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Abstract

We propose a nonparametric approach to the estimation and testing of structural

change in time series regression models. Under the null of a given set of the coe¢ cients

being constant, we develop estimators of both the nonparametric and parametric compo-

nents. Given the estimators under null and alternative, generalized F and Wald tests are

developed. The asymptotic distributions of the estimators and test statistics are derived.

A simulation study examines the �nite-sample performance of the estimators and tests.

The techniques are employed in the analysis of structural change in US productivity and

the Eurodollar term structure.
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1 Introduction

There is amble empirical evidence of structural changes in many economic and �nancial time

series such as GDP (McConnell and Perez-Quiros, 2000), interest rates (Stock and Watson,

1996), labour productivity (Hansen, 2001), and stock returns (Ang and Kristensen, 2009).

Neglecting these changes in the analysis of data can lead to spurious conclusions. This has lead

to a large literature on detection and estimation of structural changes in time series regression

models. Most studies assume a fully parametric structure of time variation in parameters.

This has the advantage that the model maintains much of its parsimonious structure. The

disadvantage is that the researcher runs the risk of choosing a misspecied model. This in turn

may lead to misleading conclusions being drawn from the �tted time-varying speci�cation.

This paper proposes a general methodology for nonparametric estimation and testing of

time-varying coe¢ cients in a linear regression model with heteroskedastic errors. We impose

no parametric structure on neither the regression coe¢ cients nor the conditional variance and

instead estimate both components nonparametrically. This way, the risk of mispeci�cation

is smaller and so more robust inference can be conducted. We consider the null of a given

(sub)set of the regression coe¢ cients being constant, and develop estimators under null and

alternative. The estimators take the form of simple kernel-weighted OLS estimators and so are

very simple to implement in contrast to existing parametric estimators whose implementation

can be computationally burdensome. We propose to test the null by comparing the two sets

of estimators through a generalized likelihood-ratio test statistic. We also show how the

proposed methods can be used as guidance in the search and estimation of a parsimonious

parametric model of structural change.

We derive the asymptotic properties of the estimators and test statistics: All estimators

follow normal distributions in large samples. In particular, under the null, the parametric

(constant) components can be estimated with standard parametric rate, and can be made

asymptotically e¢ cient. The proposed test statistics are also shown to follow normal dis-

tributions under the null, and by suitable choice of weighting functions entering the tests

they can be made nuisance parameter-free. These are attractive features when compared

to standard parametric estimators and test statistics that tend to su¤er from non-standard,

non-pivotal distributions thereby further complicating inference in a parametric setting.

Our framework allows for both deterministically and randomly changing parameters, and

as such allow for a rich class of data generating processes, incl. random walk type dynamics

in the parameters. Moreover, while we here mainly focus on the case of smoothly changing

parameters, our methodology also allows for discontinuous breaks in the parameter values

over time. As such, our estimators and tests are very robust and should be able to detect

structural change under may di¤erent scenarios. This is supported by a simulation study

that reveals that our estimators and tests have good �nite sample properties both when the
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parameters follow a random walk and a smooth transition. In particular, the performance of

the estimators of the constant components are comparable to the oracle estimators assuming

full knowledge of the structural changes. Moreover, the tests have precise size properties and

exhibit strong power against both random walk and smooth transition alternatives.

The usefulness and simplicity of the proposed estimation and testing strategy are demon-

strated through two empirical applications: In the �rst one, we investigate structural in-

stabilities in US productivity within an autoregressive setting. We �nd strong evidence of

structural changes in the AR coe¢ cient while there is weaker support for variation in the

intercept. We test two parametric structural breaks models against the nonparametric alter-

native, and accept the more general model with three breaks while there is mixed evidence

for the simpler one with one break. In the second application, we analyze structural changes

in an a¢ ne three-factor model for the Eurodollar term structure. We �nd substantial time

variation in all factor loading over the period 1971-2004 and reject the null of constant load-

ings both individually and when tested in pairs. The variation in the loadings is found to be

partially driven by underlying macro factors.

Our approach to the modelling of the changing regression coe¢ cients, which we denote �t,

are based on the idea of Robinson (1989) who treats the estimation of the unstable parameter

paths as a nonparametric curve �tting problem. This approach has also been pursued in more

work such as Cai (2007) and Orbe et al. (2004). However, these studies focus solely on the

nonparametric estimation of the changing parameters, and do not consider estimation and

testing of constant parameters. Our approach also shares similarities with the literature

on inference in nonparametric varying-coe¢ cient models as developed in a cross-sectional

setting; see Fan and Zhang (2008) for an overview. Our estimators are also related to rolling-

window type estimators widely used in empirical �nance as an informal way of estimating

unstable regressions; see e.g. Ferson and Schadt (1996). Our theoretical analysis provide a

formal asymptotic theory allowing for valid inference based on these estimators; see Ang and

Kristensen (2009) for a further discussion.

There is a large literature on parametric testing of structural change in regression models.

One popular way to parametrically specify time-variation in the regression coe¢ cients is

through deterministic breaks; see, among others, Andrews and Ploberger (1994) and Bai

and Perron (1998). Other modelling approaches include the smooth transition models (Lin

and Teräsvirta, 1994), hidden Markov models (Akharif and Hallin, 2003, Hamilton, 1992

and Hansen, 1992) and threshold models (Chan, 1990) and Hansen, 2000a). Elliott and

Müller (2006) show that under regularity conditions, all parametric tests within a certain

class of breaking processes are equivalent. They however restrict their analysis to a class

of global alternatives and one single break, and as such do not allow for so-called local

(or high-frequency) alternatives. This is an important point since parametric tests are in

general less powerful at detecting such alternatives compared to Neymann-type tests; see
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e.g. Eubank and LaRiccia (1992) and Fan et al (2001). We conjecture that the optimality

results of Fan et al (2001) can be extended to our setting in which case our tests are able to

detect local alternatives at an optimal rate. Finally, even if a given parametric test is able to

detect structural changes, it will only deliver a consistent estimator of the process �t if the

alternative is correctly speci�ed. Thus, parametric procedures may not be very informative

about the type of variation in �t under the alternative, and so do not deliver any robust

guidance in modelling potential time variation.

Other nonparametric tests can be found in the literature with the CUSUM test of Brown et

al. (1975) being the most prominent. However, this procedure does not deliver any estimates

of the breaking process under the alternative and has a non-standard asymptotic distribution.

These tests furthermore involve integration/summation over the changing parameters and as

such may su¤er from the same problem as parametric tests, namely that they cannot detect

high-frequency alternatives very well. These less appealing features are shared by many other

nonparametric tests such as Chu et al. (1995).

Our testing approach is instead most closely related to the work by Chen and Hong

(2009) and Juhl and Xiao (2005) who also develop kernel-based tests for stability in regression

models using a strategy similar to ours. Juhl and Xiao (2005) focus on models where only

the intercept is potentially time-varying, while Chen and Hong (2009) develop estimators and

tests under the null of all regression coe¢ cients being constant. We here extend their results

in a number of directions: First, we develop estimators and tests under the hypothesis of time

invariance for any given subset of the regression coe¢ cients. This is an important extension

since it is often of interest to identify which regressors have unstable coe¢ cients (see e.g. Ang

and Kristensen, 2009). Secondly, we allow for heteroskedastic errors and modify estimators

and test statistics to handle this. Thirdly, we accomodate for non-stationary (but mixing)

regressors; this is important since we thereby can handle autoregressive models which are

excluded from the theory in Chen and Hong (2009).

The remains of the paper is organized as follows: In the next section, we introduce our

model and develop the proposed estimator and test statistics. Section 3 contains theoretical

results for these, while Section 4 gives some extensions. Bandwidth selection and bootstrap-

ping is discussed in Section 5. The results of a simulation study is presented in Section 6,

while the two empirical applications can be found in in Section 7. Section 8 concludes. All

proofs and lemmas have been relegated to the Appendix.

2 Framework

Suppose we have observed (yt; Xt), t = 1; :::; n, from the following regression model:

yt = �
0
tXt + �tzt: (2.1)
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Here, yt 2 R is the dependent variable, Xt 2 Rm is a set of regressors, and zt 2 R is the

normalized error term which satis�es

E [ztjXt; �t; �t] = 0; E
�
z2t jXt; �t; �t

�
= 1: (2.2)

As such, �2t > 0 represents the conditional variance of yt while the regression coe¢ cients �t
can be expressed as

�t = E
�
XtX

0
tj�t; �t

��1
E [Xtytj�t; �t] :

In a standard regression model, it is assumed that the regression coe¢ cients and the variance

are constant over time, �t = � and �
2
t = �

2.

We are interested in testing the hypothesis that (part of) the regression coe¢ cients are

in fact constant over time, and also in obtaining estimates both under this null and its

alternative. To be speci�c, let X1;t 2 Rm1 denote the set of regressors whose associated slope

parameters we are interested in testing for time invariance. The remaining regressors are

collected in X2;t 2 Rm2 whose regression coe¢ cients may potentially be unstable. We can

then write the complete set of regressors as Xt = (X1;t; X2;t) with m1+m2 = m. With these

de�nitions, the model can be written as:

yt = �
0
1;tX1;t + �

0
2;tX1;t + �tzt; (2.3)

and we then interested in testing he following null hypothesis,

H0 : �1;t = �1 2 Rm1 ;

against the maintained (alternative) hypothesis

HA : �1;t and �2;t are time-varying.

The above framework is quite standard in the literature on structural changes in regression

models. However, in order to develop statistical estimators and tests, most studies now

proceed to impose parametric assumptions on the parameter sequences �t and/or �
2
t . One

popular way of modelling the variation is through deterministic breaks, see e.g. Andrews

and Ploberger (1994), Bai (1999) and Bai and Perron (1998). In the simplest case, with two

breaks, the dynamics of the regression coe¢ cients are modelled as �t = ��1 for t = 1; :::; [�n],

and �t = ��2 for t = [�n] + 1; :::; n for some (unknown) � 2 (0; 1) and ��1; ��2 2 Rm. This can
be written more compactly as �t = ��1I ft � [�n]g + ��2I ft > [�n]g, where I f�g denotes the
indicator function. Another widely used speci�cation is the smooth transition model of Lin

and Teräsvirta (1994) where the variation is speci�ed as �t = ��1F (t=n; )+��2 [1� F (t=n; )]
for some parametric family of cdf�s, F (t; ). While these two models impose a deterministic

model on the dynamics of the coe¢ cients, another approach is to model �t as a stochastic

process; see e.g. Akharif and Hallin (2003), Hansen (1992), and Hamilton (1992). Finally,
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some models specify �t as a parametric function of observables, for example threshold models

as treated in Chan (1990) and Hansen (2000a).

We here take an alternative approach and do not impose any such parametric restrictions

on the nature of the time-variation, and instead build nonparametric estimators of the relevant

parameters. However, some additional restrictions has to be imposed on the type of time-

variatio in order to make any further progress. In particular, at the current level of generality,

we are not able to nonparametrically identify the sequences �t and �
2
t , t = 1; :::; n, as we have

as many parameters as observations. We here resolve this problem by imposing the following

rescaling

�t = � (t=n) ; �2t = �
2 (t=n) ; (2.4)

for some functions � : [0; 1] 7! Rm and �2 : [0; 1] 7! R+ We here use � and �2 to denote both
functions and the corresponding sequences; this should hopefully not cause any confusion.

This restriction on coe¢ cients imply that as the sample size grows, a growing number of

observations carry information regarding the variation in the coe¢ cients in any given neigh-

bourhood of the normalized time domain. This will allow us to identify the functions and

thereby the parameter sequences.

The above assumption is a standard one in the literature on time-varying parameters, and

is also imposed in, for example, the analysis of structural break estimators. We note that

the class of models satisfying in eq. (2.4) is rich enough to include many of the parametric

models discussed earlier. Clearly, the structural break and the smooth transtion models are

contained. Moreover, hidden Markov models �t is modelled as a latent random process can

be approximated by our model by choosing the function � (�) in eq. (2.4) as the corresponding
continuous-time equivalent. For example, the random walk model can be approximated by

letting � (�) ; � 2 [0; 1], be the realized trajectory of a Brownian motion.
The above rescaling was also used in Robinson (1989), who proposed to use kernel methods

to nonparametrically estimate time-varying coe¢ cients; see Cai (2007) and Orbe et al. (2004)

for some extensions. In an autoregressive setting, the above scaling leads to so-called locally

stationary models as analyzed in Dahlhaus (1997).

2.1 Estimation

We �rst develop estimators under the null and alternative. In order to motivate our non-

parametric estimators under the alternative HA, suppose that "tjXt � N
�
0; �2t

�
; we will

however not impose this restriction when deriving theoretical properties. In this case, the

global likelihood takes the form

Ln(�; �
2) = � 1

2n

nX
t=1

�
log
�
�2t
�
+
"2t (�t)

�2t

�
;
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for any sequences
�
�t; �

2
t : t � 1

	
, where "t(�) is the residual,

"t(�) = yt � �0Xt: (2.5)

Let � = t0=n 2 (0; 1) denote a given (normalized) point in time. We de�ne the local Gaussian
log-likelihood at � by

Llocaln

�
�; �2j�

�
= �1

2

nX
t=1

�
log
�
�2
�
+
"2t (�)

�2

�
Kh (t=n� �) ;

for any constants � 2 Rm and �2 > 0. Here, Kh (z) = K (z=h) =h with K (�) being a kernel
and h > 0 a window width. The kernel weights Kh (t=n� �), t = 1; :::; n, determine how we
use information around the time point � to learn about � (�) and �2 (�). As the time window

shrinks to zero, h ! 0, only observations very close in time to � are used while as h ! 1,
all observations are used.

We then propose to estimate
�
� (�) ; �2 (�)

�
by maximizing the local likelihood at � ,

(�̂ (�) ; �̂2 (�)) = arg max
(�;�2)

Llocaln

�
�; �2j�

�
:

Solving @Llocaln

�
�; �2j�

�
=@� = 0 and @Llocaln

�
�; �2j�

�
=@�2 = 0, we �nd that they take the

form of kernel-weighted least-squares estimators,

�̂ (�) =

"
nX
t=1

Kh (t=n� �)XtX 0
t

#�1 " nX
t=1

Kh (t=n� �)Xtyt

#
; (2.6)

�̂2 (�) =

Pn
t=1Kh (t=n� �) "2t (�̂t)Pn

t=1Kh (t=n� �)
: (2.7)

The above estimator of � (�) is identical to the one proposed by Robinson (1989), and is

similar to nonparametric estimators of varying-coe¢ cient models in a cross-sectional setting;

see Fan and Zhang (2008) for an overview. The estimator of the volatility is akin to the

volatility estimator considered in Fan and Yao (1998) except that we here employ normalized

time t=n as a regressor; see also Kristensen (2010) for a similar volatility estimator in a

continuous-time framework. For notational convenience, we here use the same bandwidth for

all regression coe¢ cients and the volatility. There may be �nite sample improvements from

using di¤erent bandwidths for the individual coe¢ cients, see e.g. Fan and Yao (1998) and

Fan and Zhang (1999) for results on this in a i.i.d. setting.

