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Abstract

The finite sample properties of the state space methods applied to long memory time

series are analyzed through Monte Carlo simulations. The state space setup allows to in-

troduce a novel modeling approach in the long memory framework, which directly tackles

measurement errors and random level shifts. Missing values and several alternative sources

of misspecification are also considered. It emerges that the state space methodology provides

a valuable alternative for the estimation of the long memory models, under different data

generating processes, which are common in financial and economic series. Two empirical
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1 Introduction

Long-range dependent data arise in a wide variety of scientific disciplines, from hydrology to

economics. The subject of long memory time series was brought to prominence by Hurst (1951)

on hydrological time series and has subsequently received extensive attention in the literature.

The use of fractional processes in economics and econometrics has been introduced by the seminal

paper by Granger (1980) and Granger and Joyeux (1980). See the volumes by Beran (1994) and

Palma (2007) and the collections of Robinson (2003) and the references therein. The starting

point of the econometric literature on autoregressive fractionally integrated moving average

(ARFIMA) models has been motivated by the fact that many economic and financial time

series show evidence of being neither I(0) nor I(1). Nowadays, a broad range of applications

in finance and macroeconomics have shown that fractional integration and long memory are

relevant, see among others Diebold et al. (1991) for exchange rate data, Andersen et al. (2001a)

and Andersen et al. (2001b) for financial volatility series, and Baillie et al. (1996) for inflation

data. Early papers on the estimation of the long-range dependent models are Fox and Taqqu

(1986), Dahlhaus (1989), Sowell (1992) and Robinson (1995). See Chan and Palma (2006) for a

more recent review.

In an alternative framework, Chan and Palma (1998) proposed a state space approach to

compute the maximum likelihood (ML henceforth ) estimates for an ARFIMA model. The

authors suggest to truncate the infinite MA and AR representation of an ARFIMA model

and to write the ARFIMA in state space form. The long memory parameter, d, can be then

estimated by means of the Kalman filter (KF henceforth). The estimates obtained by this

method are consistent, asymptotically normal and efficient under mild regularity conditions.

This methodology, although conceptually simple, was computationally very intensive in the 90’s,

and, for this reason, not commonly used. With the computational capabilities at hand nowadays,

it is possible to estimate such models in few seconds even for large datasets. Several simulation

studies, by Rea et al. (2008), Bisaglia and Gugan (1998), Nielsen and Frederiksen (2005) and

Haldrup and Nielsen (2007) provide a comparison between different estimation strategies, but

without considering the state space alternative. This underlines that, although, great effort

has been spent in the estimation of fractional processes with semiparametric and maximum

likelihood methods, little has been done to explore the state space alternative.

This paper aims to fill this gap, through an extensive Monte Carlo simulation exercise and two
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novel contributions regarding measurement errors and level shifts in the long memory framework.

The practical usefulness of the state space methods relies on the possibility of a straightforward

modeling approach for measurement errors, outliers, level shifts and missing values. It is shown

by simulations that the KF provides unbiased and efficient estimates of the model parameters

also in these cases. The proposed Monte Carlo simulations are therefore intended as an attempt

to explore the potentiality of the state space approach in the long memory framework. With

this purpose, we consider several parametric and semiparametric estimation methods for the

ARFIMA models, and compare them with the state space alternatives. The methods are con-

trasted using several data generating processes with alternative short-run dynamics including

the possibility of t-distributed innovations, missing values, measurement errors and level shifts.

Following Nielsen and Frederiksen (2005) and Haldrup and Nielsen (2007), the bias and the

root mean squared error (RMSE) are adopted to measure the finite sample performances of the

estimators.

Our results can be summarized as follows: firstly, state space methodology is a valid alter-

native to the usual estimation procedures and it is robust to non-Gaussian shocks and over-

specification. In case of under-specification, the Akaike Information Criterion, AIC, always

selects the right model. Second, when the series at hand has missing observations, then the

state space estimation method is superior to the traditional ones as it has low bias and RMSE.

Third, in case of measurement errors, the KF largely outperforms the traditional estimators

as well as the corrected local Whittle of Hurvich et al. (2005). Finally, we provide a novel

and promising approach to the joint modeling of long memory and level shifts, by a modified

version of the Lu and Perron (2010) filter, that can handle both features at the same time. We

show that, differently from usual estimators that are upwardly biased, our methods produces

unbiased estimates of the d parameter, even in presence of level shifts. This model also allows

for a parametric test of long memory versus level shifts.

The paper is organized as follows. Sections 2 and 3 review the ARFIMA processes and the

semiparametric estimators considered in our analysis. Section 4 introduces the approximate ML

estimators. State space methodology is presented in Section 5. Section 6 reports the extensive

Monte Carlo experiments and the methodological contributions that are the core of this paper.

Section 7 provides two empirical applications of the long memory state space models. Section 8

concludes the paper.
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2 ARFIMA processes

An ARFIMA(p, d, q) process yt is defined as:

Φ(L)(1 − L)dyt = Θ(L)ηt (1)

where {ηt} is a sequence of independent random variables with zero mean and constant variance

σ2
η, the lag operator L is such that Lyt = yt−1; Φ(L) = 1−φ1L− . . .−φpL

p is the autoregressive

operator, Θ(L) = 1 + θ1L + . . . + θqL
q, is the moving average operator, and (1 − L)d is the

fractional difference operator. The parameter d determines the long memory of the process.

If d > −1/2 the process is invertible and possesses a linear representation. If d < 1/2 it is

covariance stationary. Furthermore, if d > 0 the process is said to have long memory since the

autocorrelations die out at an hyperbolic rate (and indeed are no longer absolutely summable) in

contrast to the much faster exponential rate in the weak dependence case. For d ∈ (0, 1/2), model

(1) is a stationary long-memory process with non-summable autocorrelations,
∑∞

k=0 |ρk| = ∞.

If d = 0 the spectral density is bounded at the origin and the process has only weak dependence

(short memory), and it is the well known ARMA process. In most practical cases the parameter

d ∈ (0, 1/2) has been proved to be relevant for many applications. The fractional difference

operator ∆d = (1 − L)d in equation (1) is defined by its binomial expansion:

(1 − L)d =
∞

∑

j=0

Γ(j − d)

Γ(j + 1)Γ(−d)L
j (2)

where Γ(·) is the Gamma function. Hosking (1981) shows that a stationary ARFIMA(p, d, q)

admits infinite MA and AR expansions as

yt =
∞

∑

j=0

ψjηt−j (3)

yt =
∞

∑

j=1

πjyt−j + ηt (4)

Hosking (1981) also provides a formula to compute the weights ψj and πj for low order ARFIMA

processes. An alternative, although not equivalent, definition of long range dependence can be

stated in the frequency domain. In particular, the spectral density of the ARFIMA(p, d, q)
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process (1) can be represented as follows:

fΘ(λ) ∼ G|λ|−2d for λ→ 0 (5)

where Θ = (d, φ1, ..., φp, θ1, ..., θq) and G corresponds to the spectral density of an ARMA(p, q)

process, see Beran (1994). In Sections 3 and 4 we present the estimation methods that are

considered in our study. Section 3 presents the semiparametric approaches, based on the ap-

proximation of the frequency domain representation (5), for frequencies close to the origin.

Section 4 introduces the parametric models, that are based on likelihood methods. The para-

metric class presents the advantage, over the semiparametric approaches, that it does not rely on

any particular choice of a bandwidth parameter. However, it assumes the correct specification

of the short-run dynamics. To have a fair comparison between parametric and semiparametric

estimators we present the results for two bandwidth choices, b = T 0.5 and b = T 0.65.

3 Semiparametric estimators

If we were interested only in the estimate of the long memory parameter d, then a natural

approach would be to use one of the semiparametric methods. The semiparametric estimators

of d require only a local characterization of the spectral density. It is well known that the

drawback of the global long memory estimators, such as the Whittle estimator, is that they

require a full specification of the spectral density. Instead, a consistent estimate of d can be

obtained simply by specifying the shape of the spectral density at the origin, these methods are

referred to as local methods. In theory, the semiparametric approach has the advantage, over

the parametric ones, that it does not require a full specification of the dynamics of the process.

This implies that semiparametric estimation should be more robust to the misspecification of

the dynamics. In particular, the semiparametric approaches are based on the characterization

of the spectrum as λ → 0. According to equation (5), the spectrum of the of a long memory

process has a pole as λ→ 0, that is proportional to λ−2d.
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3.1 Local Whittle Estimator

Robinson (1995) studies the properties of the local Whittle estimator (LW henceforth) of d,

which is the minimand of the following contrast function,

Q(G, d) =
1

b

b
∑

j=1

{

log
[

Gλ−2d
j

]

+
λ2d

j Iy(λj)

G

}

, (6)

λj = 2πj
T

are the Fourier frequencies. In particular, concentrating G out, it yields

R(d) =
1

b

b
∑

j=1

log
(

λ−2d
j

)

+ log





1

b

b
∑

j=1

λ2d
j Iy(λj)



 , (7)

where Iy is the periodogram of the series under analysis. The local Whittle estimates of d is

d̂ = arg min
d∈D

R̂(d) (8)

where D is the admissible set of values for d. Robinson (1995) proves consistency and asymptotic

normality of the proposed estimator. Outside the stationary region, it is known that the asymp-

totic theory for the local Whittle estimator is discontinuous at d = 3
4 and, it is inconsistent when

d > 1.

3.2 Exact Local Whittle Estimator

Shimotsu and Phillips (2005) extend the range of application of existing semiparametric meth-

ods, studying an exact form of the local Whittle estimator which does not rely on differencing

or tapering (see Velasco, 1999) and which seems to offer a good general purpose estimation

procedure for the memory parameter that applies throughout the stationary and nonstationary

regions of d. The exact Whittle objective function is

Q(G, d) =
1

b

b
∑

j=1

(

logGλj
−2d +

1

G
I∆dy(λj)

)

, (9)

where λ2d
j I(λj) is replaced by I∆dyt

(λj), that is the periodogram of the fractionally differenced

series in correspondence of the true parameter. The objective function is then concentrated with
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respect to G, that is estimated by the averaged periodogram,

Ĝ(d) =
1

b

b
∑

j=1

I∆dy(λj). (10)

Shimotsu and Phillips (2005) prove consistency and by means of a simulation exercise, they

highlight superiority of the exact local Whittle (ELW henceforth), with respect to alternative

semiparametric estimators, in terms of MSE in finite samples.

