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Abstract

We extend a recently proposed Bayesian model selection technique, known as stochastic

model specification search, for characterising the nature of the trend in macroeconomic time

series. In particular, we focus on autoregressive models with possibly time-varying intercept

and slope and decide on whether their parameters are fixed or evolutive.

Stochastic model specification is carried out to discriminate two alternative hypotheses con-

cerning the generation of trends: the trend-stationary hypothesis, on the one hand, for which

the trend is a deterministic function of time and the short run dynamics are represented by a

stationary autoregressive process; the difference-stationary hypothesis, on the other, according

to which the trend results from the cumulation of the effects of random disturbances.

We illustrate the methodology for a set of U.S. macroeconomic time series, which includes

the traditional Nelson and Plosser dataset. The broad conclusion is that most series are better

represented by autoregressive models with time-invariant intercept and slope and coefficients

that are close to boundary of the stationarity region. The posterior distribution of the autore-

gressive parameters, estimated by a suitable Gibbs sampling scheme, provides useful insight on

quasi-integrated nature of the specifications selected.
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1 Introduction

Characterizing the nature of the trends observed in economic time series is a widely debated topic

in time series analysis. An issue that has attracted a lot of attention is whether the trend is best

captured by deterministic or integrated stochastic processes.

The historically oldest approach is to view the trend as a deterministic, possibly unknown,

function of time, and the deviations from trend as a stationary process (thus, the series is said to be

trend-stationary). According to this interpretation, the trend is an entirely exogenous component,

that can be estimated e.g. by global or local polynomial approximations.

An alternative view is that trends arise endogenously as a result of the persistent effects of

economic shocks, that are cumulated in the level of the series. This behaviour is the characteristic

property of the class of integrated, or unit root, processes. As the series can be made station-

ary after suitable differencing, it is also said to be difference-stationary. The distinction between

what is permanent and what is transitory in economic dynamics has important implications for

interpretation and policy.

The econometric literature has envisaged formal statistical tests for discriminating the two

trend generation hypotheses. Unit root tests, see Dickey-Fuller (1979) and Phillips and Perron

(1988), test the null of integration versus a stationary alternative; on the contrary, stationary

tests, see Nyblom and Makelainen (1983) and Kwiatkowski et al. (1992), test trend stationarity

against the alternative of integration. The implications for the interpretation of macroeconomic

dynamics where considered in a seminal paper by Nelson and Plosser (1982), in which they applied

the Dickey-Fuller test on a representative set of annual U.S. macroeconomic time series, and were

unable to reject the null of integration for most of the series.

A rich literature has discussed the limitations of the testing approach, see among others DeJong

et al. (1992), Schwert (1989) and Caner and Kilian (2001), and has proposed refinements and

enhancements. Important references are Perron (1989), Elliott, Rothenberg and Stock (1996), Ng

and Perron (2001) for unit roots tests, and Leybourne and McCabe (1994) for stationarity tests;

see also Harvey (2001) for a review.

The Bayesian approach to unit root testing has been considered by DeJong and Whiteman

(1991), Koop (1992), Sims (1988), Sims and Uhlig (1991), Phillips (1991), Schotman and van Dijk

(1991), Phillips and Ploberger (1994), among others; the literature has focused on the selection of

noninformative priors for the autoregressive coefficients and on assessing the sensitivity of model

selection on the prior choice.

The problem of discriminating fixed trends from stochastically evolving ones has been addressed

by Frühwirth-Schnatter (1995) and Koop and van Dijk (2000). The research question that we posit
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in this paper is similar to that of the two aforementioned articles, in that our ultimate aim is es-

tablishing which trend model appears to provide the most plausible explanation for the behaviour

of economic time series. However, our approach is different as we capitalize on the recent devel-

opments in Bayesian model selection. In particular, we apply the stochastic model specification

search recently proposed by Frühwirth-Schnatter and Wagner (2010, FS-W henceforth). The differ-

ent trend models are nested inside a more general hierarchical state space model and are obtained

by imposing exclusion restrictions, so that discriminating the trend hypothesis amounts to per-

forming variable selection within the regression framework considered by George and McCulloch

(1993, 1997). We will argue that this approach can shed further light on the issue of characterising

trends in macroeconomic time series.

The plan of the paper is the following. The next section introduces the approach in the simple

case when we are interested in discriminating a fixed level versus a random walk level. Section 3

brings into the analysis a possibly stochastic drift. Model selection and estimation by Monte Carlo

Markov Chain is discussed in section 4. Illustrations are provided in section 5 with respect to the

traditional Nelson and Plosser (1982) dataset and other key macroeconomic time series. In section

6 we draw some conclusions.

2 Discriminating Level Stationarity and random walk trends.

Figure 1 displays the quarterly series of U.S. average weekly hours worked (AWHMAN) for the

manufacturing sector and the quarterly CPI and core (ex. food and energy) inflation rate for the

period 1960:1-2009.4 (Source: U.S. Census Bureau). These series have been extensively investigated

in macroeconomic applications. For instance, as far as AWHMAN is concerned, the order of

integration of the series is a crucial issue, as the response of the labour market to technology shocks

crucially depends on the stationarity of this series. Opposite conclusions are reached whether one

uses differences or levels in a structural vector autoregressive model: in the former case (see Gaĺı,

1999) technology shocks induce a short run reduction in hours worked; in the second, hours worked

increase, see Christiano et al. (2003).

