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Abstract

The general theory of prediction-based estimating functions for stochastic process

models is reviewed and extended. Particular attention is given to optimal estimation,

asymptotic theory and Gaussian processes. Several examples of applications are pre-

sented. In particular partial observation of a systems of stochastic differential equations

is discussed. This includes diffusions observed with measurement errors, integrated dif-

fusions, stochastic volatility models, and hypoelliptic stochastic differential equations.

The Pearson diffusions, for which explicit optimal prediction-based estimating func-
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1 Introduction

Prediction-based estimating functions were proposed in Sørensen (2000) as a generalization
of martingale estimating functions. While martingale estimating functions provide a simple
and often quite efficient estimation method for Markovian models, see e.g. Sørensen (2009)
and Sørensen (2011), they can usually not be applied to non-Markovian models such as
stochastic volatility models, compartment models and other partially observed system. The
reason is that in most cases it is impossible to find tractable martingales. The prediction-
based estimating functions provide a useful alternative to the martingale estimating functions
for non-Markovian models.

A prediction-based estimating function is essentially a sum of weighted prediction errors.
An estimator is given as the parameter value for which the prediction errors are small in
a particular sense. The methodology is closely related to the method of prediction error
estimation that is used in the stochastic control literature, see e.g. Ljung & Caines (1979).
In the present paper we review the theory of predictions-based estimating function developed
over the last decade and extend the theory. In particular the asymptotic theory is extended,
and results for Gaussian processes are derived.

In Section 2, general prediction-based estimating functions are presented with particular
emphasis on finite-dimensional predictor-spaces, which is the most useful type in practice.
The estimating functions considered in the present paper are slightly more general than
those in the original paper in order to provide more flexibility in applications. Optimal
prediction-based estimating functions are derived in Section 3, and Section 4 presents the
asymptotic statistical theory for prediction-based estimating functions. The asymptotic re-
sults presented here are stronger than those in Sørensen (2000). The theory covers the more
general estimating functions considered in this paper and includes a result on asymptotic
uniqueness of the estimator. A general theory for Gaussian models is presented in Section 5.
The results in this section are new. In Section 6 we briefly present the class of Pearson dif-
fusions. This is a versatile class of stochastic differential equation models for which explicit
optimal prediction-based estimating functions can be found. Finally, a number of applica-
tions of the methodology to partially observed systems of stochastic differential equations
are discussed in Section 7. The examples include diffusion processes observed with mea-
surement errors, sums of diffusion processes, integrated diffusions, and stochastic volatility
models. It is shown how explicit prediction-based estimating functions can be obtained if
Pearson diffusions are used as basic building blocks in these models.

2 Prediction-based estimating functions

Prediction-bases estimating functions provides a versatile method for parametric inference
that is applicable to observations Y1, Y2, . . . , Yn from general d-dimensional stochastic pro-
cesses. We assume that the data are observations from a class of stochastic process models
parametrized by a p-dimensional parameter θ ∈ Θ ⊆ IRp, which we wish to estimate. Ex-
pectation under the model with parameter θ will be denoted by Eθ(·).

First we give a couple of examples to illustrate the scope of the methodology.
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Example 2.1 Let X be a D-dimensional diffusion process given as the solution to the
stochastic differential equation

dXt = b(Xt; θ)dt + σ(Xt; θ)dWt, (2.1)

where σ is a D × D-matrix and W a D-dimensional standard Wiener process. One type of
data is partial observations of the system at discrete time points t1 < t2 < . . . < tn:

Yi = k(Xti) + Zi, i = 1, . . . , n, (2.2)

where k is a function with values in IRd, d ≤ D, and where the d-dimensional measurement
errors Zi are independent and identically distributed and independent of X. Another type
of data is

Yi =
∫ ti

ti−1

k(Xs)ds + Zi, i = 1, . . . , n, (2.3)

with t0 = 0. In both cases typical examples of the function k are k(x) = x1 or k(x) =
x1 + · · ·+xD, where xi denotes the ith coordinate of x. For both types of data, the observed
process is non-Markovian, which makes likelihood inference complicated and martingale
estimating functions infeasible in practice. 2

An estimating function is a p-dimensional function Gn(θ) that depends on the parameter,
θ, as well as on the observations. The dependence on the data is usually suppressed in the
notation. An estimator is obtained by solving the equation Gn(θ) = 0 with respect to θ,
provided of course that a solution exists (0 denotes the p-dimensional zero-vector). In the
statistics literature the theory of estimating functions dates back to the papers by Godambe
(1960) and Durbin (1960). A modern survey of the statistical theory of estimating functions
can be found in Heyde (1997). There has been a parallel development in the econometrics
literature, where the foundation was laid in Hansen (1982) and Hansen (1985). A discussion
of links between the econometrics and statistics literature can be found in Hansen (2001)
and Sørensen (2011).