We also implement the 2-step feasible exact local Whittle estimator (FELW henceforth) of

Shimotsu (2010) that extends the ELW estimator and it is robust to the presence of deterministic

components in the data.

4 ML estimators

4.1 Beran Method

The approximated likelihood method, proposed by Beran (1994), is based on the best linear

prediction of yt, given all its past values as in equation (4), see Beran (1994). In particular,

replacing the infinite sum in (4) by a finite number of past values

η̃t = yt −
t−1
∑

j=1

πjyt−j t = 2, . . . , T (11)

is equivalent to assume that yt = 0 for t ≤ 0. An approximated log likelihood function, is then

given by

log L(yt,Θ) = −T
2

log(2π) − T

2
log(σ2) − 1

2

T
∑

t=1

η̃2
t

σ2
η

, (12)

under the hypothesis that η̃ ∼ iidN(0, σ2
η), where Θ = (d, φ1, φ2, ..., φp, θ1, θ2, ..., θq, σ

2
η). The

QMLE estimate of Θ is then provided by the maximization of equation (12). As has been noted

by Beran (1994), the infinite autoregressive representation is not restricted to the case where yt

is stationary, but it can be extended to any d > −1
2 . The approximate maximum likelihood esti-

mator is therefore defined for any stationary and non stationary fractional processes. Moreover,

Rossi and Santucci de Magistris (2009) show that this method can be adapted to non Gaussian

innovations and extended to the multivariate case using copulae.
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4.2 Whittle approximation

Alternatively to the time domain approximated ML estimators, a fast numerical approach has

been proposed by Fox and Taqqu (1986) and Dahlhaus (1989) in the frequency domain. In

particular, the Whittle estimator is a ML estimate based on the calculation of the periodogram

by means of the Fast Fourier Transform (FFT). Given that the log-likelihood of a Gaussian

process, Yt = {y1, . . . , yT } can be written as

log L(Yt,Θ) = − 1

2T
log |ΓΘ| −

1

2T
Y ′

t Γ−1
Θ Yt (13)

where ΓΘ is the covariance matrix of Yt, and Θ = (d, φ1, ..., φp, θ1, ..., θq). The first term in (13)

is approximated as

1

2T
log |ΓΘ| ≈

1

4π

∫ π

−π

log fΘ(λ)dλ (14)

and the second as

1

2T
Y ′

t Γ−1
Θ Yt ≈

1

4π

∫ π

−π

I(λ)

fΘ(λ)
dλ (15)

The discrete version of the estimator approximates the log-likelihood function as

log L(Yt,Θ) = − 1

2T





T
∑

j=1

log fΘ(λj) +
T

∑

j=1

I(λj)

fΘ(λj)



 (16)

The asymptotic distribution of this estimator is stated in Fox and Taqqu (1986).

5 State Space Form for Long Memory Processes

5.1 General introduction

Although a long-range dependent process has an infinite-dimensional state space representation,

Chan and Palma (1998) proved that the likelihood of an ARFIMA process can be computed,

by means of the KF , in a finite number of steps. For instance, the ARFIMA(p, d, q) model has

linear MA or AR representations given by formulae (3) and (4). To make the KF recursions

feasible, Chan and Palma (1998) consider an approximation of equations (3) and (4) based on a

truncation up to lag m. In this study, both kinds of representation will be considered. Finally,

Chan and Palma (1998) provide the asymptotic properties of these approximate maximum like-

lihood estimates. The interesting results is that under mild regularity conditions the maximum
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likelihood estimators are both consistent and efficient. It is worth noticing that Palma (2007)

suggest to exploit the MA approximation in first differences, which guarantees computational

advantages. However, the first difference introduces an MA unit root term in the measure-

ment equation when considering the possible presence of measurement errors, see Section 6.3.

Therefore, the analysis of the MA in first differences is excluded from the present analysis and

a solution of the problem outlined above is left for future research.

5.2 State Space Form

The state space representation consists of two equations. The first is the measurement equation,

which relates the time series yt to the state vector:

yt = Zαt + Dεt, t = 1, 2, . . . , T, εt ∼ NID(0, σ2
ε), (17)

where Z is a 1×m matrix.The second term is the transition equation, that defines the evolution

of the state vector αt as a first order vector autoregression:

αt+1 = Tαt + Hηt, ηt ∼ NID(0,Q), (18)

where T is m ×m and H is m × g selection matrix, and ηt is a g × 1 disturbance vector. Q is

an m×m matrix of zeros, whose first element is equal to σ2
η.

Chan and Palma (1998) and Palma (2007) show that there are basically two ways to rewrite

a long memory model in state space form. The first is based on the AR(∞) representation and

the second is based on the MA(∞) representation. Selecting a truncation lag m that is large

enough, it is sufficient for the evaluation of the likelihood. This leads to an AR(m) and an

MA(m), that can be casted in a state space form and estimated using the KF recursions, see

Harvey (1989) and Harvey and Proietti (2005) for an introduction.

The AR(m) approximation, (SS-AR henceforth), can be written as follows:

Z = [1, 0, . . . , 0], D = 0, t = 1, 2, . . . , T,

T =







π1 π2 . . . πm

0 Im−1






, H =

(

1 0 . . . 0

)

.
(19)

where πj for j = 1, ...,m comes from (4), see Hosking (1981).
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The MA(m) approximation, (SS-MA henceforth), can be written as follows:

Z = [1, 0, . . . , 0], D = 0, t = 1, 2, . . . , T,

T =







0 Im−1

0 0






, H =

(

1 ψ1 ψ2 . . . ψm

)

.
(20)

where ψj for j = 1, ...,m comes from (3), see Hosking (1981).

The approximated representation of a causal ARFIMA(p, d, q) has computational advantages

over the exact one of Sowell (1992). The order of the MLE algorithm is reduced from O(n3) to

O(n).1

5.3 Kalman Filter

The KF (see Harvey, 1989, and Durbin and Koopman, 2001) is a fundamental algorithm for

the statistical treatment of a state space model. Under the Gaussian assumption it produces the

minimum mean square estimator of the state vector along with its mean square error matrix,

conditional on past information; this is used to build the one-step-ahead predictor of yt and its

mean square error matrix. Due to the independence of the one-step-ahead prediction errors, the

likelihood can be evaluated via the prediction error decomposition, see Schweppe (1965).

The simple case corresponds to the equations (17)-(18), with α1 ∼ N(α1|0,P1|0), where α1|0

and P1|0 need to be specified, see below. Then, defining Yt = {y1, y2, . . . , yt} and the conditional

mean and variance of the state vector, α̃t|t−1 = E(αt|Yt−1), Var(αt|Yt−1) = Pt|t−1, the KF is

given by the following recursive formulae and definitions for t = 1, . . . , T :

νt = yt − Zα̃t|t−1, Ft = ZPt|t−1Z
′ + σ2

εDD′,

Kt = TPt|t−1Z
′F−1

t , Lt = T − KtZ

α̃t+1|t = Tα̃t|t−1 + Ktνt, Pt+1|t = TPt|t−1L
′
t + HQtH

′

.

(21)

The matrix Kt is the so called Kalman gain, and νt = yt − E(yt|Yt−1) are the innovations or

one-step-ahead prediction errors, with variance matrix Ft. The KF is thus an algorithm that

receives as an input the observations and the system matrices, and returns the innovations, the

one-step-ahead forecasts of the states, along with their conditional covariance matrix. Recalling

that the conditional expectation is the minimum mean square estimator of the state vector,

1Due to computational burden, the exact maximum likelihood estimator of Sowell (1992) is not considered in
the simulations.
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when the Gaussianity assumption is removed the KF still yields the minimum mean square

linear estimator, see section 6 and section 7. In the case when α1|0 and P1|0 are known and

finite, the KF enables the likelihood function to be written in prediction error decomposition,

that excluding constant terms, is given by:

log L(Θ) =
1

2

{

T
∑

t=1

log |Ft| +
T

∑

t=1

ν2
t

Ft

}

(22)

where Θ = (φ1, . . . , φp, θ1, . . . , θq, d, σ
2
η) is the parameter vector associated with the ARFIMA(p, d, q)

representation (1). The Kalman filter estimator, Θ̂KF , is the parameter vector which maxi-

mizes (22). In order to evaluate the log-likelihood function, the initial conditions are chosen as

α1|0 = E[α1] = 0 and P1|0 = E[α1α
′

1]. For the autoregressive approximation, the P1|0 matrix

is set equal to the empirical autocovariances up to lag m, and it has a Toeplitz structure. For

the moving average representation, following Chan and Palma (1998) and Palma (2007), the

initialization of P1|0 is P1|0 = |ω(i, j)|i,j=1,2,...,m where ω(i, j) =
∑∞

k=0 ψi+kψj+k.

Chan and Palma (1998) show the following results:

• Consistency: Assume that m = T k with k > 0, then as T → ∞, Θ̂KF → Θ0 in

probability.

• Asymptotic Normality: Assume that m = T k with k > 1/2, then as T → ∞,
√
T (Θ̂KF − Θ0) → N(0,Σ(Θ0)).

• Efficiency: Assume that m = T k with k > 1/2, then Θ̂KF is an efficient estimator.

It next section, the finite sample performance of the state space approach will be investigated

by means of several Monte Carlo simulations.

6 Monte Carlo Simulations

In this section a finite sample comparison of the estimation methods outlined above is carried

out by means of Monte Carlo simulations. The objective of this exercise is to shed some light

on which estimator is the most accurate in practical applications, with realistic sample sizes.

