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OPTION VALUATION WITH THE SIMPLIFIEDCOMPONENT GARCH MODELMATT P. DZIUBINSKIAbstract. We introduce the Simpli�ed Component GARCH (SC-GARCH) option pricing model, show and discuss su�cient condi-tions for non-negativity of the conditional variance, apply it tolow-frequency and high-frequency �nancial data, and consider theoption valuation, comparing the model performance with similarmodels from the literature. Two volatility components in our modelallow us to model time structure of volatility.JEL Classi�cation. G12, C32.1. IntroductionIn this paper we introduce a discrete-time volatility model in whichthe conditional variance of the underlying asset follows a particularGARCH process. Our model can be used for option pricing, while twovolatility components allow us to model time structure thereof.The model builds on Engle and Lee (1999), Heston and Nandi (2000)and Christo�ersen et al. (2008) (hereafter referred to as �CJOW�) mod-els. The model by Engle and Lee (1999) introduced the volatility com-ponent model in the GARCH context, while Heston and Nandi (2000)introduced a model with a closed-form solution for the European calloption-pricing formulas. The CJOW model is a generalization of theHeston and Nandi model allowing for a time-varying long-run com-ponent. Our model is a simpli�ed speci�cation of the CJOW model,which solves the problem of ensuring the non-negativity of the condi-tional variance.The paper proceeds as follows. In Section 2 we provide basic de�nitionsand notation. We introduce the model in Section 3, and discuss theDate: February 15, 2011.2000 Mathematics Subject Classi�cation. Primary 37M10, 62M10, 91B84; Sec-ondary 62P05.Key words and phrases. Stochastic volatility, volatility components, GARCH,option pricing.We wish to thank Timo Teräsvirta for a discussion regarding non-negativity con-ditions. We acknowledge �nancial support by the Center for Research in Economet-ric Analysis of Time Series, CREATES, funded by the Danish National ResearchFoundation. All errors, omissions and mistakes are author's own responsibility.1



2 MATT P. DZIUBINSKIestimation thereof in Section 4. In Section 5 we present the estimationresults. Section 6 is devoted to option pricing, and, �nally, Section 7contains our conclusions.2. Basic Definitions and NotationWe assume as given a probability space (Ω,F , P ) and a �ltration F =
(Ft)t∈T, where, depending on the context, we shall assume T = Z+ or
T = Z ∩ [0, T ], T > 0 or T = Z ∩ [−1, T ], T ≥ 0. We refer to P as thephysical probability measure and we call (Ω,F , F, P ) a �ltered physicalprobability space. We shall also use probability measure Q on (Ω,F)and refer to it as the risk-neutral probability measure.A stochastic process X on (Ω,F , P ) is a collection of R-valued randomvariables (Xt)t∈T, and we denote it by X = (Xt)t∈T.The process X is said to be adapted if Xt ∈ Ft ∀t ∈ T (that is, it is Ftmeasurable for each t ∈ T).The process X is said to be predictable if Xt ∈ Ft−1 ∀t ∈ T, and wedenote this by X ∈ P.The process X is said to be (F, P )-white noise with mean µX andvariance σ2

X , written X
P∼ WN(µX , σ2

X) if and only if, under probabilitymeasure P , X has mean µX ∈ R and covariance function γ(s, t) =
σ2

Xδ|t−s|, where δh := 1{0}(h) is the Kronecker delta and σ2
X ∈ R++.The process X is said to be (F, P )-Gaussian white noise with mean

µX and variance σ2
X , written X

P∼ GWN(µX , σ2
X) if and only if X

P∼
WN(µX , σ2

X) and Xt
P∼ N (µX , σ2

X) ∀t ∈ T.First-order partial di�erential operator with respect to x is denoted ∂x.For further details regarding stochastic processes and time series werefer the reader to Protter (2005) and Brockwell and Davis (1991).3. The ModelWe begin by presenting the CJOW model. The advantages of thismodel are the existence of a (quasi-)closed-form solution for the optionpricing formulas, improved ability to model the smirk and the pathof spot volatility and, distinctively, the ability to model the volatilityterm structure � for details, see Christo�ersen et al. (2008). A problemwith this model is that the volatility components may admit negativevalues. This leads to a contradiction in the context of conditionalvariance modeling, as the conditional variance cannot be negative. Wepropose a more parsimonious model which solves this problem and



OPTION VALUATION WITH THE SIMPLIFIED COMPONENT GARCH MODEL3discuss its relation to the CJOWmodel. Furthermore, we shall considerthe properties of the model and discuss the estimation of its parameters.Assumption 1. The spot asset price, S (including accumulated inter-est or dividends) follows (over time steps of length ∆ ≡ 1) the followingprocess under the physical probability measure P ,
rt+1 ≡ log

St+1

St
= µt+1 +

√
vt+1wt+1 (3.1)

vt+1 = xt+1 + pv(vt − xt) + ivuv,t (3.2)
xt+1 = mx + px(xt − mx) + ixux,t (3.3)with

