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Abstract

A stylized fact is that realized variance has long memory. We show that, when the in-

stantaneous volatility is driven by a fractional Brownian motion, the integrated variance is

characterized by long-range dependence. As a consequence, the realized variance inherits

this property when prices are observed continuously and without microstructure noise, and

the spectral densities of integrated and realized variance coincide. However, prices are not

observed continuously, so that the realized variance is affected by a measurement error. Dis-

crete sampling and market microstructure noise induce a finite-sample bias in the fractionally

integration semiparametric estimates. A Monte Carlo simulation analysis provides evidence

of such a bias for common sampling frequencies.
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1 Introduction

A well documented stylized fact is that volatility of financial returns is stationary and it is

characterized by long-range dependence, or long memory, see, for instance, Baillie (1996),

Bollerslev and Mikkelsen (1996), Dacorogna, Muller, Nagler, Olsen, and Pictet (1993), Ding,

Granger, and Engle (1993), Granger and Ding (1996). More recently Andersen, Bollerslev,

Diebold, and Ebens (2001), Andersen, Bollerslev, Diebold, and Labys (2001), Andersen,

Bollerslev, Diebold, and Labys (2003), Martens, Van Dijk, and De Pooter (2009), and Rossi

and Santucci de Magistris (2009) report evidence of long memory in the realized variance

series. To the best of our knowledge, none of them has explicitly found a link between the

long memory properties of the realized volatility, and its theoretical counterpart, the inte-

grated volatility. Furthermore, no theoretical justification for the presence of long memory in

integrated variance is given. A recent paper by Lieberman and Phillips (2008) shows that the

presence of long memory in the realized variance is due to the aggregation of a finite number

of short-memory series and it depends on the choice of the sampling scheme. However, the

theory of realized variance, as an estimator of integrated variance (or integrated volatility,

IV henceforth) lies in the continuous time framework, while Lieberman and Phillips (2008)’s

proof is based on the aggregation of discretely sampled squared returns. Hansen and Lunde

(2010) suggest an alternative explanation for the presence of long memory in realized vari-

ance. In fact, despite integrated volatility could be a close-to-unit-root process, realized

volatility, that is characterized by a measurement error, is less persistent and appears as a

stationary fractionally integrated process.

In this paper we study the long memory properties of the integrated and the realized

variance (or realized volatility, RV ) and we investigate the properties of the semiparametric

estimation of long memory of IV based on realized measures. We assume that the trajec-

tories of the instantaneous volatility, σ2(t), are generated by a fractional Brownian motion

of order d, see Beran (1994) and Comte and Renault (1996, 1998). As shown by Comte

and Renault (1998), the fractional Brownian motion represents a parsimonious way to intro-

duce long memory in the volatility series, which encompasses weakly dependent stochastic

volatility models. Due to the complexity of the estimation, long memory stochastic volatility

models for instantaneous volatility have not found so much widespread use in practice. A

notable exception is Casas and Gao (2008), who propose an estimation technique for the long

memory stochastic volatility model based on squared daily returns. A number of alterna-
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tive specifications, both in continuous and discrete time, have been considered in literature

in order to generate long range dependence. Among others, Granger and Hyung (2004)

point toward the presence of level shifts as causes of long memory in volatility, while Corsi

(2009) and Corsi and Reno (2010) suggest that a multi-factor model is able to reproduce the

observed high degree of long range dependence.

We first demonstrate that IV has the same fractional integration order of σ2(t), that is d.

This result can be interpreted as a consequence of the self similarity feature of the fractional

Brownian motion. It is therefore natural that realized measures of volatility have the same

integration order of IV in the ideal situation where the price is recorded continuously and

without market microstructure noise. In this case, we show that the spectral density of RV

converges to the spectral density of IV .

In a more realistic framework, when we consider the presence of market microstructure

noise and discrete sampling schemes, see Bandi and Russell (2008), Hansen and Lunde (2006)

and for a recent survey McAleer and Medeiros (2008), the realized variance estimator is

characterized by a measurement error. The measurement error introduces an additive term

in the spectral density of RV . As a consequence, it turns out that the semiparametric

estimation of the long memory parameter is biased. We investigate by simulations to what

extent the choice of the sampling scheme and the size of the market microstructure noise

introduce a finite sample downward bias in the local Whittle estimator of the integration order

of IV . The downward bias is an increasing function of the noise-to-signal ratio, namely the

ratio between the variance of the measurement error and the variance of IV . We therefore

show the dependence of the noise-to-signal ratio on the parameters of the instantaneous

volatility, the sampling frequency and the microstructure noise. For moderate values of the

variance of the microstructure noise, the noise-to-signal ratio significantly increases as the

volatility of volatility decreases.

We also employ the corrected local Whittle estimator by Hurvich, Moulines, and Soulier

(2005), which accounts for the presence of the measurement error, in the realized volatility

context. We show by means of Monte Carlo simulations its finite-sample features, based on

alternative realized measures of volatility for different choices of the sampling frequency. The

results highlight the dramatic improvement in terms of bias of the corrected with respect to

the uncorrected one. Finally, the long memory signature plot of the realized variances of four

NYSE assets, namely the plot of the long memory estimates obtained with realized volatility
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at different sampling frequencies, confirms the simulation results that is the robustness of the

corrected estimation to the measurement error, while in contrast the local Whittle estimator

is sensitive to the choice of the sampling frequency.

This paper is organized as follows. In Section 2 we show that, when the instantaneous

volatility is driven by a fractional Brownian motion, the degree of fractional integration of the

integrated volatility process is the same as the instantaneous volatility. Section 3 illustrates

the characteristics of the measurement error and the features of the spectrum of the realized

volatility process. Section 4 presents the estimation of the long memory parameter. In

Section 5 the results of some simulations are illustrated and discussed. Section 7 concludes.

2 Long memory in integrated variance

Let P (t) be the price of an asset, where its logarithm, p(t), follows the stochastic differential

equation:

dp(t) = m(t)dt + σ(t)dW (t) (1)

where W (t) is a standard Brownian motion and m(t) is locally bounded and predictable.

σ(t) is assumed to be independent of W (t) and càdlàg, see Barndorff-Nielsen and Shephard

(2002a). The logarithm of the instantaneous volatility is assumed to be driven by a fractional

Ornstein-Uhlenbeck process, with zero long run mean, as in Comte and Renault (1998):

d lnσ2(t) = −k lnσ2(t)dt + γdWd(t) (2)

where k > 0 is the drift parameter, while γ > 0 is the volatility parameter and Wd(t) is the

fractional Brownian motion (fBm). The literature on long memory processes in econometrics

distinguishes between type I and type II fractional Brownian motion. These processes have

been carefully examined and contrasted by Marinucci and Robinson (1999), Davidson and

Hashimzade (2008). When considered as real continuous processes on the unit interval, they

can be defined respectively by

Bd(t) =
1

Γ(1 + d)

∫ t

0
(t − s)ddW (s) +

∫ 0

−∞
[(t − s)d − (−s)d]dW (s) (3)

and

Wd(t) =
1

Γ(1 + d)

∫ t

0
(t − s)ddW (s). (4)
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In the type II case, the second term in (3) is omitted, it is the truncated version of the general

fBm, see Comte and Renault (1996, 1998) and Marinucci and Robinson (1999). As shown

by Marinucci and Robinson (1999), the increments of (3) are stationary, whereas those of

(4) are not. When d = 0, both definitions of fBm collapses into the usual Brownian motion.