A prediction-bases estimating function is essentially a sum of weighted prediction errors,
and the idea is to choose as the estimator the parameter value that eliminates this sum
of prediction errors. What is predicted are N real-valued functions of s + 1 consecutive
observations (s ≥ 0) and the parameter θ,

fj(Yi, . . . , Yi−s; θ), j = 1, . . . , N

satisfying that
Eθ

(

fj(Yi, . . . , Yi−s; θ)
2
)

< ∞
for all θ ∈ Θ. These functions can be chosen freely. When possible, they will be chosen in
such a way that the moments needed to find the best predictor and the optimal prediction-
based estimating function can be calculated. In general, the functions are allowed to depend
on several observations and on the parameter, but in many cases it is convenient to choose
the functions that are independent of θ, and often power functions of a single observation,
fj(Yi) = Y

νj

i , νj ∈ IN, are sufficient.
The predictors of fj(Yi, . . . , Yi−s; θ) are functions of observations before time i. Let Hθ

i

denote the space of all real-valued functions of the first i observations, h(Y1, Y2, . . . , Yi), for
which Eθ(h(Y1, Y2, . . . , Yi)

2) < ∞. This is a Hilbert-space with inner product given by

〈h1, h2〉θ = Eθ (h1(Y1, . . . , Yi)h2(Y1, . . . , Yi)) (2.4)
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for h1, h2 ∈ Hθ
i . To construct our estimating function, we choose, for each i and j, a set of

predictors Pθ
i−1,j, which is a closed linear subspace of Hθ

i−1. The predictor-spaces Pθ
i−1,j can

be chosen freely, but are usually chosen to be finite dimensional in order to obtain tractable
estimating functions. We shall later consider the case of finite-dimensional predictor-spaces
in detail.

A general prediction-based estimating function has the form

Gn(θ) =
n
∑

i=s+1

N
∑

j=1

Π
(i−1)
j (θ)

{

fj(Yi, . . . , Yi−s; θ) − π̆
(i−1)
j (θ)

}

. (2.5)

Here Π
(i−1)
j (θ) = (π

(i−1)
1,j (θ), . . . , π

(i−1)
p,j (θ))T is a p-dimensional data-dependent vector (T de-

notes transposition of matrices and vectors) with coordinates belonging to the predictor-

space Pθ
i−1,j , and π̆

(i−1)
j (θ) is the minimum mean square error predictor of fj(Yi, . . . , Yi−s; θ) in

Pθ
i−1,j . As is well-known, the predictor π̆

(i−1)
j (θ) is the orthogonal projection of fj(Yi, . . . , Yi−s; θ)

onto Pθ
i−1,j with respect to the inner product (2.4) in Hθ

i . The projection exists and is
uniquely determined by the normal equations

Eθ

(

π
{

fj(Yi, . . . , Yi−s; θ) − π̆
(i−1)
j (θ)

})

= 0 (2.6)

for all π ∈ Pθ
i−1,j , see e.g. Karlin & Taylor (1975). It follows from (2.6) that the prediction-

based estimating function (2.5) is an unbiased estimating function, i.e. that

Eθ(Gn(θ)) = 0 (2.7)

for all θ ∈ Θ. This ensures, under additional regularity conditions given in Section 4, that a
consistent estimator can be obtained by solving the estimating equation Gn(θ) = 0.