Next, we consider estimation of the parametric (�1) and nonparametric (�2;t) components

underH0. We propose to estimate the time-varying and constant coe¢ cients by pro�led least-

squares akin to the local linear pro�le estimator of Fan and Huang (2005) relying on a �rst-

step kernel estimator of �2;t. As is well-known in the literature on two-step semiparametric

estimators, di¤erent bandwidth rules apply depending on whether the interest lies in the
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estimation of the nonparametric or parametric component. This will also be the case here,

and so we here introduce an additional bandwidth b > 0 to avoid any confusion. We will

then reserve h for the use in the estimation and testing of nonparametric components, while

b is employed in the estimation of parametric components.

As a �rst step towards an estimator of �1, treat the parameter as known and estimate

�2 (�) by
~�2 (�) = argmax

�2
Llocaln

�
�1; �2; �

2j�
�
;

where Llocaln

�
�1; �2; �

2j�
�
is on the same form as before except that we have replaced the

bandwidth h by the new bandwith b; that is, the kernel weights in the de�nition of the local

log-likelihood now takes the form Kb (t=n� �). In order to give an explicit expression of
~�2 (�), we introduce some additional notation: For any random sequence At, de�ne M̂b (� ; A)

by

M̂b (� ; A) =

"
nX
s=1

Kb (s=n� �)X2;sX 0
2;s

#�1 " nX
s=1

Kb (s=n� �)X2;sA0s

#
;

which is a kernel estimator of M (� ; A) =M[�n] (A), where

Mt (A) = E
�
X2;tX

0
2;t

��1
E
�
X2;tA

0
t

�
: (2.8)

Then it is easily shown that ~�2 (�) can be written as

~�2 (�) = M̂b (� ; y)� M̂b (� ;X1)
0 �1:

Given the estimator of �2;t, we propose to estimate �1 by pro�le-likelihood: By plugging

the conditional estimator ~�2;t into the global log-likelihood together with some preliminary

estimator of �2t (for example, the unconstrained estimator, �̂
2
t ), a natural estimator would

be the maximize of this w.r.t. �1. However, due to bias problems with our kernel estimators

for � close to the two boundaries, � = 0 and 1, we �rst rede�ne global likelihood function to

include trimming,

Ln(�; �
2) = � 1

2n

nX
t=1

It (a)
�
log
�
�2t
�
+
"2t (�t)

�2t

�
;

where It (a) = I fa � t=n � 1� ag for some trimming parameter a > 0. That is, we only

include observations which are observed a time distance a away from the two end points of

the sample. We will let a vanish as n!1 such that the impact of trimming is asymptotically

negiglible. As an alternative to trimming, a boundary kernel or local linear kernel estimator

could be used in the nonparametric estimation since these do not carry any biases at the

boundaries, see Kristensen (2010) for a further discussion.

We would like to emphasize that the purpose of the trimming employed here is funda-

mentally di¤erent from the type of trimming introduced in other semiparametric two-step
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estimators such as Robinson (1987,1988). Usually, trimming is used to handle denominator

problems of a �rst-step nonparametric estimator. Our nonparametric estimator does not

su¤er from any denominator problems, but rather a boundary problem: That close to either

� = 0 and � = 1, the estimator is asymptotically biased. The trimming is here used to control

this bias component.

Given the rede�ned log-likelihood, we estimate �1 by ~�1 = argmax�1 Ln(�1;
~�2; ~�

2). This

estimator can be written on closed form: First note that

Ln(�1;
~�2; ~�

2) / �
nX
t=1

It (a) ~��2t
h
ŷt � �01X̂1;t

i2
;

where for any random sequence At we have de�ned its corresponding residual as

Ât = At � M̂b;t (A)
0X2;t; M̂b;t (A) = M̂b (t=n;A) :

As such, ~�1 is the solution to a least-squares problem and is given by

~�1 =

"
nX
t=1

It (a) ~��2t X̂1;tX̂
0
1;t

#�1 nX
t=1

It (a) ~��2t X̂1;tŷ
0
t: (2.9)

We can substitute this back into the expression of ~�2 (�) to obtain an estimator of �2 (�)

under the null:
~�2 (�) = M̂h (� ; y)� M̂h (� ;X1) �̂1; (2.10)

where we here use the bandwidth h instead of b, since now the interest lies in the estimation

of a nonparametric component. One can potentially update the variance estimator by:

~�2 (�) =

Pn
t=1Kh (t=n� �) "2t (~�t)Pn

t=1Kh (t=n� �)
: (2.11)

One can also iterate between the two estimators given in Eq. (2.9)-(2.10) and the variance

estimator in Eq. (2.11), but as we shall see this will not lead to any �rst-order improvements.

While the above GLS estimator ~�1 is asymptotically e¢ cient (see Section 3), one may

worry about its precision for small and moderate sample sizes. In particular, the estima-

tor involves a preliminary estimator of the time-varying variance, ~�2t , which in turn requires

choosing an additional bandwidth. We therefore introduce a more general estimator depend-

ing on weights that can be chosen in a given application,

~�
w
1 =

"
nX
t=1

It (a) ŵtX̂1;tX̂ 0
1;t

#�1 nX
t=1

It (a) ŵtX̂1;tŷ0t; (2.12)

where ŵt = ŵ (t=n) for some (potentially estimated) weighting function ŵ : [0; 1] 7! R+.
With ŵt = ~��2t , the e¢ cient GLS estimator ~�1 appears, while with ŵt = 1 the standard OLS

estimator is obtained.
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The resulting estimators share some similarities with the estimators in partially linear

models and regression models with heteroskedasticity of unknown form as proposed by Robin-

son (1988) and Robinson (1987) respectively. The above estimator is a weighted time series

version of the estimator proposed Fan and Huang (2005) who use uniform weights, ŵt = 1,

and analyze its properties in a cross-sectional setting.

An alternative estimator of �1 is obtained by simply averaging the unrestricted estima-

tor �̂1 (�) over � 2 [0; 1], ��1 =
R 1
0 ! (�) �̂1 (�) d� , for any weighting function ! satisfyingR 1

0 ! (�) d� = 1. Ang and Kristensen (2009) show that ��1 is
p
n-asymptotically normally

distributed but in general not as e¢ cient as ~�
w
1 . It should be possible to obtain full e¢ -

ciency by suitable choice of !, but the optimal weighting function will however depend on

unknown components and therefore has to be estimated. We will in the following focus on

the likelihood-based estimator ~�
w
1 .

2.2 Testing

Once the restricted estimators have been computed, we may then test H0 by comparing the

unrestricted and restricted �t of the model: We here propose two di¤erent tests: The �rst

test is a Likelihood-Ratio type test that compares the sums of squared residuals (SSR�s)

associated with the unrestricted and restricted model, while the second directly compares

the restricted and unrestricted estimator of �1 (�).

To obtain our test statistics, we �rst de�ne the residuals under the H0 and its alternative

respectively,

~"t = yt � ~�
w0
1 X1;t � ~�

0
2;tX1;t; "̂t = yt � �̂

0
1;tX1;t � �̂

0
2;tX1;t;

where, as before, ~�
w
1 is computed using the "semiparametric" bandwidth b while �̂t and ~�2;t

relies on the "nonparametric" bandwidth h. The corresponding sums of (weighted) squared

residuals under null and alternative are given by

SSRw0 =
nX
t=1

It (a) ŵt~"2t ; SSRwA =
nX
t=1

It (a) ŵt"̂2t ; (2.13)

where ŵt are some weights chosen by the econometrician (not necessarily the same used to

compute ~�
w
1 ). We then propose to test H0 using a generalized F statistic given by

Fn =
n

2

SSRw0 � SSRwA
SSRwA

:

The statistic Fn is similar to the generalized likelihood-ratio (GLR) test statistic proposed

in Fan et al (2002) for varying-coe¢ cient models. In particular, with ŵt = ~��2t , Fn can be

seen as a �rst-order approximation of the GLR based on Ln(�; �2). For ŵt = 1, Fn is the

�rst-order approximation of the GLR proposed in Fan et al (2002) in a cross-sectional setting

with homoskedastic errors.
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As an alternative to Fn, we also consider a generalized Wald statistic that measures the

discrepancy between the restricted and unrestricted estimator of �1 (�):

Wn =

nX
t=1

It (a)
�
~�
w
1 � �̂1;t

�0

̂t

�
~�
w
1 � �̂1;t

�
;

for some sequence of (possibly estimated) weights, 
̂t � 0, t = 1; :::; n. One particular choice
of 
̂t is 
̂t = X1;tX 0

1;t, see Chen and Hong (2009), but others are possible too. In particular,

when the errors are heteroskedastic, one can include a volatility weight in order for the test

statistic to be asymptotically distribution free as we will discuss in the next section.

3 Asymptotics Properties

To derive the asymptotic properties of the above estimation testing procedure, we assume

that data has arrived from the following sequence of models,

yn;t = �
0
n;tXn;t + �n;tzn;t; t = 1; :::; n; (3.1)

where �0n;t and �n;t satisfy eq. (2.4). We allow the sequences
�
�n;t

	
and f�n;tg to be random

in which case all the following arguments and statements are implicitly made conditional

on the realization of these two random sequences that generated data. Moreover, the set

of regressors, Xn;t, and errors, zn;t, may potentially depend on sample size n such that

structural change in their distributions are allowed for. As such, our model resembles the

one considered in Hansen (2000b), except that we do not impose parametric assumptions on

the changing parameters. We will however require that the regressors, while non-stationary,

are mixing. One particular situation that our theoretical results cover is when Xn;t includes

lagged dependent variables in which case our regression model is an autoregressive model.

The simplest example is

yn;t = � (t=n) + � (t=n) yn;t�1 + � (t=n) zn;t;

in which case Xn;t = (1; yn;t�1)
0 is non-stationary when the functions � (�) and � (�) are non-

constant. Under the restriction that sup�2[0;1] j� (�)j < 1, Xn;t is however still mixing, c.f.

Orbes et al (2004), and our theoretical results apply.

To state our assumptions and results, we introduce some additional notation. Let �n;t
denote the following moment matrix

�n;t =

"
�n;11;t �n;12;t

�n;21;t �n;22;t

#
2 Rm�m;

where for k; l 2 f1; 2g,
�n;kl;t � E

�
Xn;k;tX

0
n;l;t

�
2 Rmk�ml (3.2)
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We will impose certain smoothness conditions on the parameters of interest, and for that

purpose introduce the following function space of r times continuously di¤erentiable functions,

Cr [0; 1] = ff : [0; 1] 7! Rjf is r times di¤erentiableg :

We then impose the following assumptions conditional on � (�) and �2 (�):

A.1 For all n � 1: The joint sequence fZn;t = (Xn;t; zn;t) : i = 1; :::; ng satis�es

sup
n�1

sup
t�n

E
h
kZn;tk4+�

i
<1

for some � > 0; it is �-mixing where the mixing coe¢ cients,

bn (i) = sup
�n�k�n

sup
A2Fkn;�1;B2F1n;n+i

jP (A \B)� P (A)P (B)j ;

satisfy bn (i) � b (i), n � 1, and the dominating sequence b (i) is geometrically decreas-
ing.

A.2 The errors zn;t is a MGD w.r.t. Fn;t = F (Xn;s; zn;s�1js � t) with E
�
z2n;tjXn;t

�
= 1 and

�n;t := E[
�
z2n;t � 1

�2
] <1.

A.3 The sequences �n;t, �n;t and �2n;t satisfy �n;t = � (t=n) + o (1), �n;t = �(t=n) + o (1),

�2n;t = �
2 (t=n) + o (1) for some functions � (�), � (�) and �2 (�). The elements of these

functions are in Cr [0; 1] for some r � 1. For all � 2 [0; 1], � (�) and �2 (�) are positive
de�nite.

A.4 The weighting functions ŵ (�) and 
̂ (�) satisfy:

(i) sup
a���1�a

jŵ (�)� w (�)j = OP

�
n1=4

�
;

(ii) sup
a���1�a

jŵ (�)� w (�)j = OP

�
h1=2

�
;

(iii) sup
a���1�a

���
̂ (�)� 
 (�)��� = OP

�
h1=2

�
;

where w (�) and 
 (�) are continuous functions.

A.5 The covariance matrices �w and �w as de�ned below are non-singular:

�w : = lim
n!1

1

n

nX
t=1

wt�11j2;t =

Z 1

0
w (�) �11j2 (�) d�;

�w : = lim
n!1

1

n

nX
t=1

w2t �
2
t�11j2;t =

Z 1

0
w2 (�)�2 (�) �11j2 (�) d�

where

�11j2;t � �11;t � �12;t��122;t�21;t;

and �kl;t, k; l = 1; 2, are de�ned in eq. (3.2).
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A.6 The "semiparametric" bandwidth b satis�es nb2r ! 0, log2 (n) =
�
nb2
�
! 0 and n1��b7=4 !

1 for some � > 0. The trimming parameter a > 0 satis�es a=b! 0 and
p
na! 0.

The assumption of �-mixing in (A.1) is not required for all our results, but is imposed

throughout for simplicity. Some results hold under the weaker assumption of �-mixing, but

for the semiparametric estimation and testing, we will rely on U-statistics results that only

exist for �-mixing sequences. The assumption of geometrically decaying mixing coe¢ cients

is only imposed to make proofs and remaining conditions simpler, and could most likely be

weakend. We do not assume stationarity in (A.1) and as such allow for situations where Xn;t
contains structural breaks; in particular, our framework includes unstable autoregressive

models where Xn;t contains lagged values of yn;t. In a time-varying AR(q)-model where

Xn;t = (yn;t�1; :::; yn;t�q)
0, (A.1) is satis�ed if the roots of the characteristic polynomail

� (� ; z) = �1 (�) z + :::+ �q (�) z
q are inside of the unit circle for all � 2 [0; 1] and the errors

zn;t are i.i.d. with a continuous distribution. Su¢ cient conditions for (A.1) when Xn;t solves

a nonlinear model can be found in Kristensen (2011) and Subba Rao (2006).

Assumption (A.2) rules out correlated errors. We conjecture that our results can be

extended to allow for this, but our asymptotic results and their proofs would become more

complicated and burdensome, see e.g. Cai (2007) for some results in this direction.

The smoothness conditions imposed on the coe¢ cients in (A.3) rule out discontinuities

(jumps) in the coe¢ cients. If jumps are present, then the pointwise kernel estimators of the

time-varying coe¢ cients will be inconsistent at any point in time where one such occurs.