µt+1 = rf + λvt+1 (3.4)
uv,t = (w2

t − 1) − 2gv

√
vtwt (3.5)

ux,t = (w2
t − 1) (3.6)

w
P∼ GWN(0, 1) (3.7)where rf is the continuously compounded interest rate for the time in-terval of length ∆, vt is the conditional variance of the log return be-tween t − 1 and t, with v ∈ P.We use a notation that is closely linked to the interpretation of ourmodel. First, the r process is the logarithmic return of the underlying,with µ being its physical conditional mean, while v is its conditionalvariance. The market price of risk is denoted by λ. Second, the pro-cess x is the long-run volatility component. The short-run volatilitycomponent can be written, in the spirit of Engle and Lee (1999), as

s = v − x. Under weak stationarity (discussed in the sequel) we have
E[vt+1] = E[xt+1] = mx ≡ nx/(1 − px). Thus, mx is the unconditionalmean of x and v, with nx being the numerator of nx/(1 − px), directlyproportional to the unconditional mean level. Third, the ux and uvprocesses serve as mean-zero innovations for x and v, respectively, withthe coe�cients ix and iv measuring the strength of the impact of thoseinnovations. The coe�cient px measures the persistence of x. Analo-gously, the persistence of v is measured by bv = pv − ivg

2
v. Finally, thesource of the randomness w is the (F, P )-Gaussian white noise withmean 0 and variance 1, hereafter also referred to as the (F, P )-standardGaussian white noise.3.1. Non-Negativity of the Conditional Variance. First, we shalllook at the CJOW model and consider the issues regarding the non-negativity of the conditional variance arising in its application.



4 MATT P. DZIUBINSKI3.1.1. CJOWModel. First, recall that Christo�ersen et al. (2008) modelcan be rewritten in our notation, replacing (3.6) with
ux,t = (w2

t − 1) − 2gx

√
vtwt (3.8)and keeping the remaining equations intact.The problem with this speci�cation is that there is no guarantee onnon-negativity of v � and since v is the conditional variance process, wearrive at a possible contradiction. In order to examine the seriousnessof the problem, we perform a simulation study and analyze the behaviorof the model.3.1.2. CJOWModel � Simulation Study. We perform a simulation studyto examine the behavior of this model � performing a grid search withrespect to px � searching from 0.0 to 1.0 with a step size of 0.001. Wedo this both for the original CJOW model and a deterministic versionthereof (i.e. the one where the driving noise process is assumed tobe identically equal to zero instead of a standard GWN), �xing all theother parameter values to those in Table 1 in Christo�ersen et al. (2008)(for convenience, we reproduce it in Table 1) � in addition setting rfto 1.000 × 10−1. We choose this particular parameter value, since it isthe one used by Christo�ersen et al. (2008) to di�erentiate between theComponent and the Persistent Component (px = 1) models. Further-more, the reason we consider the unit interval as the parameter rangeis that for px < 0 non-negativity issues arise immediately (as we shallshow later on), while px > 1 leads to non-stationarity (in particular,the explosiveness of x and, consequently, v). For purposes of this study,

T = Z ∩ [0, T ], T = 1, 000.
T = 1,000 Simulation
rf 1.000 × 10−1

λ 2.092 × 10+0

nx 8.208 × 10−7

iv 1.580 × 10−6

ix 2.480 × 10−6

pv 6.437 × 10−1

px 9.896 × 10−1

gv 4.151 × 10+2

gx 6.324 × 10+1Table 1. The coe�cient values used for the CJOWmodel simulation study.



OPTION VALUATION WITH THE SIMPLIFIED COMPONENT GARCH MODEL5We divide the set of px coe�cient values into invalid and valid values,where the invalid ones are those that lead to negative values of v. We�nd that the low parameter values are invalid, while the higher onesare valid � the boundary being at approximately 0.9. This means forall px < 0.9 in our simulation study there exists a t(px) ∈ T suchthat vt(px) < 0. Note, that in practice this leads to v
1/2
t(px) returningNaN1 for the IEEE 7542 conforming architecture. Since commonlyapplied optimization routines will reject arguments leading to NaNs(or terminate with an error, leading to restarting the optimization withdi�erent starting values), this potentially explains the estimate of px =