Example 2.2 If we choose as our predictor-space the space of all functions h(Y1, Y2, . . . , Yi−1)
satisfying that Eθ(h(Y1, Y2, . . . , Yi−1)

2) < ∞, i.e. if

Pθ
i−1,j = Hθ

i−1,

then the minimum mean square error predictor of fj(Yi, . . . , Yi−s; θ) in Pθ
i−1,j is the condi-

tional expectation

π̆
(i−1)
j (θ) = Eθ(fj(Yi, . . . , Yi−s; θ) | Y1, Y2, . . . , Yi−1).

see e.g. Karlin & Taylor (1975). Hence Gn(θ) is a Pθ-martingale with respect to the filtration
generated by the observed process, i.e. Gn(θ) is a martingale estimating function; see Heyde
(1997) or Sørensen (2011). Thus the martingale estimating functions form a subclass of
the prediction-based estimating functions. Unfortunately it is, for most non-Markovian
models, not practically feasible to calculate the expectations conditionally on the entire
past. Therefore martingale estimating functions are mainly useful in the case of Markov
processes (with s = 1), where the conditional expectations depend only on Yi−1. 2

The idea behind the prediction-based estimating functions is to use a smaller and more
tractable predictor-space than Hθ

i−1. We can interpret the minimum mean square error pre-
dictor in the smaller space as an approximation to the conditional expectation of fj(Yi, . . . , Yi−s; θ)
given X1, . . . , Xi−1. Thus a prediction-based estimating function can be thought of as an
approximation to a martingale estimating function.
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Example 2.3 One possibility is that we choose the predictor-space Pθ
i−1,j as the space of

all functions h(Yi−1, . . . , Yi−r) (r ≥ s) which satisfy that Eθ(h(Yi−1, . . . , Yi−r)
2) < ∞. Then

the minimum mean square error predictor of fj(Yi, . . . , Yi−s; θ) is

π̆
(i−1)
j (θ) = Eθ(fj(Yi, . . . , Yi−s; θ) | Yi−1, . . . , Yi−r).

This makes good sense if the observed process Y is exponentially ρ-mixing, see Doukhan
(1994) for a definition, because in this case the dependence on the past decreases quickly.
However, except for Gaussian processes and the case r = 1, it is also not practically feasible
to calculate expectations conditional on Yi−1, . . . , Yi−r. 2

Example 2.4 Suppose that the observations are one-dimensional and that N = 1 with
f(x) = x (j = 1 is suppressed in the notation when N = 1). We assume, moreover, the the
observed process Yi is stationary. We choose the space of predictors as

Pθ
i−1 = {a0 + a1Yi−1 + · · · + aqi

Yi−qi
| aj ∈ IR, j = 0, 1, . . . , qi} ,

where qi ≤ i − 1, and i = 2, 3, . . .. Define Pθ
0 = IR, the space of constant predictors.

Let C(i−1)(θ) denote the covariance matrix of the stochastic vector Z(i−1) = (Yi−1, . . . , Yi−qi
)T ,

and define the vector of covariances

b(i−1)(θ) = (Covθ (Yi, Yi−1) , . . . , Covθ (Yi, Yi−qi
))T .

Here and later Covθ denotes the covariance under the model with parameter value θ. By
solving the normal equations (2.6) we find that the minimum mean square error predictor is
given by

π̆(i−1)(θ) = ă
(i−1)
0 (θ) + ă(i−1)(θ)T Z(i−1),

where ă(i−1)(θ) is the qi-dimensional vector given by

ă(i−1)(θ) = C(i−1)(θ)−1b(i−1)(θ),

and where
ă

(i−1)
0 (θ) = Eθ (Y1)

{

1 −
(

ă(i−1)(θ)1 + · · ·+ ă(i−1)(θ)qi

)}

.

Natural choices for the dimension of the predictor-spaces are qi = i−1 or qi = min(i−1, q)
for some fixed q ≥ 1. The latter choice is a natural simplification when the observed process
Y is exponentially ρ-mixing, because in this case the coefficients ă(i−1)(θ)k will decrease
exponentially to zero as k increases, i.e. the dependence on observations in the far past is
negligible. Therefore it is enough to use a bounded number of lagged values of the observed
process. 2

2.1 Finite-dimensional predictor-spaces

To obtain estimators that can relatively easily be calculated in practice, we will now consider
predictor-spaces, Pθ

i−1,j, that are finite dimensional. A simple example of this was given in
Example 2.4. In the rest of this section we assume that the observed process Yi is stationary.
Finite-dimensional predictor-spaces can also be used for non-stationary processes, but this
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is computationally more complicated because the coefficients of the minimum mean square
error predictors will be time-dependent.

