-stationary. We have used the approach suggested by

Kilian (1998) to account for this, so that we always end up with a model without unit

20



or explosive roots. Although this approach has no e¤ect asymptotically it is unclear how

it will a¤ect the �nite-sample properties. In this paper we have shown that the use of

Kilian�s approach leads to a very small increase in bias but also a decrease in variance

implying a basically una¤ected mean squared error compared to the case where we allow

the model to be non-stationary. Hence, it is possible to ensure stationarity through the

use of Kilian�s approach without distorting the �nite-sample properties. We have also ex-

amined the �nite-sample properties of the Yule-Walker estimator both with and without

correcting for bias. In contrast to OLS this estimator is guaranteed to deliver stationary

roots but this feature comes at the price of much worse �nite-sample properties both in

terms of bias and variance. This is the case both with and without bias-correction.

Finally, we have analyzed the �nite-sample properties of the various bias-correction

methods in a bivariate VAR system where one of the variables is highly skewed and has fat

tails. This data structure does not overturn the overall conclusion of the paper, namely

that the analytical and bootstrap bias-correction methods perform equally well and that

they have much better �nite-sample properties than both OLS and the reduced-bias

estimator by Chen and Deo (2010).

5 Appendix

In this appendix we show that the Yamamoto-Kunitomo formula (4) is identical to Pope�s

formula (7). Based on the VAR(1) model

Yt = � + �Yt�1 + ut; t = 1; :::; T

with var (ut) = 
u, Yamamoto and Kunitomo (1984) derive the following expression for

the asymptotic bias of the OLS estimator of the slope coe¢ cient matrix �

BY KT = �b
Y K

T
+O

�
T�3=2

�
;

where

bY K = 
u

1X
i=0

h
(�0)

i
+ (�0)

i
tr
�
�i+1

�
+ (�0)

2i+1
i " 1X

i=0

�i
u (�
0)
i

#�1
:

21



We can rewrite the in�nite sums in the following way

1X
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where Xt = Yt � � with � = (Ik � �)�1 � and �i denotes the i�th eigenvalue of �. This
implies that bY K = bP and, hence, the bias formulas by Yamamoto and Kunitomo (1984)

and Pope (1990) are identical.

Consequently, we can also write the bias of OLS estimator of the intercept � as

B�T =
b�

T
+O

�
T�3=2

�
;

where

b� = 
u
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7 Tables and �gures

Table 1. Bias-correction in VAR(1) model, normally distributed innovations.

Mean slope coe¢ cients
�11 �12 �21 �22 Bias2 Variance RMSE #NS

T = 50 OLS 0.7082 0.0906 0.1036 0.7519 0.4538 1.9195 0.1534 25
WLS 0.7441 0.0973 0.1040 0.7927 0.1606 1.9135 0.1438 198
ABF 0.7743 0.0946 0.0995 0.8210 0.0382 1.7520 0.1336 1613
BOOT 0.7779 0.0963 0.1016 0.8252 0.0281 1.8170 0.1357 2220

T = 100 OLS 0.7548 0.0972 0.1035 0.8038 0.1049 0.7324 0.0913 2
WLS 0.7776 0.1019 0.1034 0.8304 0.0225 0.7604 0.0883 18
ABF 0.7931 0.0988 0.1003 0.8433 0.0024 0.6817 0.0826 304
BOOT 0.7950 0.1001 0.1015 0.8458 0.0011 0.6965 0.0834 539

T = 200 OLS 0.7783 0.0995 0.1017 0.8276 0.0245 0.3151 0.0581 0
WLS 0.7924 0.1036 0.1021 0.8449 0.0025 0.3498 0.0592 0
ABF 0.7985 0.1000 0.0999 0.8483 0.0001 0.3013 0.0548 0
BOOT 0.7992 0.1005 0.1003 0.8492 0.0000 0.3041 0.0551 2

T = 500 OLS 0.7917 0.0996 0.1014 0.8407 0.0039 0.1112 0.0339 0
WLS 0.7991 0.1034 0.1025 0.8508 0.0005 0.1316 0.0363 0
ABF 0.8000 0.0998 0.1005 0.8492 0.0000 0.1089 0.0329 0
BOOT 0.8002 0.0999 0.1006 0.8494 0.0000 0.1091 0.0330 0