0.9896 obtained by Christo�ersen et al. (2008), which is very close to
1. Hence, due to this numerical property of the model, one cannotnecessarily infer �high persistence� to hold in this case. This is becausethe high estimate might well be a numerical artifact, as opposed tobeing an empirical property of the data described by the model.In addition, as we change the sample size T , the boundary value in-creases as the sample size increases. A possible interpretation of this�nding is that as the model runs for a longer time (i.e., as we have moredraws in the generated sample) the chance of drawing at least one neg-ative value increases. However, this is not solely due to Gaussianity of
w, because we obtain similar result for the deterministic version of themodel (i.e. even for a bias forecast) � in fact, the boundary is higherfor the deterministic case than the stochastic one.3.1.3. CJOW Model � Discussion. We shall now proceed as follows:assuming the CJOW model, we rewrite (3.2) and (3.3), substituting(3.5) and (3.8), respectively:

vt+1 = xt+1 + pv(vt − xt) + iv
(

(w2
t − 1) − 2gv

√
vtwt

) (3.9)
xt+1 = nx + pxxt + ix

(

(w2
t − 1) − 2gx

√
vtwt

) (3.10)where
nx = mx(1 − px). (3.11)Rearranging terms, we obtain

xt+1 = nx + pxxt − 2ixgx

√
vtwt + ix

(

(w2
t − 1)

) (3.12)
= nx − ix + pxxt + ix(wt − gx

√
vt)

2 − ixg
2
xvt. (3.13)1The term NaN stands for �Not a Number.� Here it results from applying thesquare root function to argument outside its domain, due to attempt to take thesquare root of a negative number.2IEEE Standard 754 is a �oating-point arithmetic standard, the most common�oating-point representation of real numbers today on computers � for further ref-erence, see IEEE Task P754 (2008).



6 MATT P. DZIUBINSKINow, assume px > 0 and v > 0. Consider two cases with respect to ix.If we assume ix < 0, we have, in (3.13), that −ixg
2
xvt > 0 and −ix > 0� this, however, results in ix(wt − gx

√
vt)

2 < 0. On the other hand,if we assume 0 < ix (and we may also want ix < nx < nx, so that
nx − ix > 0), then −ixg

2
xvt < 0. Hence, we conclude that P (∃t ∈ T :

xt < 0) > 0. However, since x is the long-run volatility component, itshould remain non-negative over time.Furthermore, even if we assume x = 0, we obtain
vt+1 = pvvt + iv

(

(w2
t − 1) − 2gv

√
vtwt

) (3.14)
= pvvt + iv

(

w2
t − 2gv

√
vtwt + g2

vvt − g2
vvt − 1

) (3.15)
= −iv + pvvt + iv

(

(wt − gv

√
vt)

2 − g2
vvt

) (3.16)
= −iv + bvvt + iv (wt − gv

√
vt)

2 (3.17)where
bv = pv − ivg

2
v. (3.18)Now, for all iv 6= 0, P (∃t ∈ T : vt < 0) > 0. In fact, we can obtainthe result for an arbitrary t ∈ T, using (3.17) and the fact that w

P∼
GWN(0, 1):
P (vt+1 < 0|vt > 0) (3.19)
= P (−iv + bvvt + iv (wt − gv

√
vt)

2
< 0|vt > 0) (3.20)

= P ((wt − gv

√
vt)

2
< (iv − bvvt)/iv|vt > 0) (3.21)

= P (−(iv − bvvt)/iv < wt − gv

√
vt < (iv − bvvt)/iv|vt > 0) (3.22)

= P (−(iv − bvvt)

iv
+ gv

√
vt < wt <

(iv − bvvt)

iv
+ gv

√
vt | vt > 0) > 0,(3.23)as long as the interval (−(iv − bvvt)/iv + gv

√
vt, (iv − bvvt)/iv + gv

√
vt

)is non-empty.An analogous result can be obtained for the x process. However, inorder to show the possibility of the negative conditional variance, theexistence result is su�cient.We conclude that assuming a non-zero skewness parameter gx leads toa model that can result in negative values for the volatility components.3.1.4. A Solution. To mend this problem, we shall now introduce aspeci�cation which allows us to derive a su�cient conditions for thevolatility components to stay non-negative, given x0 > 0 and v0 > 0.Assume that gx = 0. This eliminates the asymmetry from the long-run



OPTION VALUATION WITH THE SIMPLIFIED COMPONENT GARCH MODEL7component x, and we obtain
xt+1 = mx + px(xt − mx) + ixux,t (3.24)with

ux,t = (w2
t − 1). (3.25)Rearranging (3.24) and substituting (3.25) we obtain

xt+1 = mx(1 − px) + pxxt + ix(w
2
t − 1) (3.26)

= nx − ix + pxxt + ixw
2
t (3.27)where

nx = mx(1 − px). (3.28)Note, that (3.27) follows the GMACH(1, 1) model by Yang and Bewley(1995)3. Now, in order to obtain non-negative values of x, we need
nx > ix > 0 and px > 0. Furthermore, under weak stationarity (forwhich we also need |px| < 1) we have

E[xt+1] = mx ≡ nx

1 − px

. (3.29)This motivates our previous notation mx for the unconditional meanof x.Inserting (3.27) and (3.5) into (3.2) yields:
vt+1 = xt+1 + pv(vt − xt) + ivuv,t (3.30)

= nx − ix + pxxt + ixw
2
t

+ pv(vt − xt) + ivuv,t (3.31)
= nx − ix + pxxt + ixw

2
t

+ pv(vt − xt) + iv
(

(w2
t − 1) − 2gv

√
vtwt

)