The Monte Carlo experiment is based on 1,000 artificial time series with 250, 500 and 1000

observations. The simulations are performed as follows: first a vector of iid innovations, ηt,

is simulated from a standard Normal distribution. A long memory series of order d > 0,
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zt = (1 − L)−dηt, is generated by means of the MA expansion in equation (3). Finally, an

ARMA structure is added to zt. Haldrup and Nielsen (2007) show that there are no differences

among the semiparametric and the parametric estimators when the data are generated with the

simulation scheme used here, or unconditionally, by the Cholesky decomposition of the T × T

autocovariance matrix. We do not report all the tables; the missing tables are available from

the authors upon request. The sample size is selected to reflect realistic empirical samples of

macroeconomic or financial datasets. Although financial samples may be larger than the sample

sizes considered here, empirical analysis is frequently based on some aggregated measures such

as monthly realized volatility, so that the sample sizes considered here are relevant. We study

four different data generating processes (DGPs) in our Monte Carlo simulations. The first one

is the simple ARFIMA (0, d, 0) model

(1 − L)d(yt − µ) = ηt, ηt ∼ N(0, σ2
η), (23)

where the parameters values µ = 0 and σ2 = 1 are chosen for the simulations.2 For the parameter

d, we consider the values {0, 0.4}. The case d = 0 corresponds to estimating d to the case where

the process is not long memory. The other three models considered are the ARFIMA(1, d, 0),

ARFIMA(0, d, 1) and an ARFIMA(1, d, 1) given by:

(1 − φL)(1 − L)d(yt − µ) = ηt, ηt ∼ N(0, σ2
η) (24)

(1 − L)d(yt − µ) = (1 + θL)ηt, ηt ∼ N(0, σ2
η) (25)

(1 − φL)(1 − L)d(yt − µ) = (1 + θL)ηt, ηt ∼ N(0, σ2
η) (26)

with φ = −0.5 and θ = −0.4 in all cases.3

An useful preliminary assessment is related to the choice of the truncation lag, which can have

an influence on the parameter estimates. Bondon and Palma (2005) show that the quality of the

AR truncation depends asymptotically only on d and not on the short memory components. For

different choices of d, φ and θ the authors find that the convergence is good, even for small values

of m. Unfortunately, their result does not consider the fact that, in finite samples, increasing

2A non zero mean could also be added to model (23). In that case, the proposed parametric methods should
be computed on the series in difference from the sample mean, say on xt = yt − ȳt, with ȳt = 1

T

∑T

t=1
yt, see also

Chan and Palma (1998).
3Simulation with φ = 0.5 and θ = 0.4 are also provided. They are available upon request to the authors.
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m leads to discard the first m observations. Figure 1(a) plots the estimation bias for d as a

function of the truncation lag, m, for the SS−MA and SS−AR, based on an ARFIMA(0, d, 0)

with d = 0.4 and T = 500. It is clear that, in both cases, increasing the truncation lag leads to

better parameter estimates. However, choosing m > 30 when T = 500 leads to an increase of

the bias, since too many initial observations are lost due to the truncation. The same evidence

is obtained when the sample size is 1000, see Figure 1(b). In particular, the minimum bias is

reached when T = 50, while using 80 lags introduces a larger downward bias. In light of this

evidence, the truncation lag used in the paper is 30 for T ≤ 500, and 50 for T > 500.

Tables 1 and 2 report the Monte Carlo results in the case of Gaussian innovations and correct

specification of the model. It is evident that both semiparametric and parametric estimators

generally provide correct estimates of the long memory parameter for all specifications. There is

a slight downward bias in the semiparametric estimates for the ARFIMA(1, d, 1) when T = 250

and T = 500. This is due to the fact that, in small samples, the estimates of the spectral density

are highly affected by the ARMA parameters. The SS-AR and SS-MA provide estimates of d

that are well centered on the true value. The same holds true for the Beran estimator, which

has generally the lowest bias and RMSE. In particular, the RMSE of the parametric models are

generally lower than the corresponding semiparametric estimates. This results could be easily

anticipated provided that we are assuming that the short run dynamics are correctly specified

when estimating the ARFIMA with the parametric models.

Therefore, in subsection 6.1 we investigate the effect of model misspecification on the esti-

mates of the d parameter; non-Gaussian shocks are considered as well as a misspecification in

the ARMA component of the process. The problem of missing values is considered in subsection

6.2. Subsection 6.3 and 6.4 consider the case of measurement errors and random level shifts,

respectively.

6.1 Model Misspecification

The purpose of this section is to show how far, from the true parameter value, the parametric

estimates of d are located, when the model is not correctly specified. It is clear that if the ARMA

terms of model (1) are not correctly identified, then the parametric estimators are not able to

provide reliable estimates of d. Three sources of misspecification are therefore investigated here:

non-Gaussian errors, under-specification and over-specification of the short run dynamics of the

model.
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(b) Bias as a function of m. Model is an ARFIMA(0, d, 0) with d = 0.4 and T = 1000.
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For what concerns the robustness of the different estimators in case of errors that are

non-Gaussian, we consider models (23)-(26) with Student’s t innovations with three degrees

of freedom. Table 4 reports the estimation results for an ARFIMA(p, d, q), with d = 0.4 and

T = {250, 500}. As already found in Haldrup and Nielsen (2007) and Nielsen and Frederiksen

(2005), the semiparametric estimators are robust to the misspecification of the error term, such

as neglected GARCH effects as well as non-Gaussian errors. On the other hand, despite the KF

is not the optimal estimator with non-Gaussian errors ( see Durbin and Koopman (2001)), it

turns out to be reliable also in this case. In particular the bias and the RMSE are of the same

order as those reported in table 2. This holds true also for the Beran and the Whittle estimators.

Further improvements can be achieved with the non linear filter such as the extended KF , but

this is beyond the scope of this paper.

Table 5 shows the consequences of the over-specification in the short run dynamics. In case

of over-specification, the true DGP is an ARFIMA(0, d, 0), but an ARFIMA(1, d, 1) is estimated

on the simulated series. Obviously, estimating φ or θ, or both, when they are not present (i.e.

overfitting the model) may reduce the efficiency of the estimates of the parameter d. This

clearly emerges from the Table. In particular, all the parametric estimators, including SS-AR

and SS-MA, have small bias but large RMSE when compared to the semiparametric ones.

On the other hand, under-specification means that the true DGP is an ARFIMA(1, d, 1),

but an ARFIMA(0, d, 0) is estimated, completely neglecting the ARMA components. This is a

strong form of misspecification, and it can cause large biases in the parametric estimators. The

estimates of the parameter d are largely downward biased for the parametric estimators, while,

as expected, the semiparametric ones are robust also in this case. However, as suggested in

Iglesias et al. (2006), when adopting one of the usual likelihood based information criteria, such

as the Akaike’s, allows to select the right model in all cases. Therefore, in practical applications,

when the true DGP is unknown, it could be useful to adopt one of the information criteria for

the selection of the short run dynamics.

6.2 Missing Values

Missing data are a common feature in economic and financial time series. A considerable ad-

vantage of the state space approach is the ease with which the missing observations can be dealt

with. The KF is able to calculate the prediction errors even in presence of missing values, this

is based on a skipping approach, see Durbin and Koopman (2001).
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Figure 1: Upper graph: ARFIMA process with missing. Bottom graph: The smoothed estimate
of the ARFIMA process.

Theoretical derivation of the prediction error variance for state space long memory in case

of missing values has been provided by Palma and del Pino (1999). The authors show that

the information is lost during the block of missing observations at a much slower rate than it

is gained after that gap. However, they do not provide an extensive Monte Carlo exercise to

check the behavior of state space model for long memory in presence of missing data and short

run dynamics. In particular, a straightforward extension of the equation (21), allows to use the

state space approach in the case of missing observations,

νt = yt − Zα̃t|t−1, Ft = ZPt|t−1Z
′ + σ2

εDD′,

Kt = TPt|t−1Z
′F−1

t , Lt = T − KtZ

α̃t+1|t =











Tα̃t|t−1 + Ktνt, No Missing Values

Tα̃t|t−1 Missing Values

Pt+1|t =











TPt|t−1L
′
t + HQtH

′

No Missing Values

TPt|t−1T
′ + HQtH

′

Missing Values

(27)

so that the latent long memory process can be easily tracked by means of this KF recursion.

As example, we report in Figure 1 a simulated long memory process with 40% percent of

missing values, blue line. The figure highlights the fact that the KF , red line, is able to provide a

16



good tracking of the latent long memory process. On the other hand, the alternative estimators

considered in this paper cannot directly handle this kind of data irregularity, so that the missing

values are replaced with the last available observation.

Table 6 reports the results models of formula (26) with T = {250, 500}. The number of

missing values considered are 10%, 20%, 30% and 40%. Those results are clearly in favor of

the state space methods. The bias of the SS-AR and the SS-MA estimators generally range

between 0.03 and 0.05, while other estimators are extremely downward biased. The RMSE are

smaller for the state space approaches. It is noteworthy the fact that the bias of SS-AR and

SS-MA does not increase as the percentage of missing values increases, so that the relative

performance of the state space estimators of long memory improves, compared to the standard

estimators.

6.3 Measurement Error

Consider a generic ARFIMA(p, d, q) process, yt. In case of measurement errors, yt is a latent

process which cannot be observed due to the contamination in the data. What we observe

instead is the noisy series ζt, defined as follows:

ζt = yt + εt εt ∼ N(0, σ2
ε). (28)

A large literature, see Deo and Hurvich (2001), Hurvich et al. (2005) and Haldrup and Nielsen

(2007), discusses the properties of the semiparametric long memory estimators, such as the

log-periodogram regression and the local Whittle estimator, when the long memory signal is

contaminated by a noise term. Deo and Hurvich (2001) show that the Geweke and Porter-

Hudak (1984) estimator (GPH) is biased by a constant factor that depends on the variance of

the noise term. Sun and Phillips (2003) suggest to introduce an additional term in the log-

periodogram regression, βλ2d to account for the effect of the additive noise term, that is allowed

to be weakly dependent. Arteche (2004) suggests that an optimal choice of the bandwidth,

b, is important to minimize the influence of the added noise term, since the variance of the

measurement error heavily restricts the allowable bandwidth in finite samples. With a larger

variance of the noise with respect to the signal, only frequencies very close to the origin contain

a valuable information. We compute here also the corrected local Whittle estimator (CLW

henceforth) by Hurvich and Ray (2003) and Hurvich et al. (2005), which is designed to account

17



for the extra constant term that enters in the spectral density when the long memory signal is

contaminated by an iid noise. They propose to modify the local Whittle objective function as

Q(G, d, β) =
1

b

b
∑

j=1

{

log
[

Gλ−2d
j (1 + βλ2d

j )
]

+
λ2d

j Iζ(λj)

G(1 + βλ2d
j )

}

, (29)

Concentrating G out, it yields

R(d, β) =
1

b

b
∑

j=1

log
(

λ−2d
j (1 + βλ2d

j )
)

+ log





1

b

b
∑

j=1

λ2d
j Iζ(λj)

(1 + βλ2d
j )



 , (30)

where the local Whittle estimator is obtained setting β = 0 in the minimization of R. The local

Whittle estimates of d and β are

(d̂c, β̂) = arg min
(d,β)∈D×B

R̂(d, β) (31)

where D and B are the admissible sets of d and β.

