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Abstract

This paper contains an overview of some recent results on the statistical analysis
of cofractional processes, see Johansen and Nielsen (2010b). We �rst give an brief
summary of the analysis of cointegration in the vector autoregressive model and then
show how this can be extended to fractional processes. The model allows the process
Xt to be fractional of order d and cofractional of order d � b � 0; that is, there exist
vectors � for which �0Xt is fractional of order d�b:We analyse the Gaussian likelihood
function to derive estimators and test statistics. The asymptotic properties are derived
without the Gaussian assumption, under suitable moment conditions. We assume that
the initial values are bounded and show that they do not in�uence the asymptotic
analysis
The estimator of � is asymptotically mixed Gaussian and estimators of the re-

maining parameters are asymptotically Gaussian. The asymptotic distribution of the
likelihood ratio test for cointegration rank is a functional of fractional Brownian mo-
tion.
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1 Introduction
Granger (1983) de�ned the notion of cointegration as a formulation of the phenomenon that
nonstationary processes can have linear combinations that are stationary. It was his investi-
gations of the relation between cointegration and error correction that brought modeling of
vector autoregressions with unit roots and cointegration to the center of attention in applied
and theoretical econometrics; see Engle and Granger (1987). We begin with a brief account
of the properties and analysis of the cointegrated vector autoregressive model, CVAR:
This serves as background for the main topic, which is the generalization of this analysis

to a class of fractional processes.

2 The I(1) cointegration model
2.1 Examples of cointegration from economics and climate research

One of the �rst examples of the statistical analysis of cointegration was the paper by Camp-
bell and Shiller (1987). They considered a present value model for the price of a stock Yt at
the end of period t and the dividend yt paid during period t; see Figure 1: The expectations
hypothesis is expressed as

Yt = �(1� �)
1X
i=0

�jEtyt+i + c;

where c and � are positive constants and the discount factor � is between 0 and 1: The
notation Etyt+i means model based conditional expectations of yt+i given information in the
data at the end of period t: By subtracting �yt; the model is written as

Yt � �yt = �(1� �)
1X
i=0

�jEt(yt+i � yt) + c:

If the processes yt and Yt are nonstationary and �yt and �Yt are stationary, the present
value model implies that the right hand side and hence the left hand side are stationary.
Thus, there is cointegration between Yt and yt with a cointegration vector �

0 = (1;��):
Another example is an analysis of measurements of mean annual temperature and height

of sea level taken from Hansen et al. (2001). The variables are clearly trending and probably
nonstationary. They are analysed from the point of view of cointegration in Johansen (2010)
and Schmith et al. (2010); see Figure 2:

2.2 Integration and cointegration

We call a p�dimensional process Xt integrated of order 1, I(1); if �Xt is stationary, and

�Xt � E(�Xt) =
1X
n=0

Cn"t�n;

where "t is i.i.d. (0;
); is a linear process with coe¢ cients satisfying
P1

n=0 jCnj2 < 1 for
which

P1
n=0Cn 6= 0; that is, a so-called I(0) process: The expansion

C(z) =

1X
n=0

Cnz
n = C + (1� z)

1X
n=0

C�nz
n;
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Figure 1: Data fra Campbell and Shiller (1987) of real US Stock prices and dividends (scaled).
The data is annual from 1871 to 1986.
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Figure 2: Plot of annual data of sea level and temperature anomalies in levels and di¤erences
from 1881 to 1995. Note the clear nonstationarity in the levels, which could be due to a
stochastic trend or possibly a deterministic trend. The di¤erences, however, behave like
stationary processes.
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where C = C(1); shows that

Xt =

tX
i=1

E(Xi) + C

tX
i=1

"i +

1X
n=0

C�n"t�n +X0;

so thatXt is nonstationary because C 6= 0:We call a vector � a cointegrating vector if �0Xt is
stationary and the number of linearly independent cointegrating vectors is the cointegration
rank.
The cointegrated vector autoregressive model, CVAR(k), for the p�dimensional process