. (3.32)Rearranging terms and using pv = bv + ivg
2
v we have

vt+1 = nx − ix + pxxt + ixw
2
t

+ (bv + ivg
2
v)(vt − xt) + iv

(

w2
t − 1 − 2gv

√
vtwt

) (3.33)
= (nx − ix − iv) + (px − bv − ivg

2
v)xt + ixw

2
t

+ bvvt + iv
(

w2
t − 2gv

√
vtwt + ivg

2
v

) (3.34)
= (nx − ix − iv) + (px − pv)xt + bvvt

+ ixw
2
t + iv (wt − gv

√
vt)

2 (3.35)Now, assuming bv > 0, iv > 0 and ix > 0, we have a su�cient conditionfor non-negativity of v, which is (nx − ix − iv) + (px − pv)x > 0. Sincewe have already established conditions for non-negativity of x, we needto ensure that in addition to them, (nx − ix − iv) > 0, (px − pv) > 03This is similar to assuming c = 0 in the model by Heston and Nandi (2000) ina way that we also obtain GMACH(1, 1) dynamics.



8 MATT P. DZIUBINSKIand bv > 0. Thus, the joint su�cient conditions for non-negativity ofthe volatility components v and x are as follows:
px ≤ 1, bv > 0, iv > 0, ix > 0 (3.36)
nx > ix + iv (3.37)
px > pv > ivg

2
v > 0 (3.38)Restrictions in (3.36) are analogous to those in Engle and Lee (1999).Note, that similarly to Engle and Lee (1999) we also assume that theweak stationarity restriction px < 1 holds. The economic interpre-tation of (3.37) is that the mean long-term volatility level has to besu�ciently high relative to the strength of the innovation impact (re-call from (3.29) that nx is the numerator of the unconditional mean,i.e. mx ≡ nx/(1 − px)). The interpretation of (3.38), which can also bestated as px > bv > 0, is that the persistence of the long-run componenthas to be higher than the one of the short-run component and that theimpact of the innovation(s) to the short-run component cannot be asstrong as to outweigh the persistence.Hereafter we shall denote our parameter vector by

θ := (rf , λ, nx, iv, ix, pv, px, gv)
Tand the restricted parameter space

Θ̃ := {θ ⊆ Θ : (3.36)− (3.38)},where Θ ⊆ R
p, p = 8.4. Maximum Likelihood EstimationWe shall now derive a Maximum Likelihood Estimator (MLE)4 for ourmodel. For notational convenience we assume that the sample includesan observation for t = 0. Hereafter we shall assume that non-negativityconditions (3.36)�(3.38) hold.First, note that by the assumptions (3.1)�(3.7) we have that w

P∼
GWN(0, 1) and v ∈ P. Using this and (3.1) yields rt|Ft−1

P∼ N (µt, vt).Hence, the conditional probability density function (PDF) of rt|Ft−1 is
f(rt|Ft−1) =

1√
2πvt

exp

(

−(rt − µt)
2

2vt

)

. (4.1)4The kind of MLE we derive is called the conditional MLE in Hayashi (2000) �see pp. 547�549.



OPTION VALUATION WITH THE SIMPLIFIED COMPONENT GARCH MODEL9Using (3.1) again and simplifying we obtain
f(rt|Ft−1) =

1√
2πvt

exp

(

−(
√

vtwt)
2

2vt

) (4.2)
=

1√
2πvt

exp

(

−vtw
2
t

2vt

) (4.3)
=

1√
2πvt

exp

(

−w2
t

2

)

. (4.4)Now, we can formulate our MLE in terms of an M-estimator. If thePDFs are parametrized by a parameter vector θ then the M-estimatorusing the log-likelihood of the sample over t = 0, 1, ..., N can be writtenas:
θ̂ = arg max

θ∈Θ̃

Qn(θ) (4.5)
Qn(θ) =

1

N

N
∑

t=0

`t(θ) (4.6)
`t(θ) = log f(rt|Ft−1; θ) (4.7)

= −1

2
log(2π) − 1

2
log(vt) −

1

2
w2

t . (4.8)Note, that using proportional and monotonic transformations, we canstate our problem for the purposes of minimization as follows:
θ̂ = arg min

θ∈Θ̃

Q̃n(θ) (4.9)
Q̃n(θ) =

N
∑

t=0

lt(θ) (4.10)
lt(θ) = log(vt) + w2

t . (4.11)For the numerical details, including objective function computationalgorithm and analytical gradient formulas, we refer the reader to Dz-iubinski (2010). 5. Estimation � ResultsDue to the results in Dziubinski (2010) we choose Conditionally-UniformFeasible Grid Search (CUFGS) with Feasible Sequential Quadratic Pro-gramming (FSQP) to estimate the models. The FSQP allows us tosolve the constrained optimization problem (4.11), while coupling itwith CUFGS enables us to widen the search space and thus increasingthe chance of convergence.



