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OPTION VALUATION WITH THE SIMPLIFIED
COMPONENT GARCH MODEL

MATT P. DZIUBINSKI

ABSTRACT. We introduce the Simplified Component GARCH (SC-
GARCH) option pricing model, show and discuss sufficient condi-
tions for non-negativity of the conditional variance, apply it to
low-frequency and high-frequency financial data, and consider the
option valuation, comparing the model performance with similar
models from the literature. Two volatility components in our model
allow us to model time structure of volatility.
JEL Classification. G12, C32.

1. INTRODUCTION

In this paper we introduce a discrete-time volatility model in which
the conditional variance of the underlying asset follows a particular
GARCH process. Our model can be used for option pricing, while two
volatility components allow us to model time structure thereof.

The model builds on Engle and Lee (1999), Heston and Nandi (2000)
and Christoffersen et al. (2008) (hereafter referred to as “CJOW”) mod-
els. The model by Engle and Lee (1999) introduced the volatility com-
ponent model in the GARCH context, while Heston and Nandi (2000)
introduced a model with a closed-form solution for the European call
option-pricing formulas. The CJOW model is a generalization of the
Heston and Nandi model allowing for a time-varying long-run com-
ponent. Our model is a simplified specification of the CJOW model,
which solves the problem of ensuring the non-negativity of the condi-
tional variance.

The paper proceeds as follows. In Section 2 we provide basic definitions
and notation. We introduce the model in Section 3, and discuss the
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2 MATT P. DZIUBINSKI

estimation thereof in Section 4. In Section 5 we present the estimation
results. Section 6 is devoted to option pricing, and, finally, Section 7
contains our conclusions.

2. BASIC DEFINITIONS AND NOTATION

We assume as given a probability space (2, F, P) and a filtration F =
(Fi)iet, where, depending on the context, we shall assume T = Z, or
T=ZN[0,T,T>00r T=ZnN[-1,T], T > 0. We refer to P as the
physical probability measure and we call (Q, F,F, P) a filtered physical
probability space. We shall also use probability measure @ on (9, F)
and refer to it as the risk-neutral probability measure.

A stochastic process X on (Q, F, P) is a collection of R-valued random
variables (X;)ier, and we denote it by X = (X;)ser.

The process X is said to be adapted if X; € F; Vt € T (that is, it is F;
measurable for each t € T).

The process X is said to be predictable if X, € F;_1 Vt € T, and we
denote this by X € P.

The process X is said to be (F, P)-white noise with mean px and

variance 0%, written X & W N (uy, 0%) if and only if, under probability
measure P, X has mean pux € R and covariance function 7(s,t) =
0%0)1—s), where 8, := Ly (h) is the Kronecker delta and 0% € Ry,.

The process X is said to be (F, P)-Gaussian white noise with mean
px and variance o3, written X L GW N (ux,o0%) if and only if X X
WN(ux,0%) and X, e N(px,0%) VteT.

First-order partial differential operator with respect to x is denoted 0,.

For further details regarding stochastic processes and time series we
refer the reader to Protter (2005) and Brockwell and Davis (1991).

3. THE MODEL

We begin by presenting the CJOW model. The advantages of this
model are the existence of a (quasi-)closed-form solution for the option
pricing formulas, improved ability to model the smirk and the path
of spot volatility and, distinctively, the ability to model the volatility
term structure — for details, see Christoffersen et al. (2008). A problem
with this model is that the volatility components may admit negative
values. This leads to a contradiction in the context of conditional
variance modeling, as the conditional variance cannot be negative. We
propose a more parsimonious model which solves this problem and
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discuss its relation to the CJOW model. Furthermore, we shall consider
the properties of the model and discuss the estimation of its parameters.

