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Abstract. With the aim of improving the quality of asymptotic distrib-
utional approximations for nonlinear functionals of nonparametric estimators,
this paper revisits the large-sample properties of an important member of that
class, namely a kernel-based weighted average derivative estimator. Asymptotic
linearity of the estimator is established under weak conditions. Indeed, we show
that the bandwidth conditions employed are necessary in some cases. A bias-
corrected version of the estimator is proposed and shown to be asymptotically
linear under yet weaker bandwidth conditions. Consistency of an analog esti-
mator of the asymptotic variance is also established. To establish the results,
a novel result on uniform convergence rates for kernel estimators is obtained.
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1. Introduction
Semiparametric m-estimators constitute an important and versatile class of estima-
tors whose large-sample properties are by now well understood, thanks in large part
to the body of work surveyed in Newey and McFadden (1994, Section 8), Ichimura
and Todd (2007, Section 7), and Chen (2007, Section 4). Although the precise na-
ture of the high-level assumptions used to achieve

√
n-consistency of these estimators
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Generalized Jackknife Estimators 2

(where n denotes the sample size) varies slightly across the aforementioned handbook
chapters (and the more primitive references given therein), a common feature of all
treatments that we are aware of is that the nonparametric ingredient is required to
converge at a rate faster than n1/4 whenever the estimating equation is nonlinear in
the nonparametric component.
An important motivation for the present work is the desire to obtain a better

understanding of the consequences of relaxing the requirement that the convergence
rate of the nonparametric estimator be faster than n1/4. We emphasize at the outset
that our desire to relax this convergence rate requirement stems more from a concern
about the finite sample accuracy of distributional approximation results based on such
rate conditions/assumptions than a concern about the plausibility of the smoothness
conditions needed to guarantee existence of n1/4-consistent nonparametric estimators
in models with large-dimensional covariates (e.g., Robins, Li, Tchetgen, and van der
Vaart (2008)). In particular, we are motivated by the concern that the (finite sam-
ple) distributional properties of semiparametric estimators are widely believed to be
much more sensitive to the implementational details of its nonparametric ingredient
(e.g., the choice of kernel and/or bandwidth when the nonparametric estimator is
kernel-based) than predicted by conventional asymptotic theory, according to which
semiparametric estimators are asymptotically linear with influence functions that are
invariant with respect to the choice of nonparametric ingredient (e.g., Newey (1994a,
Proposition 1)).
Heuristically, it seems plausible that an exploration of the consequences of re-

laxing the requirement that the convergence rate of the nonparametric estimator be
faster than n1/4 can in fact be used to tease out further information about the depen-
dence of semiparametric estimators on their nonparametric ingredient. In particular,
because the n1/4-consistency requirement effectively allows one to proceed “as if”the
semiparametric estimator depends linearly on its nonparametric ingredient, allowing
for slower rates of convergence on the part of the nonparametric ingredient is crucial
for achieving an improved understanding of the differences (if any) between linear
and nonlinear functionals of nonparametric estimators. As demonstrated by example
in this paper, important differences between linear and nonlinear functionals of non-
parametric estimators do exist and can be revealed by allowing for slower-than-usual
rates of convergence of the nonparametric ingredient.
To elucidate the consequences of nonlinearity while keeping the results as in-

terpretable as possible, we focus for specificity on a kernel-based weighted average
derivative estimator. In addition to being of empirical relevance in its own right (e.g.,
Newey and Stoker (1993)), the estimator in question is attractive for our purposes
because it is suffi ciently tractable to permit the derivation of fairly detailed results
in spite of the fact that it exhibits nonlinear dependence on a nonparametric ingre-
dient. Importantly, although the precise results we obtain by accommodating slowly
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converging nonparametric estimators are somewhat specific to the estimator under
study, our main qualitative findings do not seem to be. Indeed, it should be conceptu-
ally straightforward to apply the methodology employed herein to other kernel-based
semiparametric m-estimators, but we have resisted the temptation to do so.
We obtain four types of results. First, under standard kernel and bandwidth

conditions we establish asymptotic linearity of our estimator and consistency of its
associated “plug-in”variance estimator under a weaker-than-usual moment condition
on the dependent variable. Indeed, the moment condition imposed would appear to be
(close to) minimal, suggesting that these results may be of independent theoretical
interest in the narrow context of weighted average derivatives. More broadly, the
results (and their derivation) may be of interest as they are achieved by judicial
choice of weighted average derivative estimator and by showing consistency of the
variance estimator by employing a new uniform law of large numbers specifically
designed with consistency proofs in mind.
Second, we establish asymptotic linearity of our weighted average derivative es-

timator under weaker-than-usual bandwidth conditions. In the narrow context of
weighted average derivatives, the relaxation of bandwidth conditions is of practical
usefulness because it permits the employment of kernels of lower-than-usual order
(and, relatedly, enables us to accommodate unknown functions of lower-than-usual
degree of smoothness). More generally, the derivation of these results may be of
interest because of its “generic”nature and because of its ability to deliver an im-
proved understanding of the distributional properties of semiparametric estimators
depending nonlinearly on a nonparametric component.
The derivation in question is based on a stochastic expansion retaining a “quadratic”

term treated as a “remainder” term in conventional derivations. Retaining the
“quadratic”term not only permits the relaxation of suffi cient (bandwidth) conditions
for asymptotic linearity, but also enables us to establish necessity of the suffi cient con-
ditions in some cases and (most importantly) characterize the consequences of further
relaxing the bandwidth conditions. Indeed, the third (and possibly most important)
type of result we obtain shows that in general the nonlinear dependence on a non-
parametric estimator gives rise to a nontrivial “bias”term in the stochastic expansion
of the semiparametric estimator. Being a manifestation of the well known curse of
dimensionality of nonparametric estimators, this “nonlinearity bias”is a generic fea-
ture of nonlinear functionals of nonparametric estimators whose presence can have
an important impact on distributional properties of such functionals.
Because the “nonlinearity bias” is due to the (large) variance of nonparametric

estimators, attempting to remove it by means of bias reduction methods aimed at
reducing “smoothing”bias (e.g., increasing the order of the kernel) will not necessarily
work. Nevertheless, it turns out that the “nonlinearity bias” admits a polynomial
(in the bandwidth) expansion, suggesting that it should be amenable to elimination
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by means of the method generalized jackknifing. Making this intuition precise is the
purpose of the final type of result presented herein. Once again, although some details
of the result in question are specific to our weighted average derivative estimator, the
main message of the result is of much more general validity. Indeed, an inspection
of the derivation of the result suggests that the fact that removal of “nonlinearity
bias”can be accomplished by means of generalized jackknifing is a property shared
by most (if not all) kernel-based semiparametric two-step estimators.
The list of papers related to this one includes Mammen (1989), Ichimura and

Linton (2005), and Cattaneo, Crump, and Jansson (2010). In perfect agreement with
Mammen (1989), “the aim of this article is not to show only that classical results
(...) hold under weaker conditions”. Moreover, although the estimator studied herein
differs in important ways from that considered in Mammen (1989), allowing the (ef-
fective) dimension of the parameter space to increase rapidly has bias consequences
analogous to those characterized in his Theorem 1.1 The “nonlinearity bias”we en-
counter is also analogous in source to the so-called “degrees of freedom bias”discussed
by Ichimura and Linton (2005), but due to the different nature of our asymptotic ex-
periment its presence has first-order consequences herein.2 Finally, the asymptotics
employed in this paper are similar to the “small bandwidth asymptotics”of Cattaneo,
Crump, and Jansson (2010), but precisely because of the presence of nonlinearities
the qualitative results of this paper have only limited overlap with those obtained in
our earlier work on density-weighted average derivative estimators.
The paper proceeds as follows. Section 2 introduces the model and estimator(s)

under study. Our main theoretical results are presented in Section 3, while some
Monte Carlo results are given in Section 4. Section 5 offers concluding remarks.
Appendix A contains proofs of the theoretical results, while Appendix B contains
some auxiliary results (of independent interest) about uniform convergence of kernel
estimators.

2. Preliminaries
Suppose zi = (yi, x

′
i)
′ (i = 1, . . . , n) are i.i.d. copies of a vector z = (y, x′)′ , where

y ∈ R is a dependent variable and x ∈ Rd is a continuous explanatory variable with
density f (·) . A weighted average derivative of the regression function g (x) = E (y|x)
is defined as

1In semiparametric parlance, the m-estimator of the linear regression model studied in Mammen
(1989) can be interpreted as a series estimator. Its bias is a “nonlinearity bias”which can be absent
from the OLS estimator even if the dimension of the regressor is proportional to the sample size
(e.g., Cattaneo, Jansson, and Newey (2011)).

2Non-negligible biases in models with covariates of large dimension (i.e., “curse of dimensionality”
effects of first order) were also found by Abadie and Imbens (2006), but in the case of their (matching)
estimator the bias in question does not seem to be attributable to nonlinearities.
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θ = E
[
w (x)

∂

∂x
g (x)

]
, (1)

where w (x) is a (known) scalar weight function. Newey and Stoker (1993) studied es-
timands of the form (1) and gave conditions under which the semiparametric variance
bound for θ is

Σ = E
[
ψ (z)ψ (z)′

]
, (2)

where ψ (·) , the pathwise derivative of θ, is given by

ψ (z) = w (x)
∂

∂x
g (x)− θ + [y − g (x)] s (x) ,

s (x) = − ∂

∂x
w (x) + w (x) ` (x) , ` (x) = −∂f (x) /∂x

f (x)
.

The following assumption, which we make throughout the paper, guarantees existence
of the parameter θ and semiparametrically effi cient estimators thereof.

Assumption 1. (a) For some S ≥ 2, E
(
|y|S
)
<∞ and E

(
|y|S |x

)
f (x) is bounded.

(b) E
[
ψ (z)ψ (z)′

]
is positive definite.