In this section we present an approach based on Bayesian model selection to investigate the

issue as to whether the long run evolution of hours and inflation is better characterized by a fixed

level or a slowly evolving component driven by permanent shocks.

Let us consider, as a starting point, the following AR(p) model with time-varying intercept:

φ(L)yt = µt + εt, εt ∼ NID(0, σ2ε ), t = 1, . . . , T,

µt = µt−1 + ηt, ηt ∼ NID(0, σ2η),
(1)
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Figure 1: U.S. Average Weekly Hours Worked (Manufacturing) and Quarterly Inflation rate (Core

and all items). Source: US Census Bureau, 1960:q1-2009.q4.
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such that φ(L) is a stationary AR polynomial, and εt and ηt are mutually uncorrelated at all leads

and lags.

The locally best invariant test of the null H0 : σ2η = 0 versus the alternative H1 : σ2η > 0 has

been studied by Leybourne and McCabe (1994). Model (1) nests two trend generation hypotheses

of interest:

a) yt is a level-stationary process. This occurs if σ2η = 0, and φ(L) is a stationary polynomial,

i.e. φ(z) = 0 ⇐⇒ |z| > 1.

b) yt is a difference stationary process. There are two ways by which difference stationary

processes can arise as particular cases of (1).

1. yt is a time-invariant AR(p) process characterized by a unit root. This occurs when

σ2η = 0 and φ(z) = 0 ⇐⇒ z = 1. As φ(L) = ∆φ(L)∗, where φ(L)∗ = 1 − φ∗1L − · · · −
φp−1L

p−1, φ∗j = −
∑p

i=j+1 φi, ∆yt is a stationary AR(p − 1) process. Thereby, we say

that yt is a purely autoregressive difference stationary process. It admits a trend-cycle

decomposition (see Beveridge and Nelson, 1981) with components driven by perfectly

correlated disturbances: yt = mt+ct, mt = mt−1+ε
∗
t and φ

∗(L)ct = θ∗(L)ε∗t , where ε
∗
t =

[φ∗(1)]−1εt and θ
∗(L) is the order p− 2 moving average polynomial ∆−1[φ∗(1)− φ∗(L)].
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Under restrictive conditions on the φ∗j coefficients, discussed in Proietti and Harvey

(2000), the model can be interpreted as the reduced form of an orthogonal trend-cycle

decomposition of yt into a random walk trend and an AR(p − 1) cycle; the Beveridge-

Nelson components would provide the real time estimates of the trend and the cycle in

this case. For instance, when p = 2, we need 0 < φ2 < 1, along with the unit root

condition φ2 = 1− φ1.

2. yt is a difference stationary process with multiple sources of disturbances, which occurs

when σ2η > 0, and φ(L) is a stationary polynomial, i.e. φ(z) = 0 ⇐⇒ |z| > 1. As

a result, ∆yt has a moving average (MA) feature, namely ∆yt ∼ARIMA(p,1,1), with a

negative MA coefficient, as it can be readily seen from the fact that the autocovariance

of the process φ(L)∆yt = ηt+∆εt at lag 1 is −σ2ε . Again, yt admits the Beveridge-Nelson

decomposition into a random walk trend and a stationary ARMA(p, p − 1) cycle, and,

under restrictive conditions, an orthogonal trend-cycle decomposition. The conditions

relate to the possibility of interpreting the process ηt/[φ(L)∆] as the reduced form of an

orthogonal decomposition of into a random walk trend and an AR(p) cycle; see Proietti

and Harvey (2000). The specification with φj = 0, j = 1, . . . , p, is known as the local

level model (Harvey, 1989).

Notice that we do not restrict the AR roots to be in the stationarity region, otherwise the first

category of difference stationary models could not be represented among the competing models.

The stochastic model specification search methodology proposed by FS-W is based on a repa-

rameterisation of (1), known as the non-centred representation, with respect to location and scale

(see also Gelfand et al., 1995, Frühwirth-Schnatter, 2004, Strickland et al. 2007), which is obtained

by writing

µt = µ0 + σηµ̃t, t = 1, . . . , T,

µ̃t = µ̃t−1 + η̃t, η̃t ∼ NID(0, 1), µ̃0 = 0,
(2)

where µ0 is the starting value of the random walk and µ̃t ∼ N(0, t).

The non-centred representation is useful not only for the efficiency of Bayesian estimation by

Monte Carlo Markov Chain (MCMC) methods (in particular, when σ2η is small in comparison to

σ2ε ), but also since it paves the way to performing model selection in a regression framework via the

stochastic search variable selection (SSVS) approach proposed by George and McCulloch (1993,

1997).

FS-W’s key idea is that the non-centred representation is not identified since model (2) with

(−ση)(−µ̃t) is observationally equivalent. As a consequence, the likelihood function is symmetric

around zero along the ση dimension and bimodal, if the true ση is larger than zero. This fact can
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be exploited to quantify how far the posterior of ση is removed from zero. Thus, letting B denote

a Bernoulli random variable with E(B) = 0.5, independent of yt, writing

σηµ̃t = βµµ
∗
t , βµ = (−1)Bση, µ

∗
t = (−1)Bµ̃t,

and replacing into (2) and subsequently into (1), yields:

yt = µ0 + βµµ
∗
t + φ1yt−1 + · · ·+ φpyt−p + εt.