The solution of (2) can be written as lnσ2(t) =
∫ t
0 e−k(t−s)γ dWd(s). The process lnσ2(t)

has long memory of order d, if there exists k∞ ∈ R+ so that limu→+∞ uk̃(u) = k∞, where

k∞ is a nonzero finite constant, and 0 < d < 1/2.

Moreover, Comte (1996) and Comte and Renault (1998) show that the spectral density

of the lnσ2(t) is equal to

f(λ) =
γ2

Γ(1 + d)2λ2d

1

λ2 + k2
(5)

so that

lim
λ→0

λ2df(λ) =
γ2

Γ(1 + d)2k2
(6)

with the constant term depending on d. It is noteworthy that the spectral density at the origin

is proportional to k2
∞, where k∞ = γd

k for the process in (2) (see Comte, 1996). This makes

clear that the long memory feature of process in (2) is directly linked to the characteristics

of the drift term. Indeed, when k = 0, e.g., the mean reversion is zero, the condition on k∞

is no more satisfied. In this case, the process in (2) coincides with the fBm and it is non

stationary. Thus the spectral density of lnσ2(t) turns out to be proportional to λ−2(1+d),

where (1 + d) is the order of fractional integration of the fBm in (2) (see Flandrin, 1989 and

Marinucci and Robinson, 1999). The volatility process σ2(t) is asymptotically equivalent (in

quadratic mean) to the stationary process (see Comte and Renault, 1998) 1:

σ̃2(t) = exp

(∫ t

−∞
e−k(t−u)γ dWd(u)

)
, k > 0 0 < d <

1

2
. (7)

where the solution is expressed using type I fBm. Comte and Renault (1998) prove that

the spectral density, fσ̃2(λ), of the process σ̃2(t), is equal to cλ−2d for λ → 0, so that the

volatility process inherits the long-memory property induced by the fBm.2

Proposition 1 Given the process in (2) for the logarithm of the instantaneous volatility,

with k > 0 , then limλ→0 λ2dfIV (λ) = c ∈ R+ where fIV (λ) is the spectral density of

1The volatility process σ2
t

coincide almost surely with σ̃2(t).
2Note that the integration order of instantaneous and integrated volatility, when k = 0, is equal to 1 + d, since

Wd(t) is integrated of order 1 + d.
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IV =
∫ 1
0 σ̃2(u)du.

When the instantaneous volatility is covariance stationary, i.e., k > 0, the integrated volatility

process has the same degree of fractional integration. This explains the empirical evidence of

long memory in the ex-post realized measures of integrated volatility. It is also interesting to

note that, when k = 0, that is the mean reversion of the log-instantaneous volatility is null,

then log σ2(t) is integrated of order 1 + d, so that the IV can be supposed to be integrated

of order 1 + d, namely it is nonstationary.

3 The measurement error

In this section we set the notation and characterize the measurement error associated with

the RV estimator. The integrated variance is defined as follows

IV =

∫ 1

0
σ2(u)du. (8)

To simplify the notation we consider an equidistant partition 0 = t0 < t1 < . . . < tn = 1,

where ti = i/n, and ∆ = 1/n, that is the interval is normalized to have unit length. Define

ri∆,∆ = pi∆,∆ − p(i−1)∆,∆. Adopting the notation of Hansen and Lunde (2005), the RV at

sampling frequency n is

RV ∆ =

n∑

i=1

r2
i∆,∆. (9)

then RV ∆ p→ IV as n → ∞. Barndorff-Nielsen and Shephard (2002a) and Barndorff-Nielsen

and Shephard (2002b) derived a distribution theory for RV ∆ when n → ∞,

√
n(RV ∆ − IV )

d→ N(0, 2IQ)

where IQ =
∫ 1
0 σ4(u)du is the integrated quarticity. In this paper we focus on the series of

nonoverlapping integrated volatilities

∫ 1

0
σ2(u)du,

∫ 2

1
σ2(u)du, . . . ,

∫ T

T−1
σ2(u)du.

where [0, T ] represents our sampling period, and given the assumption that each interval has

unit length we consider the IV over T intervals, e.g., IV1, IV2, . . . , IVT . Further, the time

series of realized variances is composed of
{
RV ∆

t

}T

t=1
. We are interested in delineating the
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dynamic features of {RV ∆
t }T

t=1 compared to those of {IVt}T
t=1 for different choices of ∆.

3.1 Discretization error

Meddahi (2002) characterizes the discretization error, when realized variance is used to mea-

sure integrated variance. He assumes the underlying data generating process is a continuous

time, continuous sample-path model. While RV ∆
t converges to IVt when ∆ → 0, the dif-

ference may be not negligible for a given ∆. Following Meddahi (2002) we can decompose

the difference between RV and IV , for a given ∆. From (1), the return on the interval

((i − 1)∆, i∆)

rt−1+i∆,∆ =

∫ t−1+i∆

t−1+(i−1)∆
m(u)du +

∫ t−1+i∆

t−1+(i−1)∆
σ(u)dW (u)

let

µt−1+i∆,∆ ≡
∫ t−1+i∆

t−1+(i−1)∆
m(u)du and εt−1+i∆,∆ ≡

∫ t−1+i∆

t−1+(i−1)∆
σ(u)dW (u)

the squared return can be written as:

r2
t−1+i∆,∆ =

∫ t−1+i∆

t−1+(i−1)∆
σ2(u)du + (µt−1+i∆,∆)2 + 2(µt−1+i∆,∆εt−1+i∆,∆)

+

(
(εt−1+i∆,∆)2 −

∫ t−1+i∆

t−1+(i−1)∆
σ(u)2du

)

=

∫ t−1+i∆

t−1+(i−1)∆
σ2(u)du + ut−1+i∆,∆,

Meddahi (2002) shows in Proposition 2.1 that the noise is

ut−1+i∆,∆ = (µt−1+i∆,∆)2 + 2(µt−1+i∆,∆εt−1+i∆,∆)

+2

∫ t−1+i∆

t−1+(i−1)∆

(∫ u

t−1+(i−1)∆
σ(s)dW (s)

)
σ(u)du (10)

Then the realized variance

RV ∆
t =

n∑

i=1

[∫ t−1+i∆

t−1+(i−1)∆
σ2(u)du

]
+

n∑

i=1

ut−1+i∆,∆ = IVt + u∆
t . (11)

with the discretization error given by

u∆
t =

n∑

i=1

ut−1+i∆,∆. (12)
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Moreover, Meddahi (2002) proves that u∆
t has a nonzero mean, when the drift m(t) is non-

zero, and is heteroskedastic, since its variance depends on σ(t). As pointed out by Barndorff-