TheKF with the smoothing recursions ( see Durbin and Koopman (2001)) is able to estimate

the latent process and to provide a smoothed estimate of the long memory signal, ŷt, that

is disentangled from the estimated noise component ε̂t. This case corresponds to the well-

known AR(m) or MA(m) plus noise model that has the state space representations presented

in equations (19) and (20). The only difference is that the D matrix must be set equal to

1. The log-likelihood has to be maximized with respect to the following parameter vector

θ = (φ1, . . . , φp, θ1, . . . , θq, d, σ
2
η, σ

2
ε). In such a case, a computational efficient algorithm is based

on the concentrated likelihood, with respect to σ2
ε , see Durbin and Koopman (2001). In this

context, a key quantity is the so called noise-to-signal ratio, nsr henceforth, which is the ratio

between the variance of the noise over the variance of the signal. Differently from Haldrup and

Nielsen (2007), who set nsr = σ2
ε

σ2
η
, our Monte Carlo simulations are carried out by setting the nsr

proportional to the underlying long memory signal. In particular, setting nsr = 1 and nsr = 2

means that the noise term has a variance that is 1 and 2 times larger than the variance of the

signal, respectively. Table 7 reports the estimation results for the case when the long memory

signal is contaminated by an error term. As it is emerges from the tables, the state space

estimators clearly outperform other estimators in term of bias and RMSE. As found in previous

studies, the usual semiparametric and the parametric estimators are extremely downward biased,

since the contamination due to the measurement error hides the long memory signal, resulting in
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Figure 2: Dotted blue line: Series ζt contaminated by noise. Green line: True
ARFIMA(0.5, 0.4, 0). Red line: Smoothed estimate of the true ARFIMA(0.5, 0.4, 0)

lower estimates. Modifying the bandwidth parameter, b, for the semiparametric estimators does

not change the results substantially. On the other hand, the CLW estimator, which incorporates

an estimate of the nsr, slightly overestimates d and it has a large RMSE. This is probably due to

the fact that the sample size is too small for this semiparametric estimator. For example, Hurvich

et al. (2005) show, by means of Monte Carlo simulations, that the CLW has good properties

for large sample sizes. On the other hand, the state space approach provides better estimates

of the long memory parameter. In particular, with the exception of the ARFIMA(0, d, 1), the

estimates of d have small biased and smaller RMSE than other estimators, especially when

nsr = 2. In the case of ARFIMA(0, d, 1), the state space methods slightly underestimate the

true parameter. This is perhaps due to the fact that a negative MA term, θ = −0.4, reduces

the first order autocorrelation thus resulting in a less clear evidence of long memory, so that the

signal is more hardly detected.

Figure 2 reports a realization of an ARFIMA (0.5, 0.4, 0) plus a noise process, blue line, with

nsr = 1. The true long memory signal, in green, is plotted together with the estimated smoothed

signal, red line. It is evident that, based on the parameter estimates, the KF is able to provide

a good tracking of the underlying long memory series. These results highlights the usefulness

of the state space approach, so that filtering techniques can be exploited when a forecast of the

underlying signal is needed.
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6.4 Level Shifts

A recent debate in literature focuses on the possible confusion between truly long memory

processes and short memory processes with structural changes in levels, see among others Perron

and Qu (2010). It is well known that, when a stationary process is contaminated by level shifts,

the fractional integration order is positively biased, so that long memory may just be the spurious

effect of the presence of one or more level shifts. Granger and Hyung (2004) show that the long

memory property of volatility could be induced spuriously by the presence of structural breaks

in the mean, and, when removing them, it results in a weaker evidence of long memory. Several

testing procedures have been carried out in order to assess the presence of true or spurious long

memory. A recent paper by Ohanissian et al. (2008) exploits the self-similarity condition of truly

long memory to test whether the long run dependence in the data is due to a truly long memory

process. Dolado et al. (2005) illustrate how the slow hyperbolic decay of the autocorrelations,

which is typical of the long memory series, could be generated by a short memory process plus

level shifts. They provide an extension of the well known Dickey-Fuller statistic to test for the

null hypothesis of true long memory against the alternative of a I(0) process plus structural

breaks. Shimotsu (2006) provides a test based on the sample splitting, where, under the null of

true long memory, each subsample has the same degree of fractional integration. More recently,

Perron and Qu (2010) propose a testing procedure which is based on the evaluation at different

bandwidths of the GPH estimator.

In a state space setting, Lu and Perron (2010) present an univariate random shifts model

for stock volatilities, exploiting a procedure to estimate the probability and the magnitude of

the shifts, and showing that the random occurrence of shifts induces spurious long memory.

The model proposed by Lu and Perron (2010) allows for a random level shift process plus AR

dynamics. We extend their methodology, assuming that the data generating process is given by

the sum of a random level shift and an ARFIMA process. This model setup allows to correctly

estimate the long memory parameter, when a long memory process is contaminated by level

shifts. We assume the following DGP

xt = τt + yt, (32)
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where τt is the random shift component,

τt = τt−1 + γtκt, (33)

with κt ∼ N(0, σ2
κ) and δt = γtκt where γt is a binomial variable that takes value 1 with

probability α, so that if γt = 1 a level shift occurs. yt is an ARFIMA(p, d, q) process, which is

defined by its autoregressive representation (4). Taking the first differences as

∆xt = yt − yt−1 + δt (34)

so that the corresponding state-space form is

∆yt = Zαt + δt (35)

αt = Tαt−1 + Hηt, (36)

where Z = [1,−1, 0, . . . , 0] is a 1×m vector, which selects the elements of αt. αt = [yt, yt−1, . . . , yt−m]′

is an m × 1 vector and ηt is a m × 1 vector of innovations with a diagonal variance covariance

matrix Q. Finally H = [1, 0, . . . , 0]′ is a selection matrix. The m ×m transition matrix T, is

defined as

T =

























π1 π1 . . . πm

1 0 . . . 0

0 1 . . . 0

...
... . . . 0

0 0 1 0

























(37)

where the first row contains the parameters of the truncated AR expansion of an ARFIMA(p, d, q),

see (4). The state space formulation (36) admits the KF recursions with the modification pro-

posed by Lu and Perron (2010). We call it MSS-AR.4 The procedure provides the estimates of

the shifts parameters α and σ2
κ, and the estimates of the ARFIMA parameters, allowing to dis-

entangle the long memory components from the level shifts process. It is interesting to highlight

the fact that the modified KF allows to test for the presence of long memory or level shifts, or

both, by testing the nullity of the parameters α, σ2
κ and d.

Figure 3, reports a simulated trajectory of process (32), for 500 observations. It is clear

4Due to constraints on the number of pages of the present paper, we do not report the details on the modified
KF technique. A detailed description of this method can be found in Lu and Perron (2010).
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Figure 3: A simulated trajectory of process (32), with σκ = 4, α = 0.015, d = 0.4 and φ = −0.3.

that the level shift process, green line, is added to a long memory term, resulting into an

highly persistent time series, blue line, where it is accentuated the presence of long periods

above and below the unconditional mean. For example, this is likely to be the case of the

realized volatilities. As noted by Raggi and Bordignon (2010) in a Bayesian framework, after

removing the significant level shifts from the realized volatility series, there is still presence of

long memory. However, the degree of (fractional) integration of a long memory plus level shift

needs a careful theoretical investigation and it is beyond the scope of the present paper. As

expected, the simulation results on the level shifts process highlight the fact that usual long

memory estimators are highly upward biased, when the shifts are present. On the other hand,

the modified KF technique is able to provide corrected estimates of the long memory parameter

as well as of the shift parameters (not reported). It is also interesting to note that the proposed

MSS-AR is unbiased also in the case of a pure long memory process, setting σ2
k = 0 and α = 0,

or a pure level shift process, setting d = 0, see bottom lines of Table 8. Given these results, we

can figure out a parametric testing procedure, such as a LR test, for truly long memory versus

level shifts based on the state space form representation. This aspect will be investigated in

future research.
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7 Empirical analysis

The purpose of this section is to highlight some interesting financial and economic applications

of the state space approach in the long memory framework. Two examples are provided in

order to show the advantages, with respect to the usual estimators, of using the KF methods

in the empirical analysis. The first example is a simple version of the long memory stochastic

volatility model, LMSV henceforth, which is investigated by Breidt et al. (1998) and Hurvich

et al. (2005), among many others. In particular, the LMSV model is based on the following

assumptions on the log-returns, rt,

rt = σ · exp (yt/2) · zt (38)

where σt = σ · exp (yt/2) is the volatility of rt, and yt is the long memory component of the

stochastic volatility. zt is a iid standard Gaussian innovation, independent of yt. Taking ζt =

log r2t yields

ζt = µ+ yt + εt (39)

where µ = log(σ2) + E(log(z2
t )) is the unconditional mean, and εt = log(z2

t ) − E(log(z2
t )).

Therefore, εt is a zero mean iid sequence, and ζt is a long memory process plus an iid noise.

As in Harvey et al. (1994), we treat εt as it were iidN(0, σ2
ε), where σ2

ε = π2

2 , is treated as

an additional unknown parameter in the state space representation. The rationale behind this

choice is to verify ex-post whether the Kalman Filter, despite not being the minimum mean

square estimator in this case, is able to provide an estimate of σ2
ε that is reasonably close to

π2

2 . This could be taken as an evidence that the Kalman filter is able to disentangle the long

memory signal from the noise. Assume now that, as in Comte and Renault (1998) and Casas

and Gao (2008), the logarithm of the stochastic volatility in continuous time follows a fractional

Ornstein-Uhlenbeck process:

d log y(t) = −k log y(t)dt+ γdWd(t) (40)

where k > 0 is the drift parameter and Wd(t) is a fractional Brownian motion. It is therefore rea-

sonable to assume that the discrete time counterpart of model (40) follows an ARFIMA(1, d, 0)

process. We therefore propose an ARFIMA(1, d, 0) state space representation for yt, allowing

for the presence of a measurement error. Table 9 reports the results of the estimation of the long
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memory parameter for the LMSV model computed on the S&P with 415 weekly returns from

January 1, 2003 to December 31, 2010. The estimates obtained with the traditional estimators

of long memory are all below 0.3. On the other hand, CLW is larger than 0.8, with an estimated

noise-to-signal ratio, β̂, close to 80. It is evident that CLW over-estimates the degree of long

memory in the LMSV, since we know from the theory that the variance of the measurement

error, σ2
ε , must be equal to π2

2 . This evidence confirms that, in small samples, the CLW is

a weak estimator.5 State space approaches provide instead an estimate of the long memory

parameter close to 0.45, that is in line with the results provided in the financial literature, see

among others Casas and Gao (2008). The state space proves to be reliable since the estimated

σ2
ε is not far from the true value, both for AR and MA approximations. This means that the

KF recursion is able to well disentangle the long memory signal from the noise, and to correctly

estimate the parameters. Figure 4 plots the signal long memory series and the observed noisy

series ζt. It is clear, from the Panel 4(a), that the signal has been extracted from an highly

noisy series, blue line, and that the extracted variance series, Panel Panel 4(b), presents the

long memory characteristic.