By this clever expedient a standard deviation is transformed into a regression coefficient and

SSVS can be applied. Hence the selection of the trend generating process is reconducted to the

inclusion of a particular regressor. A seemingly ancillary issue is the presence and the selection of

the AR component. This is only apparently a secondary issue, since misspecification of the short

run dynamics, implied by lagged values of yt, has important implications on the fundamental issue

concerning the nature of the trend component trend. We will assume throughout that the AR

polynomial has maximum order equal to 2 (we judge a second order model sufficiently general for

our purposes).

Using the non-centred representation, for p = 2, there are three potential explanatory variables

for yt; if we assume that every subset of the 3 explanatory variables is admissible, there are K = 23

possible models in competition. We now introduce the binary indicator variable γ1, taking value 1

if the random effect µ∗t is present in the model and 0 if it is excluded, along with a pair of binary

indicators for the two AR effects, δ1, δ2, each taking values (0,1) according to as to whether the

term φiyt−i, i = 1, 2, is included in the model. Hence, the 8 models in competition are nested within

the following representation:

yt = µ0 + γ1βµµ
∗
t + δ1φ1yt−1 + δ2φ2yt−2 + εt, εt ∼ NID(0, σ2ε ),

µ∗t = µ∗t−1 + η∗t , η
∗
t ∼ NID(0, 1), µ∗0 = 0

(3)

Collecting the binary indicators in the vector Υ = (γ1, δ1, δ2), the 8 possible models are listed

below:

Label Υ Equation

M1 (0,0,0) yt = µ0 + εt

M2 (0,0,1) yt = µ0 + φ2yt−2 + εt

M3 (0,1,0) yt = µ0 + φ1yt−1 + εt

M4 (0,1,1) yt = µ0 + φ1yt−1 + φ2yt−2 + εt

M5 (1,0,0) yt = µ0 + βµµ
∗
t + εt

M6 (1,0,1) yt = µ0 + βµµ
∗
t + φ2yt−2 + εt

M7 (1,1,0) yt = µ0 + βµµ
∗
t + φ1yt−1 + εt

M8 (1,1,1) yt = µ0 + βµµ
∗
t + φ1yt−1 + φ2yt−2 + εt
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Models M1-M4 are level stationary if φ(z) = 0 ⇐⇒ |z| > 1. If φ(z) = 1 they are purely AR

difference stationary models. Models M5-M8 with φ(L) = 0 ⇐⇒ |z| > 1 are difference stationary

with an MA(1) feature.

We will assume that the modelsMk, k = 1, . . . ,K, are equally likely a priori, that is π(Mk) ∝ 1,

or equivalently π(Υ) = 2−3, where π(·) denotes the density or the probability function of the argu-

ment. A distinctive trait of FS-W stochastic specification search is the adoption of Gaussian prior,

centred at zero, for the parameter βµ; for instance, in modelM5, π(µ0, βµ, σε) = π(µ0)π(βµ, σ
2
ε ) and

the prior for the joint distribution of (βµ, σ
2
ε ) is normal-inverse gamma, that is π(σ2ε ) ∼ IG(c0, C0),

see section 4, and π(βµ|σ2ε ) ∼ N(0, κµσ
2
ε ).

Not only this allows conjugate analysis, but FS-W show that inference will benefit substantially

from the use of a normal prior for βµ = ±ση, en lieu of the usual inverse gamma prior for the

variance parameter σ2η. In fact, a major problem that arises when the IG prior is used is the

high sensitivity of the posterior distribution of σ2η to the hyperparameters of the IG distribution,

when the true σ2η is close to zero; as a result the MCMC draws will mix very slowly or even lack

convergence. On the contrary, the posterior distribution of βµ is not too sensitive to the choice of

κ and Monte Carlo inference is much more efficient.

Notice that βµ|ση, γ1 = 1, is a random variable which takes the values −ση and ση with

probabilities both equal to 1/2 so that a Gaussian prior centred at zero is reasonable; further-

more, this choice amounts to specify a hierarchical mixture prior to the parameter βµ, of the form

π(βµ) = (1 − γ1)I0 + γ1N(0, κσ
2
ε ) where I0 is a degenerate density with point mass at zero, see

Smith and Kohn (1996). As pointed out in George and McCulloch (1997), this prior entails that

a stochastic trend will be included if βµ can be distinguished from zero irrespective of its absolute

size. An alternative, not explored yet for SSVS, is to π(βµ) = (1 − γ1)N(0, κ0σ
2
ε ) + γ1N(0, κ1σ

2
ε )

such that κ0 is small in comparison to κ1, in which case selection is based on practical significance

of the stochastic variation in the level.

As far as model selection is concerned, given the limited number of specifications, one possibility

is to compute the posterior model probabilities and select that specification which has the largest.

However, this entails the evaluation of the marginal likelihood for each model. This evaluation

is computationally intensive and the accuracy may be poor (see the discussion in FS-W and the

references therein). Rather than computing the posterior probabilities of all the possible models, it

is computationally more attractive to simulate samples from their posterior distribution by MCMC

methods. In particular, exploiting the conditional independence structure of the model, and given

the availability of the full conditional posterior distribution of Υ in closed form, the multinomial

vector Υ is sampled along with the model parameters by using a Gibbs sampling scheme and a
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Figure 2: U.S. Average Weekly Hours Worked (Manufacturing) 1960:q1-2009.q4.

stochastic search of the most likely explanation of the observed time series is sought. After a large

number of iterations of the GS scheme, model selection (and averaging, if one wishes) can be based

on π(Υ|y), as estimated by the proportion of times a particular specification was drawn.