(c) w is continuously differentiable, and w and its first derivative are bounded.
(d) infx∈W f (x) > 0, where W =

{
x ∈ Rd : w (x) > 0

}
.

(e) For some Q ≥ 2, f is (Q+ 1) times differentiable, and f and its first (Q+ 1)
derivatives are bounded.
(f) g is continuously differentiable, and e and its first derivative are bounded,
where e (x) = f (x) g (x) .
(g) lim‖x‖→∞ [f (x) + |e (x)|] = 0, where ‖·‖ is the Euclidean norm.

The restrictions imposed by Assumption 1 are fairly standard and, with the possi-
ble exception of the “fixed trimming”condition (d), relatively mild. Under Assump-
tion 1 it follows from integration by parts that θ = E [ys (x)] . A kernel-based analog
estimator of θ is therefore given by

θ̂n (hn) =
1

n

n∑
i=1

yiŝn (xi;hn) , ŝn (x;hn) = − ∂

∂x
w (x)− w (x)

∂f̂n (x;hn) /∂x

f̂n (x;hn)
,

where
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f̂n (x;hn) =
1

nhdn

n∑
j=1

K

(
x− xj
hn

)
for some kernel K : Rd → R and some positive (bandwidth) sequence hn. As defined,
θ̂n depends on the user-chosen objects K and hn, but because our main interest is in
the sensitivity of the properties of θ̂n with respect to the bandwidth hn, we suppress
the dependence of θ̂n on K in the notation (and make the dependence on hn explicit).
The following assumption about the kernel K will be assumed to hold.

Assumption 2. (a) K is even.
(b) K is twice differentiable, and K and its first two derivatives are bounded.

(c)
∫
Rd

∥∥∥K̇ (u)
∥∥∥ (1 + ‖u‖2

)
du <∞, where K̇ (u) = ∂K (u) /∂u.

(d) For some P ≥ 2,
∫
Rd |K (u)|

(
1 + ‖u‖P+1

)
du <∞ and

∫
Rd
ul11 · · ·u

ld
d K (u) du =

 1, if l1 = · · · = ld = 0,

0, if (l1, . . . , ld)
′ ∈ ∪P−1k=1 Zd+ (k) ,

where Zd+ (k) =
{

(l1, . . . , ld)
′ ∈ Zd+ : l1 + . . .+ ld = k

}
.

(e)
∫
Rd K̄ (u) du <∞, where K̄ (u) = sup‖r‖≥u

∥∥∥∂ (K (r) , K̇ (r)′
)
/∂r
∥∥∥ .

With the possible exception of Assumption 2 (e), the restrictions imposed on the
kernel are fairly standard. Assumption 2 (e) is inspired by Hansen (2008) and holds if
K has bounded support or ifK is a normal density-based higher-order kernel obtained
as in Robinson (1988).
If Assumptions 1 and 2 hold (with P and Q large enough) it is easy to give

conditions on the bandwidth hn under which θ̂n is asymptotically linear with influence
function ψ (·) . For instance, proceeding as in Newey (1994a, 1994b) it can be shown
that if Assumptions 1 and 2 hold and if

nh2min(P,Q)n → 0 (3)

and

nh2d+4n

(log n)2
→∞, (4)

then
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θ̂n (hn) = θ + n−1
n∑
i=1

ψ (zi) + op
(
n−1/2

)
. (5)

Moreover, under the same conditions the variance Σ in (2) is consistently estimable.
Specifically, it follows from Theorem 4 below that

Σ̂n =
1

n

n∑
i=1

ψ̂n (zi) ψ̂n (zi)
′ →p Σ, (6)

where

ψ̂n (z) = ψ̂n (z;hn) = w (x)
∂

∂x
ĝn (x;hn)− θ̂n (hn) + [y − ĝn (x;hn)] ŝn (x;hn) ,

ĝn (x;hn) =
1

nhdn

n∑
j=1

yjK

(
x− xj
hn

)
/f̂n (x;hn) .

The lower bound on hn implied by the condition (4) helps ensure that the estima-
tion error of the nonparametric estimator f̂n is op

(
n−1/4

)
in an appropriate (Sobolev)

norm, which in turn is a high-level assumption featuring prominently in Newey’s
(1994a) work on asymptotic normality of semiparametric m-estimators (and in more
recent refinements thereof, such as Chen, Linton, and van Keilegom (2003)).
This paper explores the consequences of employing bandwidths that are “small”

in the sense that (4) is violated. Four types of results will be derived. The first
result, given in Theorem 1 below, gives suffi cient conditions for (5) that involve a
weaker lower bound on hn than (4) . For d ≥ 3, the weaker lower bound takes the
form nh2dn →∞. The second result, given in Theorem 2 below, shows that nh2dn →∞
is also necessary for (5) to hold (if d ≥ 3). More specifically, Theorem 2 finds that if
d ≥ 3, then θ̂n has a non-negligible bias when nh2dn 9 ∞. The third result, given in
Theorem 3 below, shows that while nh2dn → ∞ is necessary for asymptotic linearity
of θ̂n (when d ≥ 3), a bias-corrected version of θ̂n enjoys the property of asymptotic
linearity under the weaker condition

nh
3
2
d+1

n

(log n)3/2
→∞. (7)

Finally, Theorem 4 shows that a modest strengthening of Assumption 1 (a) is suffi -
cient to imply that the consistency result (6) holds also when the lower bound on the



Generalized Jackknife Estimators 8

bandwidth is given by (7) .

Remark. Newey and McFadden (1994, pp. 2212-2214) establish asymptotic lin-
earity of the estimator

θ̌n (hn) =
1

n

n∑
i=1

w (xi)
∂

∂x
ĝn (xi;hn)

under (3) − (4) and assumptions similar to Assumptions 1 and 2. Their analysis
requires S ≥ 4 in order to handle the presence of ĝn. The fact that θ̂n does not
involve ĝn enables us to develop distribution theory for it under the seemingly minimal
condition S = 2.

3. Results
Validity of the stochastic expansion (5) can be established by exhibiting an approxi-

mation θ̂
A

n (say) to θ̂n satisfying the following trio of conditions:

θ̂n (hn)− θ̂An = op
(
n−1/2

)
, (8)

θ̂
A

n − E
[
θ̂
A

n

]
= n−1

n∑
i=1

ψ (zi) + op
(
n−1/2

)
, (9)

E
[
θ̂
A

n

]
− θ = o

(
n−1/2

)
. (10)

Variations of this approach have been used in numerous papers, the typical choice
being to obtain θ̂

A

n by “linearizing” θ̂n with respect to the nonparametric estimator
f̂n and then establishing (8) by showing in particular that the estimation error of f̂n
is op

(
n−1/4

)
in a suitable norm.3

In the present case, “linearization”amounts to setting θ̂
A

n equal to

θ̂
∗
n (hn) = n−1

n∑
i=1

yiŝ
∗
n (xi;hn) ,

where
3Prominent examples include Newey (1994a, 1994b), Ai and Chen (2003), and Chen, Linton, and

van Keilegom (2003). See also Newey and McFadden (1994, Section 8), Ichimura and Todd (2007,
Section 7), and Chen (2007, Section 4).
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ŝ∗n (x;hn) = s (x)− w (x)

f (x)

[
∂

∂x
f̂n (x;hn) + ` (x) f̂n (x;hn)

]
is obtained by linearizing ŝn with respect to f̂n. With this choice of θ̂

A

n , conditions
(8) − (10) will hold if Assumptions 1 and 2 are satisfied and if (3) − (4) hold. In
particular, (4) serves as part of what would appear to be the best known suffi cient
condition for the estimation error of f̂n (and its derivative) to be op

(
n−1/4

)
, a property

which in turn is used to establish (8) when θ̂
A

n = θ̂
∗
n (hn) .

In an attempt to establish (8) under a bandwidth condition weaker than (4) , we

set θ̂
A

n equal to a “quadratic”approximation to θ̂n (hn) given by

θ̂
∗∗
n (hn) = n−1

n∑
i=1

yiŝ
∗∗
n (xi;hn) ,

where

ŝ∗∗n (x;hn) = ŝ∗n (x;hn) +
w (x)

f (x)2

[
f̂n (x;hn)− f (x)

] [ ∂
∂x
f̂n (x;hn) + ` (x) f̂n (x;hn)

]
.

The use of a quadratic approximation to θ̂n gives rise to a “cubic”remainder in (8) ,
suggesting that it suffi ces to require that the estimation error of f̂n (and its derivative)
be op

(
n−1/6

)
. In fact, the proof of the following result shows that the somewhat

special structure of the estimator (i.e., the fact that ŝn is linear in the derivative of
f̂n) can be exploited to establish suffi ciency of a slightly weaker condition.

Theorem 1. Suppose Assumptions 1 and 2 are satisfied and suppose (3) holds. Then
(5) is true if either (i) d = 1 and nh3n → ∞, (ii) d = 2 and nh4n/ (log n)3/2 → ∞, or
(iii) d ≥ 3 and nh2dn →∞.

The proof of Theorem 1 verifies (8) − (10) for θ̂
A

n = θ̂
∗∗
n (hn) . Because the lower

bounds on hn imposed in cases (i) through (iii) are weaker than (4) in all cases,
working with θ̂

∗∗
n when analyzing θ̂n has the advantage that it enables us to weaken

the suffi cient conditions for asymptotic linearity to hold on the part of θ̂n. Notably,
existence of a bandwidth sequence satisfying the assumptions of Theorem 1 holds
whenevermin (P,Q) > d, a weaker requirement than the restrictionmin (P,Q) > d+2
implied by the conventional conditions (3)− (4) . In other words, Theorem 1 justifies
the use of kernels of lower order (and requires less smoothness on the part of the

density f) than do analogous results obtained using θ̂
A

n = θ̂
∗
n (hn) . Moreover, working

with θ̂
∗∗
n enables us to derive necessary conditions for (5) in some cases.
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Theorem 2. Suppose Assumptions 1 and 2 are satisfied and suppose (3) and (7)
hold. Then

E
[
θ̂
∗∗
n (hn)

]
− θ = n−1h−dn B0 + o

(
n−1/2 + n−1h−dn

)
, (11)

where

B0 =

(
−K (0) Id +

∫
Rd

[
K (u)2 Id +K (u) K̇ (u)u′

]
du

)∫
Rd
g (r)w (r) ` (r) dr.