As second example, we apply the MSS-AR to model the monthly inflation series of US.

A growing literature, dating back to the paper by Hassler and Wolters (1995), investigates the

degree of long memory in the inflation series, see among others the recent papers by Sun and

Phillips (2005) and Sibbertsen and Kruse (2009). As shown in Gadea and Mayoral (2006),

following the argument by Zaffaroni (2004), long memory in the inflation series is consistent

with an la Calvo (1983) price generating process. On the other hand, Hsu (2005) suggests

that the dynamics of the inflation series could be characterized by level shifts. The author

shows that inflation is a long memory stationary series, after the removal of the level shifts.

However, Hsu (2005) methodology only allows for an unique break date. Table 10 reports the

estimates of the MSS-AR on the seasonally adjusted U.S. City Average core consumer price

index, Pt, of the Bureau of Labor Statistics (BLS), which excludes the direct effect of price

changes for food and energy. The sample covers the period January 1965-February 2011. The

series is sampled at monthly frequency, for a total of 516 observation. Inflation, is computed as

πt = log(Pt) − log(Pt−1). Figure 5 plots the monthly US inflation series, where it is clear the

persistence in the dynamics, so that long periods of high levels of inflation rates during the 70’s

are followed by a long period of inflation in the second part of the sample.

5This result is obtained with any choices of the bandwidth, b.
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Figure 5: US inflation series

Table 10 reports the estimation results of long memory in inflation. The degree of persistence

of πt, obtained with the semiparametric estimators, is approximately 0.7, pointing toward non-

stationarity in inflation. For what concerns the parametric methods, an ARFIMA(1, d, 0) is

estimated.6 All the parametric estimators, including SS-AR and SS-MA find similar degrees of

long memory, which are close to 0.55, confirming the results obtained with the semiparametric

estimators. On the other hand, when considering the possible presence of level shifts, then

the conclusions drastically change. In particular, the model selected by the Akaike information

criterion is an ARFIMA(0, d, 0). Moreover, the value of the log-likelihood of the MSS −AR is

significantly higher than that obtained with the SS-AR on an ARFIMA(1, d, 0) without shifts,

thus suggesting that level shifts cannot be neglected. In this case, the estimated degree of long

memory is not statistically different from zero, while there is a positive probability of level shifts,

with a significantly positive variance, σ2
κ. The estimated parameter α is 0.06, meaning that, on

average, there is a shift every 17 months, so that shifts in inflation are likely to happen very

often. Their size depends on σ2
κ that is equal to 0.17, so that, with 95% of probability the shift

size is in the range between [−0.80%,+0.80%]. The estimated high value of α could be caused

by the fact that the variance of πt is much higher in the first part of the sample. Therefore,

model (32) can be easily modified to account for a break in the variance of ηt. We set the break

6The selection of the model has been done according to the Akaike information criterion.
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date on January 1984, that is widely known to be the starting date of the Great Moderation, see

among others Stock and Watson (2007). The last column of table 10 reports the estimates for

this model, that is named MSS −ARσ2
η
. The results highlight that, when accounting for break

in the innovation variance, then there is a lower, but significant, probability of shifts, equal

to 0.0293, with shift size variance of the same order as before. This result suggests that the

persistence in the inflation series is due to the role of possible large level shifts in the mean, which

excludes the possibility of truly long memory (the parameter d is not statistically different from

zero in both cases). It is therefore reasonable to think at the inflation series as resulting from the

interaction between a step function and a short memory process. As a consequence, the CPI

index is a trend stationary series, where the trend is Note that, model 32 excludes the presence

of measurement error, which is a relevant features of the inflation series when focusing on the

so called core inflation. The long memory state space form (32) can be adapted to incorporate

also this feature. The investigation of a state space estimation method, that is jointly robust

both to measurement errors and level shifts, is left for future research.

8 Conclusion

The finite sample properties of a wide range of long memory estimators are studied through

Monte Carlo simulations. Simulations clearly highlight the usefulness of the state space methods

as a valid alternative to the traditional semiparameteric and parametric estimators. The bias

and RMSE of the state space methods are of the same order of the other parametric estimators

considered in the study, confirming the results found in Haldrup and Nielsen (2007). A potential

pitfall of all the parametric methods, including state space, is that they rely on the correct

specification of the short run dynamics of the process. The Monte Carlo simulations show that

the usual information criteria are able to provide the right guidance in selecting the true model.

The potentiality of the state space methods is then exploited when additional features are added

to the data. In case of Student’s t distribution the state space approach proves to be robust even

thought the KF is not optimal, at least in theory. Moreover, when the series at hand are affected

by missing values, the KF technique clearly outperform the traditional estimators especially

when the percentage of missing observations increases. A typical problem, faced in practical

applications, is that many economic and financial series are contaminated by measurement

errors. In that case, it is shown that, as expected, traditional long memory estimators with

27



the exception of CLW , are extremely downward bias. The state space methodology allows to

directly tackle this issue, providing corrected estimates and filtering the latent long memory

signal. This could be exploited for forecasting purposes.

Finally, we provide a novel and promising approach to the estimation of the ARFIMA pro-

cesses, when they are contaminated by level shifts. A modified version of the Lu and Perron

(2010) filter is proposed and its finite sample properties are analyzed with Monte Carlo simula-

tions. It turns out that in the case of shifts, the semiparametric and the parametric estimators

provide upward biased estimates of the parameter d. The proposed estimator is able to disen-

tangle the long memory signal from the random level shift process providing corrected estimates

of the probability of the shifts, of their size as well as of the ARFIMA parameters. Under the

assumption of no shifts the estimates of d parameter are unbiased. The same holds true also

under the assumption that only level shifts are present, but not long memory. The results high-

light that the state space methods are highly reliable, even in small samples, and are an useful

tool to analyze long memory processes under alternative potential misspecification.
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(a) d = 0.0, φ = 0, θ = 0

b = T0.5 b = T0.65
ML Estimators

T LW ELW FLW LW ELW FLW Beran Whittle SS-AR SS-MA

250 Bias -0.0160 -0.0174 -0.0088 -0.0114 -0.0024 -0.0021 -0.0022 -0.0048 -0.0036 -0.0185

RMSE 0.1852 0.1892 0.2109 0.0994 0.0991 0.0989 0.0499 0.0505 0.0561 0.0679

500 Bias -0.0142 -0.0142 -0.0080 -0.0070 -0.0025 -0.0021 -0.0007 -0.0022 -0.0010 -0.0066

RMSE 0.1373 0.1375 0.1573 0.0769 0.0770 0.0766 0.0339 0.0343 0.0353 0.0378

1000 Bias 0.0059 -0.0071 -0.0004 0.0020 0.0020 0.0036 0.0000 -0.0006 -0.0000 -0.0028

RMSE 0.1124 0.1121 0.1195 0.0611 0.0615 0.0615 0.0246 0.0259 0.0255 0.0266

(b) d = 0.0, φ = −0.5, θ = 0

b = T0.5 b = T0.65
ML Estimators

T LW ELW FLW LW ELW FLW Beran Whittle SS-AR SS-MA

250 Bias -0.0218 -0.0286 -0.0092 -0.0383 -0.0317 -0.0316 -0.0068 -0.0108 -0.0087 0.0019

RMSE 0.1858 0.1878 0.2353 0.1058 0.1039 0.1037 0.0601 0.0618 0.0645 0.0692

500 Bias -0.0168 -0.0196 -0.0029 -0.0222 -0.0191 -0.0187 -0.0035 -0.0055 -0.0037 -0.0013

RMSE 0.1376 0.1369 0.1900 0.0799 0.0793 0.0787 0.0417 0.0424 0.0428 0.0454

1000 Bias -0.0073 -0.0098 -0.0061 -0.0094 -0.0078 -0.0078 -0.0014 0.0445 -0.0013 0.0000

RMSE 0.1125 0.1114 0.1308 0.0618 0.0616 0.0616 0.0298 0.0618 0.0310 0.0337

(c) d = 0.0, φ = 0, θ = −0.4

b = T0.5 b = T0.65
ML Estimators

T LW ELW FLW LW ELW FLW Beran Whittle SS-AR SS-MA

250 Bias -0.0424 -0.0488 -0.0339 -0.1077 -0.1008 -0.1013 -0.0018 -0.0163 0.0035 0.0018

RMSE 0.1892 0.1912 0.2275 0.1462 0.1422 0.1418 0.1495 0.1531 0.1621 0.1612

500 Bias -0.0274 -0.0304 -0.0121 -0.0829 -0.0835 -0.0834 -0.0041 -0.0104 0.0021 0.0009

RMSE 0.1394 0.1387 0.1972 0.1134 0.1138 0.1134 0.0979 0.1004 0.1100 0.1085

1000 Bias -0.0123 -0.0151 -0.0108 -0.0396 -0.0379 -0.0380 -0.0009 -0.0119 -0.0038 0.0025

RMSE 0.1131 0.1123 0.1349 0.0728 0.0720 0.0721 0.0722 0.1298 0.0700 0.0730

(d) d = 0.0, φ = −0.5, θ = −0.4

b = T0.5 b = T0.65
ML Estimators

T LW ELW FLW LW ELW FLW Beran Whittle SS-AR SS-MA

250 Bias -0.0480 -0.0690 -0.0471 -0.1331 -0.1323 -0.1332 0.0063 0.0134 0.0102 0.0012

RMSE 0.1902 0.1947 0.2498 0.1660 0.1661 0.1662 0.1669 0.2058 0.1719 0.1924

500 Bias -0.0297 -0.0417 -0.0157 -0.0168 -0.0196 -0.0029 0.0047 0.0294 0.0059 0.0007

RMSE 0.1398 0.1390 0.2122 0.1376 0.1369 0.1900 0.1112 0.0618 0.1159 0.1231

1000 Bias -0.0137 -0.0212 -0.0143 -0.0484 -0.0492 -0.0493 0.0003 0.0228 0.0041 0.0001

RMSE 0.1131 0.1109 0.1507 0.0780 0.0780 0.0782 0.0667 0.1525 0.0720 0.0771

Table 1: Panels (a), (b), (c) and (d) report the estimated long memory parameter for an
ARFIMA model, with d = 0 and different combinations of φ and θ. Sample size is T =
{250, 500, 1000}. Table reports the semiparametric estimates of LW , ELW and FLW with
different bandwidth choices, b = T 0.5 and b = T 0.65. Table also reports the approximated
maximum likelihood estimates, ML: Beran, Whittle, SS-AR and SS-MA. In bold character
the lowest bias and RMSE for each line.
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(a) d = 0.4, φ = 0, θ = 0