Full details on the statistical treatment will be postponed to section 4. We conclude this section

by highlighting some estimation results for the series AWHMAN and core inflation. For hours

worked, the model selected by the stochastic model specification search is M4, i.e. a stationary

AR(2). The proportion of times modelM4 is selected varies slightly with the values of κµ; if κµ = 1,

the proportion is 91.5%, whereas model M8 is selected in 8.2% of the draws. If we let κµ increase,

the proportion for M4 quickly goes to 100%. Figure 2 displays the estimated posterior distribution

obtained from 100,000 GS draws after a burn-in of 50,000 iterations. It should be noticed that the

AR coefficients are close to the boundary of the stationary region, represented by the triangle of

vertices (φ1, φ2) = (−2,−1), (2, 1), (0, 1); furthermore they are close to the complex roots regions,

but the sum of the AR coefficients has a posterior mean of about 0.9. When modelM8 is estimated,

the posterior distribution of βη has a large mass around zero, which is taken as evidence that the

time variation in the intercept is not statistically detectable.

The U.S. inflation series provides also an interesting case study. We prefer to analyse the so
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Figure 3: U.S. quarterly inflation (ex. food and energy) 1960:q1-2009.q4.

called core inflation series (excluding food and energy), because it is less affected by outliers. In

this case the evidence is in favour of model M5, that is a local level model with no AR effects (see

Harvey, 1989, Stock and Watson, 2007). Figure 3 displays 100,000 draws from the posterior of the

parameters σ2ε and βµ, arising from a Gibbs sampling scheme with a burn-in of 50,000 iterations,

along with the estimated posterior. It should be noticed that the posterior of βµ is bimodal and

symmetric around zero; the fact that the two modes are well separated is taken as evidence that a

stochastic level, driven by disturbances with non zero variance, is present.

3 Stochastic and Deterministic Linear trends

The model for µt can be generalised to include a slope component. We are interested in investigating

whether this further component is fixed or time varying; in the latter case the evolution over time

is described by a random walk. This leads to the consideration of the local linear trend model for

the component µt in (1):

µt = µt−1 + at−1 + ηt, ηt ∼ NID(0, σ2η)

at = at−1 + ζt, ζt ∼ NID(0, σ2ζ )
(4)

8



where at is the slope component and we assume that ηt and ζt are mutually uncorrelated and

independent of εt (see Harvey, 1989, and West and Harrison, 1997).

Denoting by µ0 and a0 the initial values of the level and slope components, the non-centred

representation of (4) is the following:

µt = µ0 + a0t+ σηµ̃t + σζÃt,

µ̃t = µ̃t−1 + η̃t, η̃t ∼ NID(0, 1),

Ãt = Ãt−1 + ãt−1, ãt = ãt−1 + ζ̃t, ζ̃t ∼ NID(0, 1),

(5)

so that µ̃0 = Ã0 = ã0 = 0, and ζ̃t = ζt−1/σζ . Thus, in the non-centred representation the mean

function is explicitly written as a linear function of time and the stochastic part is the combination

of a random walk and an integrated random walk, both starting off at the origin and driven by

standardised independent disturbances.

As before, the non-centred representation is identified up to a sign switch, that (−ση)(−µ̃t)
has the same likelihood as (ση)(µ̃t), and the same holds for the pair (−σζ)(−Ãt) and (σζ)(Ãt).

Defining βµ = (−1)B1ση βA = (−1)B2σζ , where B1, B2 are independent Bernoulli random variables

with parameter 0.5, and correspondingly, µ∗t = (−1)B1 µ̃t, A
∗
t = (−1)B2Ãt, we can reparameterise

the model for yt as

yt = µ0 + βµµ
∗
t + βAA

∗
t + a0t+ φ1yt−1 + φ2yt−2 + εt.

Further defining the multinomial vector Υ = (γ1, γ2, δ0, δ1, δ2), collecting the 0-1 binary indicator

variables for the inclusion of the regression effects µ∗t , A
∗
t , t, yt−1, yt−2, respectively, the general

specification encompassing all the possible models is:

yt = µ0 + γ1βµµ
∗
t + γ2βAA

∗
t + δ0a0t+ δ1φ1yt−1 + δ2φ2yt−2 + εt, εt ∼ N(0, σ2ε )

µ̃t = µ̃t−1 + η̃t, η̃t ∼ NID(0, 1),

A∗
t = A∗

t−1 + a∗t−1, a
∗
t = a∗t−1 + ζ̃t, ζ̃t ∼ NID(0, 1).

(6)

The number of available models is K = 25. The different models will be labelled by

Mk, k = 1 + 24γ1 + 23γ2 + 22δ0 + 2δ1 + δ2.

The model (6) nests several important special cases, that can be grouped as follows.

a) Trend-stationary processes. They occur when σ2η = σ2ζ = 0, and φ(L) is a stationary poly-

nomial, i.e. φ(z) = 0 ⇐⇒ |z| > 1. Models M1 −M8 with stationary roots belong to this

group.
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b) yt is a first or second order difference stationary process (i.e. ∆dyt has a stationary Wold

representation, d = 1, 2). There are several ways by which difference stationary processes can

arise as particular cases of (6).

1. yt is a time-invariant AR(p) process characterized by at least one unit root. This occurs

when σ2η = 0 and φ(L) can be written as ∆φ(L)∗ (models M3 and M7) or φ(L) = ∆2

(models M4 and M8).