Moreover,

θ̂n (hn)− E
[
θ̂
∗∗
n (hn)

]
= n−1

n∑
i=1

ψ (zi) + op
(
n−1/2

)
if either (i) d = 1 and nh3n →∞ or (ii) d ≥ 2.

The first part of Theorem 2 is based on an asymptotic expansion of the approx-
imate bias E

[
θ̂
∗∗
n (hn)

]
− θ and shows that, in general, the condition nh2dn → ∞ is

necessary for (10) to hold when θ̂
A

n = θ̂
∗∗
n (hn) .4 The second part of Theorem 2 verifies

(8)− (9) for θ̂
A

n = θ̂
∗∗
n (hn) and can be combined with the first part to yield the result

that the suffi cient condition nh2dn →∞ obtained in Theorem 1 (iii) is also necessary
(in general) when d ≥ 3.
To interpret the matrix B0 in the (approximate) bias expression (11) , it is instruc-

tive to decompose it as B0= B∗0 + B∗∗0 , where

B∗0 = −K (0)

∫
Rd
g (r)w (r) ` (r) dr

and

B∗∗0 =

(∫
Rd

[
K (u)2 Id +K (u) K̇ (u)u′

]
du

)∫
Rd
g (r)w (r) ` (r) dr.

The term B∗0 is a “leave in” bias term arising because each ŝn (xi;hn) employs a
nonparametric estimator ŝn which uses the own observation xi. The other bias term,
B∗∗0 , is a “nonlinearity” bias term reflecting the fact that ŝ∗∗n involves a nonlinear

4We know of no “popular”kernels and/or “plausible”examples of g (·) , w (·) , and ` (·) for which
B0 = 0.
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function of f̂n. The magnitude of this nonlinearity bias is n−1h−dn . This magnitude is
exactly the magnitude of the pointwise variance of f̂n, which is no coincidence because
ŝ∗∗n involves a term which is “quadratic”in f̂n.5

The second part of Theorem 2 suggests that if d ≥ 3, then a bias corrected version
of θ̂n might be asymptotically linear even if the condition nh2dn →∞ is violated. The
leave in bias can be avoided simply by employing a “leave one out”estimator of f
when forming ŝn. Merely removing leave in bias does not automatically render θ̂n
asymptotically linear unless nh2dn →∞, however, as the nonlinearity bias of the leave
one out version of θ̂n is identical to that of θ̂n itself.6 Also, manipulating the order
of the kernel does not eliminate nonlinearity bias, as its magnitude is invariant with
respect to the order of the kernel.
On the other hand, it turns out that the method of generalized jackknifing (e.g.,

Schucany and Sommers (1977)) can be used to arrive at an estimator θ̃n (say) whose
(approximate) bias is suffi ciently small also when nh2dn 9 ∞. It can be shown that
if the assumptions of Theorem 2 hold, then the (approximate) bias E

[
θ̂
∗∗
n (hn)

]
− θ

admits a polynomial (in hn) expansion of the form

E
[
θ̂
∗∗
n (hn)

]
− θ = n−1h−dn B0 +

b(min(P,Q)−1)/2c∑
j=1

n−1h2j−dn B∗∗j + o
(
n−1/2

)
, (12)

where
{
B∗∗j : 1 ≤ j ≤ b(min (P,Q)− 1) /2c

}
are constants capturing (higher order)

nonlinearity bias. Accordingly, let J be a positive integer with J < 1 + d/2, let
c = (c0, . . . , cJ)′ be a vector of distinct constants with c0 = 1, and define

λ0 (c)
λ1 (c)
...

λJ (c)

 =


1 1 · · · 1
1 c−d1 · · · c−dJ
...

...
. . .

...
1 c

2(J−1)−d
1 · · · c

2(J−1)−d
J


−1

1
0
...
0

 .

It follows from (12) that if the assumptions of Theorem 2 hold and if J ≥ (d− 2) /8,
then

5The approximation ŝ∗∗n also involves a cross-product term in f̂n and its derivative. As shown
in the proof of Lemma 7 in the Appendix, that term also gives rise to a bias term of magnitude
n−1h−dn when K is even. (When K is not even, the magnitude is n−1h−d−1n .)

6For brevity and because the estimator was found to perform poorly in our Monte Carlo experi-
ments, we omit precise statements about the large-sample properties of average derivative estimators
based on a leave one out version of f̂n.
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J∑
j=0

λj (c)E
[
θ̂
∗∗
n (cjhn)

]
− θ = o

(
n−1/2

)
.

As a consequence, we have the following result about the (generalized jackknife)
estimator

θ̃n (hn, c) =

J∑
j=0

λj (c) θ̂n (cjhn) .

Theorem 3. Suppose Assumptions 1 and 2 are satisfied and suppose (3) and (7)
hold. If (d− 2) /8 ≤ J < 1 + d/2, then

θ̃n (hn, c) = θ + n−1
n∑
i=1

ψ (zi) + op
(
n−1/2

)
if either (i) d = 1 and nh3n →∞ or (ii) d ≥ 2.

Theorem 3 gives a simple recipe for constructing an estimator of θ which is semi-
parametrically effi cient under relatively mild restrictions on the rate at which the
bandwidth hn vanishes. Parts (ii) and (iii) of the following result establishes consis-
tency of the variance estimator Σ̂n under the same conditions on the bandwidth.

Theorem 4. Suppose Assumptions 1 and 2 are satisfied and suppose (3) and (7)
hold. Then (6) is true if either (i) S = 2 and nh2d+2n / (log n)2 → ∞, (ii) d = 1,
nh3n →∞, and S > 3, or (iii) S ≥ 3 + 2/d.

Part (i) of the theorem gives a condition (on hn) for consistency of Σ̂n under the
(seemingly) minimal moment requirement that S = 2, while parts (ii) and (iii) gives
conditions (on S) for consistency of Σ̂n to hold under the assumptions of Theorem 3.
The proof of Theorem 4 utilizes a (seemingly) novel uniform consistency result kernel
estimators (and their derivatives), given in Appendix B.7

Remarks. (i) An alternative, and perhaps more conventional, method of bias cor-
rection would employ (nonparametric) estimators of B0 and

{
B∗∗j
}
and subtract an

7It does not seem possible to establish part (i) using existing uniform consistency results for
kernel estimators, as we are unaware of any such results (for objects like ĝn) that require only
S = 2. For instance, a proof of (6) based on Newey (1994b, Lemma B.1) requires S > 4− 4/ (d+ 2)
when the lower bound on the bandwidth is of the form nh2d+2n / (log n)

2 → ∞. (When the lower
bound on the bandwidth is of the form (7) , Newey (1994b, Lemma B.1) can be applied if d ≥ 2 and
S > 6− 8/ (d+ 2).)
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estimator of E
[
θ̂
∗∗
n (hn)

]
− θ from θ̂n (hn) . In our view, generalized jackknifing is at-

tractive from a practical point of view precisely because there is no need to explicitly
(characterize and) estimate complicated functionals such as B0 and

{
B∗∗j
}
.

(ii) Our results demonstrate by example that a more nuanced understanding of
the bias properties of θ̂n can be achieved by working with a “quadratic”(as opposed
to “linear”) approximation to it. It is conceptually straightforward to go further and
work with a “cubic” approximation (say) to θ̂n. Doing so would enable a further
relaxation of the bandwidth condition at the expense of a more complicated “bias”
expression, but would not alter the fact that generalized jackknifing could be used to
eliminate also the bias terms that become non-negligible under the relaxed bandwidth
conditions. The simulation evidence presented in the next section indicates that
eliminating the biases characterized in (12) suffi ces for the purposes of rendering the
bias of the estimator negligible relative to its standard deviation in many cases, so
for brevity we omit results based on a “cubic”approximation to θ̂n.

4. Simulations
We conducted a Monte Carlo experiment to investigate the finite-sample properties
of our procedure. In particular, we focus our attention on the finite-sample bias
properties of the estimators we have discussed along with the corresponding effect of
this bias on inference.

4.1. Setup. The model is the Tobit model

yi = ỹi · 1 {ỹi ≥ 0} , ỹi = x′iβ + εi,

so that θ = β · E [w (x) Φ (x′β)] , where Φ (·) is the standard normal cdf. We assume
that εi ∼ i.i.d. N (0, 1) and are independent of the covariates. The dimension of the
covariates, d, is set equal to three and all three components of β are set to unity. The
vector of covariates is generated as xi ∼ i.i.d. N (0, I3) . For simplicity, only results
for the first component of θ = (θ1, θ2, θ3)

′ are reported.
The number of simulations is set to S = 1, 000, and we consider samples of size

n = 200.8 We report results implemented by Gaussian density-based multiplicative
kernels with P = 4.9 As for the choice of weight function, we use

8Qualitatively similar results were obtained for n = 500. These have been omitted to conserve
space.

9Multiplicative kernels are discussed in Nishiyama and Robinson (2000, pp. 934-944). Note that
since d = 3, a choice of P = 4 would not be available under the conventional conditions (3)− (4) .
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w (x; γ, κ) =
d∏
j=1

exp

[
−

x2κj

τ (γ)2κ
(
τ (γ)2κ − x2κj

)] 1 {|xj| < τ (γ)} .