b = T0.5 b = T0.65
ML Estimators

T LW ELW FLW LW ELW FLW Beran Whittle SS-AR SS-MA

250 Bias -0.0104 -0.0174 0.0027 -0.0100 -0.0025 0.0070 -0.0022 0.0047 0.0036 -0.0012

RMSE 0.1890 0.1892 0.1920 0.1006 0.0992 0.1071 0.0499 0.0526 0.0550 0.0567

500 Bias -0.0092 -0.0142 -0.0020 -0.0050 0.0025 0.0026 -0.0008 0.0042 0.0069 0.0017

RMSE 0.1391 0.1375 0.1453 0.07890 0.0771 0.0828 0.0340 0.0355 0.0385 0.0388

1000 Bias -0.0051 -0.0088 -0.0035 0.0005 0.0020 0.0036 -0.0007 0.0023 0.0071 0.0037

RMSE 0.1134 0.1138 0.1163 0.0623 0.0617 0.0632 0.0251 0.0259 0.0291 0.0296

(b) d = 0.4, φ = −0.5, θ = 0

b = T0.5 b = T0.65
ML Estimators

T LW ELW FLW LW ELW FLW Beran Whittle SS-AR SS-MA

250 Bias -0.0163 -0.0286 -0.0139 -0.0371 -0.0317 -0.0243 -0.0069 0.0392 0.0005 -0.0033

RMSE 0.1893 0.1878 0.1830 0.1067 0.1039 0.1072 0.0602 0.0965 0.0646 0.0681

500 Bias -0.0112 -0.0196 -0.0096 -0.0203 -0.0191 -0.0143 -0.0035 0.0023 0.0066 0.0015

RMSE 0.1394 0.1369 0.1404 0.0814 0.0793 0.0833 0.0417 0.0433 0.0464 0.0479

1000 Bias -0.0025 -0.0098 0.0031 -0.0077 -0.0078 -0.0051 -0.0014 0.0445 0.0089 0.0054

RMSE 0.1125 0.1114 0.1140 0.0625 0.0616 0.0643 0.0299 0.0618 0.0348 0.0357

(c) d = 0.4, φ = 0, θ = −0.4

b = T0.5 b = T0.65
ML Estimators

T LW ELW FLW LW ELW FLW Beran Whittle SS-AR SS-MA

250 Bias -0.0369 -0.0487 -0.0336 -0.1064 -0.1008 -0.0958 -0.0020 -0.1268 0.0334 -0.0025

RMSE 0.1921 0.1912 0.1875 0.1463 0.1422 0.1390 0.1488 0.1464 0.1860 0.1576

500 Bias -0.0258 -0.0336 -0.0222 -0.0677 -0.0660 -0.0632 -0.0064 -0.1200 0.0350 -0.0076

RMSE 0.1440 0.1477 0.1460 0.1021 0.1006 0.0992 0.0990 0.1305 0.1389 0.0988

1000 Bias -0.0225 -0.0304 -0.0213 -0.0662 -0.0650 -0.0620 -0.0007 -0.0115 0.0397 0.0012

RMSE 0.1408 0.1387 0.1413 0.1032 0.1009 0.1003 0.0676 .1210 0.1049 0.0685

(d) d = 0.4, φ = 0.5, θ = −0.4

b = T0.5 b = T0.65
ML Estimators

T LW ELW FLW LW ELW FLW Beran Whittle SS-AR SS-MA

250 Bias -0.0434 -0.0685 0.0573 -0.1334 -0.1323 -0.1282 0.0242 0.0600 0.0365 -0.0002

RMSE 0.1935 0.1941 0.1869 0.1671 0.1661 0.1622 0.1916 0.2368 0.1956 0.1648

500 Bias -0.0254 -0.0417 -0.0346 -0.0815 -0.0835 -0.0802 0.0112 0.0434 0.0440 0.0007

RMSE 0.1414 0.1390 0.1388 0.1138 0.1138 0.1128 0.1324 0.1847 0.1530 0.1055

1000 Bias -0.0088 -0.0212 -0.0156 -0.0467 -0.0492 -0.0473 0.0006 0.02121 0.0603 0.0077

RMSE 0.1128 0.1109 0.1127 0.0777 0.0780 0.0777 0.0710 0.1142 0.1396 0.0767

Table 2: Panels (a), (b), (c) and (d) report the estimated long memory parameter for an
ARFIMA model, with d = 0.4, and different combinations of φ and θ. Sample size is T =
{250, 500, 1000}. Table reports the semiparametric estimates of LW , ELW and FLW with
different bandwidth choices, b = T 0.5 and b = T 0.65. Table also reports the approximated
maximum likelihood estimates, ML: Beran, Whittle, SS-AR and SS-MA. In bold character
the lowest bias and RMSE for each line.
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(a) d = 0.6, φ = 0, θ = 0

b = T0.5 b = T0.65
ML Estimators

T LW ELW FLW LW ELW FLW Beran Whittle SS-AR SS-MA

250 Bias 0.0013 -0.0174 0.0060 -0.002 -0.003 0.012 -0.002 0.014 0.004 -0.032

RMSE 0.1920 0.1892 0.1779 0.1021 0.0991 0.0940 0.0499 0.0570 0.0556 0.0499

500 Bias 0.0020 -0.0142 0.0047 0.0036 -0.0025 0.0101 -0.0008 0.0116 0.0071 -0.0211

RMSE 0.1403 0.1375 0.1323 0.0808 0.0771 0.0732 0.0340 0.0393 0.0383 0.0464

1000 Bias 0.0090 -0.0072 0.0060 0.0086 0.0020 0.0103 0.0000 0.0086 0.0095 0.0352

RMSE 0.1136 0.1121 0.1061 0.0649 0.0615 0.0593 0.0246 0.0287 0.0326 0.0928

(b) d = 0.6, φ = −0.5, θ = 0

b = T0.5 b = T0.65
ML Estimators

T LW ELW FLW LW ELW FLW Beran Whittle SS-AR SS-MA

250 Bias -0.0045 -0.0286 -0.0123 -0.0285 -0.0317 -0.0218 -0.0069 0.0125 0.0017 -0.0273

RMSE 0.1919 0.1878 0.1810 0.1060 0.1039 0.0967 0.0602 0.0682 0.0644 0.0678

500 Bias -0.0008 -0.0196 -0.0067 -0.0116 -0.0191 -0.0110 -0.0036 0.0114 0.0069 -0.0148

RMSE 0.1403 0.1369 0.1338 0.0818 0.0793 0.0737 0.0417 0.0475 0.0462 0.0535

1000 Bias 0.0077 -0.0110 -0.0049 -0.0004 -0.0078 -0.0051 -0.0014 0.0091 0.0107 -0.0107

RMSE 0.1136 0.1114 0.1055 0.0644 0.0616 0.0571 0.0298 0.0342 0.0364 0.0436

(c) d = 0.6, φ = 0, θ = −0.4

b = T0.5 b = T0.65
ML Estimators

T LW ELW FLW LW ELW FLW Beran Whittle SS-AR SS-MA

250 Bias -0.0246 -0.0488 -0.0319 -0.0969 -0.1008 -0.0802 -0.0009 0.0340 0.0262 -0.0650

RMSE 0.19334 0.1912 0.1848 0.1413 0.1422 0.1300 0.1512 0.1782 0.1643 0.1251

500 Bias -0.0111 -0.0304 -0.0184 -0.0570 -0.0650 -0.0501 -0.0029 0.0286 0.0322 -0.0491

RMSE 0.1409 0.1387 0.1372 0.0994 0.1009 0.0930 0.1011 0.1263 0.1258 0.0968

1000 Bias 0.0028 -0.0151 -0.0118 -0.0302 -0.0379 -0.0301 -0.0002 0.0234 0.0372 -0.0373

RMSE 0.1134 0.1123 0.1066 0.0715 0.0722 0.0792 0.0703 0.0867 0.0978 0.0747

(d) d = 0.6, φ = −0.5, θ = −0.4

b = T0.5 b = T0.65
ML Estimators

T LW ELW FLW LW ELW FLW Beran Whittle SS-AR SS-MA

250 Bias -0.1237 -0.1323 -0.1132 -0.1237 -0.1323 -0.1132 0.0017 0.077 0.0238 -0.0615

RMSE 0.1611 0.1661 0.1547 0.1611 0.1661 0.1547 0.1590 0.2516 0.1636 0.1303

500 Bias -0.0138 -0.0417 -0.0407 -0.0722 -0.0835 -0.0696 -0.0034 0.0736 0.0320 -0.0415

RMSE 0.1411 0.1390 0.1344 0.1090 0.1138 0.1048 0.0976 0.2184 0.1231 0.0940

1000 Bias 0.0015 -0.0212 -0.0293 -0.0405 -0.0503 0.0421 0.0008 0.0694 0.0377 0.0312

RMSE 0.1134 0.1109 0.1063 0.0758 0.0785 0.0791 0.0729 0.1978 0.0936 0.0734

Table 3: Panels (a), (b), (c) and (d) report the estimated long memory parameter for an
ARFIMA model, with d = 0.6, and different combinations of φ and θ. Sample size is T =
{250, 500, 1000}. Table reports the semiparametric estimates of LW , ELW and FLW with
different bandwidth choices, b = T 0.5 and b = T 0.65. Table also reports the approximated
maximum likelihood estimates, ML: Beran, Whittle, SS-AR and SS-MA. In bold character
the lowest bias and RMSE for each line.
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(a) d = 0.4, φ = 0, θ = 0