Let hjk, j = 1, . . . , N, k = 0, . . . , qj be functions from IRr into IR (r ≥ s), and define for
i ≥ r + 1

Z
(i−1)
jk = hjk(Yi−1, Yi−2, . . . , Yi−r).

We assume that Eθ((Z
(i−1)
jk )2) < ∞ for all θ ∈ Θ, and let Pi−1,j denote the subspace of Hθ

i−1

spanned by Z
(i−1)
j0 , . . . , Z

(i−1)
jqj

. We set hj0 = 1 and make the following natural assumption.

Condition 2.5 The functions hj0, . . . , hjqj
are linearly independent.

We write the elements of Pi−1,j in the form aT Z
(i−1)
j , where aT = (a0, . . . , aqj

) and

Z
(i−1)
j =

(

Z
(i−1)
j0 , . . . , Z

(i−1)
jqj

)T

are (qj+1)-dimensional vectors. With this specification of the predictor-spaces, the predictors
are defined for i ≥ r+1 only, so the estimating function can only include terms with i ≥ r+1:

Gn(θ) =
n
∑

i=r+1

N
∑

j=1

Π
(i−1)
j (θ)

[

fj(Yi, . . . , Yi−s; θ) − π̆
(i−1)
j (θ)

]

. (2.8)

The minimum mean square error predictor, π̆
(i−1)
j (θ), is found by solving the normal

equations (2.6). Define Cj(θ) as the covariance matrix of (Z
(r)
j1 , . . . , Z

(r)
jqj

)T under Pθ, and
bj(θ) as the vector for which the kth coordinate is

bj(θ)k = Covθ

(

Z
(r)
jk , fj(Yr+1, . . . , Yr+1−s; θ)

)

, (2.9)

k = 1, . . . , qj. Then we have

π̆
(i−1)
j (θ) = ăj(θ)

T Z
(i−1)
j , (2.10)

where ăj(θ)
T = (ăj0(θ), ăj∗(θ)

T ) with

ăj∗(θ) = Cj(θ)
−1bj(θ) (2.11)

and

ăj0(θ) = Eθ(fj(Ys+1, . . . , Y1; θ)) −
qj
∑

k=1

ăjk(θ)Eθ(Z
(r)
jk ). (2.12)

That Cj(θ) is invertible follows from Condition 2.5.
Quite often the vector of coefficients ăj can be found by means of the N -dimensional

Durbin-Levinson algorithm, see Brockwell & Davis (1991), p. 422. This is the case when the
functions fj do not depend on θ, and

Z
(i−1)
j =

(

1, F T
i−1, . . . , F

T
i−u

)T
(2.13)

for all j and for some fixed u ∈ IN. The stationary N -dimensional process {Fi} defined by

F T
i = (f1(Yi, . . . , Yi−s), . . . , fN(Yi, . . . , Yi−s)) , (2.14)
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i = s + 1, s + 2, . . .. In this situation r = s + u and qj = q = Nu. The vector of coefficients
ăj∗(θ)

T in the minimum mean square predictor is equal to the jth row of the N × q-matrix

(Φu,1(θ), . . . , Φu,u(θ)), (2.15)

where the N ×N -matrices Φu,k(θ) can be found by running the Durbin-Levinson algorithm
for ℓ = 1, . . . , u as described below. The coefficients ăj0 can be found from (2.12), which
here simplifies to









ă10(θ)
...

ăN0(θ)









=

(

IN −
u
∑

k=1

Φu,k(θ)

)

Eθ(Fs+1), (2.16)

where IN denotes the N × N identity matrix.
Define the N × N matrices of autocovariances

Γi(θ) = Eθ(Fs+1F
T
s+1+i). (2.17)

The stationary process {Yt} can be extended to be defined for time points t ≤ 0, so that Fi

is defined for integers i ≤ s and Γi(θ) for i < 0. Generally, Γ−i(θ) = Γi(θ)
T . This can also

be taken as the definition of Γi(θ) for i < 0. If the process {Fi} is time-reversible, then Γi(θ)
is symmetric, so Γ−i(θ) = Γi(θ) for all i ∈ IN.