Nielsen and Shephard (2002b) and Meddahi (2002), the correlation between the integrated

variance and the noise term is zero when there is no leverage effect, that is dW in (1) and

dWd in (2) are independent. In particular, assuming that the drift in (1) is null and there is

no leverage effect, then Barndorff-Nielsen and Shephard (2002a) show that, for finite ∆ > 0,

the error term can be written as

ut−1+i∆,∆ = σ2
t,i,∆

(
z2
t,i − 1

)
(13)

where zt,i is i.i.d.N(0, 1) and it is independent of σ2
t,i,∆ =

∫ t−1+i∆
t−1+(i−1)∆ σ2(s)ds. Note that

σ2
t,i,∆, is the integrated volatility over the i-th subinterval of length ∆. Therefore, from

equation

u∆
t =

n∑

i=1

σ2
t,i,∆

(
z2
t,i − 1

)
. (14)

It is clear from the result in Proposition 1, that σ2
t,i,∆ has long-memory. Given the repre-

sentation of the measurement error in equation (13), we are able to characterize the error

term, when the integrated volatility has long memory. In particular, from Meddahi (2002)

we know that u∆
t is dynamically uncorrelated and contemporaneously uncorrelated with IVt,

when the leverage effect is absent. Moreover, Barndorff-Nielsen and Shephard (2002a) show

that

Var[u∆
t ] = 2∆−1 ·

{
Var[σ2

t,i,∆] + E
[
σ2

t,i,∆

]2}
;

Barndorff-Nielsen and Shephard (2002a) show that E
[
σ2

t,i,∆

]2
= ∆2E[σ̃2(t)]2. In our case,

E[σ̃2(t)] = exp

(
ω2

2

)

Var[σ̃2(t)] = [exp(ω2) − 1] exp (ω2)

where ω2 ≡ Var[lnσ2(t)] = γ2π
Γ2(1+d)k1+2d cos (dπ)

, see Casas and Gao (2008). Therefore, the

variance of σ2
t,i is given by

Var[σ2
t,i,∆] = 2 Var[σ̃2(t)] ·

∫ ∆

0

∫ ∆

0
ρ(u)dudv (15)
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where ρ denotes the autocorrelation function of the process σ̃2(t) see Barndorff-Nielsen and

Shephard (2002a). Further, Comte and Renault (1998) prove that the autocovariance func-

tion of σ̃2(t) is equal to

Cov(σ̃2(t + h), σ̃2(t)) = Var[σ̃2(t)] + ηh2d+1 + o(h2d+1) for h → 0

where η is a given constant. Hence the autocorrelation function of σ̃2(t) decays at a rate

that depends on d. When h → 0, the autocorrelation function converges to 1, at rate

proportional to 2d + 1. Finally, the Var[σ2
t,i,∆] depends on the long memory parameter d,

but is constant over time. It is interesting to note that the long memory parameter d affects

both the Var[σ̃2(t)] and the Cov(σ̃2(t + h), σ̃2(t)), and so potentially affects the variance of

the discretization error. Nonetheless, it is hard to obtain a closed-form expression for this

dependence, we investigate this point by means of simulation in Section 5.

3.2 Microstructure Noise

Suppose now that the observed intradaily return is observed with error, due to the presence

of microstructure noise,

p̃(t) = p(t) + ǫ(t) (16)

where p(t) is the latent true, or efficient, price process that follows (1). The term ǫ(t) is the

noise around the true price, with mean 0 and finite fourth moment. In particular, ǫ(t) is

i.i.d. and it is independent of the efficient price and the true return process.

Over periods of length ∆, we have

rt,i,∆ = (pt,i,∆ − pt,i−1,∆) + (ǫt,i,∆ − ǫt,i−1,∆) = rt,i,∆ + ηt,i,∆ (17)

and ηt =
∑n

i=1 ηt,i,∆. With discretization and microstructure noise, the measurement error

of realized volatility is given by

ξ∆
t = u∆

t +
n∑

i=1

η2
t,i,∆ + 2




n∑

j=1

σt,i,∆zt,iηt,i,∆


 . (18)

As noted by Bandi and Russell (2006), while the efficient return is of order Op(
√

∆), the

microstructure noise is of order Op(1) over any period of time. This means, that, when ∆ → 0,
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then the microstructure noise dominates over the true return process, and longer period

returns are less contaminated by noise than shorter period returns. Given the properties of

ǫ(t), E (ηt,i,∆) = 0, and

Proposition 2 Let ∆ > 0, consider the processes p(t), RV ∆, ξ∆
t defined respectively in

(16), (9), (18). Then:

(i) E(ξ∆
t ) = ∆−1σ2

η;

(ii) Var(ξ∆
t ) = 2∆−1E

[(
σ2

t,i,∆

)2]
(1 + 2σ2

η) + ∆−1
(
κη − σ4

η

)
, where σ2

η = Var (ηt,i,∆) and

κη = E[η4
t,i,∆].

(iii) ξ∆
t is dynamically uncorrelated, i.e., Cov(ξ∆

t , ξ∆
t+h) = 0 ∀h 6= 0;

(iv) The error term ξ∆
t is uncorrelated with IVt;

(v) Cov(RV ∆
t , RV ∆

t−h) = Cov(IVt, IVt−h), ∀h 6= 0.

It is evident that Var(ξ∆
t ) ≥ Var(u∆

t ), and like in the case of discretization error u∆
t , the

variance of ξ∆
t depends on the long memory parameter d. Again, as in the previous case,

we investigate this feature in Section 5. It is worthy to notice that the impact of the mi-

crostructure noise on the variance of ξ∆
t is of smaller order with respect to the effect on the

expected value. However, as we will show later in Section 5, for moderate choices of ∆, i.e.

5-minutes or 10-minutes, the influence of the microstructure noise on the error variance is

not negligible.