The parameter κ governs the degree of approximation between w (·) and the rec-
tangular function, the approximation becoming more precise as κ grows. (Being
discontinuous, w (·) violates Assumption 1(c), so strictly speaking our theory does
not cover the chosen weight function.) For specificity, we set κ = 2. Keeping in mind
that the covariates are jointly standard normal, the trimming parameter τ (γ) is given
by

τ (γ) = Φ−1
(

1− 1− d
√

1− γ
2

)
,

where γ is the (symmetric) nominal amount of trimming (i.e., γ = 0.15 implies a
nominal trimming of 15% of the observations). In these simulations we choose a
value of γ equal to γ = 0.15. Finally, when implementing the generalized jackknife
estimator we consider pairs of constants of the form, (c1, c2) = (exp (−δ) , exp (δ))
where δ ∈ {0.05, 0.10}; however, it should be noted that the qualitative conclusions
are little changed for other choices of jackknife constants. Finally, in the follow-
ing, the estimator θ̂n (hn) will be referred to as the “conventional”estimator whereas
the generalized jackknife estimator θ̃n (hn, c) will be referred to as the “jackknife”
estimator.

4.2. Results. In Figure 1 we present results for the empirical coverage rates of
the conventional estimator as compared to the jackknife estimator. The nominal size
is 0.95%. Unfortunately, neither the conventional nor the jackknife estimator succeeds
in achieving empirical coverage rates near the nominal rate. In an attempt to pinpoint
the source(s) of the unsatisfactory empirical coverage rates, Figure 2 presents graphs
of the standardized bias of each estimator while Figure 3 illustrates the quality of the
normal approximation to the distribution of the t-statistic.

FIGURES 1-3 ABOUT HERE

The standardized bias reported in Figure 2 is defined as the bias divided by the
standard deviation of the estimator across all S simulations, where the purpose of
the rescaling is to improve the interpretability of the bias results. Specifically, the
purpose of rescaling the bias by the (simulation) standard deviation of the estimator
is to ensure that the severity (or otherwise) of bias problems can be gauged simply by
looking at the graph and utilizing well known facts about the standard normal distri-
bution used for approximation purposes when constructing the confidence intervals.
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Consistent with our theory, the conventional estimator is severely biased whereas
there is a region of (small) bandwidths for which the jackknife estimator has negligi-
ble (normalized) bias. In other words, the simulations suggest that the unsatisfactory
coverage rates associated with the conventional estimator can be attributed (partly)
to its bias, implying that there is a clear need for bias correction of the conventional
estimator. On the other hand, jackknifing seems to successfully eliminate this bias
for a range of bandwidth values, implying that the poor coverage rates associated
with this estimator are likely to be due to non-normality and/or imprecision of the
variance estimator.
To further investigate that issue, our focus in Figure 3 is on the quality of the nor-

mal approximation to the distribution of the t-statistic. Here we estimate a smoothed
density of the t-statistic which has been normalized by its (simulation) standard de-
viation so that the variance is one. In each figure, we estimate this density at the
maximum coverage rate for each estimator. For example, for a sample size of n = 200
the t-statistic density is estimated using the a choice of bandwidth of hn = 0.275 and
hn = 0.85 for the jackknife (δ = 0.05) and conventional estimator, respectively. Both
figures suggest that the densities are well-approximated by the normal distribution.
Moreover, and consistent with the evidence presented in Figure 2 the estimated den-
sity for the normalized t-statistic based on the jackknife estimator is approximately
centered correctly but this is not the case for the conventional estimator.
Based on the results in Figures 2 and 3 we are led to conclude that the failure of

the jackknife procedure to achieve approximately correct coverage rates in Figure 1
is due to the poor performance of its variance estimator.10 Further investigation into
alternative variance estimation procedures, although beyond the scope of this paper,
therefore seems worthwhile.

5. Conclusion
This paper has revisited the large-sample properties of a kernel-based weighted av-
erage derivative estimator. In important respects this estimator can be viewed as
a representative member of the much larger class of (kernel-based) semiparamet-
ric m-estimators. In particular, the “nonlinearity bias” highlighted by our devel-
opment of asymptotics with smaller-than-usual bandwidths (i.e., larger-than-usual
undersmoothing) is a generic feature of nonlinear functionals of nonparametric esti-
mators and is likely to be quantitatively important in samples of moderate size also
for estimators other than the one studied in this paper.
To remove this “nonlinearity bias”, we have employed the method of generalized

jackknifing. Being “semi-automatic”in the sense that it requires knowledge only of
the magnitudes of the terms in an asymptotic expansion of the “nonlinearity bias”,

10In the case of the conventional procedure, both the bias properties and the performance of the
variance estimator seem to be at fault for the disappointing empirical coverage rates.
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that same method should be easily applicable whenever the nonparametric ingredient
is a kernel estimator, as the variance properties of kernel estimators are very well
understood. Partly because certain popular nonparametric estimators (notably series
estimators) have variance properties that seem harder to analyze than those of kernel
estimators, it would be useful to know if the validity of certain “fully automatic”bias
correction methods and/or distributional approximations can be established under
assumptions similar to those entertained in this paper. Although it is beyond the
scope of this paper to do so, it would seem particularly interesting to obtain an
improved understanding of the bootstrap distribution estimator, as its validity for a
seemingly related problem has been demonstrated by Mammen (1989).
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6. Appendix A: Proofs
6.1. Useful lemmas. The proofs of Theorems 1-3 are based on three lemmas.
The first of these gives suffi cient conditions for (8) in terms of the magnitudes of

∆0,n (hn) = supx∈W

∣∣∣f̂n (x;hn)− f (x)
∣∣∣

and

∆1,n (hn) = max

[
∆0,n (hn) , supx∈W

∥∥∥∥ ∂∂xf̂n (x;hn)− ∂

∂x
f (x)

∥∥∥∥] .
Lemma 5. Suppose Assumption 1 is satisfied and suppose ∆0,n (hn) = op (1) . Then

(8) is true if either (i) θ̂
A

n = θ̂
∗∗
n (hn) and ∆0,n (hn)2 ∆1,n (hn) = op

(
n−1/2

)
or (ii)

θ̂
A

n = θ̂
∗
n (hn) and ∆0,n (hn) ∆1,n (hn) = op

(
n−1/2

)
.

The next result gives suffi cient conditions for (9) .

Lemma 6. Suppose Assumptions 1 and 2 are satisfied and suppose hn → 0 and
nhd+2n →∞. Then (9) is true for θ̂

A

n = θ̂
∗∗
n (hn) and θ̂

A

n = θ̂
∗
n (hn) .

Finally, the following result can be used to evaluate E
[
θ̂
A

n (hn)
]
− θ.

Lemma 7. Suppose Assumptions 1 and 2 are satisfied and suppose hn → 0. Then

E
[
θ̂
∗
n (hn)

]
− θ = n−1h−dB∗0 +O

(
hP∧Qn

)
,

and

E
[
θ̂
∗∗
n (hn)− θ̂∗n (hn)

]
=

b(P∧Q−1)/2c∑
j=0

n−1h2j−dn B∗∗j +O
(
n−1hP∧Q−dn + n−2h−2dn + h2(P∧Q)n

)
,

where P ∧Q = min (P,Q) and, for j ≥ 1,

B∗∗j =
1

(2j)!

∑
l∈Zd+(2j)

BK (l)Bz (l) +
1

(2j + 1)!

∑
l∈Zd+(2j+1)

ḂK (l) Ḃz (l) ,

BK (l) =

∫
Rd
ul11 · · ·u

ld
d K (u)2 du, Bz (l) =

∫
Rd
g (r)

w (r)

f (r)
` (r)

∂j

∂rl11 · · · ∂r
ld
d

f (r) dr,

ḂK (l) =

∫
Rd
ul11 · · ·u

ld
d K (u) K̇ (u) du, Ḃz (l) = −

∫
Rd
g (r)

w (r)

f (r)

∂j

∂rl11 · · · ∂r
ld
d

f (r) dr.
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Proof of Lemma 5. Expanding ŝn (x;hn) around s (x) , we have

ŝn (x;hn) = ŝ∗∗ (x;hn)− w (x)

f (x)2 f̂n (x;hn)
δn (x;hn)2

[
δ̇n (x;hn) + ` (x) δn (x;hn)

]
,

where

δn (x;hn) = f̂n (x;hn)− f (x) , δ̇n (x;hn) =
∂

∂x
f̂n (x;hn)− ∂

∂x
f (x) .

Because ∆0,n (hn) = op (1) it follows from a simple bounding argument that for
any ε > 0 there exists a constant Cε such that, for n suffi ciently large,

supx∈W ‖ŝn (x;hn)− ŝ∗∗ (x;hn)‖ ≤ Cε∆0,n (hn)2 ∆1,n (hn) (13)

with probability no less than 1−ε. If (13) holds and∆0,n (hn)2 ∆1,n (hn) = op
(
n−1/2

)
,

then

∥∥∥θ̂n (hn)− θ̂∗∗n (hn)
∥∥∥ ≤ Cε

(
n−1

n∑
i=1

|yi|
)

∆0,n (hn)2 ∆1,n (hn) = op
(
n−1/2

)
,

where the equality uses E (|y|) <∞. This establishes (8) in case (i).
Next, suppose ∆0,n (hn) ∆1,n (hn) = op

(
n−1/2

)
. Then, by the triangle inequality

and the result for case (i),

∥∥∥θ̂n (hn)− θ̂∗n (hn)
∥∥∥ ≤ ∥∥∥θ̂n (hn)− θ̂∗∗n (hn)

∥∥∥+
∥∥∥θ̂∗∗n (hn)− θ̂∗n (hn)

∥∥∥
=

∥∥∥θ̂∗∗n (hn)− θ̂∗n (hn)
∥∥∥+ op

(
n−1/2

)
,

so validity of (8) in case (ii) follows from the fact that

∥∥∥θ̂∗∗n (hn)− θ̂∗n (hn)
∥∥∥ ≤ C

(
n−1

n∑
i=1

|yi|
)

∆0,n (hn) ∆1,n (hn) = op
(
n−1/2

)
,

where the inequality uses the elementary bound
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supx∈W ‖ŝ∗∗n (x;hn)− ŝ∗ (x;hn)‖ ≤ C∆0,n (hn) ∆1,n (hn) ,

in which

C = supx∈W

[
|w (x)|
f (x)2

(1 + |` (x)|)
]
<∞. �

The proofs of lemmas 6 and 7 utilize some basic results about kernels collected in
the following lemma. Let K (x;h) = h−dK (x/h) and K̇ (x;h) = ∂K (x;h) /∂x.