The results in this table are based on 10,000 simulations from a VAR(1) model with

� =

�
0
0

�
; � =

�
0:80 0:10
0:10 0:85

�
; 
u =

�
2 1
1 2

�
:

The eigenvalues are 0.722 and 0.928. For each simulation the initial values are drawn from a multi-

variate normal distribution with mean (Ik � �)�1 � and covariance matrix vec(
x) = (Ik�k ��

�)�1vec(
u); and the innovations are drawn from a multivariate normal distribution with mean 0

and covariance matrix 
u. Bias and variance are multiplied by 100 and together with RMSE they are
reported as the average across the four slope coe¢ cients. The �nal column (#NS) gives the number

of simulations that result in a VAR(1) system in the non-stationary region. The bootstrap results are

based on 1,000 bootstraps. OLS are ordinary least squares estimates; WLS are Chen and Deo (2010)

estimates based on equation (8); ABF are bias-adjusted estimates based on the analytical bias formula,

equation (7); BOOT are bias-adjusted estimates based on the bootstrap.
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Table 2. Bias-correction in VAR(1) model for US returns and dividend-price ratio.

Mean slope coe¢ cients
�11 �12 �21 �22 Bias2 Variance RMSE #NS

Panel A, T = 138
OLS 0.1057 0.1031 0.1647 0.8607 0.0564 0.5641 0.0760 0
WLS 0.0890 0.0805 0.1946 0.8957 0.0043 0.6621 0.0762 3
ABF 0.0985 0.0820 0.1832 0.8926 0.0005 0.5847 0.0726 12
BOOT 0.0981 0.0807 0.1840 0.8948 0.0001 0.5897 0.0729 28

Panel B, T = 63
OLS 0.1074 0.1728 -0.0599 0.8589 0.2515 1.0567 0.1138 19
WLS 0.0782 0.1250 -0.0262 0.9105 0.0184 1.2067 0.1052 169
ABF 0.0880 0.1223 -0.0354 0.9128 0.0109 1.1315 0.1038 1090
BOOT 0.0887 0.1178 -0.0360 0.9178 0.0052 1.1351 0.1037 1532

The results in this table are in Panel A based on 10,000 simulations from a VAR(1) model with

� =

�
0:310
�0:346

�
; � =

�
0:098 0:080
0:185 0:896

�
; 
u =

�
0:028837 �0:028323
�0:028323 0:038776

�
;

and a sample size of 138, and in Panel B

� =

�
0:422
�0:248

�
; � =

�
0:087 0:108
�0:034 0:928

�
; 
u =

�
0:025488 �0:023920
�0:023920 0:025485

�
;

and a sample size of 63. The eigenvalues in Panel A are 0.080 and 0.914, and in Panel B they are

0.091 and 0.924. The VAR(1) models are obtained by estimating a bivariate model containing log

returns and log dividend-price ratio on annual S&P data from Robert Shiller�s website. In Panel A

the sample period is 1871-2008 and in Panel B it is 1946-2008. For each simulation the initial values

are drawn from a multivariate normal distribution with mean (Ik � �)�1 � and covariance matrix
vec(
x) = (Ik�k � � 
 �)�1vec(
u); and the innovations are drawn from a multivariate normal

distribution with mean 0 and covariance matrix
u. Bias and variance are multiplied by 100 and together
with RMSE they are reported as the average across the four slope coe¢ cients. The �nal column (#NS)

gives the number of simulations that result in a VAR(1) system in the non-stationary region. The

bootstrap results are based on 1,000 bootstraps. OLS are ordinary least squares estimates; WLS are

Chen and Deo (2010) estimates based on equation (8); ABF are bias-adjusted estimates based on the

analytical bias formula, equation (7); BOOT are bias-adjusted estimates based on the bootstrap.
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Table 3. Bias-correction in VAR(1) model, �plug-in�and iterative scheme.