Xt is given by the equations

Hr : �Xt = � (�
0Xt�1 + �

0t) +

k�1X
i=1

�i�Xt�i + �+ "t; (1)

where "t are i.i.d. with mean zero and variance 
. The matrices � and � are p � r where
0 � r � p.
There are many surveys of the theory of cointegration; see for instance Watson (1994) or

Johansen (2006). The topic has become part of most textbooks in econometrics; see among
others, Hamilton (1994), Lütkepohl (2006) or Johansen (1996). For a general account of the
methodology of the cointegrated vector autoregressive model and its application to economic
data; see Juselius (2006).
The process Xt is uniquely de�ned by (1) as a function of initial values, parameters and

innovations "1; : : : ; "t: The properties of the solution of these equations are studied by means
of the characteristic (matrix) polynomial

	(z) = (1� z)Ip � �z � (1� z)
k�1X
i=1

�iz
i: (2)

The solution is given by the coe¢ cients in the expansion of C(z) = 	(z)�1: This has a pole
at z if det	(z) = 0; and the position of the poles determines the stochastic properties of the
solution of (1):
Example 1. A bivariate process is given for t = 1; : : : ; T by the equations

�X1t = �1(X1t�1 �X2t�1) + "1t;

�X2t = �2(X1t�1 �X2t�1) + "2t:

Subtracting the equations, it is seen that yt = X1t �X2t is autoregressive with one lag, and
stationary if j1+ �1��2j < 1: Similarly we �nd that St = �2X1t��1X2t is a random walk,
and that �

X1t

X2t

�
=

1

�2 � �1

�
1
1

�
St �

1

�2 � �1

�
�1
�2

�
yt:

This shows, that when j1+�1��2j < 1; Xt is I(1); X1t�X2t is stationary, and �2X1t��1X2t

is a random walk, so that Xt is a cointegrated I(1) process with cointegrating vector �
0 =

(1;�1). We call St a common stochastic trend and � the adjustment coe¢ cients. �
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2.3 The Granger Representation Theorem

If the characteristic polynomial 	(z) de�ned in (2) has a unit root, then 	(1) = �� is
singular, of rank r < p, and the solution of (1) is not stationary. We denote by �? a
p� (p� r) matrix for which �0�? = 0 and (�; �?) has full rank.

Theorem 1 (The Granger Representation Theorem) If 	(z); de�ned by (2), has unit roots
and �0?��? has full rank for � = Ip �

Pk�1
i=1 �i, then 	(z) as a pole of order one at z = 1;

and
(1� z)	(z)�1 = C(z) = C + (1� z)C�(z) (3)

for jzj � 1 + � for some � > 0; and

C = �?(�
0
?��?)

�1�0?: (4)

It follows that solution, Xt; of equation (1) has moving average representation

Xt = C
tX
i=1

"i + C�t+
1X
i=0

C�i ("t�i + �+ ��
0(t� i)) + A; (5)

where A depends on initial values, so that �0A = 0:

For a proof see Johansen (1996, 2008). This result implies that �Xt and �
0Xt are

stationary, so that Xt is a cointegrated I(1) process with r cointegration vectors �; because
�0C = 0; and p� r common stochastic trends �0?

Pt
i=1 "i:

This representation is useful for analysing the role of deterministic terms in the equation
and for analysing the asymptotic properties of the process. Thus, the drift term � is cu-
mulated to the trend C�t; whereas ��0 is not cumulated because C� = 0: In the direction
C� the process is asymptotically dominated by the linear term; but orthogonal to that the
random walk dominates.