Lemma 8. Suppose Assumptions 1 and 2 are satisfied and suppose hn → 0. Then

(a) Uniformly in x ∈ W ,

b (x;hn) =

∫
Rd
K (x− r;hn) f (r) dr − f (x) = O

(
hP∧Qn

)
,

ḃ (x;hn) =

∫
Rd
K̇ (x− r;hn) f (r) dr − ∂f (x) /∂x = O

(
hP∧Qn

)
.

(b) For any function F with E
[
F (z)2

]
<∞,

E
[
F (z1)

2K (x1 − x2;hn)2
]

= O
(
h−dn
)
,

E
[
F (z1)

2
∥∥∥K̇ (x1 − x2;hn)

∥∥∥2] = O
(
h−(d+2)n

)
.

(c) For any function F with E
[
F (z)2

]
<∞,

E
[
F (z1)

2K (x1 − x2;hn)2K (x1 − x3;hn)2
]

= O
(
h−2dn

)
,

E
[
F (z1)

2K (x1 − x2;hn)2
∥∥∥K̇ (x1 − x3;hn)

∥∥∥2] = O
(
h−2(d+1)n

)
.

Proof of Lemma 8. Part (a) is a standard result on the bias of kernel estimators
(e.g., Newey (1994b, Lemma B.2)), while parts (b) and (c) follow from change of
variables and simple bounding arguments. For instance,
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E
[
F (z1)

2K (x1 − x2;hn)2
∥∥∥K̇ (x1 − x3;hn)

∥∥∥2]
= E

[∫
Rd

∫
Rd
F (z1)

2K (x1 − s;hn)2
∥∥∥K̇ (x1 − t;hn)

∥∥∥2 f (s) f (t) dtds

]
= h−2(d+1)n E

[∫
Rd

∫
Rd
F (z1)

2K (u)2
∥∥∥K̇ (v)

∥∥∥2 f (x1 − uhn) f (x1 − vhn) dvdu

]
≤ h−2(d+1)n C2fE

[
F (z)2

] ∫
Rd
K (u)2 du

∫
Rd

∥∥∥K̇ (v)
∥∥∥2 dv = O

(
h−2(d+1)n

)
,

where Cf = supx∈Rd f (x) . �

Proof of Lemma 6. Defining

V µ
i = Vi − E (Vi) = yis (xi)− θ, Vi = yis (xi) ,

V µ
ij (h) = Vij (h)−E [Vij (h)] , Vij (h) = −yi

w (xi)

f (xi)

[
K̇ (xi − xj;h) + ` (xi)K (xi − xj;h)

]
,

we have the decomposition

θ̂
∗
n (h) = n−1

n∑
i=1

Vi + n−2
n∑
i=1

n∑
j=1

Vij (h)

= E
[
θ̂
∗
n (h)

]
+ n−1

n∑
i=1

V µ
i + n−2

n−1∑
i=1

n∑
j=i+1

[
V µ
ij (h) + V µ

ji (h)
]

+ n−2
n∑
i=1

V µ
ii (h) ,

where n−2
∑n

i=1 V
µ
ii (hn) = op

(
n−1/2

)
because

V

[
n−2

n∑
i=1

V µ
ii (hn)

]
= n−3V [V11 (hn)] = n−1

(
nhdn

)−2
K (0)2V

[
y
w (x)

f (x)
` (x)

]
= o

(
n−1
)
.

The proof for θ̂
A

n = θ̂
∗
n (hn) will be completed by showing that
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n−1
n−1∑
i=1

n∑
j=i+1

[
V µ
ij (hn) + V µ

ji (hn)
]

= n−1
n∑
i=1

ϕ (zi) + op
(
n−1/2

)
,

where

ϕ (z) = ψ (z)− [ys (x)− θ] =
∂

∂x
[w (x) g (x)]− w (x) g (x) ` (x) .

To do so, let Ei denote conditional expectation given zi and for any positive se-
quence {rn} , letXn = O2 (rn) andXn = o2 (rn) be shorthand for limn→∞E (X2

n) /r2n <
∞ and limn→∞ E (X2

n) /r2n = 0, respectively.
Because hn → 0 and nhd+2n →∞,

Vij (hn) = −yi
w (xi)

f (xi)

[
K̇ (xi − xj;hn) + ` (xi)K (xi − xj;hn)

]
= O2

(
h−(d+2)/2n

)
= o2

(√
n
)
,

where the second equality uses Lemma 8 (b). Therefore, by the projection theorem
for variable U -statistics (e.g., Powell, Stock, and Stoker (1989, Lemma 3.1)),

n−2
n−1∑
i=1

n∑
j=i+1

[
V µ
ij (hn) + V µ

ji (hn)
]

= n−1
n∑
i=1

Ei
[
V µ
ij (hn) + V µ

ji (hn)
]

+ op
(
n−1/2

)
,

where, by Lemma 8 (a),

EiVij (hn) = −yi
w (xi)

f (xi)

[
ḃ (xi;hn) + ` (xi) b (xi;hn)

]
= O2

(
hPn
)

= o2 (1)

and, using integration by parts and change of variables,
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EiVji (hn) = −
∫
Rd
g (r)w (r)

[
K̇ (r − xi;hn) + ` (r)K (r − xi;hn)

]
dr

=

∫
Rd

(
∂

∂r
[g (r)w (r)]

)
K (r − xi;hn) dr −

∫
Rd
g (r)w (r) ` (r)K (r − xi;hn) dr

=

∫
Rd

∂

∂x
[g (xi + thn)w (xi + thn)]K (t) dt

−
∫
Rd
g (xi + thn)w (xi + thn) ` (xi + thn)K (t) dt

= ϕ (zi) + o2 (1) .

Using these results and the fact that E [ϕ (z)] = 0 it is easy to show that

n−1
n∑
i=1

Ei
[
V µ
ij (hn) + V µ

ji (hn)
]

= n−1
n∑
i=1

ϕ (zi) + op
(
n−1/2

)
,

completing the proof for θ̂
A

n = θ̂
∗
n (hn) .

Finally, having established the result for θ̂
A

n = θ̂
∗
n (hn) the result for θ̂

A

n = θ̂
∗∗
n (hn)

will follow if it can be shown that V
[
θ̂
∗∗
n (hn)− θ̂∗n (hn)

]
= o (n−1) . To do so, we

employ the decomposition

θ̂
∗∗
n (h)− θ̂∗n (h) = n−3

n∑
i=1

n∑
j1=1

n∑
j2=1

Vij1j2 (h)

= E
[
θ̂
∗∗
n (h)− θ̂∗n (h)

]
+ n−3

n∑
i=1

n∑
j1=1

n∑
j2=1

V µ
ij1j2

(h) ,

where V µ
ij1j2

(h) = Vij1j2 (h)− E [Vij1j2 (h)] and

Vij1j2 (h) = yi
w (xi)

f (xi)
2 [K (xi − xj1 ;h)− f (xi)]

[
K̇ (xi − xj2 ;h) + ` (xi)K (xi − xj2 ;h)

]
.

The Hoeffding decomposition yields
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V

[
n∑
i=1

n∑
j1=1

n∑
j2=1

V µ
ij1j2

(h)

]
=

3∑
p=1

(
n
p

)
V

[
n∑
i=1

n∑
j1=1

n∑
j2=1

Hij1j2 (p;h)

]
,

where

Hij1j2 (1;h) = E1 [Vij1j2 (h)]− E [Vij1j2 (h)] ,

Hij1j2 (2;h) = E1,2 [Vij1j2 (h)]− E1 [Vij1j2 (h)]− E2 [Vij1j2 (h)] + E [Vij1j2 (h)] ,

Hij1j2 (3;h) = E1,2,3 [Vij1j2 (h)]− E1,2 [Vij1j2 (h)]− E1,3 [Vij1j2 (h)]− E2,3 [Vij1j2 (h)]

+E1 [Vij1j2 (h)] + E2 [Vij1j2 (h)] + E3 [Vij1j2 (h)]− E [Vij1j2 (h)] ,

with E1,2,3 [Vij1j2 (h)] = E [Vij1j2 (h) |z1, z2, z3] , E2,3 [Vij1j2 (h)] = E [Vij1j2 (h) |z2, z3] ,
and so on. It therefore suffi ces to show that

V

[
n∑
i=1

n∑
j1=1

n∑
j2=1

Hij1j2 (p;hn)

]
= o

(
n5−p

)
, p ∈ {1, 2, 3} . (14)

The proof of (14) for p = 1 will be based on the relation

V

[
n∑
i=1

n∑
j1=1

n∑
j2=1

Hij1j2 (1;h)

]
= V [Hn (1;h)] ,

where

Hn (1;h) = H111 (1;h) + (n− 1) [H112 (1;h) +H121 (1;h) +H211 (1;h)]

+ (n− 1) [H122 (1;h) +H212 (1;h) +H221 (1;h)]

+ (n− 1) (n− 2) [H123 (1;h) +H213 (1;h) +H231 (1;h)] .

Because V [Hijk (1;h)] ≤ V (E1 [Vijk (h)]) for each (i, j, k) , the result V [Hn (1;hn)] =
o (n4) can be established by means of polynomial (in n) bound on the second moment
of each E1 [Vijk (hn)] .
First,
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E1 [V111 (hn)] = y1
w (x1)

f (x1)
2 [K (0;hn)− f (x1)] ` (x1)K (0;hn)

= h−2dn K (0)2 y1
w (x1)

f (x1)
2 ` (x1)− h−dn K (0) y1

w (x1)

f (x1)
2f (x1) ` (x1)

= O2
(
h−2dn

)
= o2

(
n4
)
.