The Durbin-Levinson algorithm is given by the following iteratively defined N × N -
matrices

Φℓ,ℓ(θ) = ∆ℓ−1(θ)Ṽ
−1
ℓ−1(θ) (2.18)

Φ̃ℓ,ℓ(θ) = ∆̃ℓ−1(θ)V
−1
ℓ−1(θ) (2.19)

Φℓ,k(θ) = Φℓ−1,k(θ) − Φℓ,ℓ(θ)Φ̃ℓ−1,ℓ−k(θ), k = 1, . . . , ℓ − 1, (2.20)

Φ̃ℓ,k(θ) = Φ̃ℓ−1,k(θ) − Φ̃ℓ,ℓ(θ)Φℓ−1,ℓ−k(θ), k = 1, . . . , ℓ − 1, (2.21)

where V0 = Ṽ0 = Γ0(θ) and ∆0 = ∆̃T
0 = Γ1(θ), and for ℓ ∈ IN

Vℓ(θ) = Γ0(θ) − Φℓ,1(θ)Γ1(θ)
T − · · · − Φℓ,ℓ(θ)Γℓ(θ)

T , (2.22)

Ṽℓ(θ) = Γ0(θ) − Φ̃ℓ,1(θ)Γ1(θ) − · · · − Φ̃ℓ,ℓ(θ)Γℓ(θ), (2.23)

∆ℓ(θ) = Γℓ+1(θ) − Φℓ,1(θ)Γℓ(θ) − · · · − Φℓ,ℓ(θ)Γ1(θ), (2.24)

∆̃ℓ(θ) = Γℓ+1(θ)
T − Φ̃ℓ,1(θ)Γℓ(θ)

T − · · · − Φ̃ℓ,ℓ(θ)Γ1(θ)
T . (2.25)

The Durbin-Levinson algorithm requires that the autocovariances Γi(θ) are available.
In general, these quantities must be determined by simulation. However, for the class of
prediction-based estimating functions presented in the following example, the autocovari-
ances can be calculated explicitly for a number of very useful models, including those pre-
sented in Section 6.

Example 2.6 An important particular case when d = 1 is the class of polynomial prediction-
based estimating functions. For these

fj(y) = yνj , j = 1, . . . , N,
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where νj ∈ IN. For each i = r+1, . . . , n and j = 1, . . . , N , we let {Z(i−1)
jk | k = 0, . . . , qj} be a

subset of {Y κ
i−ℓ | ℓ = 1, . . . , r, κ = 0, . . . , νj}, where Z

(i−1)
j0 is always equal to 1. Here we need

to assume that Eθ(Y
2ν̄
i ) < ∞ for all θ ∈ Θ, where ν̄ = max{ν1, . . . , νN}. To find π̆

(i−1)
j (θ),

j = 1, . . . , N , by means of (2.11) and (2.12) (or by the Durbin-Levinson algorithm), we must
calculate moments of the form

Eθ(Y
κ
1 Y j

k ), 0 ≤ κ ≤ j ≤ ν̄, k = 1, . . . , r + 1. (2.26)

Suppose the observed process Y is exponentially ρ-mixing, see Doukhan (1994) for a defini-
tion. Then constants K > 0 and λ > 0 exist such that |Covθ(Y

κ
1 , Y j

k )| ≤ Ke−λk. Therefore
a small value of r can usually be used.

In many situations it is reasonable to choose N = 2, ν1 = 1, and ν2 = 2 with the
following simple predictor sets where q1 = q2 = 2r. For j = 1, 2, the predictor spaces are
spanned by Z

(i−1)
j0 = 1, Z

(i−1)
jk = Yi−k, k = 1, . . . , r and Z

(i−1)
jk = Y 2

i+r−k, k = r + 1, . . . , 2r.
As explained above, the minimum mean square error predictors of Yi and Y 2

i can in this
case be found by applying the two-dimensional Durbin-Levinson algorithm to the process
Fi = (Yi, Y

2
i )T . However, it might also be of relevance to include in the predictor terms of

the form of Yi−kYi−k−ℓ for a number of lags ℓ.
2

3 Optimal estimating functions

A main issue in the theory of estimating functions is to find the optimal element in a class
of estimating functions. A detailed exposition can be found in Heyde (1997), and a short
review is given in Sørensen (2011). The optimal element in a class of estimating functions
is the one that is closest to the score function (the vector of partial derivatives of the log-
likelihood function) in a mean-square sense. If the estimators obtained from the estimating
functions in the class are asymptotically normal, then the optimal estimating function is the
one for which the corresponding estimator has the smallest asymptotic variance. Conditions
ensuring asymptotic normality are given in the next section.