2. yt is a difference stationary process with multiple sources of disturbances, which occurs

when either σ2η > 0 or σ2ζ > 0, or both, and φ(L) is a stationary polynomial (Models

M9 −M32). When σ2η, σ
2
ζ > 0 (Models M25 −M32), the specification is ARIMA(p, 2, 2).

Models M9, M13, M17, M21, M25, M29, are variants of the local linear trend model

(Harvey, 1989). In particular, in the first two cases the trend is an integrated random

walk and the stationary component is white noise. The slope is fixed for models M17,

M21: model M17 has γ1 = 1, γ2 = δ0 = δ1 = δ2 = 0, and it is coincident with the local

level model, with centred representation yt = µt + εt, µt = µt−1 + ηt. Model M21 is the

random walk with drift plus noise model yt = µt + εt, µt = a+ µt−1 + ηt.

4 Statistical Treatment

The statistical treatment of model (6) is based on FS-W. In this section we discuss how perform

model selection is carried out. In particular, we discuss our prior choices, and describe the algorithm

used for computing the posterior distribution and the full conditional distributions.

Partition Υ as Υ = (γ, δ), where γ = (γ1, γ2) and δ = (δ0, δ1, δ2). According to the value of

Υ, any particular model admits the the non-centered representation as linear mixed model of the

following kind:

yt = x′δ,tρδ + z′γ,tαγ,t + εt, εt ∼ NID(0, σ2ε )

αγ,t = Tγαγ,t−1 +Rγuγ,t, uγ,t ∼ NID(0, I),
(7)

where αγ,0 = 0 and the intercept is always included in the vector xδ,t. For the full model, M32,

δ = (1, 1, 1) and γ = (1, 1),

xδ,t = (1, t, yt−1, yt−2)
′, ρδ = (µ0, a0, φ1, φ2)

′, zγ,t = (βµ, βA, 0)
′, αγ,t = (µ∗t , A

∗
t , a

∗
t ).

Tγ =


1 0 0

0 1 1

0 0 1

 Rγ =


1 0

0 0

0 1

 .
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4.1 Prior specification

Let y denote the collection of time series values {yt} and α denote that of the latent states {αt},
ψΥ collects the parameters (µ0, βµ, βA, a0, φ1, φ2) that enter the corresponding model.

The prior assumes an independent structure between each block of variables, such that:

π(Υ, ψ, σ2ε , α) = π(Υ)π(σ2ε )π(ψ|Υ, σ2ε )π(α|Υ).

The prior distribution over the model space is uniform, that is π(Υ) = 2−5.

For the irregular variance a hierarchical inverse gamma prior is adopted, σ2ε ∼ IG(c0, C0),

where C0 ∼ G(g0, G0), G(·) denoting the Gamma distribution, c0 = 2.5 , g0 = 5, and G0 =

g0/[0.75Var(yt)(c0 − 1)], as in FS-W. The hierarchical prior makes the posterior distributions less

sensitive to the choice of the hyperparameters of the IG distribution; it obviously requires an

additional sampling step where C0 is sampled conditional on σ2ε from the conditional Gamma

posterior C0|σ2ε ∼ G(g0 + c0, G0 + 1/σ2ε ) at each sweep of the sample.

As far as the vector ψΥ is concerned, we adhere to the general prescription by Koop (2003),

according to which, when comparing models it is acceptable to use uninformative priors over pa-

rameters which are common to all models. However, informative, proper priors should be used over

all other parameters. For instance, for the full model,

π(ψΥ|Υ, σ2ε ) = π(µ0|σ2ε )π(βµ|σ2ε )π(βA|σ2ε )π(a0|σ2ε )π(φ1|σ2ε )π(φ2|σ2ε ).

we take the conjugate priors βµ|σ2ε ∼ N(0, κµσ
2
ε ) and βA|σ2ε ∼ N(0, κAσ

2
ε ), whereas for the au-

toregressive parameters we adopt a normal prior of the type: φi|σ2ε ∼ N(0, diσ
2
ε ), i = 1, 2. Also,

a0|σ2ε ∼ N(0, d0σ
2
ε ). For the constant term we adopt the uninformative prior π(µ0|σ2ε ) ∝ 1 or the

proper conjugate prior µ0|σ2ε ∼ N(0, q0σ
2
ε ), where q0 is a large number. The default values chosen

for the scale factors are κµ = κA = d0 = d1 = d2 = 10.

Finally, the prior for α is provided by the Gaussian dynamic model (7), so that,

p(α) = p(αγ0)
n∏

t=1

p(αγt|αγ,t−1),

with αγt|αγ,t−1 ∼ N(Tγαγ,t−1, RγR
′
γ) and αγ,0 = 0.

4.2 MCMC Estimation

Model selection requires the evaluation of the posterior probability function of the multinomial

vector Υ, denoted π(Υ|y). Also, for the selected model we are interested in the marginal posterior

distributions of the parameters π(ψ|y) and the states π(α|y). The required posteriors are not
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available in closed form, but we are capable of drawing samples from them by Monte Carlo Markov

Chain methods and, in particular, by a Gibbs sampling (GS) scheme that we now are going to

discuss in some detail. The GS scheme produces correlated random draws from the posteriors by

repeatedly sampling an ergodic Markov chain whose invariant distribution is the target density; see

e.g. Chib (2001), Robert and Casella (2004), Gamerman and Lopes (2007). In essence, it defines

a homogeneous Markov Chain such that the transition kernel is formed by the full conditional

distributions and the invariant distribution is the unavailable target density.