Next, using Lemma 8 (a), change of variables, and simple bounding arguments,

E1 [V112 (hn)] = y1
w (x1)

f (x1)
2K (0;hn)

∫
Rd

[
K̇ (x1 − s;hn) + ` (x1)K (x1 − s;hn)

]
f (s) ds

−y1
w (x1)

f (x1)
2f (x1)

∫
Rd

[
K̇ (x1 − s;hn) + ` (x1)K (x1 − s;hn)

]
f (s) ds

= y1
w (x1)

f (x1)
2

[
h−dn K (0)− f (x1)

] [
ḃ (x1;hn) + ` (x1) b (x1;hn)

]
= O2

(
hP∧Q−dn

)
= o2

(
n2
)
.

Similarly, it can be shown that

E1 [V121 (hn)] = O2
(
hP∧Q−dn

)
= o2

(
n2
)
, E1 [V211 (hn)] = O2

(
h−(d+1)n

)
= o2

(
n2
)
,

E1 [V122 (hn)] = O2
(
h−(d+1)n

)
= o2

(
n2
)
, E1 [V212 (hn)] = O2

(
h−dn
)

= o2
(
n2
)
,

E1 [V221 (hn)] = O2
(
h−(d+1)n

)
= o2

(
n2
)
, E1 [V123 (hn)] = O2

(
h2(P∧Q)n

)
= o2 (1) ,

and

E1 [V213 (hn)] = O2
(
hP∧Qn

)
= o2 (1) , E1 [V231 (hn)] = O2

(
hP∧Q−1n

)
= o2 (1) ,

from which (14) follows for p = 1.
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The proofs of (14) are very similar for p = 2 and p = 3, so we give only the proof
for p = 3, which is based on the relation

V

[
n∑
i=1

n∑
j1=1

n∑
j2=1

Hij1j2 (3;h)

]
= V [H (3;h)] ,

where

H (3;h) = H123 (3;h) +H132 (3;h) +H213 (3;h) +H231 (3;h) +H312 (3;h) +H321 (3;h)

and V [Hijk (3;h)] ≤ V (E1,2,3 [Vijk (h)]) for each (i, j, k) .
Using Lemma 8 (c),

E1,2,3 [V123 (hn)] = V123 (hn)

= y1
w (x1)

f (x1)
2 [K (x1 − x2;hn)− f (x1)]

[
K̇ (x1 − x3;hn) + ` (x1)K (x1 − x3;hn)

]
= O2

(
h−(d+1)n

)
= o

(
n2
)
.

The result V [Hn (3;hn)] = o (n2) follows from this and the fact that V123 (3;h) ,
V132 (3;h) , V213 (3;h) , V231 (3;h) , H312 (3;h) , and V321 (3;h) are identically distributed. �

Proof of Lemma 7. Using the same notation as in the proof of Lemma 6, we
have

E
[
θ̂
∗
n (h)

]
= n−1

n∑
i=1

E (Vi) + n−2
n∑
i=1

n∑
j=1

E [Vij (h)]

= E (V1) + n−1E [V11 (h)] +
(
1− n−1

)
E [V12 (h)] ,

where E (V1) = θ, E [V11 (h)] = h−dB∗0, and, using Lemma 8 (a),

E [V12 (hn)] = −
∫
Rd
g (r)w (r)

[
ḃ (r;hn) + ` (r) b (r;hn)

]
dr = O

(
hP∧Qn

)
.
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Next,

E
[
θ̂
∗∗
n (hn)− θ̂∗n (hn)

]
= n−3

n∑
i=1

n∑
j1=1

n∑
j2=1

E [Vij1j2 (hn)]

= n−2E [V111 (hn)] + n−1
(
1− n−1

)
(E [V112 (hn)] + E [V121 (hn)])

+n−1
(
1− n−1

)
E [V122 (hn)] +

(
1− n−1

) (
1− 2n−1

)
E [V123 (hn)]

= n−1
(
1− n−1

)
E [V122 (hn)] +O

(
n−1hP∧Q−dn + n−2h−2dn + h2(P∧Q)n

)
because it follows from Lemma 8 (a) and simple bounding arguments that

E [V111 (hn)] = O
(
h−2dn

)
, E [V112 (hn)] = O

(
hP∧Q−dn

)
,

and

E [V121 (hn)] = O
(
hP∧Q−dn

)
, E [V123 (hn)] = O

(
h2(P∧Q)n

)
.

Moreover,

E [V122 (hn)] =

∫
Rd

∫
Rd
g (r)

w (r)

f (r)2
K (r − s;hn) K̇ (r − s;hn) f (r) f (s) dsdr

+

∫
Rd

∫
Rd
g (r)

w (r)

f (r)2
` (r)K (r − s;hn)2 f (r) f (s) dsdr

−
∫
Rd

∫
Rd
g (r)

w (r)

f (r)

[
K̇ (r − s;hn) + ` (r)K (r − s;hn)

]
f (r) f (s) dsdr

= h−(d+1)n

∫
Rd
g (r)

w (r)

f (r)

[∫
Rd
K (t) K̇ (t) f (r − thn) dt

]
dr

+h−dn

∫
Rd
g (r)

w (r)

f (r)
` (r)

[∫
Rd
K (t)2 f (r − thn) dt

]
dr +O

(
hP∧Qn

)
,

where Taylor’s theorem can be used to show that
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∫
Rd
g (r)

w (r)

f (r)

[∫
Rd
K (t) K̇ (t) f (r − thn) dt

]
dr =

P∧Q∑
j=0

Ḃjh
j
n +O

(
hP∧Q+1n

)
,

∫
Rd
g (r)

w (r)

f (r)
` (r)

[∫
Rd
K (t)2 f (r − thn) dt

]
dr =

P∧Q∑
j=0

Bjh
j
n +O

(
hP∧Q+1n

)
,

Ḃj =
(−1)j+1

j!

∑
l∈Zd+(j)

ḂK (l) Ḃz (l) , Bj =
(−1)j

j!

∑
l∈Zd+(j)

BK (l)Bz (l) .

Because K is even, BK (l) = 0 whenever l ∈ Zd+ (j) for j odd and ḂK (l) = 0
whenever l ∈ Zd+ (j) for j even. As a consequence,

E [V122 (hn)] = h−(d+1)n

P∧Q∑
j=0

Ḃjh
j
n + h−dn

P∧Q∑
j=0

Bjh
j
n +O

(
hP∧Q−dn + hP∧Qn

)

=

b(P∧Q−1)/2c∑
j=0

h2j−dn B∗∗j +O
(
hP∧Q−dn + hP∧Qn

)
,

where B∗∗j = B2j + Ḃ2j+1. �

6.2. Proof of Theorems 1-3. Under the assumptions of the theorems, (8)− (9)

hold for θ̂
A

n = θ̂
∗∗
n (hn) . Validity of (9) follows from Lemma 6, while (8) follows from

Lemma 5 because it can be shown that

supx∈W

∣∣∣f̂n (x;hn)− f (x)
∣∣∣ = Op

(
hP∧Qn +

√
log n

nhdn

)
(15)

and

supx∈W

∥∥∥∥ ∂∂xf̂n (x;hn)− ∂

∂x
f (x)

∥∥∥∥ = Op

(
hP∧Qn +

√
log n

nhd+2n

)
. (16)

Specifically, (15) holds because supx∈W

∣∣∣E [f̂n (x;hn)
]
− f (x)

∣∣∣ = O
(
hP∧Qn

)
by Lemma

8 (a) and because
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supx∈W

∣∣∣f̂n (x;hn)− E
[
f̂n (x;hn)

]∣∣∣ = Op

(√
log n

nhdn

)

by Lemma B.1 with (Y,X) = (1, x) , κ = K, and Xn = W . Similarly, (16) can be
shown by applying Lemma 8 (a) and Lemma B.1 (with κ (u) = hn∂K (u) /∂ul for
l = 1, . . . , d).
Theorem 1 is a special case of Theorem 2. To complete the proof of Theorem 2,

use Lemma 7 to verify (10) . Similarly, the proof of Theorem 3 can be completed by
using Lemma 7 to verify (12) . �

6.3. Proof of Theorem 4. It suffi ces to show that

1

n

n∑
i=1

∥∥∥ψ̂n (zi)− ψ (zi)
∥∥∥2 = op (1) .

To do so, it suffi ces to show that

θ̂n (hn)− θ = op (1) , (17)

supx∈W ‖ŝn (x;hn)− s (x)‖ = op (1) , (18)

supx∈W ‖ĝn (x;hn)− g (x)‖ = op (1) , (19)

supx∈W

∥∥∥∥ ∂∂xĝn (x;hn)− ∂

∂x
g (x)

∥∥∥∥ = op (1) , (20)

It follows from Theorem 2 and its proof that (17)− (18) hold. Also, Lemma B.1
(with (Y,X) = (y, x) , s = S, κ = K, and Xn = W) and routine arguments can be
used to show that if Assumptions 1 and 2 are satisfied and if (3) and (7) hold, then
(19) will be implied by n1−1/Shdn/ log n→∞. Similarly, (20) can be established under
the condition n1−1/Shd+1n / log n→∞. The latter holds if condition (i), (ii), or (iii) in
the statement of the theorem is satisfied. �
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7. Appendix B: Uniform Convergence Rates for Kernel Estimators
This Appendix derives uniform convergence rates for kernel estimators. Lemma B.1
is used in the proofs of the main results of this paper. Because this result may be of
independent interest, it is stated at a (slightly) greater level of generality than needed
in the proofs of the other results in this paper.
Suppose (Yi, X

′
i)
′ (i = 1, . . . , n) are i.i.d. copies of (Y,X ′)′ , where X ∈ Rd is

continuous with density fX (·) . Consider the nonparametric estimator

Ψ̂n (x) = n−1h−dn

n∑
j=1

Yjκ

(
x−Xj

hn

)
,

where hn is a bandwidth sequence and κ : Rd → R is a kernel-like function. To obtain
uniform convergence rates for Ψ̂n, we make the following assumptions.