Assumption 1. The spot asset price, S (including accumulated inter-
est or dividends) follows (over time steps of length A = 1) the following
process under the physical probability measure P,

S
Ti41 = log ;1 = M1 T A/ Vi1 Wep (3.1)
t
Vpp1 = Tep1 + PV — Tp) + Tyl (3.2)

Tpp1 = My + Pu(Te — My) + ipUsy

with
Pi1 =T+ AVt (3.4)
Uy = (Wi — 1) — 2g,\/vswy (3.5)
Uy = (W] — 1) (3.6)
w X GWN(0,1) (3.7)

where 1y is the continuously compounded interest rate for the time in-
terval of length A, v, is the conditional variance of the log return be-
tween t — 1 and t, with v € P.

We use a notation that is closely linked to the interpretation of our
model. First, the r process is the logarithmic return of the underlying,
with p being its physical conditional mean, while v is its conditional
variance. The market price of risk is denoted by A. Second, the pro-
cess x is the long-run volatility component. The short-run volatility
component can be written, in the spirit of Engle and Lee (1999), as
s = v — x. Under weak stationarity (discussed in the sequel) we have
E[vi11] = E[zi11] = me = n,/(1 — p). Thus, m, is the unconditional
mean of z and v, with n, being the numerator of n, /(1 — p,), directly
proportional to the unconditional mean level. Third, the u, and u,
processes serve as mean-zero innovations for x and v, respectively, with
the coefficients 7, and i, measuring the strength of the impact of those
innovations. The coefficient p, measures the persistence of x. Analo-
gously, the persistence of v is measured by b, = p, — i,g>. Finally, the
source of the randomness w is the (F, P)-Gaussian white noise with
mean 0 and variance 1, hereafter also referred to as the (F, P)-standard
Gaussian white noise.

3.1. Non-Negativity of the Conditional Variance. First, we shall
look at the CJOW model and consider the issues regarding the non-
negativity of the conditional variance arising in its application.
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3.1.1. CJOW Model. First, recall that Christoffersen et al. (2008) model
can be rewritten in our notation, replacing (3.6) with

Uzt = (wt2 - 1) - 2ga:\/v_twt (38)
and keeping the remaining equations intact.

The problem with this specification is that there is no guarantee on
non-negativity of v — and since v is the conditional variance process, we
arrive at a possible contradiction. In order to examine the seriousness
of the problem, we perform a simulation study and analyze the behavior
of the model.

3.1.2. CJOW Model — Simulation Study. We perform a simulation study
to examine the behavior of this model — performing a grid search with
respect to p, — searching from 0.0 to 1.0 with a step size of 0.001. We
do this both for the original CJOW model and a deterministic version
thereof (i.e. the one where the driving noise process is assumed to
be identically equal to zero instead of a standard GWN), fixing all the
other parameter values to those in Table 1 in Christoffersen et al. (2008)
(for convenience, we reproduce it in Table 1) — in addition setting 7
to 1.000 x 107!, We choose this particular parameter value, since it is
the one used by Christoffersen et al. (2008) to differentiate between the
Component and the Persistent Component (p, = 1) models. Further-
more, the reason we consider the unit interval as the parameter range
is that for p, < 0 non-negativity issues arise immediately (as we shall
show later on), while p, > 1 leads to non-stationarity (in particular,
the explosiveness of z and, consequently, v). For purposes of this study,
T=7ZnI[0,T], T =1,000.

T = 1,000 Simulation

ry 1.000 x 10!
A 2.092 x 1070
Ny 8.208 x 107
i 1.580 x 107
i 2.480 x 1076
Do 6.437 x 10~
Da 9.896 x 107!
% 4.151 x 1072
0 6.324 x 10*!

TABLE 1. The coefficient values used for the CJOW
model simulation study.
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We divide the set of p, coefficient values into invalid and valid values,
where the invalid ones are those that lead to negative values of v. We
find that the low parameter values are invalid, while the higher ones
are valid — the boundary being at approximately 0.9. This means for
all p, < 0.9 in our simulation study there exists a t(p,) € T such

that vy,,) < 0. Note, that in practice this leads to vtl(/pi) returning

NaN! for the IEEE 754 conforming architecture. Since commonly
applied optimization routines will reject arguments leading to NaNs
(or terminate with an error, leading to restarting the optimization with
different starting values), this potentially explains the estimate of p, =
0.9896 obtained by Christoffersen et al. (2008), which is very close to
1. Hence, due to this numerical property of the model, one cannot
necessarily infer “high persistence” to hold in this case. This is because
the high estimate might well be a numerical artifact, as opposed to
being an empirical property of the data described by the model.