10 MATT P. DZIUBINSKIWe use the S&P 500 index data to calculate the (log) returns. We�t our model to both daily (source: Yahoo Finance, period 1/3/1950�7/22/2009) and high-frequency (5-minute) data (source: Price-Data.comS&P 500, period 4/21/1982�12/6/2007 from Price-Data.com). For thepurposes of research reproducibility, we use the same starting valuesas the ones in the column �Estimation Starting Values� in Table 1 inDziubinski (2010).5We have considered three methods of obtaining the standard errors �the OPG method, the numerical Hessian, and the sandwich estimator.Since there are numerical issues present when inverting the numericalHessian (even if it is obtained using analytical �rst derivatives), wechoose to report the OPG standard errors.As an alternative, one could also use analytical Hessian. In fact, Fioren-tini et al. (1996) and Hafner and Herwartz (2008) report, in the contextof GARCH estimation, that the analytical Hessian signi�cantly outper-forms the approximation. However, in our model, this comes at a costof calculating 82 = 64 derivatives (or, ensuring that the estimates θ̂remain in Θ̃ and using Q̃n ∈ C2(Θ̃) with symmetry due to Young'sTheorem, 8(8+1)
2

= 36 derivatives). Also, bootstrapping the errors is apossibility.Note that looking at the estimates for two data sets sampled at di�erentfrequencies is a way to empirically investigate temporal aggregationproperties of our model. See (Zivot, 2009, Section 3.4) for a discussionof temporal aggregation in a context of GARCH models.The estimates obtained using the FSQP-AL CUFGS optimization algo-rithm appear in Table 2. The problems with the large standard errors(causing insigni�cance) were practically not encountered in case of theFSQP optimization (where we used sandwich estimation and only usedOPG or Hessian errors in case of numerical problems; the only prob-lem was with gv standard error in low-frequency data). This con�rmsour belief that the choice of the optimization method matters a greatdeal. Unsurprisingly, as in the similar models in the literature, thereare still some issues with estimating λ and gv. The persistence seemsto be slightly lower in case of the low-frequency data (coe�cients pvand px) � note, however, that equality of pv and px means that CUFGSyielded px to be optimal at the lower corner solution. Furthermore, pvconstitutes the lower bound for px generated by CUFGS. This suggeststhat further research regarding the grid search might be of importance.5Note, that as Zivot (2009) reports, a poor choice of starting values can lead toan ill-behaved log-likelihood and cause convergence problems, which is why we usethe starting values that satisfy the non-negativity conditions.



OPTION VALUATION WITH THE SIMPLIFIED COMPONENT GARCH MODEL11The results for the FSQP-NL CUFGS optimization algorithm in Table3 are mostly similar to those discussed above. It can be seen (lookingat the estimates and associated standard errors) that gv seems to beestimated more accurately in this case.Daily Data 5-minute Data
T 14, 984 523, 068
r̂f 5.604 × 10−4 (1.048 × 10−4) 2.685 × 10−10 (1.548 × 10−6)

λ̂ −7.024 × 10−1 (1.392 × 10+0) −4.392 × 10+0 (1.475 × 10+0)
n̂x 4.744 × 10−6 (5.998 × 10−7) 1.047 × 10−7 (8.741 × 10−9)

îv 2.320 × 10−6 (4.376 × 10−7) 2.742 × 10−8 (1.785 × 10−9)

îx 2.396 × 10−6 (9.433 × 10−7) 7.714 × 10−8 (6.401 × 10−9)
p̂v 9.375 × 10−1 (3.896 × 10−3) 9.157 × 10−1 (6.563 × 10−3)
p̂x 9.375 × 10−1 (7.828 × 10−3) 9.157 × 10−1 (6.652 × 10−3)
ĝv 2.183 × 10+2 (NaN) 1.595 × 10+1 (1.247 × 10+2)

Q̃n(θ̂) −1.29423 × 10+5 −6.7172 × 10+6Table 2. The estimates (standard errors in parenthe-ses) obtained for the S&P 500 data using FSQP-ALCUFGS optimization algorithm.Daily Data 5-minute Data
T 14, 984 523, 068
r̂f 7.028 × 10−4 (1.174 × 10−4) 2.906 × 10−29 (1.540 × 10−6)

λ̂ −4.007 × 10−1 (1.488 × 10+0) −3.913 × 10+0 (1.465 × 10+0)
n̂x 4.040 × 10−6 (8.989 × 10−7) 1.049 × 10−7 (2.714 × 10−10)

îv 3.474 × 10−6 (1.910 × 10−8) 2.018 × 10−10 (8.008 × 10−5)

îx 5.336 × 10−7 (1.097 × 10−7) 1.047 × 10−7 (8.008 × 10−5)
p̂v 9.460 × 10−1 (4.777 × 10−3) 9.155 × 10−1 (1.350 × 10−1)
p̂x 9.460 × 10−1 (4.312 × 10−2) 9.155 × 10−1 (1.784 × 10−4)
ĝv 1.022 × 10+2 (4.339 × 10+0) 5.031 × 10+2 (9.509 × 10+1)