However, as discussed in the conclusion, by suitable adjustments of the estimators, jumps

can be consistently estimated. Moreover, we expect that the asymptotic results for the

semiparametric estimators and the test statistics remain valid when a �nite jumps are present

since these happen with measure zero. The assumption of twice di¤erentiability is assumed

for technical convenience, and could most likely be weakend to the assumption that the

functions are Lipschitz by following the arguments of Kristensen (2010).

The two conditions on the estimated weighting functions imposed in (A.4) are made to

ensure that their estimation errors do not a¤ect the properties of the parametric estimators

and test statistics. The �rst condition, (A.4.i), is used when deriving the asymptotics of ~�,

while (A.4.ii)-(A.4.iii) are needed in the analysis of the test statistics. The two conditions

are satis�ed by standard kernel estimators such as ~� (�).

The rank condition in Assumption (A.5) is employed to ensure identi�cation and asymp-

totic normality of �1 under H0. It is similar to the condition imposed for identi�cation and

estimation of partially linear models in Robinson (1988).

Restrictions on the bandwidth and trimming sequences used for the semiparametric es-

timators are imposed in (A.6). In general, undersmoothing is required (that is, b should be

chosen to converge faster than the optimal bandwidth minimizing MSE of the nonparametric
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estimators). The restrictions on the trimming parameter are on the other hand quite weak

since this is only used to handle boundary issues.

Finally, we need to impose some regularity conditions on the kernel K:

K(r) There existsB;L <1 such that either (i)K (u) = 0 for kuk > L and jK (u)�K (u0)j �
B ku� u0k, or (ii) K (u) is di¤erentiable with j@K (u) =@uj � B and, for some � > 1,

j@K (u) =@uj � B kuk�� for kuk � L. Also, jK (u)j � B kuk�� for kuk � L. For some
r � 2:

R
RK (z) dz = 1,

R
R z

iK (z) dz = 0, i = 1; :::; r � 1, and
R
R jzj

rK (z) dz <1.

The assumptions are satis�ed by most kernels. In particular, for r = 2 the Gaussian

kernel satis�es the condition. The order of the kernel, r � 2, is used in conjunction with the
smoothness conditions imposed on the relevant functions in (A.3) to control the bias of the

kernel estimators which will be of order O (hr). Some of our results will rely on higher-order

kernels with r > 2 in order for the bias of the kernel estimators to vanish at a su¢ ciently fast

rate. However, we believe higher-order kernels are only for needed for technical reasons in

the theoretical proofs, and recommend the use of standard second order kernels in practice.

The �rst result states the pointwise asymptotic distribution of the unrestricted nonpara-

metric estimators:

Theorem 3.1 Assume that (A.1)-(A.3) hold. Then, for any � 2 (0; 1), as h! 0, nh!1
and nh1+2r ! 0:

p
nh(�̂ (�)� � (�))!d N

�
0; kKk2 ��1 (�)�2 (�)

�
;

where � (�) is de�ned in (A.3) and kKk2 =
R
K2 (z) dz.

Theorem 3.1 tells us how pointwise con�dence bands of the regression coe¢ cients and the

volatility can be computed. These can be used as inputs in the initial analysis of whether

there is any time variation in the individual elements of � (�) and �2 (�). This can for example

be done by plotting the individual estimators as functions of time together with con�dence

bands. This eyeballing test should of course be followed by the proposed formal statistical

tests which are analyzed below.

A simple estimator of the asymptotic variance can be obtained by substituting in �̂2 (�)

together with:

�̂ (�) =
nX
i=1

Kh (t=n� �)XtX 0
t: (3.3)

The asymptotic distributional result in Theorem 3.1 is standard for nonparametric esti-

mators. The result reveals an important advantage of our estimation strategy over most other

nonparametric regression techniques, namely that there is no curse of dimensionality present
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here: The convergence rates of the estimators remain
p
nh irrespectively of the number of

regressors included since we only smooth over the time variable t.

Next, we consider the estimation under H0. The next theorem states the asymptotic

distribution of the semiparametric estimator of the constant component under H0:

Theorem 3.2 Assume that (A.1)-(A.4,i) and (A.5)-(A.6) hold. Under H0:
p
n(~�

w
1 � �1)!d N

�
0;��1w �w�

�1
w

�
;

where �w and �w are given in (A.5).

The above theorem is essentially a time-series version of the asymptotic result obtained

for semi-varying coe¢ cient models in Fan and Huang (2005) where in addition we allow

for heteroskedastic errors. The theorem and its proof reveals that our estimator is �rst-

order asymptotically equivalent to the weighted least-squares estimator of the regression

�yt = �
0
1Vt + "t, where �yt = yt �Mt (y)

0X2;t, Vt := X1;t �Mt (X1)
0X2;t;and Mt (A) is de�ned

in eq. (2.8).

When the weighting function is chosen as ŵ (�) = �̂�2 (�), we see that

�w = �w =

Z 1

0
��2 (�) �11j2 (�) d� ;

in which case
p
n(~�

w
1 � �1) !d N

�
0;��1w

�
. We conjecture that for this choice of weighting

function, our estimator is semiparametrically e¢ cient. The theory on semiparametric e¢ -

ciency in time series models is currently not fully developed, and so we are not able to verify

this conjecture in the general case. Instead, we restrict ourselves to the case where (X; z)

are i.i.d.: Treating � := t=n as i.i.d draws from a uniform distribution which is independent

of (X; z), our model then �ts into the framework of Chamberlain (1992) with his moment

condition here being on the form � (y;X; �1; �2 (�)) := y � �01X1 � �2 (�)X2. We can now
apply the results of Chamberlain (1992) stating that the e¢ ciency bound is

I0 = E
h
E
�
D00�

�1
0 D0j�

�
� E

�
D00�

�1
0 H0j�

�
E
�
H 0
0�

�1
0 H0j�

��1
E
�
H 0
0�

�1
0 D0j�

�i
;

where, in our case,

D0 (X; �) = E

�
@� (y;X; �1; �2 (�))

@�1

����X; �� = �X 0
1;

�0 (X; �) = E
�
�2 (y; x; �1; �2 (�))

��X; �� = �2 (�) ;
H0 (X; �) = E

�
@� (y; x; �1; �2 (�))

@�2

����X; �� = �X 0
2:

Thus,

I0 = E
h
E
�
��2 (�)X1X

0
1j�
�
� E

�
��2 (�)X1X

0
2j�
�
E
�
��2 (�)X2X

0
2j�
��1

E
�
��2 (�)X2X

0
1j�
�i

=

Z
��2 (�) �11j2 (�) d�;
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which matches up with �w when the weighting function satis�es w = ��2. As such our

estimator extends the semiparametric estimator and results of Fan and Huang (2005) to

allow for heteroskedastic errors and time series dependence: They show that the unweighted

version (wt = 1) of our estimator is semiparametric e¢ cient in a cross-sectional setting when

errors are homoskedastic.

The asymptotic variance terms can be consistently estimated by

�̂w =
1

n

nX
t=1

It (a) ŵtX̂1;tX̂ 0
1;t; �̂w =

1

n

nX
t=1

It (a) ŵtX̂1;tX̂1;t~"2t ;

where X̂1;t = X1;t � M̂t (X1)
0X2;t.

Due to ~�
w
1 being

p
n-consistent, we can treat �1 as known, when deriving the asymptotics

of ~�2 (�). Thus, we can apply the same arguments as in the proof of Theorem 3.1 to obtain

that under H0,
p
nh(~�2 (�)� �2 (�))!d N

�
0; kKk2 ��122 (�)�22 (�)

�
;

as h ! 0, nh ! 1 and nh1+2r ! 0. The asymptotic variance of ~�2 (�) can be estimated

using estimators similar to those given in eq. (2.7).

Next, we analyze the asymptotic properties of the two test statistics, Fn and W1;n. First,

consider the test statistic Fn:

Theorem 3.3 Assume that (A.1)-(A.6) hold and: nh2r+1 ! 0, nh3=2= log (n)2 !1, a=h!
0 and

p
ha! 0. Then under H0,

Fn � �Fnp
�Fn

!d N (0; 1) ;

where

�Fn =
m1

�
K (0)� 1

2�2
�

h
; �Fn =

2m1

h

R 1
0 w

2 (v)�4 (v) dv�R 1
0 w (�)�

2 (�) d�
�2 � K � 1

2 (K �K)
2 ;

and (K �K) (z) =
R
K (v)K (z + v) dv.

The asymptotic distribution of the normalized test statistic, Fn, follows a standard Normal

distribution under the null hypothesis. The distribution is similar to the ones foound for the

Generalized Likelihood Ratio (GLR) test statistics in Fan et al. (2001). In particular, using

the notation that r�n
a� �2bn for a random sequence �n that satis�es (r�n � bn) =

p
2bn !d

N (0; 1), we observe that the above theoretical result also can be written as rFKFn
a� �2

rFK�
F
n
,

where

rFK :=
K (0)� 1

2�2R �
K (z)� 1

2 (K �K) (z)
�2
dz

�R 1
0 w (�)�

2 (�) d�
�2

R 1
0 w

2 (�)�4 (v) d�
:
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However, it is important to note here that the distribution does depend on nuisance parame-

ters in general, except in the case where the weighting function is chosen as w (�) = ��2 (�),

in which case

rFK :=
K (0)� 1

2�2R �
K (z)� 1

2 (K �K) (z)
�2
dz
:

So in general, one has to obtain a consistent estimator of the volatility process in order for

the test statistic to enjoy the so-called Wilks phenomenon. This is not special to the time

series setting, and is also the case in the cross-sectional setting where Fan et al. (2001) show

that only in the case of homoskedastic errors (in which case one can choose w (�) = 1) will

their GLR test be nuisance parameter free.

We conjecture that the GLR test statistic is asymptotically optimal in the sense that

it can detect local alternatives with optimal rate, see Ingster (1993) for more details. In a

cross-sectional setting, this is shown to hold in Fan et al (2001), and we expect that these

results carry over to our time series model.

Next, we turn to the minimum-distance statistic. For this, the following asymptotic

distributional result holds:

Theorem 3.4 Assume that (A.1)-(A.6) hold and: nh2r+1 ! 0, nh3=2= log (n)2 !1, a=h!
0 and

p
ha! 0. Then under H0,

Wn � �Wnp
�Wn

d! N (0; 1) ; (3.4)

where

�Wn =
�2
h

Z 1

0
�2 (�) tr

�
��111 (�) 
 (�)

	
d� ;

�Wn =
2

h

Z
�4 (�) tr

�

 (�) ��111 (�) 
 (�) �

�1
11 (�)

	
d� � kK �Kk2

As with the GLR-statistic, we can express the above result on the form rWKWn
a� �2

rWK �
W
n
,

where

rWK :=
�2

kK �Kk2

�R 1
0 �

2 (�) tr
�
��111 (�) 
 (�)

	
d�
�2

R
�4 (�) tr

�

 (�) ��111 (�) 
 (�) �

�1
11 (�)

	
d�
:

Again, the asymptotic distribution of the MD-statistic depends in general on nuisance para-

meters. However, by choosing the weighting matrix 
t as 
t = �11;t��2t , we obtain

rWK :=
m1�2

kK �Kk2
;

and the limiting distribution is nuisance parameter free. In comparison to Fn, the location

and scale sequences associated with Wn are di¤erent. For general choices of the weighting

functions wt and 
t, it is not clear which of the two tests dominates. However, in the case
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where w (�) = ��2 (�) and 
t = �11;t�
�2
t , it can be shown by following the arguments in

Chen and Hong (2009) that Wn is asymptotically more e¢ cient in the sense of Pitmann; see

also Hong and Lee (2008).

4 Some Extensions

We here extend the above results to two additional hypotheses which should be of general

interest: First, we consider the situation where the researcher has tested and accepted the null

that a subset of the coe¢ cients are constant, and then wishes to test for time invariance of a

set of the remaining (potentially) time-varying coe¢ cients. This is for example of relevance

in order to develop a recursive procedure testing the constancy of each coe¢ cient one at a

time. Second, we analyze the problem of testing a parametric speci�cation of (some of the)

time-varying parameters against a nonparametric alternative. This is of interest if one has

rejected the null of constant parameters, and now wishes to �nd a parsimonious parametric

speci�cation of the time-varying parameters.

We start out by assuming that the following (maintained) model is correct:

yt = �
0Wt + 

0
1;tZ1;t + 

0
2;tZ2;t + �tzt: (4.1)

We then wish to test the following null hypothesis against this model:

H1 : 1;t = 1:

We proceed as in the testing of H0: We �rst obtain estimators under null and alternative,

and the compare the estimators through either an F or a Wald-type test. The model under

the alternative can be written on the form of the model under H0 with X1;t = Wt, X2;t =�
Z 01;t; Z

0
2;t

�0, �1 = � and �2;t =
�
01;t; 

0
2;t

�0. Thus, the estimators under the alternative are
given by:

�̂w =

"
nX
t=1

It (a) ŵtŴtŴ
0
Z;t

#�1 nX
t=1

It (a) ŵtŴtŷ
0
t; ̂t = M̂h;t (y)� M̂h;t (W )

0 �̂; (4.2)

where Ât = At � M̂b;t (A)
0 Zt, and

M̂b;t (A) =

"
nX
s=1

Kb (s=n� t=n)ZsZ 0s

#�1 " nX
s=1

Kb (s=n� t=n)ZsA0s

#
:

Similarly, under H1, with X1;t :=
�
W 0
t ; Z

0
1;t

�
, X2;t := Z2;t, �1 := (�; 1) and �2;t := 2;t, we

recognize the model as being on the same form as the one under H0. Thus, the estimators,

which we denote ~�w, ~w1 and ~2;t, can again be written on the form of the estimators analyzed

in the previous section. It now follows directly from Theorem 3.2 that both �̂, ~� and ~1 arep
n-asymptotically normally distributed under H1.
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To test H1 against the maintained hypothesis, we proceed as before: Letting "̂t and ~"t
denoting the residuals under the alternative and under the null, we can compute (weighted)

Sum of Squared Residuals, and use these to construct an F -test, which we denote F1;n, while

the Wald test is de�ned as W1;n =
Pn
t=1 It (a)

�
~w1 � ̂1;t

�0

̂t
�
~w1 � ̂1;t

�
. By using the exact

same arguments as in the proofs of Theorems 3.3-3.4, we now obtain that under the same

conditions as stated in these theorems:

F1;n � �F1;nq
�F1;n

!d N (0; 1) ;
W1;n � �W1;nq

�W1;n

!d N (0; 1) (4.3)

where �F1;n, �
F
n , �

W
1;n and �

W
1;n are on the same form as the corresponding location and scale

parameters in Theorems 3.3-3.4 except that m1 should be replaced by the dimension of 1.

To develop parametric tests of the functional form of varying coe¢ cients, we now wish to

test the following hypothesis,

H2 : 1;t = 1 (t=n; �) :

against the maintained hypothesis that eq. (4.1) holds and now. The parametric speci�cation

1 (t=n; �) could for example be a structural break speci�cation or a smooth transition model.