In this section we find the optimal estimating function in a class of prediction-based esti-
mating functions with finite-dimensional predictor-spaces Pθ

ij . This is the type of estimating
functions presented in Subsection 2.1. As there, we assume that the observed process Yi is
stationary.

First we introduce a more compact notation. The ℓth coordinate of the p-dimensional
vector Π

(i−1)
j (θ) in (2.8) can be written as

π
(i−1)
ℓ,j (θ) =

qj
∑

k=0

aℓjk(θ)Z
(i−1)
jk , ℓ = 1, . . . , p.

With this notation, (2.8) can be written in the form

Gn(θ) = A(θ)
n
∑

i=r+1

H(i)(θ), (3.1)
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where

A(θ) =









a110(θ) · · · a11q1
(θ) · · · · · · a1N0(θ) · · · a1NqN

(θ)
...

...
...

...
ap10(θ) · · · ap1q1

(θ) · · · · · · apN0(θ) · · · apNqN
(θ)









,

and
H(i)(θ) = Z(i−1)

(

F (Yi, . . . , Yi−s; θ) − π̆(i−1)(θ)
)

, (3.2)

with F = (f1, . . . , fN)T , π̆(i−1)(θ) = (π̆
(i−1)
1 (θ), . . . , π̆

(i−1)
N (θ))T , and

Z(i−1) =





















Z
(i−1)
1 0q1+1 · · · 0q1+1

0q2+1 Z
(i−1)
2 · · · 0q2+1

...
...

...

0qN+1 0qN+1 · · · Z
(i−1)
N





















. (3.3)

Here 0qj+1 denotes the (qj +1)-dimensional zero-vector. When we have chosen the functions

fj and the predictor-spaces, the quantities H(i)(θ) are completely determined, whereas we
are free to choose the matrix A(θ) in an optimal way, i.e. such that the asymptotic variance
of the estimators is minimized.

We can slightly more explicitly write

Gn(θ) = A(θ)
n
∑

i=r+1

(

Z(i−1)F (Yi, . . . , Yi−s; θ) − Z(i−1)(Z(i−1))T ă(θ)
)

,

where
ă(θ) = (ă10(θ), . . . , ă1q1

(θ), . . . , ăN0(θ), . . . ăNqN
(θ))T . (3.4)

The quantities ăjk define the minimum mean square error predictors, cf. (2.10).

Condition 3.1

(1) The coordinates of F (y1, . . . , ys+1; θ) and ă(θ) are continuously differentiable functions
of θ.

(2) p ≤ p̄ = N + q1 + · · ·+ qN .

(3) The p̄ × p-matrix ∂θT ᾰ(θ) has rank p.

(4) The functions 1, f1, . . . , fN are linearly independent (for fixed θ) on the support of the
conditional distribution of (Yr+1, . . . , Yr+1−s) given (Yr, . . . , Y1).

(5) The p̄ × p-matrix

U(θ)T = Eθ

(

Z(r)∂θT F (Yr+1, . . . , Yr+1−s; θ)
)

(3.5)

exists.

Proposition 3.2 Suppose Condition 3.1 is satisfied for all θ ∈ Θ. Then the Godambe
optimal estimating function in the class of estimating functions of the form (3.1) is given by

G∗

n(θ) = A∗

n(θ)
n
∑

i=r+1

Z(i−1)
(

F (Yi, . . . , Yi−s; θ) − π̆(i−1)(θ)
)

, (3.6)

9



where
A∗

n(θ) = S(θ)M̄n(θ)−1. (3.7)

Here
S(θ) = U(θ) − ∂θă(θ)T D(θ) (3.8)

with D(θ) denoting the p̄ × p̄-matrix

D(θ) = Eθ

(

Z(r)(Z(r))T
)

, (3.9)

and

M̄n(θ) = Eθ

(

H(r+1)(θ)H(r+1)(θ)T
)

(3.10)

+
n−r−1
∑

k=1

(n − r − k)

(n − r)

{

Eθ

(

H(r+1)(θ)H(r+1+k)(θ)T
)

+ Eθ

(

H(r+1+k)(θ)H(r+1)(θ)T
)}

.