Q̃n(θ̂) −1.29362 × 10+5 −6.71722 × 10+6Table 3. The estimates (standard errors in parenthe-ses) obtained for the S&P 500 data using FSQP-NLCUFGS optimization algorithm.
6. Option PricingWe shall consider option pricing under our model. In general, there areseveral approaches to look at:



12 MATT P. DZIUBINSKI(1) CJOW risk-neutralization � using the conditional moment gen-erating function(MGF), based on Christo�ersen et al. (2008)(2) Monte-Carlo, Empirical Martingale Simulation (EMS), basedon Duan and Simonato (1998)(3) Monte-Carlo, Empirical Martingale Correction (EMC), basedon Chorro et al. (2010)(4) alternative risk-neutralization method,(5) di�erent model speci�cation and derive the pertinent non-negativityconditions:(a) change the source of randomness w so that it follows adistribution with positive support,(b) change the v and x speci�cation, e.g. formulate the equa-tions in log terms in the spirit of an EGARCH model.The pricing formulas using the analytical methods might be harder toderive (and would often be infeasible in the case of exotic options).The disadvantage of the Monte-Carlo-based pricing methods might beslower performance and, besides, they might need further adjustmentto ensure the martingale property, see Duan and Simonato (1998) andChorro et al. (2010).6.1. CJOW-MGF Approach. As our model is a simpli�cation of theChristo�ersen et al. (2008) model we may, in principle, consider usingthe option-pricing formulas presented there. In practice, however, adi�culty arises in attempts to apply them. In order to perform theoption valuation one needs to derive the moment generating function(MGF) for the component GARCH process (provided in Appendix Aof Christo�ersen et al. (2008)), specify the dynamics under the risk-neutral measure Q (provided in Appendix B of Christo�ersen et al.(2008)) and proceed with the option-valuation formula (given in section4.4 of Christo�ersen et al. (2008)). The problem arises in the secondstep, the risk-neutralization.Following Christo�ersen et al. (2008) we need E
Q[exp(rt+1)] = exp(rf ),which requires that

rt+1 ≡ log
St+1

St

= µQ
t+1 +

√
vt+1w

Q
t+1 (6.1)with

µQ
t+1 = rf − 1

2
vt+1. (6.2)This in turn implies that

wQ
t+1 = wt+1 + (λ +

1

2
)
√

vt+1. (6.3)



OPTION VALUATION WITH THE SIMPLIFIED COMPONENT GARCH MODEL13We also want to ensure the equality of the conditional variances underthe two measures:
V

P [rt+1|Ft] = V
Q[rt+1|Ft]. (6.4)We therefore need to have equal variance innovations under the twomeasures � that is

(wt − gi

√
vt)

2 = (wQ
t − gQ

i

√
vt)

2, i = v, x. (6.5)This can be achieved by de�ning the risk-neutral parameters:
gQ

i = gi + λ +
1

2
, i = v, x. (6.6)Now, the problem is that in our speci�cation we have

gx = 0. (6.7)Thus
gQ

x = λ +
1

2
. (6.8)This means

gQ
x = 0 ⇐⇒ λ = −1

2
. (6.9)Hence, without restricting the market price of risk λ to a value whichis not particularly realistic, we cannot ensure that the Q-dynamic isgoing to remain such that we stay within our class of models (where wecan apply the su�cient conditions for non-negativity of the conditionalvariance).6.2. EmpiricalMartingale Simulation (EMS). EMS is a variance-reduction method ensuring the martingale property to be used withMonte Carlo pricing. The problem from our point of view is, how-ever, that the EMS relies on the formulation of the model under theQ measure � that is, a prior risk-neutralization. However, our model(similarly to CJOW) is stated under the P measure, so analytical risk-neutralization would be required. But then, the one available method(CJOW, discussed above) is not applicable if we want to stay withinour class of models. This excludes the EMS from any further consid-erations.6.3. EmpiricalMartingale Correction (EMC). The Empirical Mar-tingale Correction method is, in fact, inspired by the EMS, see Chorroet al. (2010). The fundamental di�erence is that it is applicable tothe models stated under the P measure, such as ours. In this method,we make no assumption on the risk-neutralization (i.e. the shape ofthe pricing kernel, involving Radon-Nikodym derivative dQ

dP
), and wecompute prices for options with time to maturity (T − t) by simulatingsampled paths of the stochastic model under the historical measure P.