In addition, as we change the sample size T', the boundary value in-
creases as the sample size increases. A possible interpretation of this
finding is that as the model runs for a longer time (i.e., as we have more
draws in the generated sample) the chance of drawing at least one neg-
ative value increases. However, this is not solely due to Gaussianity of
w, because we obtain similar result for the deterministic version of the
model (i.e. even for a bias forecast) — in fact, the boundary is higher
for the deterministic case than the stochastic one.

3.1.3. CJOW Model — Discussion. We shall now proceed as follows:
assuming the CJOW model, we rewrite (3.2) and (3.3), substituting
(3.5) and (3.8), respectively:

Vi1 = T + Do(ve — x) + i (W] — 1) — 2g,1/vswy) (3.9)
Tip1 = Ny + Paly + 1g ((wt2 -1)— 29$\/1Ttwt) (3.10)
where
Ny = mg(l — pg). (3.11)
Rearranging terms, we obtain
Tpp1 = Ny + Dot — 20500/ VW + 1y ((wf - 1)) (3.12)
=Ny — by + Paty + i (We — gurn/V0)* — ugiue. (3.13)

'The term NaN stands for “Not a Number.” Here it results from applying the
square root function to argument outside its domain, due to attempt to take the
square root of a negative number.

2IEEE Standard 754 is a floating-point arithmetic standard, the most common
floating-point representation of real numbers today on computers — for further ref-
erence, see IEEE Task P754 (2008).
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Now, assume p, > 0 and v > 0. Consider two cases with respect to i,.
If we assume i, < 0, we have, in (3.13), that —i,g%v; > 0 and —i, > 0
— this, however, results in i,(w; — g,1/v;)*> < 0. On the other hand,
if we assume 0 < i, (and we may also want i, < n, < n,, so that
Ny — iz > 0), then —i,g?v; < 0. Hence, we conclude that P(3t € T :
x; < 0) > 0. However, since z is the long-run volatility component, it
should remain non-negative over time.

Furthermore, even if we assume x = 0, we obtain

Vi1 = PpUt + 1y ((wf -1) - 29v\/17twt)
= Pyt + 1y (th — 2g,\/vwy + ggvt — ggvt - 1)
= —ly T DUt + 1y ((wt — gu/Ur)? — ggvt)
= iy + byvy + iy (W — Gun/Br)”

where
by = pu — iug,- (3.18)
Now, for all 7, # 0, P(3t € T : v; < 0) > 0. In fact, we can obtain
the result for an arbitrary ¢t € T, using (3.17) and the fact that w X
GWN(0,1):
P(Ut+1 < O|Ut > O)
= P(—iy + byvy + iy (W — gu/05)° < Olvy > 0)

=P(< + = Gov/0) < (i — byvy) [i]vy > 0)
P(—(iy = byvy) /iy < Wy — Gun/vy < (i — byty) /iy|ve > 0)

— by b,
vt)+gy\/_<wt<w+gy\/v_t|vt>0)>0,

Z'U (2

_p i

as long as the interval (— (i, — byvy) /iy + Gur/0t, (iv — by0t) [iv + Gur/Vr)

is non-empty.

An analogous result can be obtained for the x process. However, in
order to show the possibility of the negative conditional variance, the
existence result is sufficient.

We conclude that assuming a non-zero skewness parameter g, leads to
a model that can result in negative values for the volatility components.