4 Long memory estimation in the signal-plus-noise

framework

Now, we turn our attention to the spectral density of RV since in this study we are interested

in the semiparametric estimation of d, for which a local characterization of the spectral

density is needed. It is well known that the drawback of global long memory estimators

is that they require unnecessary assumptions on the spectral density. Instead, a consistent

estimate of d can be obtained simply by specifying the shape of the spectral density at the

origin. These methods are referred as local methods. Further, the semiparametric approach

has the advantage, over the parametric ones, that it does not require a full specification of

the dynamics of the process. This also implies that semiparametric estimation is more robust
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to the misspecification of the dynamics. In particular, the semiparametric approaches are

based on the characterization of the spectrum as λ → 0. According to Proposition 1, the

spectrum of the IV has a pole as λ → 0, that is proportional to λ−2d. However, equation

(18) highlights the fact that IV is measured by RV ∆ with an error term, ξ∆
t , whose variance

depends on the choice of ∆, as shown in equation (13). This is a typical signal-plus-noise

problem. Therefore, the quality of the estimate of d based on a realized measure like RV ∆,

can be dramatically affected in finite samples by the measurement error. The spectral density

of RV ∆ is defined as,

fRV ∆(λ) =
1

2π



Var(RV ∆) + 2

∞∑

j=1

[
Cov(RV ∆

t , RV ∆
t−j) cos(λj)

]


 , (19)

but, given the results in Proposition 2, this can be expressed in terms of the variance of the

error ξ∆
t and the variance and covariances of IV

fRV ∆(λ) =
1

2π



Var(IV ∆) + Var(ξ∆

t ) + 2
∞∑

j=1

[
Cov(IV ∆

t , IV ∆
t−j) cos(λj)

]


 . (20)

This allows to write the spectral density of RV as the sum of two components:

fRV ∆(λ) = fIV (λ) + fξ∆(λ) (21)

where fξ∆(λ) =
Var(ξ∆

t
)

2π is the spectral density of the error term and fIV (λ) is the spectral

of the signal, e.g., the integrated variance. The function fξ∆(λ) is constant with respect

to λ because the error term is dynamically uncorrelated. As shown by Barndorff-Nielsen

and Shephard (2002a) and Meddahi (2002), when the microstructure noise is absent, the

variance of the error term is Var(ξ∆
t ) = Var(u∆

t ) = 2∆−1E
[
(σ2

t,i,∆)2
]

and it converges to

zero as ∆ → 0, so that fξ∆(λ) → 0. In fact, in the ideal situation where prices are recorded

continuously and without measurement errors, since lim∆→0 RV ∆ = IV , it is evident that

lim
∆→0

fRV ∆(λ) = fIV (λ)

where fRV ∆ is the spectral density of the realized variance. It follows that,

lim
λ→0

[
lim
∆→0

λ2dfRV ∆(λ)

]
= lim

λ→0
λ2dfIV (λ) (22)
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so that the realized volatility is characterized by the same degree of long memory of integrated

volatility when the instantaneous volatility is generated according to (2). Therefore, if the

integrated variance is fractionally integrated of order d, then RVt will be integrated of order

d, since a process which is an I(d) process plus an I(0) process is integrated of order d.

Differently from Lieberman and Phillips (2008), we are able to motivate the presence of

long memory in realized volatility from a continuous time perspective, where the process of

the instantaneous volatility is driven by a fractional Brownian motion of order d. It is also

interesting to note that the additive noise term has a spectral density that depends on the

variance of σ2
t,i,∆, and on length of the intradaily interval, ∆.

When we consider the presence of the microstructure noise the variance of ξ∆
t diverges

as ∆ → 0 or n → ∞, as noted by Bandi and Russell (2006). So when prices are recorded

continuously but with measurement errors, the variance of the noise term, that is Var(ξ∆
t ), in

the spectral density of RV ∆ dominates the signal when ∆ → 0. In this case, lim∆→0 fRV ∆ =

∞ for all λ, and thus it is not possible to identify the long memory signal. However, for

a given ∆, the Var(ξ∆
t ) is finite, so that fRV ∆ is finite too. On the other hand the choice

of ∆ impacts on the variance of ξ∆
t and through this on the spectral density of RV ∆. If

we increase ∆ this reduces the variability of ξ∆
t due to the discretization but increases the

microstructure noise component, as shown in Proposition 2, so that the net effect on Var(ξ∆
t )

is not known a priori. This characterizes a trade-off, which depends on the choice of ∆, that

will be studied via simulations in Section 5. A simple and heuristic solution is to sample

the returns at intermediate frequencies, say 5 minutes, so that the fourth moment of the

microstructure noise is cumulated over finite horizons, and the true volatility signal can be

estimated rather precisely, but still with a measurement error.3

Therefore, in this section, we discuss the semiparametric estimation of the long memory

of the IV , that is robust to the presence of measurement errors. A large literature, see

Deo and Hurvich (2001), Hurvich, Moulines, and Soulier (2005) and Haldrup and Nielsen

(2007), discusses the properties of the semiparametric long memory estimators, such as the

log-periodogram regression and the local Whittle estimator, when the long memory signal is

contaminated by a noise term.4 Deo and Hurvich (2001) show that the Geweke and Porter-

3Many alternative realized estimators of volatility have been considered in literature to deal with the problem
of the microstructure noise, see among others Zhou (1996), Zhang, Mikland, and Äıt-Sahalia (2005), Hansen and
Lunde (2006) and Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008).

4In this section, we will maintain the assumption that the noise term is dynamically uncorrelated with the signal
and it is a white noise. As shown in section 3, this is the relevant case in the realized volatility context when drift
in price and leverage are excluded.
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Hudak (1984) estimator (GPH) is biased by a constant factor that depends on the variance

of the noise term. In order to preserve consistency and asymptotic normality of the GPH

estimator, Deo and Hurvich (2001) impose a condition on the growth rate of m, but this

relies on the unknown value of d. Sun and Phillips (2003) suggest to introduce an additional

term in the log-periodogram regression, βλ2d to account for the effect of the additive noise

term, that is allowed to be weakly dependent. Arteche (2004) suggests that an optimal choice

of the bandwidth is important to minimize the influence of the added noise term, since the

variance of the measurement error heavily restricts the allowable bandwidth in finite samples.

With a larger variance of the noise with respect to the signal, only frequencies very close

to the origin contain a valuable information. Hurvich, Moulines, and Soulier (2005) and

Arteche (2004) show that, in the signal-plus-noise framework, the local Whittle estimator

is consistent for d ∈ (0, 1) under general assumptions on the noise term. However, in finite

samples, the estimates are downward biased. In this paper, we follow the approach suggested

by Hurvich, Moulines, and Soulier (2005) in order to show the usefulness of correcting for

the measurement error in the realized volatility context.5 They propose to modify the local

Whittle objective function as

Q(G, d, β)∗ =
1

m

m∑

j=1

{
log
[
Gλ−2d

j (1 + βλ2d
j )
]

+
λ2d

j IRV ∆(λj)

G(1 + βλ2d
j )

}
, (23)

where G is the spectrum at the origin. Concentrating G out, it yields

R(d, β) =
1

m

m∑

j=1

log
(
λ−2d

j (1 + βλ2d
j )
)

+ log


 1

m

m∑

j=1

λ2d
j IRV ∆(λj)

(1 + βλ2d
j )


 , (24)

where the local Whittle estimator is obtained setting β = 0 in the minimization of R. The

local Whittle estimates of d and β are

(d̂c, β̂) = arg min
(d,β)∈D×B

R̂(d, β) (25)

where D and B are the admissible sets of d and β, and m has to tend faster to ∞ than

T 4d/(4d+1). In the case of RV , β̂ is interpreted as an estimate of the noise-to-signal ratio,

Var(ξ∆
t

)
2πfIV (0) . The asymptotic variance of d̂c is (1+2d)2

16d2·m
, and it is a decreasing function of d. It is

interesting to note that, for all the admissible values of d, the asymptotic variance of the bias

5Frederiksen, Nielsen, and Nielsen (2008) and Nielsen (2008) suggest to approximate the log-spectrum of the
short-memory component of the signal and of the perturbation by means of an even polynomial term.