The GS scheme can be sketched as follows. Specify a set of initial values Υ(0), σ
2(0)
ε , α(0), ψ(0).

For i = 1, 2, . . . ,M , iterate the following operations:

a. Draw Υ(i) ∼ π(Υ|α(i−1), y)

b. Draw σ
2(i)
ε ∼ π(σ2ε |Υ(i), ψ(i−1), α(i−1), y)

c. Draw ψ(i) ∼ π(ψ|Υ(i), σ
2(i)
ε , α(i−1), y)

d. Draw α(i) ∼ π(α|Υ(i), σ
2(i)
ε , ψ(i), y)

The above complete conditional densities are available, up to a normalizing constant, from the form

of the likelihood and the prior.

For the sake of notation, let us write the regression model as y = ZΥψΥ + ε, where y and ε are

vectors staking the values {yt} and {εt}, respectively, and the generic row of matrix ZΥ contains

the relevant subset of the explanatory variables (1, µ∗t , A
∗
t , t, yt−1, yt−2).

Step a. is carried out by sampling the indicators with probabilities proportional to the condi-

tional likelihood of the regression model, as

π(Υ|α, y) ∝ π(Υ)π(y|Υ, α)
∝ π(y|Υ, α),

which is available in closed form (see below).

Under the normal-inverse gamma conjugate prior for (ψΥ, σ
2
ε )

σ2ε ∼ IG(c0, C0), ψΥ|σ2ε ∼ N(0, σ2εDΥ),

where, e.g. for the model Υ = (1, 1, 1, 1, 1), DΥ = diag(q0, κµ, κA, d0, d1, d2), steps b. and c. are

carried out by sampling from the posteriors

σ2ε |Υ, α, y ∼ IG(cT∗, CT∗)

ψΥ|Υ, σ2ε , α, y ∼ N(m,σ2εS)
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where
S =

(
Z ′
ΥZΥ +D−1

Υ

)−1
, m = SZ ′

Υy

cT∗ = c0 + T ∗/2, CT∗ = C0 +
1
2

(
y′y −m′S−1m

)
.

Finally,

π(y|Υ, α) ∝ |S|0.5

|DΥ|0.5
Γ(cT ∗)

Γ(c0)

Cc0
0

C
cT∗
T ∗

see e.g. Geweke (2005), where Γ(·) denotes the Gamma function.

The sample from the posterior distribution of the latent states, conditional on the model and

its parameters, in step d., is obtained by the conditional simulation smoother proposed by Durbin

and Koopman (2002) for linear and Gaussian state space models.

Finally, the draw of the parameters βµ and βA are obtained by performing a final random sign

permutation. This is achieved by drawing independently Bernoulli random variables Br, r = 1, 2

(here again we refer to the model including both level and slope), with probability 0.5, and recording

(−1)B1(ση, µ̃t), and (−1)B2(σζ , Ãt, at).

5 Empirical Results

We apply variable selection to two data sets dealing with U.S. macroeconomic time series. The

first is the original Nelson and Plosser (1982, NP) data set, consisting of 15 annual time series

which are a testbed for unit root and stationary testing. The series are listed in table 1; the sample

sizes range from 62 to 111 observations for each series. Except for the bold yield, all the series are

transformed into natural logarithms. The conclusions reached by NP, matured on the evidence of

unit root tests, have been revisited since then many times as new methodologies were proposed.

We follow suit by performing stochastic model specification search according to the methodology

presented in the previous sections.

We also consider an additional data set (ADS) made up of some relevant quarterly and monthly

and quarterly time series (made available at the Federal Reserve Bank of St.Louis Economic Data

website, http://research.stlouisfed.org/fred2/), listed in table 2.

Variable selection is implemented in Ox 6.0 (Doornik, 2007) using our source code. Tables 3

and 4 present the frequency by which model Mk, k = 1+24γ1+23γ2+22δ0+2δ1+ δ2, was selected

in 100,000 iterations of the GS scheme outlined in the previous section, after a burn-in of 50,000

iterations (sensible starting values for the parameters are obtained by running the unrestricted

model, model 32, without variable selection for the first 1000 draws). The time needed to perform

MCMC model selection for a time series of around 500 observations is less then 30 minutes using

a standard desktop computer.
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Table 1: The Nelson and Plosser data set.
Series description Sample period Name

Real GNP 1909 - 1970 Rgnp

Nominal GNP 1909 - 1970 Ngnp

Real per capita GNP 1909 - 1970 Rpcgnp

Industrial product index 1860 - 1970 Iprod

Total employment 1890 - 1970 Empl

Total unemployement rate 1890 - 1970 Unempl

GNP deflator 1889 - 1970 Gnpdefl

Consumer price index 1860 - 1970 Pcons

Nominal wage 1900 - 1970 Nwage

Real wages 1900 - 1970 Rwage

Money stock M2 1889 - 1970 Money

Velocity of money 1869 - 1970 Veloc

Bond yields, 30-year corporate 1900 - 1970 Interest

Stock prices 1871 - 1970 Pstock

Table 2: Data set ADS.
Series description Sample period Name

Gross Domestic Product (chained 2005 volumes) Quarterly 1947.1 - 2009.4 GDP

Gross National Product (chained 2005 volumes) Quarterly 1947.1 - 2009.4 GNP

Consumer Price Index (all items) Monthly 1960.1 - 2009.12 CPI

Inflation rate (all items) Monthly 1960.1 - 2009.12 MInfl

Inflation rate Quarterly 1960.1 - 2009.4 QInfl

GDP Deflator Quarterly 1947.1 - 2009.4 GDPdefl

Industrial Production Index Monthly 1960.1 - 2009.12 IP

Unemployment rate Monthly 1960.1 - 2009.12 MUnempl

Unemployment rate Quarterly 1960.1 - 2009.4 QUnempl

Average Weekly Hours Worked (Manuf.) Monthly 1960.1 - 2009.12 MHWorked

Average Weekly Hours Worked (Manuf.) Quarterly 1960.1 - 2009.4 QHWorked
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Table 3: Stochastic Model Specification Search for the Nelson and Plosser data set. Percentages