Assuming that an estimator of �, ~�, is available under H2,1 such that
p
n(1(� ;

~�)�1 (�)) =
OP (1) uniformly in � 2 [0; 1], one can easily show that the corresponding F - and Wald test
statistics of H2 still satisfy eq. (4.3).

5 Implementation

In the previous sections, we analyzed the asymptotic properties of the proposed estimators

and tests. In particular, for these results to hold the bandwidths have to converge at suitable

rates as sample size grows. The stated conditions and results are however silent about the

appropriate choice of the bandwidths in �nite samples, and, as is well-known in the literature,

kernel-based estimators and tests tend to be quite sensitive to the chosen bandwidths.

There are two bandwidth selection issues involved in the estimation and testing. We have

to choose one bandwidth, h, for the point estimates of the nonparametric components, and a

di¤erent bandwidth, b, for the parametric component. The use of two di¤erent bandwidths are

necessary because in our theoretical framework the bandwidth selection rules di¤er depending

on whether the interest lies in the estimation of the non- or fully parametric component. In

particular, the asymptotic results suggest that for parametric estimators undersmoothing is

necessary; that is, b should in general be chosen smaller than h.

1 It is outside of the scope of this paper to analyze this more general semiparametric estimation problem, but

conjecture that the natural two-step estimator, obtained in the same fashion as the semiparametric estimator

of the constant speci�ction, ~�
w
, could be shown to be

p
n-consistent by following the proof strategy used for

Theorem 3.2.
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While there is a large literature on bandwidth selection for fully nonparametric kernel

estimators, there has been done little on how to choose bandwidths in semiparametric esti-

mation problems since the impact of the bandwidth in the latter case is a lot more di¢ cult

to analyze. Similarly, very little work has been done on bandwidth selection for non- and

semiparametric testing. Our proposed solution to this problem is to �rst determine the band-

width h that minimize the (an estimated version of) mean-square error of the nonparametric

estimators, and then choose b by adjusting h in a suitable manner. We have no theoreti-

cal �nite-sample justi�cation for the proposed selection rule for b, but our simulation study

reveals that it does an acceptable job.

To estimate h, we employ a plug-in method. We here focus on the estimation of �t under

the alternative; the following arguments are easily adapted to the case of estimation of �2;t
under the null. First, we note that from the proof of Theorem 3.1, we �nd that the bias and

variance when a second order kernel (r = 2) is employed are given by

Bias
�
�̂ (�)

�
= h2b (�) + o

�
h2
�

with b (�) := �2�
(2) (�) ; (5.1)

and

Var
�
�̂ (�)

�
=

1

nh
v (�) + o (1= (Th)) with v (�) = kKk2 ��1 (�)�2 (�) ; (5.2)

where �2 :=
R
K (z) z2dz. Thus, the optimal bandwidth that minimizes the integrated MSE

is

h�j =

�
jjV jj
jjBjj2

�1=5
n�1=5; (5.3)

where V =
R
v (�) d� and B =

R
b (�) d� are the integrated time-varying variance and bias

components. In order to make the above bandwidth selection rule operational, we propose

to obtain preliminary estimates of these through the following two-step method:2

1. Assume that �t = � and �t = � are constant, and �t = a0 + a1t + ::: + apt
p is

a polynomial. We then obtain parametric least-squares estimates �̂, �̂2 and ��t =

�a0 + �a1t+ :::+ �apt
p. Compute

V̂1 = kKk2 �̂�1 
 �̂2 and B̂1 = �2
1

n

nX
t=1

��
(2)
t ;

where ��(2)t = 2�a2+6�a3t+ :::+p (p� 1) �aptp�2. Then, using these estimates we compute
the �rst-pass bandwidth

ĥ1 =

"
jjv̂1jj
jjb̂2jj2

#1=5
� n�1=5:

2Ruppert, Sheather and Wand (1995) discuss in detail how this can done in a standard kernel regression

framework.
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2. Given h1, compute the kernel estimators �̂t = �̂�1t n
�1Pn

s=1Kĥ1 ((s� t) =n)Xsys,
where �̂t and �̂t are computed as in equation (??) with h = ĥ1. We use these to

obtain

V̂2 = kKk2
1

n

nX
t=1

�̂�1t 
 �̂2t and B̂2 = �2
1

n

nX
t=1

�̂
(2)

t ;

where �̂
(2)

t is the second derivative of the kernel estimator with respect to t. These are

in turn used to obtain a second-pass bandwidth:

ĥ2 =

"
jjv̂2jj
jjb̂2jj2

#1=5
� n�1=5: (5.4)

One could alternatively use (generalized) cross-validation (CV) procedures to choose the

bandwidth. These procedures are completely data driven and, in general, yield consistent es-

timates of the optimal bandwidth. However, it is well-known that cross-validated bandwidths

may exhibit very inferior asymptotic and practical performance even in a cross-sectional set-

ting (see, for example, Härdle, Hall, and Marron, 1988). This problem is further enhanced

when CV procedures are used on time-series data as found in various studies (Hart, 1991;

Opsomer, Wang and Yang, 2001).

The "semiparametric" bandwidth b should ideally be chosen to minimize the mean-

squared error E
h
jj~�w1 � �1jj2

i
. Unfortunately, this would require a higher-order expansion of

the MSE since the leading variance term does not depend on b. This is a general issue with

semiparametric estimators and outside of the scope of this paper. We instead simply propose

to scale down the nonparametric bandwidth h appropriately, b = ĥ2 � n�1=(1+2r) with r = 2
corresponding to a standard kernel being the leading choice.

In small and moderate sample sizes, the asymptotic distributions of estimators and test

statistics derived in the previous section may deliver a poor �nite-sample approximation. To

improve on the �nite-sample inference, we therefore propose to use a Wild bootstrap proce-

dure that we expect will yield better con�dence bands for the time-varying coe¢ cients and

critical values for the test statistic. Let ��t and ��t be (either nonparametric or semiparametric)

estimators of the regression coe¢ cients and volatility (under the relevant hypothesis). We

then proceed as in Franke, Kreiss and Mammen (2002) and propose the following bootstrap

procedure: (i) Compute residuals �"t = yt � ��
0
tXt, t = 1; :::; n; (ii) resample the dependent

variable by y�t = ��
0
tXt + "

�
t ; t = 1; :::; n, where "�t = �"t�

�
t and �

�
t are i.i.d. (0; 1) satisfy-

ing E�[j��t j
4] <1; (iii) compute estimators and/or test statistic given the bootstrap sample

(y�t ; Xt), t = 1; :::; n; (iv) repeat Steps (ii)-(iii), B � 1 times, and use the empirical distribu-
tions to obtain con�dence intervals and/or critical values.

While it is outside of the scope to establish formally the validity of this bootstrap proce-

dure, we expect that consistency can be shown along the lines of Franke et al (2002) and Li

(2005) for the estimators and test statistics respectively.
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6 A Simulation Study

In this section, we examine the �nite-sample performances of our estimators and test statis-

tics. We consider a bivariate model,

yt = �1;tX1;t�1 + �2;tX2;t�2 + �tzt;

where Xt solves a VAR(2), Xt = AXt�1 + �t with A chosen to be in the stationary range.

We are interested in testing the hypothesis H0 : �1;t = �1, and will investigate both size

and power of our tests. Throughout (whether we work under null or alternative), we impose

either of the two following DGP�s on �2;t:

RW : �2;t = �2;t�1 + ��;t; ��;t � i.i.d.N
�
0; v2�

�
;

ST : �2;t = �2;0 + ��

�
t=n� �
�

�
; � (�) = cdf of N (0; 1) :

This allows us to investigate how smoothness of the parameter trajectories a¤ect the estima-

tors and tests. The volatility DGP is speci�ed as a stochatic volatility model,

log �2t = log �
2
t�1 + ��;t; ��;t � i.i.d.N

�
0; v2�

�
:

Finally, throughout we let the rescaled errors of the regression model be i.i.d. normally

distributed, zt � N (0; 1).
For the implementation of estimators and tests, we choose K as a Gaussian kernel and the

bandwidths h and b according to the plug-in rule described in Section 4. The semiparametric

estimators and test statistics are computed with both ŵt = 1 and ŵt = �̂�2t , and their critical

values are evaluated using the Wild bootstrap outlined in Section 5. We consider sample

sizes of n = 250; 500 and 1000. In order to compare the performance across di¤erent sample

sizes and simulations, we compute one (random) trajectory of �2;t and �
2
t and keep those

�xed throughout. This mimicks the theoretical results in the paper which are developed

conditional on the particular trajectories of the varying coe¢ cients.

We �rst investigate the performance when the null is true such that �1;t is constant.

Figures 1 and 2 report the performance of the fully nonparametric estimators of �2;t under

the two di¤erent DGPS, RW or ST. From Figure 1 we see that while the estimator, by its

nature, cannot completely track the discontinuous random walk time series, it still captures

the overall structural change in the parameter quite precisely. It is also worth noting that

the estimator works well even for small sample sizes (n = 250) and most of the improvement

as the sample size grows is in terms of variance. Similar �ndings are reported in Figure 2

where �2;t follows a smooth transition. The overall bias is signi�cantly smaller compared to

Figure 1 though since the trajectory now is a smooth function of time.

Table 1 reports biases, standard deviations and root-MSE�s (RMSE�s) of the unweighted

and weighted semiparametric estimators of �1. For comparison, we also report results for the
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Figure 1: Simulation study, performance of estimator when �2;t follows a random walk,

n = 250 and 1000.
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Figure 2: Simulation study, performance of estimator when �2;t follows a smooth transition,

n = 250 and 1000.
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infeasible OLS estimator which assumes knowledge of �2;t and �t. As expected the infeasible

estimator clearly dominates the two semiparametric estimators in �nite samples. But, as the

theory predicts, as sample size grows these di¤erences vanish. The semiparametric estimators

are doing very well for all sample sizes with small biases and variances. Moreover, as also

predicted by theory, the weighted version does better in terms of variance compared to the

unweighted one in all cases but one.

�2;t random walk �2;t smooth transition

n Infeasible Unweighted Weighted Infeasible Unweighted. Weighted

-0.93 -0.64 -1.96 -0.87 -1.65 -1.50

250 28.06 46.61 41.04 29.50 42.60 31.48

28.07 46.62 41.08 29.51 42.65 31.53

0.12 0.57 -0.57 -0.21 -0.88 -0.91

500 19.67 31.46 27.57 20.52 30.10 24.38

19.67 31.47 27.58 20.52 30.12 24.39

0.06 -0.70 -0.52 0.05 -0.31 -0.65

1000 14.40 22.32 18.97 14.89 20.30 21.48

14.40 22.33 18.98 14.89 20.30 21.48

Table 1: Bias, standard devision and RMSE of semiparametric estimators.

Note: In each cell, bias, standard devision and RMSE are reported. All numbers have been

scaled up by a factor 103.

Finally, we consider how the tests perform. In Table 2, we report sizes for the bootstrap

tests based on weighted and unweighted statistics respectively. As we see, in terms of size,

none of the two tests dominate the other with both having good size properties. As expected,

the size in general improves as sample size grows. It is also notworthy, that size is better for

the random walk model compared to the smooth transition one; we have no explanation for

this.

To examine the power of the test, we now let both �1;t and �2;t vary over time. We examine

the power under two di¤erent speci�cations of their dynamics - either they are random walks

or smooth transitions. In Table 3, the powers of the two tests are reported for the two di¤erent

speci�cation. In general, the power increases with sample size as expected with good power

for moderate and large samples. As expected, the weighted test has sign�cantly better power

compared to the unweighted test, and so is better at detecting deviations from the null. The

power depends on the underlying data-generating mechanism and the tests do better with

the random walk speci�cation despite the fact that the non- and semiparametric estimators

are better at tracking the parameters under the smooth transition DGP. This is probably

due to the fact that the realized variation of �1;t in the random walk speci�cation is larger
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(between -1 and 2) compared to the one of the smooth transition speci�cation (between 0

and 0.5).

�2;t random walk �2;t smooth transition

n p = 1% p = 5% p = 10% p = 1% p = 5% p = 10%

250 1.4 5.9 8.4 2.2 7.7 13.2

1.9 4.8 6.9 2.0 7.4 15.1

500 1.3 4.8 8.6 2.3 5.5 10.7

1.2 4.1 8.1 1.8 5.8 10.9

1000 1.1 4.7 9.0 1.4 5.5 11.3

1.0 4.1 9.7 1.3 5.4 11.2

Table 2: Size of tests using weighted and unweighted statistics.

Note: In each cell, the top and bottom number is size of weighted and unweighted test

respectively.

�1;t and �2;t random walk �1;t and �2;t smooth transition

n p = 1% p = 5% p = 10% p = 1% p = 5% p = 10%

250 35.8 48.0 59.4 26.6 34.1 43.5

30.2 44.8 56.4 20.8 27.4 35.7

500 51.0 58.7 66.1 32.9 42.6 55.1

44.9 50.3 59.8 25.6 33.2 48.4

1000 69.0 77.5 83.2 49.1 66.7 75.3

57.6 58.7 70.7 38.3 54.3 65.8

Table 3: Power of tests using weighted and unweighted statistics.

Note: In each cell, the top and bottom number is power of weighted and unweighted test

respectively.

To conclude, the non- and semiparametric estimators perform well for both small, mod-

erate and large sample sizes with small biases and variances. The tests also show good

performance with precise size and good power properties. In general, the weighted versions

outperforms the unweighted ones which is in accordance with theory.

7 Empirical Applications

We employ the nonparametric techniques developed in the previous sections to investigate

whether structural changes occurred in US productivity and the Eurodollar term structure.

For an application to Fama-French type factor models for stock returns, we refer to Ang and

Kristensen (2009).
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7.1 US Productivity

Hansen (2001) examined whether US productivity exhbited structural changes this issue

within the framework of parametric structural break models. He found that data supported

one signi�cant break in 1992 with the possibility of two more breaks in 1963 and 1982 re-

spectively. The aim here is to see whether this is supported by the nonparametric estimators

and tests. For comparison, we use the same data set for US productivity as in Hansen (2001)

and refer to this paper for a more detailed description of data. Here, it su¢ ces to say that

the data is monhtly over the period of 1947 to 2001 giving us a total of n = 651 observations.