13



corrected local Whittle estimator, d̂c, is larger than the corresponding asymptotic variance

of the local Whittle estimator, d̂, that is 1
4·m .

5 Simulations

In this section we present the results of a Monte Carlo analysis of the finite sample properties

of the long memory estimation of IV based on RV . In particular, we want to evaluate

the impact that the measurement error has on the semiparametric long memory estimates,

disentangling the contribution of the discretization error from that due to the microstructure

noise. The chosen set-up replicates a real situation where the researcher disposes of a fixed

number of days, but has alternative choices for ∆. Our purpose is to show how sensitive are

the semiparametric estimates of d, in terms of bias and root mean square error (RMSE), to the

choice of the sampling frequency (∆). We also scrutinize the performances of the corrected

estimator by Hurvich, Moulines, and Soulier (2005), obtained as in (25), for different ∆. Our

simulations are not meant to be an assessment of the relative performances of alternative

RV estimators of the integrated variance, like for example in Nielsen and Frederiksen (2008).

We focus on the semiparametric estimates of the integration order of the IV based on RV ∆.

For the Monte Carlo simulations we generate the log-price p(t) as:

dp(t) = σ(t)dW (t) (26)

and we assume that the log-instantaneous volatility process σ2(t) follows

d log σ2(t) = k(β − log σ2(t))dt + γdWd(t) (27)

In (27) Wd is the fractional Brownian motion of order d independent of W (t). To simu-

late increments from the fractional Brownian motion we implement the Matlab routine by

Yingchun Zhou and Stilian Stoev which is based on the circulant embedding algorithm for

the values of interest of the Hurst’s exponent, H = d + 1
2 . We simulate from the Euler

discrete approximation of (26) and (27). A set of discrete trajectories with a time step of

10 seconds for 6.5 hours per day, which roughly corresponds to the trading period of NYSE.

Thus we have a total 6 × 60 × 6.5 = 2, 160 log-prices and log-instantaneous volatilities per

day for 2, 500 days, that is Yj = {pj , log σ2
j }

2,160×2,500
j=1 . The generated price series are used
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to compute the RV series, with different ∆. Note that the computational burden is due

to the fact that we simulate for each Monte Carlo replication a trajectory of Yj which has

5, 400, 000 observations. The circulant embedding algorithm to simulate a trajectory from

a fBm, with 5,400,000 values, for the log-volatilities makes the simulation computationally

intensive. The bid-ask bounce is modeled as:

p̃(t) = p(t) +
ζ

2
1I(t) (28)

where ζ is the percentage spread, and the order-driven indicator variables 1I(t) are indepen-

dently across p and t and identically distributed with Pr{1I(t) = 1} = Pr{1I(t) = −1} = 1
2 .

This variable takes value 1 when the transaction is buyer-initiated, and −1 when it is seller-

initiated. We adopt the simplest bid-ask bounce specification in order to make a comparison

with the existing literature. Furthermore it is interesting to note that dp̃(t) exhibits spurious

volatility and negative serial correlation, see for instance Nielsen and Frederiksen (2008). A

crucial quantity in this framework is the noise-to-signal ratio (nsr),
Var(ξ∆

t
)

Var(IVt)
, which clearly

depends on the generating process parameters. To figure out this relationship, we estimate

the nsr, through Monte Carlo simulations, and plot it as a function of d, γ, ζ, and ∆. In

Figure 1(a) it is evident that increasing ∆ increases, for each chosen value of d, the nsr,

provided that the microstructure noise is absent. Further, the nsr is larger, for any value of

∆, when either d = 0 or 0.45, than any other choice. With d = 0.3 the nsr is the lowest for

all frequencies. When the nsr is plotted for different γ’s, see Figure 1(b), the impact of ∆

stands out very clearly. All lines are increasing in ∆, starting from 1 minute frequency, while

for 10 seconds the microstructure noise dominates. As γ approaches 0, the innovation in the

price process becomes the prevailing source of variability, so that the nsr is shifted upwards.

This is seen simply noting that:

Var(ξ∆
t,i)

Var(σ2
t,i,∆)

=
Var(ξ∆

t,i)

E[(σ2
t,i,∆)2] − E[(σ2

t,i,∆)]2

As γ → 0, then E[(σ2
t,i,∆)2] − E[(σ2

t,i,∆)]2 → 0, so that
Var(ξ∆

t
)

Var(IVt)
→ ∞, where ξ∆

t,i is defined in

(33). In Figure 1(c), the nsr is plotted for different values of ζ, which is the bid-ask spread.

It is fairly evident that sampling at 10 seconds, introduces a large microstructure noise such

that the variance of the signal is totally dominated by the noise term. For ζ = 0.001 and

γ = 0.5, the nsr is equal to 1.95, when ∆ = 10 seconds, and is 1.36 for ∆ = 30 minutes.
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In the simulations, we use the following set of parameters: k = 0.9, β = −9.2, γ =

(0.5, 0.7) and d = 0.4 that generate a nsr of a similar order as in Meddahi (2002), that is

between 15% and 20%, in absence of microstructure noise. Second, we explore a situation

where the log-instantaneous volatility is characterized by an integration order of 1 + d. To

obtain simulated trajectories of log σ2(t) that are nonstationary, we set k = 0, β = −9.2,

γ = 0.2 and d = {−0.3,−0.4}. This implies that the fractional integration order, δ = 1 + d,

of the log-instantaneous volatility is 0.7 and 0.6, respectively. We initialize each simulated

day with p(0) = log(100) and σ(0) = exp(β/2).

We calculate the RV for ∆ = 10 sec, 1 min, 5 min, 10 min, 30 min, and the realized

kernel, see Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008), that is robust to the

microstructure noise. The estimator is defined as

RV ∆
K =

H∑

h=−H

k

(
h

H + 1

)
γh (29)

where

γh =
n∑

j=|h|+1

r∆j,∆r∆j−|h|,∆

and k(x) is a kernel function. We follow the instructions in Barndorff-Nielsen, Hansen,

Lunde, and Shephard (2009) to construct the realized kernel. In particular, we focus on the

Parzen kernel, since it guarantees non-negative estimates. For the choice of the bandwidth,

h, that depends on the estimates of the variance of the noise, we implemented the selection

procedure outlined in Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009), Section 2.

We then construct realized Kernel measures using 1 minute returns, RV 1
K .

In order to compare the estimators of the long memory parameter d, we calculate for each

IV estimator and for each sampling frequency the percentage relative bias from S Monte

Carlo simulations:

Bias(d̂) =
100

d

(
1

S

S∑

s=1

(d̂s − d)

)
.

The RMSE is calculated as

RMSE(d̂) =

(
1

S

S∑

s=1

(d̂s − d)2

)1/2

.