by which model Mk is selected in 100,000 iterations of the Gibbs sampler (burn in period 50,000

GS iterations).

Model

Series M3 M7 M8 M9 M11 M12 M13 M15 M16 M17 M18 M19 M20 M23 M24 M25 M28

Rgnp 94.5 0.2 2.2 0.3 1.7 1.1

Ngnp 90.2 0.9 0.4 2.9 1.2 2.1 2.3

Rpcgnp 89.6 4.8 1.6 2.3 1.7

Iprod 99.8 0.2

Empl 98.2 0.5 0.2 0.4 0.7

Unempl 87.5 1.8 1.5 2.6 4.6 2.0

Gnpdefl 76.3 0.3 12.9 1.3 7.2 2.0

Pcons 20.6 10.5 44.0 22.5 2.4

Nwage 93.7 0.7 0.4 1.7 1.0 0.9 1.6

Rwage 98.4 0.5 1.1

Money 98.5 0.2 0.1 0.3 0.9

V eloc 93.2 3.9 2.9

Interest 50.3 8.5 21.8 6.0 5.5 3.1 4.8

Pstock 21.7 31.3 2.9 1.4 9.4 12.1 6.3 14.9
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As far as the NP data set is concerned, stochastic model specification search leads to the

selection of model M8 for most of the series, not only for real gross national product, but also for

nominal GNP, nominal wages and the GNP deflator. Notice that this model has Υ = (0, 0, 1, 1, 1),

that is a trend stationary AR(2) model:

yt = µ0 + a0t+ φ1yt−1 + φ2yt−1 + εt, εt ∼ NID(0, σ2ε ).

Also, similar results are obtained for industrial production and real wages, for which the selected

model is M7, i.e. yt = µ0 + a0t+ φ1yt−1 + εt. For unemployment model M3, which is a stationary

AR(1) model with intercept term and no slope, is selected in 88% of the draws. Apparently, only

this result is consistent with NP findings. This is a striking and new result for the unit root

literature, although similar evidence is found in Schotman and van Dijk (1991) and Koop and van

Dijk (2000), at least for GNP and IP. Also, the results for GNP, employment, the unemployment

rate, the GNP deflator and money are in accord with Phillips (1991) and Kwiatowski et al. (1992).

On the contrary, for the consumer price index (Pcons) the modal specification is M20, which

features a stochastic level, whereas for interest rates and stock prices the estimated posterior model

probabilities are rather sparse.

These results were obtained by assuming a Gaussian conjugate prior with scale factors equal to

10, i.e. κµ = κA = d0 = d1 = d2 = 10. The original time series were scaled by the variance of the

second order differences of the series ∆2yt so as to avoid that the draws of σ2ε were too small.

We assessed prior sensitivity by letting the prior variance be smaller, κµ = κA = d0 = d1 =

d2 = 1, and larger, κµ = κA = d0 = d1 = d2 = 100. The evidence is that the distribution of Υ|y is

less concentrated when the prior variance is small, in that the proportion of times stochastic levels

and slopes are selected is larger, and tending to be more concentrated on the modal model when

the prior variance is large as compared to σ2ε .

The evidence arising from the application of MCMC model specification search on the data set

ADS, described in table 2, confirms the trend stationarity of the real gross national and domestic

product. However, for monthly industrial production we select model 23, which is

yt = µ0 + a0t+ σηµ̃t + φ1yt−1 + εt, εt ∼ NID(0, σ2ε ).

Against this background, the overwhelming evidence in favour of pure AR models requires a

closer investigation. Further insight on the problem is obtained by estimating modelM8 by MCMC

and by considering the estimated posteriors of the AR parameters (φ1, φ2). Figure 4 displays the

sample distribution of the 100,000 draws from the joint posterior of (φ1, φ2) along with the estimated

posterior density of φ1 + φ2, both for the NP GNP annual series, and for the quarterly GDP series
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Table 4: Stochastic Model Specification Search for selected U.S. macroeconomic time series (see

table 2). Percentages by which model Mk is selected in 100,000 iterations of the Gibbs sampler

(burn in period 50,000 GS iterations).

Model

Series M4 M8 M12 M16 M17 M18 M19 M20 M21 M22 M23 M24 M27 M28 M31

GDP 100.0

GNP 100.0

CPI 48.0 52.0

MInfl 65.5 2.2 31.2 1.1

QInfl 52.0 4.2 9.2 0.5 26.35 5.3

GDPDefl 15.8 7.6 49.9 3.8 22.9

IP 41.8 58.0 0.2

MUnempl 67.1 32.9

QUnempl 90.8 0.4 6.2 2.6

MHWorked 67.2 2.4 29.2 1.2

QHWorked 91.5 3.3 2.5 1.5 1.2

(similar results being obtained for quarterly GNP). We notice that the series cover very different

sample periods.