b = T0.5 b = T0.65
ML Estimators

T LW ELW FLW LW ELW FLW Beran Whittle SS-AR SS-MA

250 Bias -0.0231 -0.0296 -0.0104 -0.0125 -0.0041 0.0033 -0.0045 0.0021 0.0008 -0.0044

RMSE 0.1940 0.2004 0.1970 0.1017 0.1011 0.1063 0.0506 0.0533 0.0562 0.0581

500 Bias -0.0124 -0.0186 -0.0062 -0.0066 -0.0040 0.0001 -0.0011 0.0038 0.0067 0.0013

RMSE 0.1423 0.1457 0.1468 0.0763 0.0756 0.0787 0.0352 0.0367 0.0390 0.0399

1000 Bias -0.0051 -0.0088 -0.0035 0.0005 0.0020 0.0036 -0.0007 0.0023 0.0071 0.0037

RMSE 0.1134 0.1138 0.1163 0.0623 0.0617 0.0632 0.0251 0.0259 0.0291 0.0296

(b) d = 0.4, φ = −0.5, θ = 0

b = T0.5 b = T0.65
ML Estimators

T LW ELW FLW LW ELW FLW Beran Whittle SS-AR SS-MA

250 Bias -0.0289 -0.0380 -0.0199 -0.0398 -0.0329 -0.0277 -0.0100 -0.0288 -0.0033 -0.0076

RMSE 0.1945 0.2003 0.1946 0.1084 0.1060 0.1067 0.0612 0.0827 0.0663 0.0697

500 Bias -0.0153 -0.0230 -0.0116 -0.0219 -0.0201 -0.0166 -0.0031 -0.0184 0.0070 0.0016

RMSE 0.1426 0.1453 0.1443 0.0791 0.0782 0.0794 0.0425 0.0829 0.0474 0.0493

1000 Bias -0.0064 -0.0112 -0.0062 -0.0086 -0.0077 -0.0063 -0.0019 -0.0181 0.0084 0.0048

RMSE 0.1135 0.1137 0.1156 0.0629 0.0621 0.0631 0.0307 0.0431 0.0354 0.0361

(c) d = 0.4, φ = 0, θ = −0.4

b = T0.5 b = T0.65
ML Estimators

T LW ELW FLW LW ELW FLW Beran Whittle SS-AR SS-MA

250 Bias -0.0496 -0.0587 -0.0413 -0.1080 -0.1019 -0.0984 -0.0037 -0.0571 0.0349 0.0014

RMSE 0.1983 0.2049 0.1995 0.1464 0.1417 0.1395 0.1450 0.1719 0.1840 0.1574

500 Bias -0.0258 -0.0336 -0.0222 -0.0677 -0.0660 -0.0632 -0.0064 -0.0618 0.0350 -0.0076

RMSE 0.1440 0.1477 0.1460 0.1021 0.1006 0.0992 0.0990 0.1348 0.1389 0.0988

1000 Bias -0.0113 -0.0163 -0.0115 -0.0387 -0.0379 -0.0367 0.0008 -0.0647 0.0384 0.0010

RMSE 0.1139 0.1143 0.1157 0.0734 0.0725 0.0723 0.0694 0.0998 0.1044 0.0689

(d) d = 0.4, φ = −0.5, θ = −0.4

b = T0.5 b = T0.65
ML Estimators

T LW ELW FLW LW ELW FLW Beran Whittle SS-AR SS-MA

250 Bias -0.0556 -0.0744 -0.0576 -0.1366 -0.1336 -0.1296 0.0119 0.0496 0.0305 -0.0066

RMSE 0.1997 0.2073 0.1995 0.1702 0.1690 0.1647 0.1859 0.2319 0.1980 0.1669

500 Bias -0.0287 -0.0418 -0.0323 -0.0823 -0.0836 -0.0804 0.0097 0.0335 0.0386 -0.0035

RMSE 0.1445 0.1469 0.1439 0.1129 0.1131 0.1119 0.1371 0.1735 0.1476 0.1050

1000 Bias -0.0127 -0.0217 -0.0177 -0.0477 -0.0491 -0.0478 0.0032 0.0236 0.0374 0.0031

RMSE 0.1140 0.1142 0.1141 0.0786 0.0788 0.0784 0.0786 0.1180 0.1035 0.0708

Table 4: Panels (a), (b), (c) and (d) report the estimated long memory parameter for an
ARFIMA model, with d = 0.4, and different combinations of φ and θ. Sample size is T =
{250, 500, 1000}. Innovations are distributed as a Student’s t with 3 degrees of freedom, zero
mean and unit variance. Table reports the semiparametric estimates of LW , ELW and FLW
with different bandwidth choices, b = T 0.5 and b = T 0.65. Table also reports the approximated
maximum likelihood estimates, ML: Beran, Whittle, SS-AR and SS-MA. In bold character
the lowest bias and RMSE for each line.
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(a) Over-Specification

b = T 0.5 b = T 0.65 ML Estimators

T LW ELW FLW LW ELW FLW Beran Whittle SS-AR SS-MA

250 Bias -0.0104 -0.0174 0.0027 -0.0101 -0.0025 0.0070 -0.0392 -0.0442 -0.0043 -0.0800
RMSE 0.1890 0.1892 0.1920 0.1006 0.0991 0.1071 0.2036 0.2556 0.2120 0.2422

500 Bias -0.0092 -0.0142 -0.0020 -0.0050 0.0025 0.0026 -0.0187 -0.0134 0.0250 -0.0490
RMSE 0.1391 0.1375 0.1453 0.0789 0.0771 0.0828 0.1341 0.1583 0.1416 0.1552

(b) Under-Specification

b = T 0.5 b = T 0.65 ML Estimators

T LW ELW FLW LW ELW FLW Beran Whittle SS-AR SS-MA

250 Bias -0.0434 -0.0685 0.0573 -0.1334 -0.1323 -0.1282 -0.4874 -0.4741 -0.4806 -0.4709
RMSE 0.1935 0.1941 0.1869 0.1671 0.1661 0.1622 0.4920 0.4788 0.4901 0.4620

500 Bias -0.0254 -0.0417 -0.0346 -0.0815 -0.0835 -0.0802 -0.4580 -0.4496 -0.4638 -0.4561
RMSE 0.1414 0.1390 0.1388 0.1138 0.1138 0.1128 0.4613 0.4525 0.4624 0.4728

Table 5: Panel (a) reports the estimated long memory parameter for an ARFIMA(1, d, 1) model for T = {250, 500}, when the true model is
ARFIMA(0, d, 0) with d = 0.4. Panel (b) reports the estimated long memory parameter for an ARFIMA(0, d, 0) model, for T = {250, 500}, when
the true model is ARFIMA(1, d, 1) with d = 0.4, φ = −0.5 and θ = −0.4. Table reports the semiparametric estimates of LW , ELW and FLW
with different bandwidth choices, b = T 0.5 and b = T 0.65. Table also reports the approximated maximum likelihood estimates, ML: Beran, Whittle,
SS-AR and SS-MA. In bold character the lowest bias and RMSE for each line.
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(a) d = 0.4, φ = −0.5, θ = −0.4 with 10% missing

b = T0.5 b = T0.65
ML Estimators

T LW ELW FLW LW ELW FLW Beran Whittle SS-AR SS-MA

250 Bias -0.1568 -0.1676 -0.1440 -0.2150 -0.2108 -0.2080 -0.1465 -0.1266 0.0344 0.0146

RMSE 0.2450 0.2514 0.2629 0.2382 0.2346 0.2317 0.2129 0.2311 0.2013 0.1910

500 Bias -0.1252 -0.1349 -0.1117 -0.1816 -0.1800 -0.1783 -0.1598 -0.1483 0.0479 0.0109

RMSE 0.1879 0.1919 0.2133 0.1990 0.1971 0.1956 0.1882 0.1849 0.1649 0.1221

(b) d = 0.4, φ = −0.5, θ = −0.4 with 20% missing

b = T0.5 b = T0.65
ML Estimators

T LW ELW FLW LW ELW FLW Beran Whittle SS-AR SS-MA

250 Bias -0.2218 -0.2325 -0.2206 -0.2465 -0.2404 -0.2376 -0.1995 -0.1885 0.0420 0.0287

RMSE 0.2890 0.3004 0.2942 0.2669 0.2617 0.2583 0.2307 0.2565 0.2222 0.2180

500 Bias -0.1860 -0.1915 -0.1787 -0.2207 -0.2182 -0.2170 -0.2084 -0.1992 0.0574 0.0245

RMSE 0.2385 0.2409 0.2457 0.2338 0.2311 0.2300 0.2207 0.2183 0.1886 0.1524

(c) d = 0.4, φ = −0.5, θ = −0.4 with 30% missing

b = T0.5 b = T0.65
ML Estimators

T LW ELW FLW LW ELW FLW Beran Whittle SS-AR SS-MA

250 Bias -0.2558 -0.2576 -0.2504 -0.2549 -0.2489 -0.2474 -0.2226 -0.2473 0.0414 0.0289

RMSE 0.3148 0.3140 0.3212 0.2742 0.2688 0.2670 0.2742 0.3406 0.2383 0.2346

500 Bias -0.2183 -0.2221 -0.2136 -0.2452 -0.2426 -0.2414 -0.2053 -0.2046 0.0656 0.0372

RMSE 0.2639 0.2655 0.2672 0.2581 0.2557 0.2545 0.2201 0.2324 0.2074 0.1735

(d) d = 0.4, φ = −0.5, θ = −0.4 with 40% missing

b = T0.5 b = T0.65
ML Estimators

T LW ELW FLW LW ELW FLW Beran Whittle SS-AR SS-MA

250 Bias -0.2806 -0.2808 -0.2786 -0.2400 -0.2351 -0.2335 -0.2875 -0.3424 0.0307 0.0270

RMSE 0.3377 0.3374 0.3371 0.2645 0.2610 0.2585 0.3606 0.4390 0.2590 0.2704

500 Bias -0.2481 -0.2501 -0.2472 -0.2483 -0.2449 -0.2442 -0.2476 -0.2869 0.0676 0.0539

RMSE 0.2856 0.2858 0.2876 0.2607 0.2573 0.2567 0.2817 0.3317 0.2225 0.2049

Table 6: Panels (a), (b), (c) and (d) report the estimated long memory parameter for an
ARFIMA(1, d, 1) model with missing values. The ARFIMA parameters are d = 0.4, φ = −0.5
and θ = −0.5 in all cases. The sample size are T = {250, 500}. The percentage of missing
observations are 10%, 20%, 30% and 40%. Table reports the semiparametric estimates of LW ,
ELW and FLW with different bandwidth choices, b = T 0.5 and b = T 0.65. Table also reports
the approximated maximum likelihood estimates, ML: Beran, Whittle, SS-AR and SS-MA. In
bold character the lowest bias and RMSE for each line.
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(a) d = 0.4, φ = 0, θ = 0