As in Hansen (2001), we model US productivity, yt, by a time-varying AR(k) model,

yt = �t +

kX
i=1

�i;tyt�i + �tzt:

We start out with k = 3 lags, and test for whether the 2nd and 3rd lags are signi�cant using

the bootstrapped version of the GLR test; we accept the null of H0 : �2;t = �3;t at a 5 and 10%

level with a p-value of 18.3%. In the following, we therefore maintain an AR(1)model. For the

AR(1) model, we examine how the fully nonparametric estimators of �t and �t = �1;t perform

in comparison to the one- and three-breaks AR(1) models estimated in Hansen (2001). In

Figures 3-4, the nonparametric trajectories as obtained using our nonparametric estimators

are plotted together with corresponding ones obtained from the two �tted structural break

model. As an informal test of whether the two parametric models are consistent with our

nonparametric estimates, we have also included pointwise 95% con�dence intervals for the

nonparametric estimators. Figure 3 shows the trajectory of the intecept, �t, and we see that

the nonparametric estimator supports the three break model with the red trajectory staying

within the 95% con�dence interval for the whole sample period. The one-break model on

the other hand lies outside during the period 1985-1995. The same picture appears when

examining the variation in �t as plotted in Figure 4: Again, the 3-break parametric model

appears to be consistent with the nonparametric estimates while there is some evidence that

the one-break model is not fully adequate in describing the parameter variation. It is also

worth noting that while the nonparametric estimator is not able to capture the potential

time-variation of the intercept very precisely, as the wide con�dence intervals in Figure 1

indicate, it performs well for the AR coe¢ cient with much tighther con�dence intervals.

Since the con�dence intervals are only pointwise, the above two �gures cannot be used as

formal statistical evidence for validity of the two parametric models. Instead, we implement

the proposed bootstrap tests with the two nulls being that �t = (�t; �t)
0 either follows the

one- or three-break model. For the one-break model, we obtain F1 = 16:25 with the 5%

critical value being 17.33; thus we only just accept the null with a p-value of 7.0%. This

is in accordance with the plots that showed that the one-break model lead to parameter

trajectories that were not fully supported by the nonparametric estimators. In contrast, for
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Figure 3: Estimates of structural change in �, 1950-2000.
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Figure 4: Estimates of time variation in �, 1950-2000.
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the three-breaks model, the test yields F1 = 1:86 with a 5% critical value of 16.48, and so we

overwhelmingly accept the null of a three break model; the corresponding p-value is 96.5%.

Our �ndings complement the analysis of Hansen (2001) who �nds "a structural break in 1994,

and possibly breaks in Dec. 1963 and Jan. 1982," and reports that the two latter break time

points are very imprecisely estimated. Our nonparametric analysis shows that both models

are supported by data, but that the one-break model is close to being rejected.

As can also be seen from the nonparametric estimates and their con�dence intervals,

there is not very strong support for breaks in the intercept while there appears to be strong

evidence for breaks in the AR coe¢ cients. We therefore now test the hypothesis that �t = � is

constant against the nonparametric alternative using our semiparametric estimators. Under

the null we obtain �̂ = 4:37 with 95% con�dence interval being (3:10; 5:14). Comparing the

nonparametric and semiparametric model, we obtain F1 = 11:33 with a 5% critical value

of 8.93 and a p-value of 1.25%. Thus, we reject at a 5% level but not at a 1% level. In

comparison, we strongly reject the hypothesis that �t = � is constant with F1 = 47:61 and a

1% critical value of 14.85.

In conclusion, our nonparametric approach supports the �ndings of Hansen (2001) �nding

that a 3-breaks model adequate captures the time-variation in the regression coe¢ cients,

while a 1-break model may be too simple. Moreover, our techniques also shows that most

of the time-variation is found in the AR coe¢ cient while there is not as strong support for

time-variation in the intercept.

7.2 Eurodollar Term Structure

A¢ ne factor models are widely used in empirical �nance to describe the dynamics of the

yield curve. A¢ ne term structure models assume that the short-term interest rate, yt, is

driven by a linear combination of factors with the loadings normally assumed to be constant.

However, there is amble empirical evidence that the factor loadings are varying over time.

This can have major implications for forecasting the yield curve and for bond pricing. Most

studies examining time-variation in the factor loading take a parametric approach using, for

example, Markov switching or random walk models to describe the possible time variation

(see Ang and Bekaert, 2002; Bhansal and Zhou, 2002). Due to the numerical complications

with estimating dynamic models with latent variables, most studies have con�ned themselves

to single-factor models despite the fact that the consensus is that multiple factors are needed

to adequately describe the yield curve dynamics. In contrast, the nonparametric techniques

developed in this paper are straight-forward to implement even in a multi-factor setting.

The data set that we will use consists of n = 8669 daily observations of the 1, 3, and

6 months Eurodollar yield in the period 1971-2004. We use the 1-month interest rate as a

proxy for the short-term rate, and choose our factors as the lagged level, slope and curvature

of the yield curve as constructed from the three observed yields. These are plotted in Figure
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5. All three series appear to be somewhat unstable over time with particularly the so-called

Fed Experiment of the early 1980�s having a large impact on the their dynamics.
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Figure 5: Time series plot of the level, slope and curvature factor, 1971-2004.

Next, we estimate the three-factor model allowing all loadings and the intercept to be

time-varying. The resulting estimates of the intercept and the loadings over time are shown

in Figures 6-8. These estimates deliver an informal rejection of the null of constant factor

loadings with all three exhibiting substantial variation over time. In particular, the Fed

Experiment changed the yield curve dynamics quite dramatically with all factor loadings

showing pronounced changes. In the same period, the volatility of the short-term interest rate

increased substantially which explains the wider pointwise con�dence bands for the estimates

in this period. Another interesting feature is that from 1995 and onwards, the loadings for the

level and slope factors have stabilized and (based on the pointwise con�dence intervals) we

cannot reject that these two are constant for this period. Moreover, we cannot reject that the

level factor is insign�cant from 1994 and onwards. On the other hand, the curvature loading

exhibits a signi�cant change in the early 1990�s and shows pronounced variation through the

latter period.

For comparison, we also report the OLS estimates for each of the factor loadings in the

three �gures. We see that all the OLS estimators at some point lie outside of the point-

wise con�dence intervals. Treating this as an informal test for constant factor loadings, we

therefore reject that they are constant over the sample period. More formally, we proceed
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Figure 6: Estimated level factor loading with pointwise 95% con�dence bands, 1971-2004.
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Figure 7: Estimated slope factor loading with pointwise 95% con�dence bands, 1971-2004.
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Figure 8: Estimated curvature factor loading with pointwise 95% con�dence bands, 1971-

2004.

to carry out a battery of tests regarding the time-variation in the loadings based on the test

statistics proposed in the paper. First, we test the three hypotheses that any pair of the

factor loadings are constant; we strongly reject all three nulls with p-values well below 1%.

Next, we test whether any of the loadings individually is constant; again, we heavily reject

the three nulls. Finally, the null of all loadings being constant is strongly rejected. In con-

clusion, the tests support the informal eyeballing test and we conclude that there is strong

evidence of time-variation in all factor loadings. If on the other hand, we conduct the test

for the subperiod of 1994-2004, we accept the null of no time-variation in the loadings for

the level and slope factor. The corresponding test for the curvature factor is rejected on the

other hand. Thus, a reasonable model for the recent Eurodollar term structure has constant

level and slope loadings, while the curvature loading remains time-varying.

The above analysis is silent about the underlying causes for the time-variation in the

loadings. In Figures 6-8, we also report the NBER recessions. There appears to be some

correlation between whether the economy is in a recession and changes in the factor loadings,

but the sign is not clear. In addition, other macro factors may also in�uence the variation.

We therefore carry out an informal regression analysis where we treat the estimated factor

loading paths as observed dependent variables and regress them onto the NBER recession

indicator, US productivity and US in�ation; a similar two-step procedure in a continuous-
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time setting was proposed and analyzed in Kanaya and Kristensen (2010). The three chosen

macro regressors are only observed at a monthly frequency, but this causes no problems since

we can estimate the factor loadings at any given frequency. The results of those second stage

regressions are reported in Table 4. In general, the NBER recession and in�ation are good

predictors of the variation in the coe¢ cients while US productivity is less informative. It

should be noted though that the reported standard errors do not take into account the esti-

mation error in the factor loading, and so the results probably over estimate the signi�cance

of the macro variables. The over all R2 is ranges between 36%-51% and so substantial parts

of the estimated variation in the loadings are explained by underlying macro factors. Looking

at the individual regresssion coe¢ cients, we see that recessions tend to increase the loadings

for all three factors, while in�ation and productivity have negative impacts on the level and

curvature loadings of the yield curve, but positive impact on the slope coe¢ cient.

Factor loadings

level slope curvature

NBER recession
0.5056

(0.0701)

0.4037

(0.5989)

3.4020

(1.0456)

US in�ation
-0.1564

(0.0110)

1.1966

(0.0603)

-2.3476

(0.1144)

US productivity
-0.0036

(0.0028)

0.0518

(0.0216)

-0.0747

(0.0490)

R2 0.466 0.510 0.362

Table 4: Second-stage regression of factor loadings onto macro variables.

Note: All regression coe¢ cients and SE�s have been scaled up by a factor 102.

8 Conclusion

A general theory has been developed for the semi-nonparametric estimation and testing of

partially time-varying regression models. A number of extensions would be of interest:

So far we have assumed that � (�) is a smoothly varying function. It would be interesting

to extend our estimators and results to allow for �nite number of break points/discontinuities

in the evolution of � (�). We conjecture that the current semiparametric estimators and tests

are robust to this situation: First, Theorem 3.1 remains valid at any continuity point. Thus,

it seems plausible that Theorems 3.2-3.4 hold true even if � (�) exhibits breaks as long as

there is only a �nite number of those in the sample: The nonparametric estimator will be

inconsistent in shrinking neighbourhoods of the break points, and since there is only a �nite

number of those, we expect the biases to vanish asymptotically in the estimator and test

statistics.
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However, in �nite samples, one would expect that the performance of estimators and

tests could be improved by trying to adjust for jumps. Moreover, in situations where we

reject H1 or H2, it is often of interest to identify abrupt changes (breaks) in the time-varying

coe¢ cients. In the nonparametric regression literature, procedures for the estimation and

testing of jumps have been developed which should be adaptable to our setting. We refer to

Gijbels (2003) for a review of existing methods, and Gijbels et al (2007) for a recent proposal;

see also Casas and Gijbels (2009) for an application to nonparametric volatility estimators

allowing for jumps.

The theory for the semiparametric estimators and test statistics require the bandwidths

to vanish at non-standard rates. Data-driven bandwidth selection procedures for these are

currently not available, and it would be highly useful to develop and analyze such.

Finally, the proposed estimators and test statistics are straightforward to extend to non-

linear models whose time-invarying parameters can be characterized as minimizers of an

objective function taking the form of a (time-varying) population moment. In this class

of models, estimators of the time-varying parameters can be de�ned as minimizers of a

kernel-weighted version of the corresponding sample moment. The theoretical analysis of

this broader class of estimators is left for future research.
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A Proofs

In the following we will for notational convenience often suppress the dependence of the

variables on n and for example write Xt for Xn;t.

Proof of Theorem 3.1. Write Kt;� = Kh (t=n� �), Xt = Xn;t and similar for other
variables. We have

�̂ (�)� � (�) =

 
nX
t=1

Kt;�XtX
0
t

!�1 nX
t=1

Kt;�XtX
0
t f�t � � (�)g

+

 
nX
t=1

Kt;�XtX
0
t

!�1 nX
t=1

Kt;�Xt"t:

By Lemma C.1, we obtain n�1
Pn
t=1Kt;�XiX

0
i = �(�) + oP (1), while

E

� 1nXn

t=1
Kt;�XtX

0
t f�t � � (�)g

� � C sup
t:jt=n�� j<Bh

k� (t=n)� � (�)k = O (hr) ;

where we have used the smoothness assumption imposed on � (t). Thus, the following repre-

sentation holds uniformly over � 2 (a; 1� a):

�̂ (�)� � (�) = ��1 (�) 1
n

nX
t=1

Kt;�Xt"t +OP (h
r) (A.1)

To complete the proof, we show that

1p
n

nX
t=1

un;t !d N
�
0;
K2

� (�)�2 (�)� ; nh!1; (A.2)

where un;t =
p
hKt;�Xt"t. This is done by verifying the conditions of Lemma C.4: First, we

note that un;t is a MGD w.r.t. Ft = F (Xt; zt; Xt�1; zt�1; :::). Furthermore, it satis�es

1

n

nX
t=1

E
�
un;tu

0
n;t

�
=

h

n

nX
t=1

K2
t;��

2
t�t + o (1)

=
1

h

Z
K2

�
s� �
h

�
�2 (s) � (s) ds+ o (1)

=
K2

�2 (�) � (�) + o (1)
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and, as nh!1,

1

n1+�=2

nX
t=1

E
h
kun;tk2+�

i
=

h1+�=2

n1+�=2

nX
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t E
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kXtk2+� jztj2+�

i
= C

1

(nh)�=2
�2+� (�)

Z
K2+� (z) dz

= o (1) :

Proof of Theorem 3.2. De�ne for any two sequences At and Bt and any weighting

function w,

SwA;B =
1

n

nX
t=1

It (a)wtAtB0t;

where It (a) = I fa � t=n � 1� ag, and let SwA = SwA;A. We may then write ~�
w
1 and the

corresponding estimator based on known weights, say ��w1 , as

~�
w
1 =

�
Sŵ
X1�X̂1

��1
Sŵ
X1�X̂1;y�ŷ

; ��
w
1 =

�
Sw
X1�X̂1

��1
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X1�X̂1;y�ŷ

:

We write ~�
w
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�
��
w
1 � �1

	
+
n
~�
w
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w
1

o
, and now show that:

p
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1 � �1
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0;��1w �w�
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w

�
; (A.3)

p
n
n
~�
w
1 � ��

w
1

o
= oP (1) : (A.4)

Proof of eq. (A.3): De�ne
Vt := X1;t � �t; (A.5)

where

�t :=Mt (X1)
0X2;t; (A.6)

and Mt (X1) is de�ned in eq. (2.8). We then have

E
�
X2;ty

0
t

�
= E

�
X2;tX

0
1;t

�
�1 + E

�
X2;tX

0
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�
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such that

Mt (y) =Mt (X1)�1 + �2;t;

and

yt �Mt (y)
0X2;t = �

0
1

�
X1;t �Mt (X1)

0X2;t
�
+ "t = �

0
1Vt + "t

Furthermore,

X̂1;t = �̂t + V̂t; ŷt = �
0
1X̂1;t +

��
0
2;tX2;t + "̂t;
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where
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such that
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= Sw
X1�X̂1;�01fX1�X̂1g+[�2���2]0X2+("�"̂)

= Sw
X1�X̂1

�1 + S
w

X1�X̂1;[�2���2]
0
X2
+ Sw

X1�X̂1;"
+ Sw

X1�X̂1;"̂
:

Finally,

Sw
X1�X̂1;[�2���2]

0
X2
= Sw

���̂;[�2���2]
0
X2
+ Sw

V;[�2���2]
0
X2
� Sw

V̂ ;[�2���2]
0
X2
;

Sw
X1�X̂1;"

= Sw
���̂;" + S

w
V;" � SwV̂ ;"; Sw

X1�X̂1;"̂
= Sw

���̂;"̂ + S
w
V;"̂ � SwV̂ ;"̂:

It follows from Lemmas B.1-B.6 that SwV !P �w,
p
nSwV;" !d N (0;�w), while all others of

the above terms are negiglible. This yields the desired result.