2.4 Hypotheses on the rank

The models Hr are nested
H0 � � � � � Hr � � � � � Hp:

Here Hp is the unrestricted vector autoregressive model, so that � and � are unrestricted
p� p matrices. The model H0 corresponds to the restriction � = � = 0, which is the vector
autoregressive model for the process in di¤erences. Note that in order to have nested models,
we allow in Hr all processes with rank less than or equal to r:
This formulation allows us to derive likelihood ratio tests for the hypothesis Hr in the

unrestricted model Hp. These tests can be applied to check if one�s prior knowledge of the
number of cointegration relations is consistent with the data, or alternatively to construct
an estimator of the cointegration rank.
Note that when the cointegration rank is r; the number of common trends is p� r: Thus

if one can interpret the presence of r cointegration relations, one should also interpret the
presence of p� r independent stochastic trends or p� r driving forces in the data.
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2.5 Hypotheses on long-run coe¢ cients

The purpose of modeling economic data is to test hypotheses on the coe¢ cients, thereby
investigating whether the data supports an economic hypothesis or rejects it. If Xt consists
of the log of a price index in US and Australia, and the log exchange rate is et; then the law
of one price, pau � pus + e = 0; is formulated in the model as the hypothesis that (1;�1; 1)
is a cointegrating relation or paut � pust + et is stationary: Similarly, the hypothesis of price
homogeneity pau = pus is formulated as (1;�1; 0) is a cointegrating vector or paut � pust + et
is stationary.

2.6 Hypotheses on adjustment coe¢ cients

The coe¢ cients in � measure how the process adjusts to disequilibrium errors. Of particular
interest is the hypothesis of weak exogeneity, which is the hypothesis that some rows of �
are zero; see Engle, Hendry and Richard (1983).
The process Xt is decomposed as Xt = (X 0

1t; X
0
2t)

0 ; and the matrices are decomposed
similarly so that the model equations without deterministic terms become

�X1t = �1�
0Xt�1 +

Pk�1
i=1 �1i�Xt�i + "1t;

�X2t = �2�
0Xt�1 +

Pk�1
i=1 �2i�Xt�i + "2t:

The conditional model for �X1t given �X2t and the past is

�X1t = !�X2t + (�1 � !�2)�0Xt�1 +
k�1X
i=1

(�1i � !�2i)�Xt�i + "1t � !"2t; (6)

where ! = 
12

�1
22 . If �2 = 0, there is no levels feedback from �0Xt�1 to �X2t; and if

the errors are Gaussian, X2t is called weakly exogenous for �1 and �: In this case only the
conditional model (6) need to be analysed, because the error term "1t � !"2t is independent
of the error term "2t:

2.7 Likelihood analysis of the I(1) model

The model equations are nonlinear in � and �: Nevertheless the algorithm of reduced rank
regression, see Anderson (1951), allows one to calculate the maximum likelihood estimators
explicitly, by an eigenvalue routine. In model (1) we stack Xt�1 and t and �nd the equation

Hr : �Xt = �

�
�
�

�0�
Xt�1
t

�
+

k�1X
i=1

�i�Xt�i + �+ "t: (7)

The maximum likelihood estimator of (�0; �0)0 is given by reduced rank of �Xt on
(X 0

t�1; t)
0 corrected for a constant and �Xt�i; i = 1; : : : ; k � 1: This shows that (�0; �0)0

are the r canonical variates that are most correlated with �Xt corrected for a constant and
lagged di¤erences.
The test statistic is simply expressed in terms of the eigenvalues, which are the squared

canonical correlations. Such a test statistic was already considered by Bartlett (1948).
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2.8 Asymptotic distribution of the rank test

The asymptotic distribution of the likelihood ratio test for rank in model (1), involves Brown-
ian motion which appears as the limit

T�1=2
[Tu]X
i=1

"i =) W (u) on Dp[0; 1];

see Billingsley (1968).

Theorem 2 Let "t be i.i.d. (0;
) in model (1). Under the assumptions that the cointegra-
tion rank is r; the asymptotic distribution of the likelihood ratio test statistic for rank r is
given by

�2logLR(HrjHp)
d! trf

Z 1

0

(dB)F 0(

Z 1

0

FF 0du)�1
Z 1

0

F (dB)0g; (8)

where F is de�ned by

F (u) =

�
B(u)
u

���� 1� ;
and B(u) is the p� r dimensional standard Brownian motion.