We estimate the long memory parameter of the IV , which is unobserved in practice but

known in a simulation study and computed for the day t as IVt =
∑2,160

k=1 σ2
(t−1)·2,160+k for
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t = 1, . . . , 2, 500. The estimates of the long memory parameter based on IV constitutes a

natural benchmark for estimates of d based on RV ∆.

Table 1 reports the percentage bias and RMSE of the estimated long memory parameter

when d = 0.4, obtained with the local Whittle and the corrected Whittle estimators, see

equations (25), for different choices of ∆, γ and ζ. In both panels, the estimated d of IV is

the closest to the true value, and the percentage bias, smaller than 1%, is due to the Monte

Carlo variance. However, in the real world, IV is unobservable and we rely on the realized

measures to conduct inference on the degree of long memory. When ζ = 0, the best local

Whittle estimates of d are obtained for small choices of ∆, while the largest negative biases

are those of RV 30 and RVK . This is coherent with the fact that the only source of noise

in this case is the discretization error, so that increasing the latter, induces more biased

estimates.

When ζ = 0.001 or ζ = 0.002, the largest negative bias is that of RV all (between -24%

and -33%), while the bias of RV 30 is between -13% and -18%. In presence of microstructure

noise, the best estimates of d are obtained sampling at 1 and 5 minutes, and the bias is

approximately −10%, so that d̂ ≈ 0.36 on average. We also note that the negative bias

becomes larger as γ gets smaller, as a result of the increase of the noise-to-signal ratio.

Interestingly, correcting for the presence of the measurement errors improves the quality of

the estimates, in terms of bias and RMSE, for any choice of ∆, and the relevance of the

correction becomes evident as ζ increases. Similar evidence is also confirmed when the IV

is long memory but nonstationary (log σ2(t) simulated with k = 0 and d = −0.3,−0.4, with

δ = (1 + d) > 1/2), that could be the relevant case in practice, see Table 2. First, it is

interesting to note that, also in the nonstationary case, IV has the same integration order

of σ2(t), as we conjectured above. When ζ = 0 and γ = 0.2, the variance of the noise

becomes dominant on the variance of the signal as ∆ increases, see Figure 1(b). Therefore,

the impact of the discretization error on the estimates of δ is very large. For example, when

ζ = 0 the bias of the Whittle estimator based on RV 30 is negative and larger than 30% when

d = 0.6, and larger than 18% when d = 0.7. As expected, the negative bias increases, as ζ

increases, and we observe extremely large negative biases for ζ = 0.002, so that the estimated

d based on the RV can fall in the stationary region, even though the integrated variance is

not stationary. For example, RV 5 has a negative bias equal to -28% when δ = 0.6, meaning

that δ̂ ≈ 0.43 on average. It is noteworthy the fact that the corrected Whittle estimator
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provides unbiased estimates, also in the nonstationary region, for all the choices of ∆.

6 Empirical Analysis

The proposed estimation method is applied to the realized variance series of four stocks

traded on NYSE, Caterpillar (C), FedEx (FDX), IBM and JP Morgan, (JPM). The sample

period ranges from January 2, 2003 to June 30, 2007, for a total of 1132 trading days. The

choice of the sample period is motivated by the idea that the period 2003-2007 has been

characterized by low levels of volatility, few jumps and no large level shifts in the volatility

mean. Therefore, we avoid the possible upward bias in the semiparametric estimates of d,

due to the presence of large shifts as generated by changing bull and bear markets, such as

during the 2008-2009 financial crisis.

We base our analysis on realized variances computed with alternative sample frequencies,

say 1 minute, 5 minutes, 10 minutes, 15 minutes and 30 minutes. We show, by means of

the long memory signature plot, displayed in Figure 1, that the proposed correction provides

robust estimates of the IV long memory parameter. The Whittle estimator of d on the

log-realized variance series (black line) is always in the stationary region, and it is evident

the downward trend with respect to ∆. On the other hand, the corrected estimates of d

(red line) are always above the Whittle estimates and are constant across different choices

of ∆, meaning that the corrected estimator is able to provide estimates of the long memory

parameter, that are robust to different choices of the sampling frequency. It is noteworthy the

fact that, with the exception of FDX, the corrected estimator, d̂c, falls in the nonstationary

region, suggesting that the integrated variance could be a non-stationary process. From

this point of view, the fact that the local Whittle estimate of d based on RV ∆ turns out

to be less than 0.5, namely a stationary long memory process, is mainly due to the role

of the measurement error. This also suggests that using a biased long memory estimator

leads to wrong conclusions on the stationarity of the integrated and instantaneous volatility

processes. Using a similar argument, but in a discrete-time domain framework, Hansen

and Lunde (2010) have proposed an instrumental variable estimator of the persistence of

the signal when the latter is a unit root process (in the same spirit Rossi and Santucci de

Magistris, 2011). At the best of our knowledge, the consequences of a fractional, but non

stationary, volatility process are not studied yet in literature and the evidence reported here
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worths a more detailed investigation of this aspect.

7 Conclusions

A stylized fact is that realized volatility has long memory. In this paper, we investigate

the dynamic properties and the source of the long-range dependence of RV . When the

instantaneous volatility is driven by a fractional Brownian motion the IV is characterized

by long-range dependence. As a consequence, the RV inherits this property in the ideal

situation where prices are observed continuously and without microstructure noise. In this

case, the spectral densities of IV and RV coincide. In this paper we focus on the dynamic

properties of ex-post estimators of IV , such as RV , when we assume that the trajectories

of the instantaneous volatility, σ2(t), are generated by a fractional Brownian motion of

order d. First, we demonstrate that IV has the same fractional integration order of σ2(t).

It is therefore natural that realized measures of volatility have the same integration order

of IV in the ideal situation where the price is recorded continuously and without market

microstructure noise. We study the dynamic properties of the measurement error associated

with the RV , when the efficient price can be directly observed and when instead cannot

because contaminated by microstructure noise. The semiparametric estimates of d crucially

depends on the use of realized volatility in place of the unobservable IV . In absence of

microstructure noise, the RV spectral density converges to the spectral density of IV . On

the contrary, when the presence of microstructure noise prevents from using all the available

price observations, which would be optimal if only the discretization occurs, the additional

component in the spectral density significantly affects the semiparametric estimates of d. We

adopt a correction of the local Whittle estimator along the lines of Hurvich, Moulines, and

Soulier (2005). A Monte Carlo experiment confirms that the correction of the local Whittle

estimator is effective when the microstructure noise is not negligible. Thus the trade-off

between discretization error and microstructure noise is neutralized by adopting a corrected

version of the local Whittle estimator. Finally, the estimation of the long memory of four

NYSE stocks emphasizes the practical importance of considering the measurement error

when estimating the degree of long memory of integrated variance. The corrected estimates

of d seem to point to the possibility that the IV and the instantaneous volatility can be

non-stationary processes. In this study we have not considered the role of jumps in prices
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and their potential effect on the estimation of long memory in IV . This is left for future

research.
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(a) d = 0.4 and γ = 0.5.