Proof of eq. (A.4): Observe that
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c.f. the proof of eq. (A.3). We therefore have
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Sŵ
X1�X̂1;"

� Sw
X1�X̂1;"

i
+
�
Sŵ
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First note that, from the proof of eq. (A.3), A4 = OP (1=
p
n). Next, write
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where, with �̂ := supa���1�a jŵ (�)� w (�)j,B̂ �B � 1
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Here, the last equality follows from the fact that, by the same reasoning as in the proof of

eq. (A.3) (with wt = 1), SX1�X̂1 = OP (1). This implies that
B̂�1 �B�1 = OP ��̂� and

that B̂�1 = B�1 + oP (1).

Similarly, employing the same the arguments as in the proofs of Lemmas B.2 and B.5,Â1 �A1 � �̂� sup
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is a compact function space for some �xed

bound F > 0. From Lemmas B.2, B.4 and B.6, Zn (f) !d Z (f) for any f 2 F , where
fZ (f) : f 2 Fg is a Gaussian process. Furthermore, for any f; g 2 F ,

Zn (f)� Zn (g) = Zn (f � g) = Sf�gX1�X̂1;"
:

By the same arguments employed in the proofs of Lemmas B.2, B.4 and B.6, one can show

that for some constant C > 0,

E
h
kZn (f)� Zn (g)k2

i
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�Sf�g
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0���1

jf (�)� g (�)j2 ;

which implies that Zn (f) is stochastically equicontinuous. It now follows that Zn (�)!d Z (�)
on F , c.f. Pollard (1990, Theorem 10.2), which in turn implies that

Zn (ŵ)� Zn (w) = fZn (ŵ)� Z (ŵ)g � fZn (w)� Z (w)g+ fZ (w)� Z (ŵ)g = oP (1) :
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This shows that Â2�A2 = oP (1=
p
n). By similar arguments, it can be shown that Â3�A3 =

oP (1=
p
n).

Proof of Theorem 3.3. Let �Fn denote the test statistic with wt known, and de�ne for

any sequence � = f�tg the corresponding SSR,

SSRw (�) =
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�
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We note for future use that the following expansion holds:
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where
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o
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Combining the expansion in eq. (A.9) (with � = �̂) and the representation given in eq. (A.1),

we obtain
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Thus, we can ignore this term, and decompose the remaining terms in �SSR2;1 into
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where the average in the �rst term satis�es
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and, due to the mixing conditions, for some small � > 0,
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The terms in �SSR2;2 involving OP (hr) are again of lower order and can be ignored, while

the remaining terms can be written as
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By Lemma B.8,
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while �SSR2;22 is a third-order U-statistic. We proceed as in Aït-Sahalia et al (2009, Proof

of Theorem 1, Claim (a)): By standard symmetrization arguments and Hoe¤ding�s decom-

position, we can write

�SSR2;22 =
1

n

X
s 6=u

Is (a)ws"sX 0
s�

�1
s (K �K)s;uXu"u +

1

n2

X
s 6=t6=u

�s;t;u;

where �s;t;u = '�s;t;u�'�s;t�'�s;u�'�t;u, '�s;t;u = 's;t;u+'s;u;t+'t;s;u+'t;u;s+'u;t;s+'s;u;t
is a symmetric kernel,

's;t;u = "sX
0
sKs;tIt (a)wt�

�1
t XtX

0
t�
�1
t Kt;uXu"u;

and '�s;t =
R
's;t;udFt. Here, Ft is the marginal distribution of (X

�
t ; "

�
t ) which is an indepen-

dent copy of (Xt; "t). By verifying the conditions of Gao and King (2004, Lemma C.2), we

obtain under the mixing and moment conditions imposed that

1

n2

X
s 6=t6=u

�s;t;u = OP

�
1p
nh5

�
= oP

�
1p
h

�
:

In total,

�SSR2 ' m

h
[�2 � 2K (0)]

Z 1

0
w (�)�2 (�) d�

+
1

n

X
t6=u

Is (a)wt"tX 0
t�
�1
t

h
(K �K)t;u � 2Kt;u

i
Xu"u

43



To analyze �SSR1, �rst note that by Theorem 3.2, ~�1 � �1 = OP (1=
p
n) such that we

can replace the estimator with �1 in �SSR1. Moreover, by the same arguments used to show

eq. (A.1),

~�2;t � �2;t = ��122;t
1

n

nX
s=1

Ks;tX2;s"s +OP (h
r) ;

uniformly in t, and we obtain

�SSR1 ' � 1
n

nX
t=1

nX
u=1

It (a)wt"tX 0
2;t�

�1
22;sX

0
2;uKs;u"u (A.11)

+
1

n2

nX
s=1

nX
t=1

nX
u=1

It (a)wt"sX 0
2;sKs;t�

�1
22;tX2;tX

0
2;t�

�1
22;tKt;uX

0
2;u"u

= : ��SSR1;1 +�SSR1;2:

The two terms �SSR1;1 and �SSR2;2 are on a similar form as �SSR2;1 and �SSR2;2, and

by the same arguments as before,

�SSR1 ' m2

h
[�2 � 2K (0)]

Z 1

0
w (s)�2 (s) ds

+
1

n

X
s 6=u

Is (a)ws"sX 0
2;s

h
(K �K)s;u � 2Ks;u

i
��122;uX2;u"u:

Combining the expressions of �SSR1 and �SSR2, we now have

�Fn '
m1

�
K (0)� 1

2�2
�

h
+
n�1

P
s 6=t �1;n (us; ut)

2
R 1
0 w (�)�

2 (�) d�
;

where

�1;n (us; ut) := wt"t"u

h
2Kt;u � (K �K)t;u

i
�X 0
t
���1t

�Xt; (A.12)

with ut = (t=n; "t; Xt), and

�Xt := X
0
1;t � !tX2;t; �11:2;t := �11;t � !t�21;t; !t := �12;t�

�1
22;t:

It now follows by Lemma B.9 that

�Fn � �Fn
�Fn

'
n�1

P
s 6=t �1;n (us; ut)

V1;n
!d N (0; 1) ;

Finally, we demonstrate that the estimation of wt does not a¤ect the result. We write

Fn � �Fnp
�Fn

=
�Fn � �Fnp
�Fn

+
Fn � �Fnp

�Fn
;

where

Fn � �Fn =
~Fn(ŵ � w)

2
R 1
0 w (�)�

2 (�) d� + oP (1)
; ~Fn(f) = SSR

f (~�)� SSRf (�̂);
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and SSRf (�) is the SSR with weighting function f . Since the limiting distribution of �Fn
was derived for any given continuous function w, we know that for any continuous function

f : [0; 1] 7! R,
p
h
h
~F1;n(f)� qn (f)

i
= OP (1), where

q1;n (f) :=
m

h
[�2 � 2K (0)]

Z 1

0
f (�)�2 (�) d� :

Moreover,

p
h
h
~Fn(f1)� qn (f1)

i
�
p
h
h
~Fn(f2)� qn (f2)

i
=
p
h
h
~Fn(f1 � f2)� qn (f1 � f2)

i
;

where, by using the same arguments as above

E

����h ~Fn(f1 � f2)� qn (f1 � f2)i���2� � C

h
sup
�2[0;1]

jf1 (�)� f2 (�)j2 :

Thus, using that sup� jŵ (�)� w (�)j = oP
�p
h
�
,��Fn � �Fn

��p
�Fn

� C
p
h
��� ~Fn(ŵ � w)� qn(ŵ � w)���+ph jqn(ŵ � w)j

� sup
kfk1�C

p
h

��� ~Fn(f)� qn(f)���p
�Fn

+
p
h jqn(ŵ � w)j

= oP (1):

Proof of Theorem 3.4. Let �Wn denote the test statistic with known 
t. Write

�Wn =
nX
t=1

It (a)
�n
~�
w
1 � �1;t

o
�
n
�̂1;t � �1;t

o�0

t

�n
~�
w
1 � �1;t

o
�
n
�̂1;t � �1;t

o�
=

nX
t=1

It (a)
�
�̂1;t � �1;t

�0

t

�
�̂1;t � �1;t

�
+

nX
t=1

It (a)
�
~�
w
1 � �1

�0

t

�
~�
w
1 � �1

�
�2

nX
t=1

It (a)
�
~�
w
1 � �1

�0

t

�
�̂1;t � �1;t

�
= : �W1;n + �W2;n + �W3;n:

The second and third term satis�es

�W2;n =
p
n
�
~�
w
1 � �1

�0( 1
n

nX
t=1

It (a) 
t

)
p
n
�
~�
w
1 � �1

�
= OP (1) ;

�� �W3;n

�� � 2pn ~�w1 � �10
 1pn

nX
t=1

It (a) 
t
�
�̂1;t � �1;t

�
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where,

1p
n

nX
t=1

It (a) 
t
�
�̂1;t � �1;t

�
=

1

n3=2

nX
t=1

nX
u=1

It (a) 
t
�
��1t Kt;uX

0
u"u +OP (h

r)
�

' 1p
n

nX
t=1

It (a) 
t��1t X
0
t"t +OP

�p
nhr

�
= OP (1) +OP

�p
nhr

�
:

Following the same arguments as in the proof of Theorem 3.3, the �rst term satis�es

�W1;n ' 1

n2

nX
s=1

nX
t=1

nX
u=1

It (a) "sX 0
1;sKs;t�

�1
11;t
t�

�1
11;tKt;uX1;u"u

' 1

n2

nX
t=1

nX
u=1

It (a) "2uX 0
1;u�

�1
11;t
t�

�1
11;tK

2
t;uX1;u

+
1

n2

X
s 6=u

"sX
0
1;s

nX
t=1

n
It (a)Ks;t��111;t
t�

�1
11;tKt;u

o
X1;u"u

' �Wn +
1

n

X
s 6=t

�2;n (us; ut) ;

where

�2;n (us; ut) := "sX
0
1;s�

�1
11;s
s�

�1
11;s (K �K)s;tX1;t"t: (A.13)

It now follows by Lemma B.9 that

�Wn � �Wnp
�Fn

'
n�1

P
s 6=u �2;n (Ws;Wu)

V2;n
!d N (0; 1) :

One can show that �Wn and Wn have the same asymptotic distribution by the same

arguments as in the proof of Theorem 3.3.

B Lemmas

Lemma B.1 Swg�ĝ = OP
�
h2r
�
+OP (log (n) = (nh)) for g = �02X2 and �.

Proof. First consider g = �02X2:

Swg�ĝ =
1

n

nX
t=1

It (a)wt [gt � ĝt]2

� 1

n

nX
t=1

It (a)wt
�
��2:t � �2;t

�0
X2;tX

0
2;t

�
��2;t � �2;t

�
� 1

n

nX
t=1

wtX2;tX
0
2;t � sup

a���1�a

����2 (�)� �2 (t)��2
= OP

�
h2r
�
+OP (log (n) = (nh)) ;
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where we have used Lemma C.1. The proof for g = � =M (X1)
0X2 is similar.

Lemma B.2
p
nSwg�ĝ;e = OP

�
h2r
p
n
�
+OP (log (n) = (

p
nh)) for g = �02X2; � and e = "; V .

Proof. We only give a proof for the case where g = �02X2 and e = ". De�nemt = �22;t�2;t

and

m̂t =

nX
s=1

Khn (s� t)X2;sX 0
2;s�2;s; �̂22;t =

nX
s=1

Khn (s� t)X2;sX 0
2;s;

such that ��2;t given in eq. (A.7) can be written as ��2;t = �̂
�1
22;tm̂t: Thus,

Swg�ĝ;e =
1

n

nX
t=1

It (a)
�
��2;t � �2;t

�0
wtX2;t"t =

1

n

nX
t=1

It (a)
h
�̂�122;tm̂t � ��122;tmt

i0
wtX2;t"t:

Use the following identity,

a

b
� a0
b0
= b�10 (a� a0)� b�20 a0 (b� b0)� (b0b)

�1 (b� b0)
�
(a� a0)� b�10 a0 (b� b0)

�
;

to write

Swg�ĝ;" =
1

n

nX
t=1

It (a)
h
�̂�122;tm̂t � ��122;tmt

i0
wtX2;t"t

=
1

n

nX
t=1

It (a) [m̂t �mt]
0wt�

�1
22;tX2;t"t �

1

n

nX
t=1

It (a)
h
�̂22;t � �22;t

i
�02;twt�

�1
22;tX2;t"t

� 1
n

nX
t=1

It (a)
h
(m̂t �mt)� �2;t

�
�̂22;t � �22;t

�i0 �
�̂22;t � �22;t

��
�22;t�̂22;t

��1
wtX2;t"t

= : An;1 �An;2 �An;3:

We now prove that for any � > 0:

Claim B.2.1 : An;1 = OP

�
n�1+�=2

�
+OP

�
n�1=2hr

�
;

Claim B.2.2 : An;2 = OP

�
n�1+�=2

�
+OP

�
n�1=2hr

�
;

Claim B.2.3 : An;3 = OP
�
h2r
�
+OP (log (n) = (nh)) :

This will complete our proof.