Assumption B1. For some s ≥ 2, E (|Y |s) + supx∈Rd E (|Y |s |X = x) fX (x) <∞.

Assumption B2. (a) supu∈Rd |κ (u)|+
∫
Rd |κ (u)| du <∞.

(b) κ admits a δκ > 0 and a function κ∗ : Rd → R+ with

supu∈Rd κ
∗ (u) +

∫
Rd
κ∗ (u) du <∞

such that |κ (u)− κ (u∗)| ≤ ‖u− u∗‖κ∗ (u∗) whenever ‖u− u∗‖ ≤ δκ.

Remark. Assumption B2 (b) is adapted from Hansen (2008). It holds if κ is differ-
entiable with κ̄ (0) +

∫
Rd κ̄ (u) du <∞, where κ̄ (u) = sup‖r‖≥u ‖∂κ (r) /∂r‖ .

The first result gives an upper bound on the convergence rate of Ψ̂n on (possibly)
expanding sets of the form Xn =

{
x ∈ Rd : ‖x‖ ≤ CX,n

}
, where CX,n is a positive

sequence satisfying

limn→∞
log (CX,n)

log n
<∞. (21)

Lemma B.1. Suppose Assumptions B1 and B2 are satisfied and suppose (21) holds.
If hn → 0 and n1−1/shdn/ log n→∞, then

supx∈Xn

∣∣∣Ψ̂n (x)−Ψn (x)
∣∣∣ = Op (ρn) , ρn =

√
log n

nhdn
max

(
1,

√
log n

n1−2/shdn

)
,

where Ψn (x) = E
[
Ψ̂n (x)

]
.
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Remark. The natural “s = ∞”analog of Lemma B.1 holds if Y is bounded (e.g.,
if Y ≡ 1, as in the case of density estimation). In other words, the lower bound
nhdn/ log n→∞ suffi ces and ρn can be set equal to

√
log n/ (nhdn) when Y is bounded.

Lemma B.1 generalizes Newey (1994b, Lemma B.1) in a couple of respects. First,
by borrowing ideas from Hansen (2008) we are able to accommodate kernels with
unbounded support and to establish uniform convergence over certain types of ex-
panding sets. More importantly (for our purposes at least), Lemma B.1 relaxes the
condition n1−2/shdn/ log n → ∞ imposed by Newey (1994b, Lemma B.1). In typical
applications of Newey (1994b, Lemma B.1), a condition like s ≥ 4 is imposed in order
to ensure that n1−2/shdn/ log n→∞ is implied by “natural”conditions on hn, such as
nh2dn / (log n)2 →∞ (e.g., Newey (1994b, Theorem 4.2), Newey and McFadden (1994,
Theorem 8.11)). In contrast, only s ≥ 2 is required for the condition imposed in
Lemma B.1 to be implied by nh2dn / (log n)2 →∞.
If n1−2/shdn/ log n→ 0, then the uniform rate obtained in Lemma B.1 falls short of

the “usual”rate
√
nhdn/ log n. This is potentially problematic if Lemma B.1 is used

to establish uniform convergence with a certain rate (e.g., n1/4 or n1/6, as in proofs
of results such as (8)). On the other hand, the slower rate of convergence is of no
concern when any rate of convergence will do (as in proofs of consistency results such
as (6)).
Because of their ability to control bias in some cases, leave one out estimators of

the form

Ψ̂n,i (x) =
1

(n− 1)hdn

n∑
j=1
j 6=i

Yjκ

(
x−Xj

hn

)

are sometimes of interest. The next result extends Lemma B.1 to such estimators.

Lemma B.2. Suppose Assumptions B1 and B2 are satisfied and suppose (21) holds.
If hn → 0 and n1−1/shdn/ log n→∞, then

max1≤i≤n supx∈Xn

∣∣∣Ψ̂n,i (x)−Ψn,i (x)
∣∣∣ = Op (ρn) , Ψn,i (x) = E

[
Ψ̂n,i (x)

]
.

Another corollary of Lemma B.1 is the following result, which can be useful when
uniform convergence on the support of the empirical distribution of X suffi ces.

Lemma B.3. Suppose E (‖X‖sX ) < ∞ for some sX > 0 and suppose Assumptions
B1 and B2 are satisfied. If hn → 0 and n1−1/shdn/ log n→∞, then
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max1≤i≤n

∣∣∣Ψ̂n (Xi)−Ψn (Xi)
∣∣∣ = Op (ρn)

and

max1≤i≤n

∣∣∣Ψ̂n,i (Xi)−Ψn,i (Xi)
∣∣∣ = Op (ρn) .

Remark. Lemmas B.2 and B.3 are not used elsewhere in the paper. We have
included them because they may be of independent interest and because their proofs
are very short.

Proof of Lemma B.1. Similarly to the proof of Newey (1994b, Lemma B.1), the
proof consists of three steps, of which the first step is a truncation step, the second
step is a discretization step, and the final step uses Bernstein’s inequality to bound
certain tail probabilities. To accommodate kernels with unbounded support, the sec-
ond step borrows ideas from Hansen (2008). In the third step, we use Bernstein’s
inequality in two distinct ways (and employ a subsequence argument) in order to
accommodate bandwidths that do not satisfy n1−2/shdn/ log n→∞.
Given a sequence τn, let

Ψ̃n (x) =
1

nhdn

n∑
j=1

Yjnκ

(
x−Xj

hn

)
, Yjn = Yj1 (|Yj| ≤ τn) ,

denote a version of Ψ̂n obtained by replacing Yj with the truncated variable Yjn. The
processes Ψ̂n (·) and Ψ̃n (·) coincide with a probability that can be made arbitrarily
close to one (uniformly in n) by setting τn = Cτn

1/s for some large Cτ because

Pr
[
Ψ̂n (·) 6= Ψ̃n (·)

]
≤ Pr [Yj 6= Yjn for some j] = Pr [|Yj| > τn for some j]

≤ nPr [|Y | > τn] ≤ nτ−sn CY (s) ,

where CY (r) = E (|Y |r) + supx∈Rd E (|Y |r |X = x) fX (x) and the last inequality uses
Markov’s inequality. Also,
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∣∣∣E [Ψ̂n (x)− Ψ̃n (x)
]∣∣∣ =

∣∣∣∣E [Y 1 (|Y | > τn)h−dn κ

(
x−X
hn

)]∣∣∣∣
=

∣∣∣∣∫
Rd
E [Y 1 (|Y | > τn) |X = r]h−dn κ

(
x− r
hn

)
fX (r) dr

∣∣∣∣
≤ τ−(s−1)n

∫
Rd
E [|Y |s 1 (|Y | > τn) |X = r]h−dn

∣∣∣∣κ(r − xhn

)∣∣∣∣ fX (r) dr

≤ τ−(s−1)n CY (s)Cκ, Cκ = supu∈Rd |κ (u)|+
∫
Rd
|κ (u)| du,

so if τn = Cτn
1/s, then

supx∈Rd
∣∣∣E [Ψ̂n (x)

]
− E

[
Ψ̃n (x)

]∣∣∣ = O
(
n1/s−1

)
= o (ρn) .

To complete the proof, it therefore suffi ces to show that

supx∈Xn

∣∣∣Ψ̃n (x)− E
[
Ψ̃n (x)

]∣∣∣ = Op (ρn) , τn = Cτn
1/s.

Remark. Hansen (2008, p. 740) employs τn = ρ
−1/(s−1)
n = o

(
n1/s

)
in his trun-

cation argument and shows that with this choice of τn∣∣∣(Ψ̃n (x)− E
[
Ψ̃n (x)

])
−
(

Ψ̂n (x)− E
[
Ψ̂n (x)

])∣∣∣ = Op (ρn)

for every x. It is unclear whether this pointwise rate of convergence holds uniformly
in x ∈ Xn, so we err on the side of caution and set τn = Cτn

1/s.

Continuing with the proof of Lemma B.1, we discretize by employing a sequence
Gn (depending on CX,n and hn) and associated points

{
x∗g,n : j = 1, . . . , Gn

}
such

that

limn→∞ log (Gn) / log n <∞ (22)

and

Xn ⊆ ∪Gng=1Xg,n, Xg,n =
{
x :
∥∥x− x∗g,n∥∥ ≤ min (1, δκ)hn

}
. (23)
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It follows from (22) that Gn = o
(
nR
)
for some R < ∞, while (23) implies that, for

any M,

Pr
[
supx∈Xn

∣∣∣Ψ̃n (x)− EΨ̃n (x)
∣∣∣ > Mρn

]
≤ Gn max1≤g≤Gn Pr

[
supx∈Xg,n

∣∣∣Ψ̃n (x)− EΨ̃n (x)
∣∣∣ > Mρn

]
.

To complete the proof it therefore suffi ces to show that for any R < ∞, there is an
M such that

max1≤g≤Gn Pr
[
supx∈Xg,n

∣∣∣Ψ̃n (x)− EΨ̃n (x)
∣∣∣ > Mρn

]
= O

(
n−R

)
. (24)

If x ∈ Xg,n and ρn ≤ δκ, then∣∣∣∣κ(x−Xj

hn

)
− κ

(
x∗g,n −Xj

hn

)∣∣∣∣ ≤ ρnκ
∗
(
x∗g,n −Xj

hn

)
(j = 1, . . . , n) ,

so

∣∣∣Ψ̃n (x)− Ψ̃n

(
x∗g,n

)∣∣∣ ≤ ρnΨ̃∗n
(
x∗g,n

)
, Ψ̃∗n (x) =

1

nhdn

n∑
j=1

Yjnκ
∗
(
x−Xj

hn

)
.