Note that the expression for F re�ects that of (X 0
t�1; t)

0 corrected for a constant, but
the lagged di¤erences have no in�uence in the limit. The limit distribution is tabulated by
simulation, as it is analytically quite intractable. Note that the limit distribution does not
depend on the parameters, but only on p� r, the number of common trends, and the type
of deterministic term.
In the model without deterministics the same result holds, but with F (u) = B(u): A

special case of this, for p = 1; is the Dickey-Fuller test and the distributions (8) are called
the Dickey�Fuller distributions with p� r degrees of freedom; see Dickey and Fuller (1981).
2.9 Asymptotic distribution of the estimators

The estimator (�̂; �̂) suitably normalized, converges to a mixed Gaussian distribution, even
when estimated under continuously di¤erentiable restrictions, see Johansen (1991). This
result implies that likelihood ratio tests for hypotheses on (�; �) are asymptotically �2 dis-
tributed. Furthermore the estimators of the adjustment parameters � and the short-run
parameters �i are asymptotically Gaussian and asymptotically independent of the estimator
for (�; �):
It is therefore possible to scale the deviations �̂ � � in order to obtain an asymptotic

Gaussian distribution. Note that the scaling matrix is not an estimate of the asymptotic
variance of �̂; but an estimate of the asymptotic conditional variance given the information
in the data. It is therefore not the asymptotic distribution of �̂ that is used for inference, but
the conditional distribution given the information; see Basawa and Scott (1983) or Johansen
(1995) for a discussion.
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Figure 3: The joint distribution of �̂ and the observed information (
PT

i=1 x
2
2t�1=�̂

2) in the
model x1t = �x2t�1 + "1t and �x2t = "2t: Note that the larger the information, the smaller
is the uncertainty in the estimate �̂:

3 The CVARd;b(k) model for fractional processes
The fractional process have been studied for many years, see for instance the monograph
by Beran (1994), and have applications in for instance hydrology, cognitive science and
�nance. Such analyses are typically univariate but a statistical theory is developing for the
multivariate processes; see for instance Marinucci and Robinson (2000) or Jeganathan (1999).
The autoregressive models have turned out to be a useful tool in applied work, and what
we want to survey here is a model and its asymptotic analysis, that combines the usefulness
of the autoregressive model with the fractional processes; see Johansen and Nielsen (2010b)
and Lasak (2008a,b) for a slight di¤erent approach to some of the results.
The fractional processes are linear processes generated by the fractional coe¢ cients de-

�ned by the expansion

(1� z)�d =
1X
n=0

(�1)n
�
�d
n

�
zn =

1X
n=0

�n(d)z
n;

and the coe¢ cients satisfy

�n(d) =
d(d+ 1) : : : (d+ n� 1)

n!
=
nd�1

�(d)
(1 + o(1)):

The basic fractional process is generated by the equation

�dXt = "t; (9)

with solution

Xt = �
�d"t =

1X
n=0

�n(d)"t�n; d < 1=2:
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If d > 1=2 the in�nite sum does not exist and we de�ne instead

Xt = �
�d
+ "t = �

�d("t1ft�1g) =
t�1X
n=0

�n(d)"t�n; d � 1=2;

which is the solution of equation (9) if "t = 0; t � 0: For d = 1; we get �n(1) = 1; and
Xt = �

�1
+ "t =

Pt
i=1 "i; an I(1) process. For d = 2; we get �n(2) = n+1; and Xt = �

�2
+ "t =Pt

i=1

Pi
j=1 "j; an I(2) process.

In general we call Xt fractional of order d if �dXt is fractional of order zero, I(0); and �
a cofractional vector if �0Xt is fractional of order d� b.
We want an autoregressive equation that generates fractional processes in order to be

able to mimic the theory of the cointegrated VAR analysis to fractional processes.
Example 2 Assume Xt is fractional of order d and �

0Xt is fractional of order d� b; where
b is the �cointegration gap.�We formulate this as

�0Xt = ��(d�b)u1t;

0Xt = ��du2t;

for some  for which (�; ) is full rank and ut is I(0). It follows by solving the equation,
using

?(�
0?)