3.1.4. A Solution. To mend this problem, we shall now introduce a
specification which allows us to derive a sufficient conditions for the
volatility components to stay non-negative, given xq > 0 and vy > 0.
Assume that g, = 0. This eliminates the asymmetry from the long-run



OPTION VALUATION WITH THE SIMPLIFIED COMPONENT GARCH MODEILY

component z, and we obtain

Tip1 = My + Pol(Tr — My) + GaUsy (3.24)
with
Ups = (W] —1). (3.25)
Rearranging (3.24) and substituting (3.25) we obtain
L1 = My(1 = py) + potty + i (wy — 1) (3.26)
= N — I + Paly + (W] (3.27)
where
Ny = mg(l — pg). (3.28)

Note, that (3.27) follows the GMACH(1, 1) model by Yang and Bewley
(1995)%. Now, in order to obtain non-negative values of x, we need
n, > i, > 0 and p, > 0. Furthermore, under weak stationarity (for
which we also need |p,| < 1) we have

n

Elx =m, = S 3.29

] = mp = 77 (3.29)

This motivates our previous notation m, for the unconditional mean
of x.

Inserting (3.27) and (3.5) into (3.2) yields:

Vg1 = Tyg1 + Po(Vr — p) + iyl (3.30)
=Ny — iy + PaTy + i W}
+ po(ve — o) + Ayt (3.31)
=Ny — iy + Paly + oW}
+ polvr — x4) + 1y (W] — 1) = 2gy/vswy) - (3.32)

Rearranging terms and using p, = b, + 1,92 we have

. . 2
Vtp1 = Ng — g + PeTy + Wy

+ (by + 1097) (v — @) + i (W] — 1 — 2g,\/Vw;) (3.33)
= (N — i — iv) + (P — by — TG0 )0 + iaw0]

+ bovy + 1y (W] — 2guy/Urwe + 1,92 (3.34)
= (e — iz — 1) + (P — Do) Tt + by

+igw] + iy (W — gun/0;)? (3.35)

Now, assuming b, > 0, 7, > 0 and i, > 0, we have a sufficient condition
for non-negativity of v, which is (n, — i, —i,) + (px — p»)x > 0. Since
we have already established conditions for non-negativity of x, we need
to ensure that in addition to them, (n, — i, —i,) > 0, (pr — py) > 0

3This is similar to assuming ¢ = 0 in the model by Heston and Nandi (2000) in
a way that we also obtain GMACH(1, 1) dynamics.
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and b, > 0. Thus, the joint sufficient conditions for non-negativity of
the volatility components v and z are as follows:

pe <1,y >0, iy >0, iy >0 (3.36)
Ny > iy + iy (3.37)
Pe > Py > iugs >0 (3.38)

Restrictions in (3.36) are analogous to those in Engle and Lee (1999).
Note, that similarly to Engle and Lee (1999) we also assume that the
weak stationarity restriction p, < 1 holds. The economic interpre-
tation of (3.37) is that the mean long-term volatility level has to be
sufficiently high relative to the strength of the innovation impact (re-
call from (3.29) that n, is the numerator of the unconditional mean,
i.e. my =n,/(1 —p,)). The interpretation of (3.38), which can also be
stated as p, > b, > 0, is that the persistence of the long-run component
has to be higher than the one of the short-run component and that the
impact of the innovation(s) to the short-run component cannot be as
strong as to outweigh the persistence.

Hereafter we shall denote our parameter vector by
0:=(rg, A N, iv, ia; Do, Do Go)'
and the restricted parameter space
0:={/CO: (3.36) — (3.38)},

where © C RP, p = 8.

4. MAXIMUM LIKELIHOOD ESTIMATION

We shall now derive a Maximum Likelihood Estimator (MLE)* for our
model. For notational convenience we assume that the sample includes

an observation for ¢ = 0. Hereafter we shall assume that non-negativity
conditions (3.36)—(3.38) hold.