ζ = 0.000 ζ = 0.001 ζ = 0.002

Bias d̂ RMSE(d̂) Bias d̂c RMSE(d̂c) Bias d̂ RMSE(d̂) Bias d̂c RMSE(d̂c) Bias d̂ RMSE(d̂) Bias d̂c RMSE(d̂c)

IV -0.67 0.0546 -0.67 0.0565 -0.67 0.0546 -0.67 0.0546 -0.67 0.0546 -0.67 0.0572
RV all -0.74 0.0546 2.96 0.0571 -5.32 0.0597 -0.96 0.0570 -33.96 0.1508 -5.56 0.1319
RV 1 -1.17 0.0546 2.50 0.0465 -3.16 0.0559 0.82 0.0457 -13.22 0.0775 -0.94 0.0810
RV 5 -3.09 0.0558 0.73 0.0452 -4.50 0.0574 -0.45 0.0459 -9.37 0.0666 1.14 0.0719
RV 10 -5.45 0.0583 -0.25 0.0470 -6.65 0.0601 -0.98 0.0481 -10.39 0.0689 1.26 0.0753
RV 30 -13.98 0.0778 -1.28 0.0769 -15.03 0.0809 -1.61 0.0794 -18.08 0.0904 -0.24 0.0913
RV 1

K -7.35 0.0616 -0.48 0.0511 -10.48 0.0687 -2.18 0.0584 -14.08 0.0785 -0.71 0.0832

(b) d = 0.4 and γ = 0.7.

ζ = 0.000 ζ = 0.001 ζ = 0.002

Bias d̂ RMSE(d̂) Bias d̂c RMSE(d̂c) Bias d̂ RMSE(d̂) Bias d̂c RMSE(d̂c) Bias d̂ RMSE(d̂) Bias d̂c RMSE(d̂c)

IV -0.94 0.0490 -0.94 0.0490 -0.94 0.0490 -0.94 0.0490 -0.94 0.0490 -0.94 0.0490
RV all -1.02 0.0490 -0.82 0.0488 -4.10 0.0519 1.48 0.0583 -24.53 0.1172 -4.11 0.1081
RV 1 -1.35 0.0491 -0.17 0.0483 -2.54 0.0501 1.25 0.0521 -9.38 0.0638 -0.26 0.0735
RV 5 -2.98 0.0501 1.17 0.0525 -3.82 0.0511 1.41 0.0559 -7.22 0.0568 0.39 0.0667
RV 10 -4.59 0.0521 1.54 0.0585 -5.37 0.0534 1.31 0.0610 -8.19 0.0586 0.50 0.0692
RV 30 -11.29 0.0662 -0.41 0.0750 -11.98 0.0683 -0.66 0.0769 -13.93 0.0743 0.82 0.0813
RV 1

K -6.16 0.0542 1.28 0.0632 -8.20 0.0685 0.81 0.0688 -10.81 0.0651 0.03 0.0752

Table 1: Bias and Root mean squared error of Monte Carlo estimates of d. d̂ denotes the local Whittle estimator of the long memory parameter,
while d̂c is the corrected local Whittle estimator (see (25)). The term Bias is referred to the relative percentage bias, defined in equation
(5). The estimates are based on 1,000 samples of 2,500 daily observations from model (26)-(27) with parameter values indicated in table and
discretization step set to 10 seconds. The bandwidth used in the estimation of d is m = T 0.65
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(a) δ = 1 + d = 0.6 and γ = 0.2.

ζ = 0.000 ζ = 0.001 ζ = 0.002

Bias δ̂ RMSE(δ̂) Bias δ̂c RMSE(δ̂c) Bias δ̂ RMSE(δ̂) Bias δ̂c RMSE(δ̂c) Bias δ̂ RMSE(δ̂) Bias δ̂c RMSE(δ̂c)

IV 1.02 0.0596 1.02 0.0596 1.02 0.0596 1.02 0.0596 1.02 0.0596 1.02 0.0596
RV all 0.62 0.0596 2.10 0.0501 -18.84 0.1339 1.78 0.1052 -60.73 0.3741 -2.56 0.1431
RV 1 -1.32 0.0601 3.29 0.0639 -10.55 0.0887 1.79 0.0901 -36.37 0.2316 0.82 0.1313
RV 5 -8.96 0.0797 2.38 0.0881 -14.38 0.1048 1.72 0.0970 -28.15 0.1810 1.55 0.1182
RV 10 -16.11 0.1137 1.68 0.1026 -20.10 0.1348 1.62 0.1079 -30.24 0.1927 1.81 0.1216
RV 30 -33.70 0.2105 1.23 0.1289 -35.61 0.2216 0.94 0.1317 -40.66 0.2514 0.87 0.1365
RV 1

K -21.15 0.1402 1.52 0.1111 -28.59 0.1818 1.33 0.1222 -35.04 0.2188 0.81 0.1326

(b) δ = 1 + d = 0.7 and γ = 0.2.

ζ = 0.000 ζ = 0.001 ζ = 0.002

Bias δ̂ RMSE(δ̂) Bias δ̂c RMSE(δ̂c) Bias δ̂ RMSE(δ̂) Bias δ̂c RMSE(δ̂c) Bias δ̂ RMSE(δ̂) Bias δ̂c RMSE(δ̂c)

IV -0.26 0.0639 -0.26 0.0639 -0.26 0.0639 -0.26 0.0639 -0.26 0.0639 -0.26 0.0639
RV all -0.41 0.0638 0.07 0.0571 -9.07 0.0999 0.18 0.0911 -37.06 0.2938 -2.28 0.1485
RV 1 -1.12 0.0638 0.20 0.0465 -4.66 0.0720 1.42 0.0827 -18.91 0.1644 -0.99 0.1104
RV 5 -4.40 0.0703 -0.26 0.0452 -6.73 0.0790 0.59 0.0888 -13.90 0.1213 -0.83 0.1015
RV 10 -7.70 0.0837 -0.99 0.0470 -9.74 0.0835 0.01 0.0957 -15.32 0.1272 -0.59 0.1073
RV 30 -18.57 0.1442 -2.70 0.0769 -19.80 0.1520 -1.02 0.1150 -23.04 0.1739 -1.16 0.1195
RV 1

K -10.48 0.0970 -1.51 0.0511 -14.42 0.1197 -0.81 0.1044 -18.46 0.1451 -1.11 0.1138

Table 2: Bias and Root mean squared error of Monte Carlo estimates of δ = 1 + d, when k = 0. When d = −0.4 and d = −0.3, then δ = 0.6
and δ = 0.7, respectively. δ̂ denotes the local Whittle estimator, while δ̂c is the corrected local Whittle estimator (see (25)). The term Bias

is referred to the relative percentage bias, defined in equation (5). The estimates are based on 1,000 samples of 2,500 daily observations from
model (26)-(27) with parameter values indicated in table and discretization step set to 10 seconds. The bandwidth used in the estimation of
δ is m = T 0.65.
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Figure 1: Long memory signature plots : Long memory parameter estimates for different sampling frequencies (1, 5, 10, 15 and 30 minutes).
Black lines represent the local Whittle estimator of the memory parameter (obtained minimizing the function in (24) concentrated with respect
to G with β = 0). Red lines represent the corrected local Whittle estimator (see (25)).
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A Proofs

A.1 Proof of Proposition 1

We know from Comte and Renault (1998) that limλ→0 λ2dfσ̃2(λ) = c ∈ R+. Given that

IV =
∫ 1
0 σ̃2(s)ds. Following Chambers (1996) we express the integral operator in the IV

definition as a simple filter that has transfer function

T (λ) =

∫ 1

0
e−iλudu =

1

(−iλ)
[e−iλ − 1].