�1�0 + �?(
0�?)

�10 = Ip;

that we

�dXt = �?(�0?)�1�0(I ��b)�d�bXt + ?(�
0?)

�1u1t + �?(
0�?)

�1u2t;

or, for � = �?(�0?)�1;

�dXt = ��
0(I ��b)�d�bXt + ~ut:

This model is more or less the model suggested by Granger (1986), and justi�es the model
we now consider which allows for more lags. �
The fractional vector autoregressive model, CVARd;b(k); is de�ned by

Hr : �
dXt = ��

0�d�bLbXt +
kX
i=1

�i�
dLibXt + "t; t = 1; : : : ; T; (10)

where "t are i.i.d. (0;
), d � b; and � and � are p � r. The parameters are otherwise
unrestricted, and Lb = 1 � �b is the fractional lag operator. Note that the expansion of
Lb = 1 � �b has no term in L0 = 1 and thus only lagged disequilibrium errors appear in
(10).
This is a model for the observations Xt; t = 1; : : : ; T; but just as for the CVAR we

need the initial values to calculate the di¤erences. For model (10), we need in�nitely many
initial values in order to be able to calculate �dXt =

P1
n=0 �n(�d)Xt�n: When d > 0 the

coe¢ cients are summable
P1

n=0 j�n(�d)j � c
P1

n=0 n
�d�1 <1; so �dXt exists if the initial

values are bounded, which we assume from now on. The model is formulated so that the
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usual results from the CV AR can be proved also for the new model. Using the polynomial
	(z); see (2), the model can be formulated as �(L)Xt = 	(Lb)�

d�bXt = "t:
That is, �d�bXt satis�es a vector autoregression in the lag operator Lb rather than the

standard lag operator L = L1. The CVAR model, analyzed in section 2, appears as the
special case d = b = 1, and the interpretation of the model parameters is similar, i.e., the
columns of � are the cofractional relations and � are the adjustment or loading coe¢ cients.
Just as for the usual VAR model, the stochastic properties of Xt depend on the charac-

teristic function �(z) = 	((1� (1� z)b)(1� z)d�b associated with (10).
We consider throughout the case b � d; so that �d�bXt can be calculated for bounded

initial values, and for the asymptotic analysis we consider b � 1=2; which is the �strong
cointegration� case in the terminology of Hualde and Robinson (2010). A consequence is
that asymptotic inference for the rank involves fractional Brownian motion rather that the
Brownian motion entering in (8).

3.1 Solution of the fractional autoregressive equations

We consider equation (10) written as �(L)Xt =
P1

n=0�nXt�n = "t; t = 1; : : : ; T . In order
to derive a general expression for the solution in terms of initial values X�n; n = 0; 1; : : : ;
and random shocks "1; : : : ; "t, we de�ne two operators, see Johansen (2008),

�+(L)Xt = 1ft�1g

t�1X
i=0

�iXt�i and ��(L)Xt =
1X
i=t

�iXt�i:

Here the operator �+(L) is de�ned for any sequence and is invertible on sequences that are
zero for t � 0: The coe¢ cients of the inverse are found by expanding �(z)�1 around zero.
The process ��(L)Xt is de�ned, if we assume initial values of Xt �xed and bounded.
The solution of the equation �(L)Xt = "t is found by using �+(L) and ��(L): From

"t = �(L)Xt = �+(L)Xt +��(L)Xt;

we �nd, by applying �+(L)�1 on both sides, that

Xt = �+(L)
�1"t � �+(L)�1��(L)Xt = �+(L)

�1"t + �t; t = 1; 2; : : : : (11)

The �rst term is the stochastic component generated by "1; : : : ; "t; and the second a deter-
ministic component generated by initial values. An example of this is the well known result
that Xt = �Xt�1 + "t has the solution Xt =

Pt�1
i=0 �

i"t�i + �
tX0 for any �:

The solution (11) of equation (10) is valid without any assumptions on the parameters.
We next give results, see Johansen (2008, Theorem 8), which guarantee that the process is
fractional of order d and cofractional from d to d � b: The conditions are given in terms of
the roots of the polynomial det(	(y)) and the set Cb; which is the image of the unit disk
under the mapping y = 1� (1� z)b; see Figure 1:
The following result is Granger�s Representation Theorem for the cofractional VARmodel

(10) generalizing Theorem 1 to fractional processes.