First, note that by the assumptions (3.1)-(3.7) we have that w L

GWN(0,1) and v € P. Using this and (3.1) yields r;|F;_; L N (g, o).
Hence, the conditional probability density function (PDF) of r;|F;_; is

exp Gw) . (1)

2Ut

f(rt‘f'tfl) =

1
vV 27T/Ut

4The kind of MLE we derive is called the conditional MLE in Hayashi (2000) —
see pp. 547-549.
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Using (3.1) again and simplifying we obtain

fre Fea) = \/217r—vt exp (-%) (4.2)

1 vyw?
= —¢ — 4.3
V2T, P < 2, ) (43)

_ \/217r—vt exp (-“’73) | (4.4)

Now, we can formulate our MLE in terms of an M-estimator. If the
PDFs are parametrized by a parameter vector € then the M-estimator
using the log-likelihood of the sample over ¢t = 0,1, ..., N can be written
as:

0 = arg max 0y, (0) (4.5)
0c6
Qul0) = 5 > 4(6) (4.6
(0) = log f(re|Fi-1;0) (4.7)
= ! log(27) — 1log(vt) — 1w2. (4.8)
2 2 2

Note, that using proportional and monotonic transformations, we can
state our problem for the purposes of minimization as follows:

6 = arg min Qn(H) (4.9)
Qn(0) =) _1,(0) (4.10)
1,(0) = l(;g(vt) + wy. (4.11)

For the numerical details, including objective function computation
algorithm and analytical gradient formulas, we refer the reader to Dz-
iubinski (2010).

5. ESTIMATION — RESULTS

Due to the results in Dziubinski (2010) we choose Conditionally-Uniform
Feasible Grid Search (CUFGS) with Feasible Sequential Quadratic Pro-
gramming (FSQP) to estimate the models. The FSQP allows us to
solve the constrained optimization problem (4.11), while coupling it
with CUFGS enables us to widen the search space and thus increasing
the chance of convergence.
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We use the S&P 500 index data to calculate the (log) returns. We
fit our model to both daily (source: Yahoo Finance, period 1/3/1950-
7/22/2009) and high-frequency (5-minute) data (source: Price-Data.com
S&P 500, period 4/21/1982-12/6/2007 from Price-Data.com). For the
purposes of research reproducibility, we use the same starting values
as the ones in the column “Estimation Starting Values” in Table 1 in
Dziubinski (2010).°

We have considered three methods of obtaining the standard errors —
the OPG method, the numerical Hessian, and the sandwich estimator.
Since there are numerical issues present when inverting the numerical
Hessian (even if it is obtained using analytical first derivatives), we
choose to report the OPG standard errors.

As an alternative, one could also use analytical Hessian. In fact, Fioren-
tini et al. (1996) and Hafner and Herwartz (2008) report, in the context
of GARCH estimation, that the analytical Hessian significantly outper-
forms the approximation. However, in our model, this comes at a cost
of calculating 8 = 64 derivatives (or, ensuring that the estimates 0
remain in © and using Q, € C’Z(é) with symmetry due to Young’s
Theorem, 8(8;1) = 36 derivatives). Also, bootstrapping the errors is a
possibility.

Note that looking at the estimates for two data sets sampled at different
frequencies is a way to empirically investigate temporal aggregation
properties of our model. See (Zivot, 2009, Section 3.4) for a discussion
of temporal aggregation in a context of GARCH models.

The estimates obtained using the FSQP-AL CUFGS optimization algo-
rithm appear in Table 2. The problems with the large standard errors
(causing insignificance) were practically not encountered in case of the
FSQP optimization (where we used sandwich estimation and only used
OPG or Hessian errors in case of numerical problems; the only prob-
lem was with g, standard error in low-frequency data). This confirms
our belief that the choice of the optimization method matters a great
deal. Unsurprisingly, as in the similar models in the literature, there
are still some issues with estimating A and g,. The persistence seems
to be slightly lower in case of the low-frequency data (coefficients p,
and p,) — note, however, that equality of p, and p, means that CUFGS
yielded p, to be optimal at the lower corner solution. Furthermore, p,
constitutes the lower bound for p, generated by CUFGS. This suggests
that further research regarding the grid search might be of importance.