b = T0.65
ML Estimators

nsr LW ELW FLW CLW Beran Whittle SS-AR SS-MA

1 Bias -0.1347 -0.1320 -0.1297 0.0333 -0.1913 -0.1883 0.0342 0.0038

RMSE 0.1557 0.1523 0.1505 0.1914 0.1950 0.1926 0.1241 0.1013

2 Bias -0.1931 -0.1898 -0.1878 0.0827 -0.2450 -0.2435 0.0149 -0.0203

RMSE 0.2084 0.2046 0.2030 0.3340 0.2481 0.2278 0.1172 0.1007

(b) d = 0.4, φ = −0.5, θ = 0

b = T0.65
ML Estimators

nsr LW ELW FLW CLW Beran Whittle SS-AR SS-MA

1 Bias -0.1785 -0.1757 -0.1736 0.0803 -0.16589 -0.1624 0.0345 0.0077

RMSE 0.1949 0.1915 0.1898 0.3033 0.1733 0.1707 0.1386 0.1045

2 Bias -0.2757 -0.2713 -0.2703 0.0655 -0.5194 -0.2568 0.0034 -0.0280

RMSE 0.2870 0.2825 0.2815 0.4155 0.2432 0.2301 0.1507 0.1291

(c) d = 0.4, φ = 0, θ = −0.4

b = T0.65
ML Estimators

nsr LW ELW FLW CLW Beran Whittle SS-AR SS-MA

1 Bias -0.2757 -0.2713 -0.2702 0.0655 -0.5193 -0.2568 -0.0211 -0.0884

RMSE 0.2870 0.28245 0.2815 0.4155 0.5224 0.2697 0.3169 0.3077

2 Bias -0.3213 -0.3158 -0.3157 0.0093 -0.4803 -0.3080 -0.0211 -0.0984

RMSE 0.3311 0.3256 0.3256 0.5442 0.4841 0.3161 0.3368 0.3077

(d) d = 0.4, φ = −0.5, θ = −0.4

b = T0.65
ML Estimators

nsr LW ELW FLW CLW Beran Whittle SS-AR SS-MA

1 Bias -0.1588 -0.1559 -0.1537 0.0805 -0.3262 -0.0866 0.0436 -0.0226

RMSE 0.1772 0.1736 0.1718 0.3196 0.5892 0.1578 0.2503 0.2085

2 Bias -0.1848 -0.1829 -0.1907 0.0942 -0.4217 -0.2817 0.0236 -0.0126

RMSE 0.1772 0.1736 0.1718 0.3196 0.6042 0.3578 0.3150 0.3085

Table 7: Panels (a), (b), (c) and (d) report the estimated long memory parameter for an
ARFIMA(1, d, 1) plus noise model, with d = 0.4, φ = −0.5 and θ = −0.5, for T = {500}. The
measurement errors are distributed as a Gaussian random variable, zero mean and variance
that depends on the signal to noise ratio. The nsr is set equal to 1 and 2. Table reports the
semiparametric estimates of LW , ELW and FLW with bandwidth, b = T 0.65. Table also reports
the approximated maximum likelihood estimates, ML: Beran, Whittle, SS-AR and SS-MA. In
bold character the lowest bias and RMSE for each line.
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(a) d = 0.4, φ = 0, σ2
κ = 4 and α = 7.5/T

b = T0.5 b = T0.65
ML Estimators

T LW ELW FLW LW ELW FLW Beran Whittle MSS-AR

500 Bias 0.3544 0.2985 0.3110 0.2994 0.2486 0.2608 0.1551 0.1907 -0.0155

RMSE 0.3947 0.3406 0.3476 0.3287 0.2761 0.2842 0.1682 0.2088 0.0588

1500 Bias 0.3354 0.2805 0.2908 0.2671 0.2170 0.2278 0.1075 0.1316 -0.0119

RMSE 0.3640 0.3091 0.3155 0.2902 0.2372 0.2448 0.1179 0.1459 0.0296

(b) d = 0.4, φ = −0.3, σ2
κ = 4 and α = 7.5/T

b = T0.5 b = T0.65
ML Estimators

T LW ELW FLW LW ELW FLW Beran Whittle MSS-AR

500 Bias 0.4061 0.3509 0.3632 0.2994 0.2486 0.2608 0.2346 0.2808 -0.0136

RMSE 0.4398 0.3874 0.3950 0.3287 0.2761 0.2842 0.2478 0.2989 0.0596

1500 Bias 0.3902 0.3355 0.3439 0.3197 0.2669 0.2752 0.1683 0.2014 -0.0173

RMSE 0.4136 0.3598 0.3659 0.3398 0.2851 0.2909 0.1790 0.2162 0.0490

(c) d = 0.4, φ = −0.3, σ2
κ = 0 and α = 0

b = T0.5 b = T0.65
ML Estimators

T LW ELW FLW LW ELW FLW Beran Whittle MSS-AR

500 Bias -0.0149 -0.0210 -0.0163 -0.0275 -0.0290 -0.0264 -0.0052 0.0014 -0.0386

RMSE 0.1448 0.1438 0.1412 0.1124 0.1138 0.1120 0.0474 0.0489 0.0827

1500 Bias 0.0022 -0.0011 -0.0006 0.0006 -0.0002 0.0004 0.0039 0.0061 -0.0187

RMSE 0.1039 0.1012 0.1005 0.0469 0.0455 0.0446 0.0263 0.0272 0.0550

(d) d = 0.0, φ = 0, σ2
κ = 4 and α = 7.5/T

b = T0.5 b = T0.65
ML Estimators

T LW ELW FLW LW ELW FLW Beran Whittle MSS-AR

500 Bias 0.6046 0.5389 0.5601 0.7361 0.6781 0.6921 0.4263 0.4645 -0.0146

RMSE 0.6900 0.6195 0.6412 0.7515 0.6928 0.7041 0.3806 0.4112 0.0628

1500 Bias 0.8748 0.8228 0.8299 0.7517 0.6940 0.7004 0.4886 0.5217 -0.0022

RMSE 0.8844 0.8333 0.8401 0.7630 0.7042 0.7102 0.4956 0.5312 0.0298

Table 8: Panels (a), (b), (c) and (d) report the estimated long memory parameter for an
ARFIMA model with level shifts. ARFIMA is generated with with d = 0.4 and φ = 0,−0.3 and
θ = 0. The sample size is T = {500, 1500}. The level shifts process process is simulated according
to formula (33) with σ2

κ = 4 and α = 7.5/T . Table reports the semiparametric estimates for
LW , ELW and FLW with different bandwidth choices, b = T 0.5 and b = T 0.65. Table also
reports the approximated maximum likelihood estimates, ML: Beran, Whittle, MSS-AR. In
bold character the lowest bias and RMSE for each line.
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LMSV model with ARFIMA(1, d, 0)

b = T 0.65 ML Estimators

T LW ELW FLW CLW Beran Whittle SS-AR SS-MA

415 d̂ 0.2690 0.2717 0.2717 0.8217 0.2184 0.2190 0.4476 0.4779

φ̂ – – – – -0.1757 -0.1760 -0.3996 -0.3650
σ̂2

η – – – – 5.4055 5.4228 1.0752 1.3688

σ̂2
ǫ – – – – 0 0 3.9596 3.8598

β̂ – – – 76.1550 – – – –

Table 9: Table reports the estimated parameters of the LMSV model, with an ARFIMA(1, d
,0) for the latent stochastic volatility process. Table reports the semiparametric estimates for
LW , ELW , FLW and CLW with bandwidth b = T 0.65. Table also reports the estimates of the

parameters φ, σ2
η and σ2

ǫ for the approximated maximum likelihood estimates. β̂ =
̂
(

σ2
ǫ

2πG

)

is

the estimate of the noise-to-signal ratio, obtained as the additional parameter in the corrected
Whittle objective function.
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Long Memory in Inflation

b = T 0.65 ML Estimators

T LW ELW FLW CLW Beran Whittle SS-AR SS-MA MSS-AR MSS −ARσ2
η

553 d 0.7111a 0.6939a 0.7534a 0.7556a 0.5417a 0.5476a 0.5381a 0.5286a 0.0266 0.1319
φ – – – – -0.1336 -0.1334 -0.1166 -0.1018 – –
α – – – – – – – – 0.0609a 0.0293b

σ̂κ – – – – – – – – 0.1701b 0.2072b

σ̂η – – – – 0.0228a 0.0231a 0.0231a 0.0225a 0.0106b –
σ̂2

η1
– – – – – – – – – 0.0304a

σ̂2
η2

– – – – – – – – – 0.0073a

Table 10: Table reports the estimated parameters of the long memory estimates on the US inflation series. LW , ELW , FLW and CLW are
the semiparametric estimates, with bandwidth b = T 0.65. An ARFIMA(1, d, 0) is estimated with the parametric estimators, including SS-AR and
SS-MA. Table also reports the estimates of the MSS-AR on an ARFIMA(0,d,0) plus random level shifts. Table reports the parameter estimates
for φ, σ2

η, α and σ2
κ. σ̂2

η1
and σ̂2

η2
are the innovation variances for the periods Jan:1965-Dec:1983 and Jan:1984-Mar:2011, respectively. a, b and c

stand for 1%, 5% and 10% significance levels, respectively.
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