Theorem 3 Let �(z) = (1 � z)d�b	(1 � (1 � z)b) be given by (??) and let 1=2 � b � d.
Assume that det(	(y)) = 0 implies that either y = 1 or y =2 Cb and that � and � have rank
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The image of the unit disk under the mapping 1(1z)**d for d=0.7 and d=2.0
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Figure 4: We illustrate the set Cd which is the image of the unit disk under the mapping
z 7�! 1� (1�z)d which replaces the unit disk in the structure theory of fractional processes,
see Theorem 3. Note that Cd is increasing in d; and for d = 1 it is the unit disk.

r < p: Let � = Ip�
Pk

i=1 �i and assume that det(�
0
?��?) 6= 0; so that C is de�ned by ( (5)).

Then
(1� z)d�(z)�1 = C + (1� z)bH(1� (1� z)b);

where H(1) 6= 0 and H(y) is regular, see Phillips (1958), in a neighborhood of Cb: It follows
that the coe¢ cient matrices �n de�ned by F (z) = H(1 � (1 � z)b) =

P1
n=0 �nz

n; jzj < 1,
satisfy

P1
n=0 j�nj <1:

Equation ( (10)) is solved by

Xt = C�
�d
+ "t +�

�(d�b)
+ Y +t + �t; t = 1; : : : ; T; (12)

where �t = ��+(L)�1��(L)Xt and Y +t =
Pt�1

n=0 �n"t�n; so that Yt is fractional of order
zero:
Thus Xt is fractional of order d, and because �

0C = 0, Xt is cofractional since �
0Xt =

�
�(d�b)
+ �0Y +t + �

0�t is fractional of order d� b:

The proof is given in Johansen (2008, Theorem 8); see also Johansen and Nielsen (2010a,
Lemma 1) for the univariate case.

3.2 Assumptions for asymptotic analysis

For the asymptotic analysis we apply the result, e.g. Davydov (1970), that when d > 1=2
and Ej"tjq <1 for some q > max(2; 1=(d� 1=2)), then

T�d+1=2��d
+ "[Tu] =) Wd�1(u) = �(d)

�1
Z u

0

(u� s)d�1dW (s) on Dp[0; 1]; (13)

where W denotes p�dimensional Brownian motion generated by "t, Wd�1 is the correspond-
ing fractional Brownian motion of type II. We also need a result for the product moments

T�d
TX
t=1

��d
+ "t�1"

0
t
d!
Z 1

0

Wd�1dW
0; d > 1=2 (14)



Fractional autoregressive processes 12

see Jakubowski, Mémin, and Pages (1989), where d! denotes convergence in distribution on
Rp�p:
We next formulate the assumptions needed for the asymptotic results.

Assumption 1 The process Xt; t = 1; : : : ; T , is given by ( (10)) for some k � 1; for some
value of the parameters satisfying the assumptions of Theorem 3, and the errors "t are i.i.d.
(0;
). The initial values are bounded and for identi�cation we assume �k 6= 0. Finally

1=2 � b � d � d1: (15)

The theory has been developed for observations X1; : : : ; XT generated by (10) assuming
that all initial values are observed and bounded, that is, conditional on X�n; n = 0; 1; : : :
This is standard in the literature on inference for nonstationary autoregressive processes,

where the initial values are observed but not modeled, and inference is conditional on them.
However, we do not set initial values equal to zero as is often done in the literature on
fractional processes, but instead assume only that they are observed unmodelled bounded
constants.
Of course in practice we have not observed in�nitely many initial values, and we will have

to set them to zero for t � �N0; say. The asymptotic results do not depend on the choice of
initial values, but there is obviously a �nite sample problem, that need to be investigated.