5Note, that as Zivot (2009) reports, a poor choice of starting values can lead to
an ill-behaved log-likelihood and cause convergence problems, which is why we use
the starting values that satisfy the non-negativity conditions.
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The results for the FSQP-NL CUFGS optimization algorithm in Table
3 are mostly similar to those discussed above. It can be seen (looking
at the estimates and associated standard errors) that g, seems to be
estimated more accurately in this case.

Daily Data 5-minute Data
14,984 523,068
Ty 5.604 x 1071 (1.048 x 107%) 2.685 x 10719 (1.548 x 107°)
A —7.024 x 1071 (1.392 x 10™7) —4.392 x 1070 (1.475 x 1079)
Ty 4.744 x 1076 (5.998 x 1077) 1.047 x 1077 (8.741 x 1077)
I 2.320 x 107 (4.376 x 1077) 2.742 x 1078 (1.785 x 107)
i 2.396 x 107¢ (9.433 x 1077) 7.714 x 1078 (6.401 x 107)
Do 9.375 x 107! (3.896 x 1073) 9.157 x 107! (6.563 x 1073)
Da 9.375 x 107! (7.828 x 107?) 9.157 x 107! (6.652 x 107?)
G 2.183 x 107 (NaN) 1.595 x 10" (1.247 x 1072)
Qn(0) —1.29423 x 1075 —6.7172 x 10¢

TABLE 2. The estimates (standard errors in parenthe-

ses) obtained for the S&P 500 data using FSQP-AL

CUFGS optimization algorithm.

Daily Data 5-minute Data
T 14,984 523,068
Tr 7.028 x 1074 (1.174 x 107%) 2.906 x 1072Y (1.540 x 107°)
A —4.007 x 107! (1.488 x 10™) —3.913 x 10™° (1.465 x 107°)
Ty 4.040 x 107¢ (8.989 x 1077) 1.049 x 1077 (2.714 x 10719)
iy 3.474 x 107% (1.910 x 107%) 2.018 x 1071% (8.008 x 10~?)
iy 5.336 x 1077 (1.097 x 1077) 1.047 x 1077 (8.008 x 107?)
Do 9.460 x 10! (4.777 x 1073) 9.155 x 10! (1.350 x 1071)
Dz 9.460 x 107! (4.312 x 1072) 9.155 x 107! (1.784 x 107%)
G 1.022 x 1072 (4.339 x 107°) 5.031 x 1072 (9.509 x 10*1)
5 6

Qn(0) —1.29362 x 10+ —6.71722 x 10+

TABLE 3. The estimates (standard errors in parenthe-
ses) obtained for the S&P 500 data using FSQP-NL
CUFGS optimization algorithm.

6. OPTION PRICING

We shall consider option pricing under our model. In general, there are
several approaches to look at:
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(1) CJOW risk-neutralization — using the conditional moment gen-
erating function(MGF), based on Christoffersen et al. (2008)
(2) Monte-Carlo, Empirical Martingale Simulation (EMS), based
on Duan and Simonato (1998)
(3) Monte-Carlo, Empirical Martingale Correction (EMC), based
on Chorro et al. (2010)
(4) alternative risk-neutralization method,
(5) different model specification and derive the pertinent non-negativity
conditions:
(a) change the source of randomness w so that it follows a
distribution with positive support,
(b) change the v and z specification, e.g. formulate the equa-
tions in log terms in the spirit of an EGARCH model.

The pricing formulas using the analytical methods might be harder to
derive (and would often be infeasible in the case of exotic options).
The disadvantage of the Monte-Carlo-based pricing methods might be
slower performance and, besides, they might need further adjustment
to ensure the martingale property, see Duan and Simonato (1998) and
Chorro et al. (2010).