Therefore, if ρn ≤ δκ, then

supx∈Xg,n

∣∣∣Ψ̃n (x)− E
[
Ψ̃n (x)

]∣∣∣ ≤ ∣∣∣Ψ̃n

(
x∗g,n

)
− E

[
Ψ̃n

(
x∗g,n

)]∣∣∣
+ρn

∣∣∣Ψ̃∗n (x∗g,n)− E [Ψ̃∗n (x∗g,n)]∣∣∣
+2ρnE

(∣∣∣Ψ̃∗n (x∗g,n)∣∣∣) ,
where

E
(∣∣∣Ψ̃∗n (x∗g,n)∣∣∣) ≤ ∫

Rd
E [|Y | |X = x]h−dn κ∗

(
x∗g,n − x
hn

)
fX (x) dx

≤ CY (1)Cκ∗ , Cκ∗ = supu∈Rd κ
∗ (u) +

∫
Rd
κ∗ (u) du.
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As a consequence, if ρn ≤ min (1, δκ) and M ≥ 4CY (1)Cκ∗ , then

Pr
[
supx∈Xg,n

∣∣∣Ψ̃n (x)− E
[
Ψ̃n (x)

]∣∣∣ > Mρn

]
≤ Pr

[∣∣∣Ψ̃n

(
x∗g,n

)
− E

[
Ψ̃n

(
x∗g,n

)]∣∣∣ > Mρn/4
]

+ Pr
[∣∣∣Ψ̃∗n (x∗g,n)− E [Ψ̃∗n (x∗g,n)]∣∣∣ > Mρn/4

]
.

Because

∣∣∣∣h−dn Yjnκ

(
x−Xj

hn

)
− E

[
h−dn Yjnκ

(
x−Xj

hn

)]∣∣∣∣ ≤ 2τnh
−d
n Cκ = 2Cτn

1/sh−dn Cκ,

and

V
[
h−dn Yjnκ

(
x−Xj

hn

)]
≤ h−dn E

[
Y 2
jnh
−d
n κ

(
x−Xj

hn

)2]

≤ h−dn

∫
Rd
E
[
|Y |2 |X = r

]
h−dn κ

(
x− r
hn

)2
fX (r) dr

≤ h−dn CY (2)

∫
Rd
κ (t)2 dt ≤ h−dn CY (2)C2κ,

it follows from Bernstein’s inequality that

Pr
[∣∣∣Ψ̃n

(
x∗g,n

)
− EΨ̃n

(
x∗g,n

)∣∣∣ > Mρn/4
]
≤ 2 exp

[
− nhdnρ

2
nM

2/32

CY (2)C2κ + 1
6
MCτCκρnn

1/s

]
.

Similarly,

Pr
[∣∣∣Ψ̃∗n (x∗g,n)− EΨ̃∗n

(
x∗g,n

)∣∣∣ > Mρn/4
]
≤ 2 exp

[
− nhdnρ

2
nM

2/32

CY (2)C2κ∗ + 1
6
MCτCκ∗ρnn

1/s

]
,

so if ρn ≤ min (1, δκ) and M ≥ 4CY (1)Cκ∗ , then



Generalized Jackknife Estimators 35

max1≤g≤Gn Pr
[
supx∈Xg,n

∣∣∣Ψ̃n (x)− EΨ̃n (x)
∣∣∣ > Mρn

]
≤ 4 exp

[
− nhdnρ

2
nM

2/32

CY (2) max (Cκ, Cκ∗)
2 + 1

6
MCτ max (Cκ, Cκ∗) ρnn

1/s

]
.

To complete the proof, we let R < ∞ be given and use the bound just obtained to
exhibit an M such that (24) holds.
First, suppose limn→∞n

1−2/shdn/ log n > 0, in which case there exists a Ch > 0
such that

ρnn
1/s =

√
log n

n1−2shdn
max

(
1,

√
log n

n1−2/shdn

)
≤ 1

Ch

for all n large enough. For any such n,

nhdnρ
2
nM

2/32

CY (2) max (Cκ, Cκ∗)
2 + 1

6
MCτ max (Cκ, Cκ∗) ρnn

1/s

≥ M2/32

CY (2) max (Cκ, Cκ∗)
2 + 1

6
MCτ max (Cκ, Cκ∗) /Ch

log n,

so if n is large enough and if M ≥ 4CY (1)Cκ∗ , then

max1≤g≤Gn Pr
[
supx∈Xg,n

∣∣∣Ψ̃n (x)− EΨ̃n (x)
∣∣∣ > Mρn

]
≤ 4n−M

2/32[CY (2)max(Cκ,Cκ∗ )2+ 1
6
MCτ max(Cκ,Cκ∗ )/Ch],

implying in particular that (24) holds if M is large enough.
Next, suppose limn→∞n

1−2/shdn/ log n < ∞, in which case there exists a Ch < ∞
such that

n1−2/shdn
log n

≤ Ch,
n1−2/shdn

log n
ρnn

1/s = max

1,

√
n1−2/shdn

log n

 ≤ Ch

for all n large enough. For any such n,
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=
nhdnρ

2
nM

2/32

CY (2) max (Cκ, Cκ∗)
2 + 1

6
MCτ max (Cκ, Cκ∗) ρnn

1/s

≥ M2/32

CY (2) max (Cκ, Cκ∗)
2 n1−2/shdn

logn
+ 1

6
MCτ max (Cκ, Cκ∗)

n1−2/shdn
logn

ρnn
1/s

log n

≥ M2/32

CY (2) max (Cκ, Cκ∗)
2Ch + 1

6
MCτ max (Cκ, Cκ∗)Ch

log n,

so if n is large enough and if M ≥ 4CY (1)Cκ∗ , then

max1≤g≤Gn Pr
[
supx∈Xg,n

∣∣∣Ψ̃n (x)− EΨ̃n (x)
∣∣∣ > Mρn

]
≤ 4n−M

2/32[CY (2)max(Cκ,Cκ∗ )2Ch+ 1
6
MCτ max(Cκ,Cκ∗ )Ch],

implying once again that (24) holds if M is large enough.
Finally, suppose limn→∞n

1−2/shdn/ log n = ∞ and limn→∞n
1−2/shdn/ log n = 0.

Suppose that for some ε > 0 and for every M, there exists a subsequence n′ with

Pr
[
supx∈Xn′

∣∣∣Ψ̃n′ (x)− E
[
Ψ̃n′ (x)

]∣∣∣ > Mρn′
]
> ε

for every n′. Given ε > 0, pick an M ≥ 4CY (1)Cκ∗ satisfying

limn→∞Gnn
−M2/32[CY (2)max(Cκ,Cκ∗ )2+ 1

6
MCτ max(Cκ,Cκ∗ )] < ε/4.

Any subsequence n′ contains a further subsubsequence n′′ along which

limn′′→∞ (n′′)
1−2/s

hdn′′/ log n′′ = limn′′→∞ (n′′)
1−2/s

hdn′′/ log n′′ ∈ [0,∞] .

Along such subsubsequences the previous results can be used to show that

limn′′→∞ Pr
[
supx∈Xn′′

∣∣∣Ψ̃n′′ (x)− EΨ̃n′′ (x)
∣∣∣ > Mρn′′

]
< ε,

a contradiction. �

Proof of Lemma B.2. Because Ψn,i (x) = Ψn (x) and
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Ψ̂n,i (x) =
n

n− 1
Ψ̂n (x)− 1

(n− 1)hdn
Yiκ

(
x−Xi

hn

)
,

we have the elementary bound

∣∣∣Ψ̂n,i (x)−Ψn,i (x)
∣∣∣ ≤ (

1− n−1
)−1 ∣∣∣Ψ̂n (x)−Ψn (x)

∣∣∣+ (n− 1)−1 E
[∣∣∣Ψ̂n (x)

∣∣∣]
+ (n− 1)−1 h−dn

∣∣∣∣Yinκ(x−Xi

hn

)∣∣∣∣
+ (n− 1)−1 h−dn

∣∣∣∣(Yi − Yin)κ

(
x−Xi

hn

)∣∣∣∣ ,
where Yin = Yi1 (|Yi| ≤ τn) with τn = O

(
n1/s

)
. The first term on the right is covered

by Lemma B.1, the second term is O (n−1) , and the third term satisfies

(n− 1)−1 h−dn

∣∣∣∣Yinκ(x−Xi

hn

)∣∣∣∣ ≤ (n− 1)−1 h−dn τnCκ = O
(
n1/s−1h−dn

)
,

where

n1/s−1h−dn =

√
1

nhdn

√
1

n1−2/shdn
= o (ρn) .

Finally, the fourth term is negligible because

Pr

[
max1≤i≤n (n− 1)−1 h−dn

∣∣∣∣(Yi − Yin)κ

(
x−Xi

hn

)∣∣∣∣ > 0

]
= Pr [Yi 6= Yin for some i]

can be made arbitrarily close to zero. �

Proof of Lemma B.3. By Markov’s inequality,

Pr
[
max1≤i≤n ‖Xi‖ > n2/sX

]
≤ nPr

[
‖X‖sX > n2

]
≤ n−1E ‖x‖sX = o (1) .

Setting CX,n = n2/sX , we therefore have
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max1≤i≤n

∣∣∣Ψ̂n (Xi)−Ψn (Xi)
∣∣∣ ≤ supx∈Xn

∣∣∣Ψ̂n (x)−Ψn (x)
∣∣∣

and

max1≤i≤n

∣∣∣Ψ̂n,i (Xi)−Ψn,i (Xi)
∣∣∣ ≤ max1≤i≤n supx∈Xn

∣∣∣Ψ̂n,i (x)−Ψn,i (x)
∣∣∣

with probability approaching one. The result now follows from Lemmas B.1 and
B.2. �
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Figure 1: Empirical Coverage
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Figure 2: Standardized Bias
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Figure 3: Normal Approximation
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