Proof of Claim B.2.1: De�ne ut = (� t; X2;t; "t), and

b (us; ut) = �
�1
22;s

�
Kh (� s � � t)X2;sX 0

2;s�2;s �mt

�
wtX2;t"t;

where � t = t=n; t = 1; :::; n. We can treat � t as i.i.d. uniformly distributed random variables

drawn independently of all other random variables. We then see that An;1 can be written as

a V -statistic, An;1 =
Pn
s=1

Pn
t=1 b (us; ut) =n

2. De�ning

� (us; ut) := b (us; ut) + b (ut; us) ;
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we can writeAn;1 = (n� 1) =n�Un+
Pn
t=1 � (ut; ut) =n

2, where Un =
P
s<t � (us; ut) = [n (n� 1)]

while
Pn
t=1 � (ut; ut) =n

2 = OP
�
n�1

�
. We then obtain from the Hoe¤ding decomposition that

Un = 2
Pn
t=1

�� (ut) =n+Rn, where Rn is a remainder while

�� (u) = E [� (u; ut)] = E [b (u; ut)] + E [b (ut; u)] = �
�1
22 (�) [ �m (�)�m (�)]

0w (�)x2e;

with u = (� ; x2; e), and

�m (�) =

Z 1

0
Kh (� � s) �22 (s)�2 (s) ds+O

�
1=
p
n
�
= m (�) +O (h�) +O

�
1=
p
n
�
:

Here, we have used that E [X2;t"t] = 0. By Lemma C.2, Rn satis�es Rn = OP
�
n�1+�=2sn;�

�
,

where sn;� := sups;tE
h
j� (us; ut)j2+�

i1=(2+�)
: Thus,

sn;� = sup
s;t
E
h
j� (� s; X2;s; "s; � t; X2;t; "t)j2+�

i1=(2+�)
= sup

s;t
E
h
E
h
j� (� s; X2;s; "s; � t; X2;t; "t)j2+� j� s; � t

ii1=(2+�)
= sup

s;t

�Z 1

0

Z 1

0
E
h
j� (v;X2;s; "s; w;X2;t; "t)j2+�

i
dvdw

�1=(2+�)
;

where

E
h
j� (v;X2;s; "s; w;X2;t; "t)j2+�

i
� 2

��122 (v)2+� w2+� (v)E h�jKh (v � w)jX2;sX 0
2;s�2 (v)

+ km (w)k�2+� kX2;tk2+� j"tj2+�i
� C

��122 (v)2+� w2+� (v)�jKh (v � w)j2+� E hkX2;sk8+8�i1=(4+4�) k�2 (v)k2+� + km (w)k2+��
�E

h
kX2;tk8+8�

i1=(4+4�)
E
h
j"tj8+8�

i1=(4+4�)
� C jKh (v � w)j2+� :

Thus,

sn;� � C
�Z 1

0

Z 1

0
jKh (v � w)j2+� dvdw

�1=(2+�)
= O

�
h�(1+�)=(2+�)

�
:

The other term in the Hoe¤ding decomposition,
Pn
t=1

�� (ut) =n, satis�es

E

24 1
n

nX
t=1

�� (ut)

!235 = Bn;1 +Bn;2;
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where

kBn;1k = n�1E
h�� (ut)2i

� n�12

Z 1�a

a

��122 (�)2 k�22 (�)k k �m (�)�m (�)k2w2 (�)�2 (�) d�
� n�12

Z 1

0

��122;t2 k�22 (�)kw2 (�)�2 (�) d� � sup
a���1�a

k �m (�)�m (�)k2

� Cn�1h2r;

and, by Lemma C.3 together with E
�
�� (ut)

�
= 0,

kBn;2k � n�2
nX
s=1

X
t6=s

E ��� (us)0 �� (ut)�
= n�2

nX
s=1

X
t6=s

���E ��� (us)0 �� (ut)�� E ��� (us)�0E ��� (ut)����
= 4M1=(1+�)

n � n�2
nX
s=1

X
t6=s

� (jt� sj)�=(1+�) ;

where Mn = max fMn;1;Mn;2g with

Mn;1 = E
h���� (us)��1+�iE h���� (ut)��1+�i � E h���� (ut)��2i2 = O �h2r�

and

Mn;2 = E
h���� (us)��1+� ���� (ut)��1+�i � E h���� (us)��2i(1+�)=2E h���� (us)��2i(1+�)=2 = O �h2r� ;

while

n�2
nX
s=1

X
t6=s

� (jt� sj)�=(1+�) = A� n�2
nX
s=1

X
t6=s

jt� sj���=(1+�) = O
�
n�1

�
:

Proof of Claim B.2.2: We proceed as in Claim B.2.1: De�ne ut = (t=n;X2;t; zt), and

b (us; ut) : =
�
Kh (s=n� t=n)X2;sX 0

2;s � �t
�
�02;t�

�1
22;tX2;twt�tzt;

�� (ut) = E [b (us; u)]u=ut =
�
��t � �t

�
�02;t�

�1
22;tX2;twt�tzt

where ��22;t = ��22 (t=n) and

��22 (�0) =

Z 1

0
Kh (� � �0) �22 (�) d� = �22 (�0) +O (hr) :
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Then, An;2 can be written as a U -statistic and Hoe¤ding�s decomposition applies:

An;2 =
1

n2

nX
s=1

nX
t=1

b (us; ut) =
2

n

nX
t=1

�� (ut) +Rn:

By following the same arguements as in the proof of Claim B.2.1, it can now be shown that

An;2 has the same rate as An;1.

Proof of Claim B.2.3: We have

jAn;3j �
n
max
t
It (a)

�̂22;t � �22;t �km̂t �mtk+
��t � �t�o� 1

n

nX
t=1

h��222;t+ oP (1)i �2;twt j"tj ;
where

Pn
t=1

h��222;t+ oP (1)i �2;twt j"tj =n = OP (1), while by Lemma C.1,
max
t
It (a)

�̂22;t � �22;t �km̂t �mtk+
��22;t � �22;t� = OP �h2r�+OP (log (n) = (nh)) :

Lemma B.3 Sw"̂ = OP
�
h2r
�
+ OP (log (n) = (nh)), SwV̂ = OP

�
h2r
�
+ OP (log (n) = (nh)),

Sw
"̂;V̂

= OP
�
h2�
�
+OP (log (n) = (nh)).

Proof. Since maxt It (a)
�̂22;t � �22;t = oP (1) and the minimum eigenvalue of �22;t,

�min (t=n), is bounded away from zero,

1

n

nX
t=1

It (a)wt
X 0

2;t�̂
�1
22;t

2 w.p.a.1� sup
0���1

w (�)
[inf� �min (�) =2 + o (1)]

�2

n

nX
t=1

kX2;tk2 = OP (1) :

Thus,

kSw"̂ k � 1

n

nX
t=1

It (a)wt"̂2t

=
1

n

nX
t=1

It (a)wt
����"t�̂�122;tX2;t���2

� 1

n

nX
t=1

It (a)wt
X 0

2;t�̂
�1
22;t

2 � sup
a���1�a

k�" (�)k2

� OP (1)� sup
a���1�a

k�" (�)k2 ;

where �" (�) = n�1
Pn
s=1Kh (s=n� �)X2;s"s 2 Rm2 satis�es

sup
a���1�a

k�" (�)k = OP (hr) +OP
�
log (n) =

p
nh
�
;

c.f. Lemma C.1.
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Similarly, we can show that Sw
V̂
= OP

�
h2r
�
+ OP (log (n) = (nh)). The cross-term Sw

"̂;V̂

satis�es, by Cauchy-Schwarz�s inequality,Sw
"̂;V̂

 �rSw"̂ � SwV̂  = OP �h2r�+OP (log (n) = (nh)) :
Lemma B.4

p
nSwe;ê = OP

�p
nh2r

�
+OP (log (n) = (

p
nh)), for e = "; V .

Proof. We will only give a proof for Sw
";V̂
; one can follow the same strategy to show the

claimed results for SwV;"̂; S
w
V;V̂

and Sw";"̂. With �Vt = 1=n
Pn
s=1Kh ((s� t) =n)X2;sVs,

Sw
U;V̂

=
1

n

nX
t=1

It (a)wt"t �V 0t �̂
�1
22;tX2;t

=
1

n

nX
t=1

It (a)wt"t �V 0t�
�1
22;tX2;t +

1

n

nX
t=1

It (a)wt"t �V 0t
�
�t�̂t

��1 �
�22;t � �̂22;t

�
X2;t

= : An;1 +An;2:

We claim that for any � > 0:

Claim B.4.1 : An;1 = OP

�
n�1+�=2

�
+OP

�
n�1=2hr

�
;

Claim B.4.2 : An;2 = OP
�
h2r
�
+OP (log (n) = (nh)) :

Proof of Claim B.4.1: An;1 takes the form of a U -statistic: De�ne ut = (� t; X2;t; "t),

� t = t=n, and

b (us; ut) = It (a)wt"tKh (s=n� t=n)VsX 0
2;s�

�1
22;tX2;t;

and note that E [b (us; u)] = E [b (u; ut)] = 0. Then, by the same arguments as in the proof

of Lemma B.2,

An;1 =
1

n (n� 1)
X
s<t

b (us; ut) +OP (1=n) = Rn +OP (1=n) ;

where Rn = OP
�
n�1+�=2sn;�

�
with sn;� � sups;tE

h
jb (Ws;Wt)j2+�

i1=(2+�)
. Here,

E
h
jb (us; ut)j2+� j� s; � t

i1=(2+�)
� E

�
wt jUtj2+� jKh (� s � � t)j2+� jVsj2+�

X 0
2;s�

�1
22;tX2;t

2+��1=(2+�)
� �w [inf� �min (�)]

�2�� � E
h
jKh (s=n� t=n)j2+� jVsj2+� j"tj2+� kX2;tk4+2�

i1=(2+�)
� �w [inf� �min (�)]

�2�� � E
h
jKh (s=n� t=n)j4+2� jVsj4+2�

i1=(4+4�)
� E

h
j"tj4+2� kX2;tk8+4�

i1=(4+4�)
� C jKh ((s� t) =n)j
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where �w = sup� w (�). Thus, sn;� = O (1).

Proof of Claim B.4.2:

jAn;2j �
1

n

nX
t=1

wt j"tj
 �Vt��22;t�̂22;t��1�22;t � �̂22;t kX2;tk

where n�1
Pn
t=1wt j"tj kX2;tk = OP (1), maxt

��22;t�̂22;t��1 = OP (1) and, by Lemma C.1,
max
t

�22;t � �̂22;t = OP (h
r) +OP

�p
log (n) =nh

�
;

max
t

 �Vt = OP (h
r) +OP

�
log (n) =

p
nh
�
:

Lemma B.5 Sw
g�ĝ;Û = oP

�
n�1=2

�
for g = �02X2; � and U = "; V .

Proof. We have
Sw

g�ĝ;Û

 � Swg�ĝ1=2�SwÛ1=2. The result now follows from Lemmas

B.1 and B.3.

Lemma B.6 SwV !P �w and
p
nSwV;" !d N (0;�w).

Proof. We have

SwV � �w =
1

n

nX
t=1

It (a)wt
�
VtV

0
t � �22j1;t

�
+
1

n

nX
t=1

[It (a)� 1]wt�22j1;t;

where the �rst term is oP (1) according to the Law of Large Numbers of heterogeneous, mixing

sequences (see e.g. Wooldridge and White, 1988) since

lim
n!1

sup
1�t�n

E
hIt (a)wtVtV 0t 2i � lim

n!1
sup
1�t�n

h
w (t=n)

�22j1 (t=n)2 + o (1)i <1:
The second term satis�es

1

n

nX
t=1

jIt (a)� 1jwt
�22j1;t =

Z a

0
w (s)

�22j1 (s) ds+ Z 1

1�a
w (s)

�22j1 (s) ds+ o (1=n)
= O (a) :

We show the weak convergence result by applying the CLT of Lemma C.4: First,

1

n
E

"
nX
t=1

It (a)w2t "2tVtV 0t

#
=

1

n

nX
t=1

It (a)w2t �2t�22j1;t + o (1)

=
1

n

nX
t=1

w2t �
2
t�22j1;t +

1

n

nX
t=1

[It (a)� 1]w2t �2t�22j1;t

= �w + o (1) +O (a) :

52



Thus, as a! 0,
p
nSwV;" =

1p
n

nX
t=1

It (a)wtVt"0t !d N (0;�w) :

Lemma B.7 With SSRw (�) de�ned in eq. (2.13): SSRw(�̂)=n =
R 1
0 w (s)�

2 (s) ds+oP (1)

as a; h! 0 and log (h) = (nh)!1.

Proof. By the expansion in eq. (A.9),

1

n
SSRw(�̂)� 1

n
SSRw(�0) = � 2

n

nX
t=1

It (a)wt
�
�̂t � �t

�0
Xt"t

+
1

n

nX
t=1

It (a)wt
�
�t � �̂t

�0
XtX

0
t

�
�t � �̂t

�
= : A1 +A2:

Here,

E

�
1

n
SSRw(�0)

�
=
1

n

nX
t=1

It (a)wt�2t '
Z 1

0
w (s)�2 (s) ds� 2a;

and, using Lemma C.3,

Var

�
1

n
SSRw(�0)

�
� 1

n2

nX
s;t=1

w2t �
4
tCov

�
z2s ; z

2
t

�
=

1

n2

nX
s;t=1

w2t �
4
tE
��
z2s � 1

� �
z2t � 1

��
=

1

n
E
h�
z2t � 1

�2i� 1

n

nX
s;t=1

w2t �
4
t +

4C

n2

nX
s;t=1

bn (js� tj)�=(1+�)

= O (1=n) :

The two remainder terms satisfy

kA2k �
(
1

n

nX
t=1

wtXtX
0
t

)
� sup
a���1�a

� (�)� �̂ (�)2 = oP (1) ;
kA3k �

2

n

nX
t=1

wt kXt"tk � sup
a���1�a

� (�)� �̂ (�) = oP (1) :

Lemma B.8 The term �SSR2;21 de�ned in eq. (A.10) satis�es

�SSR2;21 =
m�2
h
�
Z
w (�)� (�) d� � [1 +OP (a) +OP (hr)]+OP

�
1p

n1��=2h(2+2�)=(2+�)

�
:
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Proof. We proceed as in the proof of Lemma B.2: De�ne ut = (� t; Xt; "t), with � t = t=n;
t = 1; :::; n, and let u�t is an i.i.d. copy of ut. We then introduce

� (us; ut) := b (us; ut) + b (ut; us)� 2�;

b (us; ut) = It (a)wt"2sX 0
sK

2
s;t�

�1
t XtX

0
t�
�1
t Xs;

and � = E [b (u�t ; u
�
s)]. With these de�nitions, we can write

�SSR2;21 = �+
n� 1
n

Un +
nX
t=1

� (ut; ut) =n
2;

where Un =
P
s<t � (us; ut) = [n (n� 1)]. The term

Pn
t=1 � (ut; ut) =n

2 is of lower order, while

Un = 2
Pn
t=1

�� (ut) =n+Rn, where Rn is a remainder term and

�� (u) = E [� (u; ut)] = E [b (u; ut)] + E [b (ut; u)]� 2�:

Here, with u = (� ; x; e),

E [b (u; ut)] = e2x0
�
1

h2

Z 1�a

a
K2

�
� � t
h

�
w (t) ��1 (t) dt

�
x

= e2x0
�
1

h

Z
K2 (z)w (� + zh) ��1 (� + zh) dt+O (a)

�
x

=
�2
h
� w (�) e2x0��1 (�)x� [1 +O (a) +O (hr)] ;

and

E [b (ut; u)] =
�2
h
� It (a)w (�)�2 (�)x0��1 (�)x� [1 +O (a) +O (hr)] :

Thus, � ' m�2
h �

R
w (�)� (�) d� . By Lemma C.2, Rn satis�es Rn = OP

�
n�1+�=2sn;�

�
, where

sn;� := sups;tE
h
j� (us; ut)j2+�

i1=(2+�)
: This moment can be written as

sn;� = sup
s;t

�Z 1

0

Z 1

0
E
h
j� (v;X2;s; "s; w;X2;t; "t)j2+�

i
dvdw

�1=(2+�)
;

where

E
h
j� (v;X2;s; "s; w;X2;t; "t)j2+�

i
� C jKh (v � w)j4+2� :

Thus,

sn;� � C
�Z 1

0

Z 1

0
jKh (v � w)j4+2� dvdw

�1=(2+�)
= O

�
h�(2+2�)=(2+�)

�
:

Finally, by the same arguments as in the proof of Lemma B.2,

E

24 1
n

nX
t=1

�� (ut)

!235 = O �n�1+�=2h�(2+2�)=(2+�)� :
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Lemma B.9 With �1;n (us; ut) and �2;n (us; ut) de�ned in eq. (A.12) and (A.13):

n�1
P
s 6=t �i;n (us; ut)p
Vi;n

!d N (0; 1) ; i = 1; 2;

where

V1;n =
m1

h

Z
w2 (�)�4 (�) d� �

K � 1
2 (K �K)

2 ;
V2;n =

2

h

Z
�4 (�) tr

�

 (�) ��111 (�) 
 (�) �

�1
11 (�)

	
d� � kK �Kk2 :

Proof. We show the two results by verifying in each case the assumptions (A1)-(A3)

stated in Fan and Li (1999). We note that Fan and Li (1999) restrict themselves to the case

where Wt is stationary and ergodic, but by inspection of their proof one can check that their

main result still holds for non-stationaryWt as long as the mixing conditions remain satis�ed.