6.1. CJOW-MGF Approach. Asour modelis a simplification of the
Christoffersen et al. (2008) model we may, in principle, consider using
the option-pricing formulas presented there. In practice, however, a
difficulty arises in attempts to apply them. In order to perform the
option valuation one needs to derive the moment generating function
(MGF) for the component GARCH process (provided in Appendix A
of Christoffersen et al. (2008)), specify the dynamics under the risk-
neutral measure ) (provided in Appendix B of Christoffersen et al.
(2008)) and proceed with the option-valuation formula (given in section
4.4 of Christoffersen et al. (2008)). The problem arises in the second
step, the risk-neutralization.

Following Christoffersen et al. (2008) we need E@[exp(ri,1)] = exp(ry),
which requires that

with

S,
s =log “2 =, + i, (6.1)
t
0 1
Hern = T = 50 (6.2)

This in turn implies that

1
wity = wi + (A + )Vt (6.3)
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We also want to ensure the equality of the conditional variances under
the two measures:
P
VIl | F) = VOrea | 7). (6.4)

We therefore need to have equal variance innovations under the two
measures — that is

(we — gi\/v_t)2 = (th - gz‘Q\/v_t)27 i =, (6.5)

This can be achieved by defining the risk-neutral parameters:

gf):gi+A+%, T (6.6)
Now, the problem is that in our specification we have
9z = 0. (6.7)
Thus
g9 =N+ % (6.8)
This means
=0 < )\:—%. (6.9)

Hence, without restricting the market price of risk A to a value which
is not particularly realistic, we cannot ensure that the ()-dynamic is
going to remain such that we stay within our class of models (where we
can apply the sufficient conditions for non-negativity of the conditional
variance).

6.2. Empirical Martingale Simulation (EMS). EMS is a variance-
reduction method ensuring the martingale property to be used with
Monte Carlo pricing. The problem from our point of view is, how-
ever, that the EMS relies on the formulation of the model under the
(Q measure — that is, a prior risk-neutralization. However, our model
(similarly to CJOW) is stated under the P measure, so analytical risk-
neutralization would be required. But then, the one available method
(CJOW, discussed above) is not applicable if we want to stay within
our class of models. This excludes the EMS from any further consid-
erations.

6.3. Empirical Martingale Correction (EMC). The Empirical Mar-
tingale Correction method is, in fact, inspired by the EMS, see Chorro
et al. (2010). The fundamental difference is that it is applicable to
the models stated under the P measure, such as ours. In this method,
we make no assumption on the risk-neutralization (i.e. the shape of
the pricing kernel, involving Radon-Nikodym derivative g—g), and we
compute prices for options with time to maturity (7" —¢) by simulating
sampled paths of the stochastic model under the historical measure P.
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To rule out arbitrage opportunities, we directly impose risk neutrality
constraints. The i** sampled historical final price for the underlying is
denoted by Sr;.

The Empirical Martingale Correction works such that the previously
sampled prices are replaced by:

St

N
The sampled average of SYT,Z- is exactly equal to S;e"™=9 | that is, the
risk neutral conditional expectation. With this approach, we only shift
the historical distribution in a way that prevents arbitrage opportuni-
ties by implicitly changing the drift of this distribution. Chorro et al.
(2010) compare this approach with the affine Stochastic Discount Fac-

tor (SDF) methodology in Cochrane (2002) and find that the prices
obtained by these two methods are close to each other.

Spi= SperT=h), (6.10)

6.4. Option Pricing Results. Finally, we compare the option pricing
results in our model with those in the Black-Scholes-Merton model
and Heston-Nandi GARCH(1, 1) model (HN). In this section we use
daily data only. For comparison, we consider option pricing under
the SCGARCH model using the estimates obtained using FSQP-AL
and FSQP-NL (applying CUFGS in both cases). We estimate the HN
model using fOptions R package — for details, see Wuertz (2007). The
estimation results are shown in Table 4.