Therefore the spectral density of IV is given by

fIV (λ) = |T (λ)|2fσ̃2(λ). (30)

The limit of the spectral density of IV for λ → 0 is

lim
λ→0

fIV (λ) = lim
λ→0

[|T (λ)|2fσ̃2(λ)] (31)

Since |T (λ)|2 = 2(1−cos (λ))
|λ|2

and limλ→0(1 − cos (λ)) = |λ|2/2, then limλ→0 |T (λ)|2 = 1, thus

lim
λ→0

λ2dfIV (λ) = lim
λ→0

λ2dfσ̃2(λ) = c (32)

that is IV has the same degree of long memory of σ̃2(t).

A.2 Proof of Proposition 2

(i) ξ∆
t =

∑n
i=1 ξ∆

t,i, where

ξ∆
t,i = σ2

t,i,∆

(
z2
t,i − 1

)
+ η2

t,i,∆ + 2 (σt,i,∆zt,iηt,i,∆) (33)

Therefore

E
(
ξ∆
t,i

)
= E

[
σ2

t,i,∆

(
z2
t,i − 1

)]
+ E

(
η2

t,i,∆

)
+ 2E (σt,i,∆zt,iηt,i,∆)

= E
(
η2

t,i,∆

)

= σ2
η
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E (σt,i,∆zt,iηt,i,∆) = E(σt,i,∆) · E(zt,i) · E(ηt,i,∆) = 0, so that E
(∑n

i=1 ξ∆
t,i

)
= nσ2

η;

(ii) The variance of ξ∆
t,i is,

Var
(
ξ∆
t,i

)
= Var(u∆

t,i) + Var(η2
t,i) + 4 Var (σt,i,∆zt,iηt,i,∆)

= 2E
[
σ2

t,i

]
+ E(η4

i,t) − σ4
η + 4∆σ2

ηE
[
σ2

t,i

]

(iii) The covariance between a generic ξ∆
t,i and ξ∆

t,j can be decomposed as

Cov
(
ξ∆
t,i, ξ

∆
t,j

)
= E

[
u∆

t,iu
∆
t,j

]
+ E

[
u∆

t,iη
2
t,j

]
+ 2E

[
u∆

t,i (σt,j,∆zt,jηt,j,∆)
]

+E
[
η2

t,iu
∆
t,j

]
+ E

[
η2

t,iη
2
t,j

]
+ 2E

[
η2

t,i (σt,j,∆zt,jηt,j,∆)
]

+2E
[
(σt,i,∆zt,iηt,i,∆) u∆

t,j

]
+ 2E

[
(σt,i,∆zt,iηt,i,∆) η2

t,j

]

+4E [(σt,i,∆zt,iηt,i,∆) (σt,j,∆zt,jηt,j,∆)] − σ4
η

= σ4
η − σ4

η = 0 ∀i 6= j

so that the covariance of ξ∆
t and ξ∆

t+h is equal to

Cov




n∑

i=1

ξ∆
t,i,

n∑

j=1

ξ∆
t+h,j


 =

n∑

i=1

n∑

j=1

Cov
(
ξ∆
t,i, ξ

∆
t+h,j

)
= 2n2 · 0 = 0 ∀h 6= 0. (34)

therefore, given that Cov
(
ξ∆
t,i, ξ

∆
t+h,i

)
= 0,∀h 6= 0, the variance of ξ∆

t is

Var
(
ξ∆
t

)
= Var

(
n∑

i=1

ξ∆
t,i

)
=

n∑

i=1

Var
(
ξ∆
t,i

)

= 2∆−1E
[
σ2

t,i

]
+ ∆−1E(η4

t ) − nσ4
η + 4σ2

η∆
−1E

[
σ2

t,i

]

(iv) The covariance between the integrated volatility, over the period (t − 1 + ∆(i − 1), t − 1 + ∆i),

and the error term is

Cov
(
σ2

t,i,∆, ξ∆
t,i

)
= E

[
σ2

t,i,∆ ·
(
u∆

t,i + η2
t,i,∆ + 2ηt,i,∆σt,i,∆zt,i

)]
− E(σ2

t,i,∆)σ2
η

= E
(
σ2

t,i,∆u∆
t,i

)
+ E

(
σ2

t,i,∆η2
t,i

)
+ 2E

(
σ2

t,i,∆ηt,i,∆σt,i,∆zt,i

)
− E(σ2

t,i,∆)σ2
η

= E(σ2
t,i,∆)σ2

η − E(σ2
t,i,∆)σ2

η = 0

The same holds for Cov
(
σ2

t,i,∆, ξ∆
t,j

)
, for i 6= j, which are also equal to zero. Hence,

Cov
(
IVt, ξ

∆
t

)
= 0.
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(v) The autocovariance of realized volatility is

Cov
(
RV ∆

t , RV ∆
t+h

)
= Cov

(
IVt + ξ∆

t , IVt+h + ξ∆
t+h

)

= E
[(

IVt + ξ∆
t

) (
IVt+h + ξ∆

t+h

)]
− E

(
IVt + ξ∆

t

)
· E
(
IVt+h + ξ∆

t+h

)

= E (IVtIVt+h) + E
(
ξ∆
t ξ∆

t+h

)
+ E

(
IVtξ

∆
t+h

)
+ E

(
IV ∆

t+hξ∆
t

)

−E (IVt)E (IVt+h) − E (IVt) E
(
ξ∆
t+h

)

−E (IVt+h)E
(
ξ∆
t

)
− E

(
ξ∆
t

)
E
(
ξ∆
t+h

)

= [E (IVtIVt+h) − E (IVt) · E (IVt+h)] +
[
E
(
ξ∆
t ξ∆

t+h

)
− E

(
ξ∆
t

)
· E
(
ξ∆
t+h

)]

+E(IVt)σ
2
η + E(IVt+h)σ2

η − E(IVt)σ
2
η − E(IVt+h)σ2

η

= Cov(IVt, IVt+h) + Cov(ξ∆
t , ξ∆

t+h) = Cov(IVt, IVt+h) ∀h 6= 0

because Cov(ξ∆
t , ξ∆

t+h) = 0 as seen in (34).
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