The exploration of these posteriors highlights that the AR polynomial is close to the nonsta-

tionarity region. This is particularly true of quarterly GDP. This fact is rather general: most of

the series for which pure AR models were selected can be described as quasi-integrated time series.

We should remark at this point that the model selection procedure that we outlined has a

characteristic property, which can be illustrated with reference to the case when the true model is

a pure random walk with drift: ∆yt = c+ ηt. If a series is actually generated in this way, the only

way the true model can be reflected in our set is as a special case of M2 (Υ = (0, 0, 0, 1, 0), with

the AR coefficient sufficiently close to unity. The specification Υ = (1, 0, 0, 0, 0), corresponding to

model M17, whose non-centred representation is yt = µ0 + σηµ̃t + εt, with ση strictly greater than

zero, would be characterised by a smaller marginal likelihood, since we face a random walk plus

noise model, with ARIMA(1,1,1) reduced form, unless σ2ε = 0.

Now, an intrinsic assumption of variable selection as applied to unobserved components models

is that σ2ε is strictly greater than zero. MCMC inference breaks down when σ2ε is allowed to be

zero. Assuming σ2ε > 0 is both a strong point and a limitation of the approach; a strong point, as
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Figure 4: U.S. annual GNP (NP data set) and quarterly GDP (1947.1-2009.4). Draws from the

posterior distribution of the AR coefficients (φ1, φ2) and estimated posterior density of φ1 + φ2.
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is allows to carry out variable selection for unobserved random effects using a regression framework

(see George and McCulloch, 1993). The random walk plus noise model, with strictly positive noise

variance, implies some kind of mean reversion (or low persistence) that is not supported for series

like those belonging to the NP dataset. Temporal aggregation (the series are annual) may play a

role in determining a highly persistent behaviour.

In conclusion, the selection of models Mk, k ≤ 8 does not necessarily entails that the series are

trend stationary. A closer look at the posteriors reveals that the AR coefficients are close to the

boundaries of the stationarity region. In the light of the above discussion, we interpret the outcome

of variable selection as pointing out the presence of quasi unit root behaviour, with no significant

mean reversion (attributable to a negative moving average root).

The analysis of the monthly CPI and inflation provides an interesting case study. The modal

choice for monthly inflation ∆CPIt (MInfl) is the AR(1) with stochastic level

(1− φ1L)∆CPIt = µ0 + σηµ̃t + εt

The posterior mean of the AR coefficient is 0.33. The fact that for the series QInfl the selected

model has no AR feature (M17) can be attributed to temporal aggregation. A few comments are

due for explaining the CPI result: Bayesian model selection leads to model M24, whereas we would

expect M15 which results from integrating the model selected for ∆CPIt, which is M19. Despite

the fact that the model for CPI, (1−φ1L−φ2L2)CPIt = µ0+σηµ̃t+ εt, has no integrated random

walk component, the distribution of the AR coefficients has a root close to 1, as it evident from the

posterior draws and the distribution of the sum of the AR coefficients, displayed in figure 5. This

suggests that the selected model for CPI can be actually reparameterised as:

(1− φ1L)∆CPIt = µ0 + σηµ̃t + εt.

Hence, the conflict with the model selected for monthly inflation is only apparent. Notice that,

integrating both sides, (1−φ1L)CPIt can be rewritten as a linear trend plus an integrated random

walk, with no irregular term. The only way in which such a model could arise in our model set is

indeed via M17, allowing for a unit root in the AR coefficients.

A final comment is due for unemployment and hours worked. While the quarterly series are

stationary around a fixed level, the monthly series appears to be integrated. There is a possible

explanation, related to temporal aggregation, especially in the case of unemployment. The fact is

that the quarterly AR(2) coefficients are close to the boundary of the stationary region and imply a

pseudo-cyclical behaviour with a very long period. The monthly series provides a better separation

of the low frequency spectral peak due to the cycle from the long run trend (the zero frequency).
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Figure 5: U.S. Consumer price index (all urban consumers) (1960.1-2009.12). Posterior density of

βµ, draws from the posterior distribution of the AR coefficients (φ1, φ2) and estimated posterior

density of φ1 + φ2.

6 Conclusions

The paper has considered Bayesian model selection via MCMC methods for assessing the nature

of trends in macroeconomic time series. The contribution of this paper to the literature, and in

particular with respect to Frühwirth-Schnatter and Wagner (2010), is the inclusion of autoregressive

terms into the model selection problem as well as the application to a large data set consisting of

the original Nelson and Plosser series and a set of key economic indicators of the U.S. economy.

We conclude that the consideration of the autoregressive component is essential for the char-

acterisation of the selected model. For instance, when the outcome of the selection is a pure

autoregressive model with a deterministic intercept, the posterior distribution of the autoregressive

coefficients provides a remarkably clear indication of the distance from a unit root process; this

information is less easy to appraise from unit roots and stationarity tests.

The empirical application has shown that most annual time series in the Nelson and Plosser

data set are better characterised as trend stationary; however, the posterior distribution of the

sum of the autoregressive coefficients is in some cases highly concentrated on the boundary of the

stationary region, leading to a quasi unit root process. With the notable exception of the monthly

inflation rate, we found no support for the presence of an orthogonal decomposition into a stochastic

trend and a cyclical component.
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