14 MATT P. DZIUBINSKITo rule out arbitrage opportunities, we directly impose risk neutralityconstraints. The ith sampled historical �nal price for the underlying isdenoted by ST,i.The Empirical Martingale Correction works such that the previouslysampled prices are replaced by:
S̃T,i =

ST,i

1
N

∑N
i=1 ST,i

Ste
r(T−t). (6.10)The sampled average of S̃T,i is exactly equal to Ste

r(T−t), that is, therisk neutral conditional expectation. With this approach, we only shiftthe historical distribution in a way that prevents arbitrage opportuni-ties by implicitly changing the drift of this distribution. Chorro et al.(2010) compare this approach with the a�ne Stochastic Discount Fac-tor (SDF) methodology in Cochrane (2002) and �nd that the pricesobtained by these two methods are close to each other.6.4. Option Pricing Results. Finally, we compare the option pricingresults in our model with those in the Black-Scholes-Merton modeland Heston-Nandi GARCH(1, 1) model (HN). In this section we usedaily data only. For comparison, we consider option pricing underthe SCGARCH model using the estimates obtained using FSQP-ALand FSQP-NL (applying CUFGS in both cases). We estimate the HNmodel using fOptions R package � for details, see Wuertz (2007). Theestimation results are shown in Table 4.
N = 14,984 Daily Data
λ 3.451 × 10+0

ω 1.139 × 10−281

α 3.671 × 10−6

β 9.005 × 10−1

γ 1.196 × 10+2Log-Likelihood 88559.65Persistence 0.953Variance 7.806764× 10−5Table 4. The estimates (standard errors in parenthe-ses) obtained for the S&P 500 daily data: the HN model.
Next, we present the pricing results across moneyness and maturityin Tables 5�6 and 7�8. The prices seem reasonable. Depending onwhether the FSQP-AL or FSQP-NL optimization was used, they eitherfall between HN and BSM or further correct in-the-money (ITM)/out-of-the-money (OTM) and time-to-maturity mispricing e�ects relative



OPTION VALUATION WITH THE SIMPLIFIED COMPONENT GARCH MODEL15to BSM model. Considering the volatility components in the contextof GARCH option pricing thus yields a viable approach of practicalinterest.
T = 0.5 SCGARCH (AL) SCGARCH (NL)
S = 80 3.441502× 10−2 7.102035× 10−2

S = 100 5.710897× 10+0 5.853388× 10+0

S = 120 2.343247× 10+1 2.343515× 10+1Table 5. The option prices ($), strike K = 100, matu-rity T = 0.5 years = 0.5 × 252 trading days.
T = 0.5 HN BSM
S = 80 4.248666× 10−2 9.48591 × 10−2

S = 100 5.981560× 10+0 5.79014 × 10+0

S = 120 2.352170× 10+1 2.340176× 10+1Table 6. The option prices ($), strike K = 100, matu-rity T = 0.5 years = 0.5 × 252 trading days.
T = 1.0 SCGARCH (AL) SCGARCH (NL)
S = 80 6.200905× 10−1 6.764589× 10−1

S = 100 9.260039× 10+0 9.301633× 10+0

S = 120 2.679264× 10+1 2.690852× 10+1Table 7. The option prices ($), strike K = 100, matu-rity T = 1.0 years = 252 trading days.
T = 1.0 HN BSM
S = 80 7.172656× 10−1 8.225735× 10−1

S = 100 9.608113× 10+0 9.322803× 10+0

S = 120 2.701091× 10+1 2.680135× 10+1Table 8. The option prices ($), strike K = 100, matu-rity T = 1.0 years = 252 trading days.



16 MATT P. DZIUBINSKIOne could add that another empirically interesting exercise would beto use the option prices in estimation, similarly to what Christo�ersenet al. (2008) suggested. Note, however, that in our model we do notuse analytical option pricing formulas, but instead apply a Monte-Carlo method. On a single-core CPU (central processing unit) thismethod is too slow to be used in this application. A very promis-ing approach, however, would be to use parallelized many-core GPU(graphics processing unit) computation � since MC is a so-called em-barrassingly parallel problem, that would yield very signi�cant perfor-mance improvements. In particular, in an application of MC pricinginvolving path-dependent options, Joshi (2010) demonstrates that it ispossible to get accuracy of 2 × 10−4 in less than a �ftieth of a second,concluding that �GPU technology has rendered the Monte Carlo pric-ing of Asian options su�ciently fast that there is no longer any needfor analytic approximations.� This approach would also make possibleto investigate forecasting properties of the model.
7. ConclusionsThis paper presents a discrete-time volatility model in which the un-derlying follows a process with conditional variance driven by the newSimpli�ed Component GARCH process. It is a more parsimoniousmodel than the CJOW one and allows us to derive su�cient conditionsfor non-negativity of the conditional variance.Maximum likelihood estimation of the model is discussed.We provide an empirical illustration, applying the model to the S&P500 index data. The results are consistent with our economic intuition.We propose an option pricing method consistent with our modelThe performance of the pricing method across moneyness and maturityis compared with that of the Heston-Nandi GARCH and Black-Scholes-Merton models. The results of the comparison are favorable to ourmodel.Several of the future research directions and possible extensions tothis work are worth consideration � regarding to the advanced grid-generation techniques and optimization algorithms and applications ofGPUs allowing for more advanced pricing and forecasting applications.We provide a number of approaches to achieve that in the respectivesections of this paper.