N = 14,984 Daily Data
A 3.451 x 1019
w 1.139 x 107281
o 3.671 x 1076
16 9.005 x 1071
¥ 1.196 x 10*2
Log-Likelihood 88559.65
Persistence 0.953
Variance 7.806764 x 1075

TABLE 4. The estimates (standard errors in parenthe-
ses) obtained for the S&P 500 daily data: the HN model.

Next, we present the pricing results across moneyness and maturity
in Tables 5-6 and 7-8. The prices seem reasonable. Depending on
whether the FSQP-AL or FSQP-NL optimization was used, they either
fall between HN and BSM or further correct in-the-money (ITM)/out-
of-the-money (OTM) and time-to-maturity mispricing effects relative
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to BSM model. Considering the volatility components in the context
of GARCH option pricing thus yields a viable approach of practical
interest.

T=05 SCGARCH (AL) SCGARCH (NL)
S =80 3441502 x 102 7.102035 x 102
S=100 5.710897 x 10"  5.853388 x 10*°
S =120 2.343247 x 10! 2.343515 x 10+

TABLE 5. The option prices ($), strike K = 100, matu-
rity 7' = 0.5 years = 0.5 x 252 trading days.

T=0.5 HN BSM
S =80 4.248666 x 102 9.48591 x 102
S =100 5.981560 x 10%° 5.79014 x 1010
S =120 2.352170 x 10" 2.340176 x 107!

TABLE 6. The option prices ($), strike K = 100, matu-
rity 7' = 0.5 years = 0.5 x 252 trading days.

T=10 SCGARCH (AL) SCGARCH (NL)
S =80  6.200905x 10-1  6.764589 x 10!
S=100 9.260039 x 107  9.301633 x 10*°
S =120 2.679264 x 10*1  2.690852 x 10*!

TABLE 7. The option prices ($), strike K = 100, matu-
rity 7' = 1.0 years = 252 trading days.

T=1.0 HN BSM
S =80 7.172656 x 10~ T  8.225735 x 10!
S =100 9.608113 x 10M° 9.322803 x 107°
S =120 2.701091 x 10**  2.680135 x 10+

TABLE 8. The option prices ($), strike K = 100, matu-
rity T'= 1.0 years = 252 trading days.
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One could add that another empirically interesting exercise would be
to use the option prices in estimation, similarly to what Christoffersen
et al. (2008) suggested. Note, however, that in our model we do not
use analytical option pricing formulas, but instead apply a Monte-
Carlo method. On a single-core CPU (central processing unit) this
method is too slow to be used in this application. A very promis-
ing approach, however, would be to use parallelized many-core GPU
(graphics processing unit) computation — since MC is a so-called em-
barrassingly parallel problem, that would yield very significant perfor-
mance improvements. In particular, in an application of MC pricing
involving path-dependent options, Joshi (2010) demonstrates that it is
possible to get accuracy of 2 x 1074 in less than a fiftieth of a second,
concluding that “GPU technology has rendered the Monte Carlo pric-
ing of Asian options sufficiently fast that there is no longer any need
for analytic approximations.” This approach would also make possible
to investigate forecasting properties of the model.

7. CONCLUSIONS

This paper presents a discrete-time volatility model in which the un-
derlying follows a process with conditional variance driven by the new
Simplified Component GARCH process. It is a more parsimonious
model than the CJOW one and allows us to derive sufficient conditions
for non-negativity of the conditional variance.

Maximum likelihood estimation of the model is discussed.

We provide an empirical illustration, applying the model to the S&P
500 index data. The results are consistent with our economic intuition.

We propose an option pricing method consistent with our model

The performance of the pricing method across moneyness and maturity
is compared with that of the Heston-Nandi GARCH and Black-Scholes-
Merton models. The results of the comparison are favorable to our
model.

Several of the future research directions and possible extensions to
this work are worth consideration — regarding to the advanced grid-
generation techniques and optimization algorithms and applications of
GPUs allowing for more advanced pricing and forecasting applications.
We provide a number of approaches to achieve that in the respective
sections of this paper.
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