Plug-in Iteration
Bias2 Variance RMSE #NS Bias2 Variance RMSE #NS

T = 50 WLS 0.1606 1.9135 0.1438 198 0.0511 1.9831 0.1423 612
ABF 0.0382 1.7520 0.1336 1613 0.0284 1.7090 0.1317 1652
ABF� - - - - 0.0224 2.1451 0.1470 9542

T = 100 WLS 0.0225 0.7604 0.0883 18 0.0011 0.8679 0.0930 92
ABF 0.0024 0.6817 0.0826 304 0.0016 0.6745 0.0821 304
ABF� - - - - 0.0389 0.8053 0.0917 8331

T = 200 WLS 0.0025 0.3498 0.0592 0 0.0017 0.4460 0.0667 2
ABF 0.0001 0.3013 0.0548 0 0.0001 0.3003 0.0547 0
ABF� - - - - 0.0096 0.3452 0.0595 4014

T = 500 WLS 0.0005 0.1316 0.0363 0 0.0030 0.1932 0.0441 0
ABF 0.0000 0.1089 0.0329 0 0.0000 0.1089 0.0329 0
ABF� - - - - 0.0000 0.1094 0.0330 0

The results in this table are based on 10,000 simulations from a VAR(1) model with

� =

�
0
0

�
; � =

�
0:80 0:10
0:10 0:85

�
; 
u =

�
2 1
1 2

�
:

The eigenvalues are 0.722 and 0.928. For each simulation the initial values are drawn from a multi-

variate normal distribution with mean (Ik � �)�1 � and covariance matrix vec(
x) = (Ik�k ��

�)�1vec(
u); and the innovations are drawn from a multivariate normal distribution with mean 0

and covariance matrix 
u. Bias and variance are multiplied by 100 and together with RMSE they are
reported as the average across the four slope coe¢ cients. Plug-in gives the results when inserting the

biased least squares estimates in the bias formulas and the weighted least squares estimator. Itera-

tion gives the results when recursively using the bias-adjusted estimates in the bias formulas and the

weighted least squares estimator. The iterative procedure is terminated when either the slope coe¢ cient

matrix is in the non-stationary region or the maximum di¤erence across the slope coe¢ cients between

two consecutive iterations is smaller than 10�4. WLS and ABF (ABF�) are based on equations (8)

and (7), respectively. ABF denotes the results when the covariance matrix of Xt is reestimated in each

iteration, while ABF�leaves it unchanged throughout the iterative procedure. The �nal column for both

plug-in and iteration (#NS) gives the number of simulations that result in a VAR(1) system in the

non-stationary region.

28



Table 4. Bias-correction in VAR(1) model, nearly non-stationary system.

Mean slope coe¢ cients
�11 �12 �21 �22 Bias2 Variance RMSE #NS

Panel A
OLS 0.7508 0.0885 0.1032 0.8890 0.1290 0.6056 0.0844 250
YW 0.6567 -0.0649 0.1542 0.9582 1.2748 0.6578 0.1284 0
WLS 0.7720 0.0941 0.0998 0.9140 0.0374 0.6364 0.0804 1236

Panel B (Kilian)
ABF (OLS) 0.7813 0.0943 0.0968 0.9217 0.0182 0.5585 0.0745 3567
ABF (YW) 0.7829 0.0922 0.1105 0.9036 0.0448 1.7573 0.1297 7055
BOOT 0.7823 0.0951 0.0986 0.9234 0.0153 0.5709 0.0750 4266

Panel C
ABF (OLS) 0.7872 0.0951 0.0958 0.9276 0.0089 0.5599 0.0742 3567
ABF (YW) 0.8778 0.1465 0.1522 0.9398 0.2734 2�102 1.4960 7055
BOOT 0.7904 0.0962 0.0980 0.9311 0.0047 0.5785 0.0750 4266

The results in this table are based on 10,000 simulations from a VAR(1) model with

� =

�
0
0

�
; � =

�
0:80 0:10
0:10 0:94

�
; 
u =

�
2 1
1 2

�
:

The eigenvalues are 0.748 and 0.992. For each simulation the initial values are drawn from a multi-

variate normal distribution with mean (Ik � �)�1 � and covariance matrix vec(
x) = (Ik�k ��

�)�1vec(
u); and the innovations are drawn from a multivariate normal distribution with mean 0 and
covariance matrix 
u. The sample size is 100. Panel A shows the results from estimating the VAR(1)

model using ordinary least squares (OLS), Yule-Walker (YW), and Chen and Deo�s (2010) weighted least

squares estimator (WLS). Panel B and C show the results when adjusting the ordinary least squares

estimate for bias using the analytical bias formula (7) (ABF) and bootstrapping (BOOT), and when

adjusting the Yule-Walker estimate for bias using the analytical bias formula (10). In Panel B (in con-

trast to Panel C) the correction by Kilian (1998) to ensure a stationary VAR system is applied. Bias

and variance are multiplied by 100 and together with RMSE they are reported as the average across the

four slope coe¢ cients. The �nal column (#NS) gives the number of simulations that result in a VAR(1)

system in the non-stationary region. The bootstrap results are based on 1,000 bootstraps.
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Table 5. Bias-correction in VAR(1) model, skewed and fat-tailed innovations.