3.3 Pro�le likelihood function and consistency of the MLE

For given (d; b) we calculate the maximum likelihood estimators by �rst performing a reduced
rank regression of �dXt on �d�bLbXt corrected for �dLibXt; i = 1; : : : ; k: This gives the
likelihood pro�le function, which is then maximized as a function of just two parameters
(d; b). By analysing the pro�le likelihood function as a continuous stochastic process in
(d; b); using Kallenberg (2001), we can show that if E(j"tjq) <1 for all q; then it converges
uniformly in probability to a deterministic limit for d�b � �0 > 0; and this again implies that
with probability tending to one, the maximum likelihood estimator exists and is consistent.
We next �nd the limit distribution of the score function at the true value and show

that the information matrix converges uniformly in a neighborhood of the true value. This
implies that we can apply the usual expansion of the score function and �nd the asymptotic
distribution of the maximum likelihood estimator.

Theorem 4 If 1=2 < b < d < d1, and Ej"tjq <1 for some q > max(2; (b�1=2)�1); then the
asymptotic distribution of the Gaussian maximum likelihood estimator �̂ = (d̂; b̂; �̂; �̂1; : : : ; �̂k)
and �̂ for model ( (10)) is given by�

T 1=2(�̂� �)
T b0�0?(�̂ � �)

�
d!
�

Nn� (0;�
�1)

(
R 1
0
FF 0du)�1

R 1
0
F (dV )0

�
; (16)

where F = (�0?�?)
�1�0?CWb�1 and V = (�0
�1�)�1�0
�1W are independent. It follows

that the asymptotic distribution of T b��0?(�̂��) is mixed Gaussian with conditional variance

(�00

�1
0 �0)

�1 
 (
Z 1

0

F0F
0
0du)

�1: (17)

This result is the same as for the standard cointegration model, except that Brownian
motion is replaced by fractional Brownian motion.
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3.4 Likelihood ratio test for cofractional rank

Using the same methods we can �nd the asymptotic distribution of the likelihood ratio
statistic for cointegrating rank, �2 logLR(HrjHp):

Theorem 5 Under the assumptions of Theorem 4, the likelihood ratio statistic for rank has
asymptotic distribution

�2 logLR(HrjHp)
d! trf

Z 1

0

(dB)B0b�1(

Z 1

0

Bb�1B
0
b�1du)

�1
Z 1

0

Bb�1(dB)
0g; (18)

where B is (p � r)-dimensional standard Brownian motion and Bb0�1 the corresponding
fractional Brownian motion.

Again this result mimics the usual result (8) where F is replaced by Bb�1.

4 Conclusion
We have summarized the statistical theory of the CVAR

�Xt = �(�
0Xt�1 + �

0t) +
kX
i=1

�i�Xt�i + �+ "t;

and indicated the asymptotic results needed for likelihood based inference.
We have then extended the model to

�dXt = ��
0�d�bLbXt +

kX
i=1

�i�
dLibXt + "t; 1=2 � b � d;

by replacing � by �b and applying the equation to �d�bXt: This gives a model for fractional
processes of order d which cointegrate to order d�b. Note, however, that we have not included
any deterministic terms, Such models need to be formulated and analysed.
We have analyzed the conditional Gaussian likelihood given initial values, which are

assumed bounded. We can show existence and consistency and derive the asymptotic distri-
bution of the maximum likelihood estimator. In the asymptotic analysis we assumed i.i.d.
errors with suitable moment conditions. We have derived the asymptotic distribution of the
test for the rank of ��0 and shown that it is expressed in terms of fractional Brownian mo-
tion, that inference on � is asymptotically mixed Gaussian, and �nally that the estimators
of the remaining parameters are asymptotically Gaussian.
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