OPTION VALUATION WITH THE SIMPLIFIED COMPONENT GARCH MODEL17ReferencesBrockwell, P. J. and R. A. Davis (1991): Time Series: Theoryand Methods, New York: Springer Verlag, 2nd ed.Chorro, C., D. Guegan, and F. Ielpo (2010): �Martingalizedhistorical approach for option pricing,� Finance Research Letters, 7,24�28.Christoffersen, P., K. Jacobs, C. Ornthanalai, andY. Wang (2008): �Option valuation with long-run and short-runvolatility components,� Journal of Financial Economics, 90, 272�297.Cochrane, J. (2002): Asset Pricing, Princeton University Press.Duan, J.-C. and J.-G. Simonato (1998): �Empirical MartingaleSimulation for Asset Prices,� Management Science, 44, 1218�1233.Dziubinski, M. P. (2010): �Conditionally-Uniform Feasible GridSearch (CUFGS),� CREATES Working Paper.Engle, R. F. and G. G. J. Lee (1999): �A Permanent and Transi-tory Component Model of Stock Return Volatility,� in Cointegration,Causality, and Forecasting: A Festschrift in Honor of Clive W.J.Granger, University Press, 475�497.Fiorentini, G., G. Calzolari, and L. Panattoni (1996): �Ana-lytic Derivatives and the Computation of GARCH Estimates,� Jour-nal of Applied Econometrics, 11, 399�417.Hafner, C. and H. Herwartz (2008): �Analytical quasi maximumlikelihood inference in multivariate volatility models,� Metrika, 67,219�239.Hayashi, F. (2000): Econometrics, Princeton University Press.Heston, S. and S. Nandi (2000): �A closed-form GARCH optionvaluation model,� Review of Financial Studies, 13, 585�625.IEEE Task P754 (2008): IEEE 754-2008, Standard for Floating-Point Arithmetic.Joshi, M. (2010): �Graphical Asian Options,� Wilmott Journal, 2,97�107.Protter, P. E. (2005): Stochastic Integration and Di�erential Equa-tions, Springer, 2nd ed.Wuertz, D. (2007): �fOptions: Financial Software Collection-fOptions. R package version 260.72,� in Rmetrics.Yang, M. and R. Bewley (1995): �Moving average conditional het-eroskedastic processes,� Economics Letters, 49, 367 � 372.Zivot, E. (2009): �Practical Issues in the Analysis of UnivariateGARCH Models,� in Handbook of Financial Time Series, Springer,113�155.



18 MATT P. DZIUBINSKI(Matt P. Dziubinski) CREATESSchool of Economics and ManagementUniversity of AarhusBuilding 1322, DK-8000 Aarhus CDenmarkE-mail address, Matt P. Dziubinski: matt@creates.au.dk



Research Papers 
2011 

 
 

 
2010-71: Nektarios Aslanidis and Isabel Casas : Modelling asset correlations 

during the recent financial crisis: A semiparametric approach 
 

2010-72: Søren Johansen and Katarina Juselius: An invariance property of the 
common trends under linear transformations of the data 

 

2010-73: Peter Sandholt Jensen and Allan H. Würtz: Estimating the effect of a 
variable in a high-dimensional regression model 

 

2010-74: Peter R. Hansen, Asger Lunde and Valeri Voev: Realized Beta GARCH: 
A Multivariate GARCH Model with Realized Measures of Volatility and 
CoVolatility 

 

2010-75: Laurent A.F. Callot: A Bootstrap Cointegration Rank Test for Panels 
of VAR Models 

 

2010-76: Peter R. Hansen, Asger Lunde and James M. Nason: The Model 
Confidence Set 

 

2011-01: Cristina Amado and Timo Teräsvirta: Modelling Volatility by Variance 
Decomposition 

 

2011-02: Timo Teräsvirta: Nonlinear models for autoregressive conditional 
heteroskedasticity 

 

2011-03: Roxana Halbleib and Valeri Voev: Forecasting Covariance Matrices: A 
Mixed Frequency Approach 

 

2011-04: Mark Podolskij and Mathieu Rosenbaum: Testing the local volatility 
assumption: a statistical approach 

 

2011-05: Michael Sørensen: Prediction-based estimating functions: review and 
new developments 

 

2011-06: Søren Johansen: An extension of cointegration to fractional 
autoregressive processes 

 

2011-07: Tom Engsted and Stig V. Møller: Cross-sectional consumption-based 
asset pricing: The importance of consumption timing and the 
inclusion of severe crises 

 

2011-08: Tommaso Proietti and Stefano Grassi: Bayesian stochastic model 
specification search for seasonal and calendar effects 

 

2011-09: Matt P. Dziubinski: Option valuation with the simplified component 
GARCH model 

 

 