Mean slope coe¢ cients
�11 �12 �21 �22 Bias2 Variance RMSE #NS

OLS 0.1350 0.0551 -0.0919 0.9451 0.0975 0.5549 0.0784 246
WLS 0.1179 0.0273 -0.0732 0.9744 0.0141 0.6564 0.0727 1653
ABF 0.1236 0.0269 -0.0787 0.9746 0.0106 0.5593 0.0690 3413
BOOT 0.1255 0.0253 -0.0807 0.9764 0.0080 0.5567 0.0685 3961
PARBOOT 0.1251 0.0247 -0.0803 0.9769 0.0073 0.5575 0.0684 4062

The results in this table are based on 10,000 simulations from a VAR(1) model with

� =

�
0:0558
�0:0418

�
; � =

�
0:126 0:013
�0:082 0:989

�
:

The eigenvalues are 0.127 and 0.988. The VAR(1) model is obtained by estimating a bivariate model

containing log returns and log dividend-price ratio on monthly NYSE/AMEX/NASDAQ data from

CRSP over the period 1985M1-2008M12. For each simulation the initial values are drawn from the

actual data and the innovations are drawn from the residuals. The sample size is 100. Bias and variance

are multiplied by 100 and together with RMSE they are reported as the average across the four slope

coe¢ cients. The �nal column (#NS) gives the number of simulations that result in a VAR(1) system

in the non-stationary region. The bootstrap results are based on 1,000 bootstraps. OLS are ordinary

least squares estimates; WLS are Chen and Deo (2010) estimates based on equation (8); ABF are bias-

adjusted estimates based on the analytical bias formula, equation (7); BOOT are bias-adjusted estimates

based on the bootstrap. PARBOOT are bias-adjusted estimates based on the bootstrap with normally

distributed data.
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Figure 1. Variance and RMSE.
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The �gure shows the variance and RMSE in the VAR(1) slope coe¢ cients as a function of �11 based
on 10,000 simulations from a VAR(1) model with

� =

�
0
0

�
; � =

�
�11 0:10
0:10 0:85

�
; 
u =

�
2 1
1 2

�
;

and T = 100, for OLS (solid line), WLS (dotted line), and ABF (dashed line). For each simulation the

initial values are drawn from a multivariate normal distribution with mean (Ik � �)�1 � and covariance
matrix vec(
x) = (Ik�k � � 
 �)�1vec(
u); and the innovations are drawn from a multivariate

normal distribution with mean 0 and covariance matrix 
u. The variance and RMSE are reported as
the average across the four slope coe¢ cients. The variance is multiplied with 100.
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Figure 2. Bias function.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.08

-0.06

-0.04

-0.02

0

Φ11

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.02

-0.01

0

0.01

0.02

Φ12

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.04

-0.02

0

0.02

0.04

Φ21

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.1

-0.05

0

0.05

0.1

Φ22

The �gure shows the least squares bias in the VAR(1) slope coe¢ cients as a function of �22 when the
true model has an intercept di¤erent from zero and

� =

�
0:80 0:10
0:10 �22

�
; 
u =

�
2 1
1 2

�
;

for T = 50 (solid line), T = 100 (dotted line), and T = 500 (dashed line). The bias function is calculated

using the analytical bias formula (7).
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Figure 3. Bias function.
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The �gure shows the least squares bias in the VAR(1) slope coe¢ cients as a function of �22 when the
true model has an intercept di¤erent from zero and

� =

�
0:10 0:10
0:10 �22

�
; 
u =

�
2 �1:8

�1:8 2

�
;

for T = 50 (solid line), T = 100 (dotted line), and T = 500 (dashed line). The bias function is calculated

using the analytical bias formula (7).
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