In particular, we can appeal to the martingale CLT stated in Lemma C.4. The only di¤erence

is that their conditions (A1)-(A3) now has to hold uniformly over t and n. This is akin to

the generalization of the results of Hansen (2008) to the case of non-stationary sequences as

developed in Kristensen (2009).

First, we write

n�1
X
s 6=t

�1;n (us; ut) =
X
s<t

H1;n (us; ut) ; (B.1)

where ut = (� t; "t; Xt) and

H1;n (us; ut) =
1

n

�
�1;n (us; ut) + �1;n (us; ut)

�
=
1

n
"s"t �Ks;t [as;t + at;s] :

Here, we have for notational convenience introduced as;t := ws �X
0
s
���1s �Xt, �Ks;t = 2Ks;t �

(K �K)s;t. Using the MGD property of zt,

E [H1;n (us; u)] = E [H1;n (u; ut)] = 0:

Thus, the kernel is degenerate. Next, we verify that the moments de�ned on p. 248 in Fan

and Li (1999) satisfy their conditions (A1)-(A3).

With u�t denoting an i.i.d. copy of ut, observe that

E
h�
a�s;t
�2i

= w2str
n
���1s E

h
�X�
t

�
�X�
t

�0i ���1s E h �X�
s

�
�X�
s

�0io
= w2str

�
���1s ��t

	
;

and

E
�
a�s;ta

�
t;s

�
= wswtE

h
tr
n
���1s �X�

t

�
�X�
t

�0 ���1s �X�
s

�
�X�
s

�0oi
= wswttr

�
���1s ��t

	
;
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such that the variance term �2n of the U -statistic satis�es

�2n : =
1

n2

X
s;t

E
�
H2
1;n (u

�
s; u

�
t )
�

=
1

n4

X
s;t

E
h
("�s)

2 ("�t )
2 �K2

s;t

��
a�s;t
�2
+
�
a�t;s
�2
+ 2a�s;ta

�
t;s

�i
' 1

n2h2

Z
�2 (v)�2 (z) �K2

�
v � z
h

��
w2 (v) + w2 (z) + 2w (v)w (z)

�
tr
�
���1 (v) �� (z)

	
dvdz

' 4m1

n2h

Z
�4 (v)w2 (v) dv �

Z
�K2 (z) dz:

By similar arguments and using that suptE
h
kXtk4

i
<1,

�n4 : =
1

n2

X
s;t

E
�
H4
1;n (u

�
s; u

�
t )
�
=
1

n6

X
s;t

E

�
("�s)

4 ("�t )
4 �K4

s;t

��
a�s;t
�2
+
�
a�t;s
�2
+ 2a�s;ta

�
t;s

�2�
= O

�
1

n4h3

�
Next, with s1 6= t1 and s2 6= t2,���E hH1;n (us1 ; ut1)2H1;n (ts2 ; ut2)2i���
� C

n4
� sup
s1 6=t1;s2 6=t2

E
h
jzs1 j

4 jzt1 j
4 jzs2 j

4 jzt2 j
4
i1=2

� sup
s1 6=t1;s2 6=t2

E
h
kXs1k

2 kXs2k
2 kXt1k

2 kXt2k
2
i1=2

�
Z Z Z Z

1

h4
�K2

�
v1 � z1
h

�
�K2

�
v2 � z2
h

�
�2 (v1)�

2 (z1)�
2 (v2)�

2 (z2) dv1dz1dv2dz2

= O

�
1

n4h2

�
:

where we have utilized the moment conditions imposed on regressors and errors. Similarly,

jE [H1;n (us1 ; ut1)H1;n (us2 ; ut2)]j = O
�
1

n2

�
;

���E hH1;n (us1 ; ut1)H1;n (us2 ; ut2)3i��� = O� 1

n4h2

�
:

Using the MGD property of "t,

E [H1;n (u
�
s; ut)H1;n (u

�
s; uv) ju�s] = 0;
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such that ~n14 = 0. Using that supt�1E
�
z4t
�
<1 and supt�1E

h
kXtk4

i
<1,

~n22 = E
�
H2
1;n (u

�
s; u

�
t )H

2
1;n (u

�
s; u

�
v)
�

� C

n7

X
s;t;v

�K2
s;t
�K2
s;v�

4
s�
2
t�
2
v

' C

n4h4

Z 1

0

Z 1

0

Z 1

0
�4 (u)�2 (w)�2 (z) �K2

�
u� w
h

�
�K2

�
u� z
h

�
dudwdz

= O

�
1

n4h2

�
:

We conclude that n := max fn11; ~n22; ~n14g = O
�
1=
�
n4h2

��
, and �n := max fn22; n13g =

O
�
1=
�
n4h2

��
. Thus, with m / log n and r = n1=4, (A1) then holds if:

�n4r
2m

n2�4n
= O

�
log n

n3=2h2

�
! 0;

nm
2

�2n
= O

 
log (n)2

n2h

!
! 0;

�nrm
5

n2�4n
= O

 
log (n)5

n3=2

!
! 0:

To verify (A2), �rst note that:

G (ut; uv) : = E [H1;n (u
�
s; ut)H1;n (u

�
s; uv) jut; uv]

=
1

n3

X
s

E
h
("�s)

2
i
"t"v �Ks;t �Ks;v �

E
��
ws
�
�X�
s

�
���1t

�Xt + wt �Xt��
�1
s
�X�
s

� �
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�
�X�
s

�
���1v �Xu + wu �Xv ��

�1
s
�X�
s

��
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1
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1
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Z
�K

�
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h

�
�K

�
s� v=n
h

�
�2 (s)��

w2 (s) �X 0
t
���1t

�� (s) ���1u �Xv + w (s) tr
�
���1t

�Xtwu �Xu
	

+w (s)wt �Xt��
�1
v
�Xv + wtwv �X

0
t
���1 (s) �Xv

	
ds

=
1

n2
�
�K � �K

�
t;v
"t"vAt;v;

where

At;v : = �X 0
t
���1t

�Z
�2 (s)w2 (s) �� (s) ds

�
���1v �Xv +

�Z
�2 (s)w (s) ds

�
tr
�
���1t

�Xtwv �Xv
	

+

�Z
�2 (s)w (s) ds

�
wt �Xt��

�1
v
�Xv + wtwv �X

0
t

�Z
�2 (s) ���1 (s) ds

�
�Xv:

Then,

�2G := E
�
G2 (ut; ut)

�
=
�
�K � �K

�2
(0)

1

n5h2

X
t

�4tE
�
z4t
�
E
�
A2t;t
�
= O

�
1

n4h2

�
;
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and, with s 6= t,

E
�
G2 (us; ut)

�
=

1

n6

X
s;t

�
�K � �K

�2
s;t
�2s�

2
tE
�
A2s;t

�
� C

n4
1

h2

Z Z �
�K � �K

��v � w
h

�
dvdw

= O

�
1

n4h

�
which shows that �nG2 = O

�
1=(n4h)

�
. By similar arguments, nG11 = O

�
1=(n4h)

�
. As-

sumption (A2) then holds if:

�n;G2m
4

�4n
= O

�
h log (n)4

�
! 0;

nG11m
4

�4n
= O

�
h log (n)4

�
! 0;

�2Gm

n�4n
= O

�
log (n)

n

�
! 0:

Finally, (A3) is easily shown to hold along the same lines as in Fan and Li (1999, Proof

of Theorem 3.1). It now follows by Theorem 2.1 of Fan and Li (1999) that

n�1
P
s 6=t �1;n (us; ut)

n
�
�n=

p
2
� =

p
2
P
t<uH1;n (us; ut)

n�n
!d N (0; 1) :

To prove the second claim, de�ne

H2;n (us; ut) =
1

n

�
�2;n (us; ut) + �2;n (us; ut)

�
= "s"t �Ks;t [as;t + at;s] ;

where as;t := X 0
1;s�

�1
11;s
s�

�1
11;sX1;t and �Ks;t = (K �K)s;t. Thus, the U -statistic is on the

same form as before, and the assumptions (A1)-(A3) of Fan and Li (1999) can be veri�ed as

before. In particular,

E
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= tr
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E
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�1
11;sE
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11;s

o
= tr

n

s�

�1
11;s�11;t�
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:

Thus, the variance of the U -statistic takes the form
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X
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�2
+ 2a�s;ta

�
t;s

�i
' 4

n2h2

Z
�2 (v)�2 (w) �K2

�
v � w
h

�
tr
�

 (v) ��111 (v) �11 (w) �

�1
11 (v) 
 (v) �

�1
11 (v)

	
dvdw

' 4

n2h

Z
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Z
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and the result follows from Fan and Li (1999, Theorem 2.1).
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C Auxiliary Lemmas

Let in the following fun;tg be an absolutely regular triangular array with mixing coe¢ cients
�n (t) that satisfy �n (t) � Bt�� for some B; � > 0.

Lemma C.1 Assume that there exists a functionm 2 Cr ([0; 1]) such that E [un;t] = m (t=n)+
o (1) and that supn�1 sup1�t�nE [kun;tks] <1 for some s > 2. Then m̂ (�) =

Pn
t=1Kh (t=n� �)un;t

satis�es

sup
a���1�a

jm̂ (�)�m (�)j = OP (hr) +OP
�p

log (n)=
p
(nh)

�
for any sequence a! 0 satisfying h=a! 0.

Proof. We have by Kristensen (2009, Theorem 1) that supa���1�a jm̂ (�)� E [m̂ (�)]j =
OP

�p
log (n)=

p
(nh)

�
. That supa���1�a jE [m̂ (�)]�m (�)j = O (hr) is a consequence of

the following argument: First, uniformly over � 2 [0; 1],

E

"
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#
=

1

nh

nX
t=1

K
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�
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=
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0
Kh (s� �)m (s) ds+O (1= (nh)) ;

where we have used the mean-value theorem. Next, by change of variable and using standard

Taylor expansion arguments, for any � 2 [a; 1� a]Z 1

0
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)
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�
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�
du;

for some 0 � �h � h, where, for 1 � k � r,
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R (1��)=h
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Lemma C.2 Assume that � > (2� �) (2 + �) =� for some �; � > 0. Then for any symmetric
function �n (un;s; un;t), the following decomposition holds:

1

n2

nX
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2

n

nX
t=1

�
��n (un;t)� �n

�
+Rn;

where �n =
P
s<tE [�n (un;s; un;t)] =n

2, ��n (u) = E [�n (u; un;t)], and the remainder term

satis�es E
�
R2n
�1=2

= O
�
n�1+�=2 � sn;�

�
with sn;� = sups 6=tE

h
j�n (un;s; un;t)j2+�

i1=(2+�)
.

Proof. See Denker and Keller (1983, Proof of Proposition 2) for the proof in the case
where un;t = ut is stationary and ergodic. By inspection of their proof, one easily sees

that their result extends to the non-stationary case as long as the mixing conditions are

maintained.

Lemma C.3 For any function � with E
h
j� (un;s; un;t)j1+�

i
<1:

��E [� (un;s; un;t)]� E �� �u�n;s; u�n;t���� � 4max fMn;1;Mn;2g j�n (js� tj)j�=(1+�) ;

where u�n;t is an independent sequence with same marginal distribution as un;t and

Mn;1 = E
h
j� (un;s; un;t)j1+�

i
; Mn;2 = E

h��� �u�n;s; u�n;t���1+�i :
Proof. See Denker and Keller (1983, Proof of Lemma 6) for the proof in the case where

un;t = ut is stationary and ergodic. Again, it can be checked that the proof still goes through

in the non-stationary (but mixing) case.

Lemma C.4 Assume that un;t is a MGD satisfying n�1
Pn
t=1E

�
u2n;t

�
! �2 > 0 and, for

some � > 0, n�1��=2
Pn
t=1E

h
jun;tj2+�

i
! 0. Then

Pn
t=1 un;t=

p
n!P N

�
0; �2

�
.

Proof. This is a straightforward implication of McLeish (1974, Theorem 2.3).

60



Research Papers 
2011 

 
 

 
2010-75: Laurent A.F. Callot: A Bootstrap Cointegration Rank Test for Panels 

of VAR Models 

2010-76: Peter R. Hansen, Asger Lunde and James M. Nason: The Model 
Confidence Set 

2011-01: Cristina Amado and Timo Teräsvirta: Modelling Volatility by Variance 
Decomposition 

2011-02: Timo Teräsvirta: Nonlinear models for autoregressive conditional 
heteroskedasticity 

2011-03: Roxana Halbleib and Valeri Voev: Forecasting Covariance Matrices: A 
Mixed Frequency Approach 

2011-04: Mark Podolskij and Mathieu Rosenbaum: Testing the local volatility 
assumption: a statistical approach 

2011-05: Michael Sørensen: Prediction-based estimating functions: review and 
new developments 

2011-06: Søren Johansen: An extension of cointegration to fractional 
autoregressive processes 

2011-07: Tom Engsted and Stig V. Møller: Cross-sectional consumption-based 
asset pricing: The importance of consumption timing and the 
inclusion of severe crises 

2011-08: Tommaso Proietti and Stefano Grassi: Bayesian stochastic model 
specification search for seasonal and calendar effects 

2011-09: Matt P. Dziubinski: Option valuation with the simplified component 
GARCH model 

2011-10: Tim A. Kroencke, Felix Schindler and Andreas Schrimpf: International 
Diversification Benefits with Foreign Exchange Investment Styles 

2011-11: Eduardo Rossi and Paolo Santucci de Magistris: Estimation of long 
memory in integrated variance 

2011-12: Matias D. Cattaneo, Richard K. Crump and Michael Jansson: 
Generalized Jackknife Estimators of Weighted Average Derivatives 

2011-13: Dennis Kristensen: Nonparametric Detection and Estimation of 
Structural Change 

 