When the function F does not depend on θ, the expression for A∗
n(θ) simplifies slightly as

in this case U(θ) = 0.

Proof: By Theorem 2.1 in Heyde (1997), G∗ is optimal if and only if

Eθ (∂θT Gn(θ))−1 Eθ

(

Gn(θ)G
∗

n(θ)T
)

= Eθ (∂θT G∗

n(θ))−1 Eθ

(

G∗

n(θ)G
∗

n(θ)T
)

for all G of the form (3.1), which is the case when

Eθ

(

Gn(θ)G∗

n(θ)T
)

= Eθ (∂θT Gn(θ))

for all G of the form (3.1). This equation obviously holds when A∗
n(θ) is given by (3.7),

because
Eθ

(

Gn(θ)G∗

n(θ)T
)

= (n − r)A(θ)M̄n(θ)A∗

n(θ)T

and
Eθ (∂θT Gn(θ)) = (n − r)A(θ)

[

U(θ)T − D(θ)∂θT ă(θ)
]

.

The matrix M̄n(θ), which is the covariance matrix of
√

n − rHn(θ) under the probability
measure Pθ, where

Hn(θ) = (n − r)−1
n
∑

i=r+1

H(i)(θ), (3.11)

is invertible under Condition 3.1 (4), see Sørensen (2000).
2

If the process Y is sufficiently mixing, then the matrix M̄n(θ) converges by the ergodic
theorem to a matrix M(θ) as n → ∞, see Section 4. The matrix M(θ) is given by (4.2).
The asymptotic variance of the prediction-based estimator does not depend on whether we
use the weight matrix given by (3.7) or by

A∗(θ) = S(θ)M(θ)−1. (3.12)
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Both estimators are optimal, and they are usually almost identical. The matrix M̄n(θ) is the
covariance matrix of

√
n − rHn(θ) under the probability measure Pθ, where Hn(θ) is given by

(3.11). The matrix M(θ) is the limit of this covariance matrix as n → ∞. In practice these
matrices can often be most easily calculated by simulating

√
n − rHn(θ) a large number of

times under Pθ and then calculating the empirical covariance matrix. Alternatively, M(θ)
can be calculated by truncating the series (4.2) or by including only the significant terms in
the sum (3.10). If the observed process is geometrically ρ-mixing, the terms in both formulae
will decrease rapidly to zero.

The matrix (3.7) or (3.12) is the computationally most demanding part of the optimal
prediction-based estimating function. The time used to calculate the optimal estimator can
therefore be reduced very considerably if A∗

n(θ) or A∗(θ) is calculated for one parameter
value only. This can be achieved by replacing A∗(θ) by A∗(θ̃n) (or A∗

n(θ) by A∗
n(θ̃n)), where

θ̃n is a consistent estimator. Under the Conditions 4.1 and 4.2, the estimating function
obtained by this simplification gives an estimator with the same asymptotic variance as the
original optimal estimating function. One way to obtain a consistent estimator is to use the
estimating function obtained by choosing p coordinates of Hn(θ). This is possible because
p̄ ≥ p. Under the Conditions 4.1 and 4.2, this simple estimating function gives a consistent
estimator. Note that in this case Condition 4.2 (3) is automatically satisfied because An(θ)
equals the p-dimensional identity matrix.

Example 3.3 Consider again the polynomial prediction-based estimating functions dis-
cussed in Example 2.6. In order to calculate (3.10), we need mixed moments of the form

Eθ[Y
k1

t1 Y k2

t2 Y k3

t3 Y k4

t4 ], (3.13)

for 1 ≤ t1 ≤ t2 ≤ t3 ≤ t4 ≤ r + 1 and k1 + k2 + k3 + k4 ≤ 4ν̄, where ki, i = 1, . . . , 4 are
non-negative integers.

2

For prediction-based estimating functions where the fjs do not depend on θ and the
predictor-space is given by (2.13) and (2.14), the derivatives ∂θăjk(θ), j = 1, . . . , N , k =
1, . . . , q in (3.4) can be found from the autocovariance matrices (2.17) and their derivatives
with respect to θ by the following algorithm that is obtained by differentiating the Durbin-
Levinson algorithm given by (2.18) – (2.25) with respect to θi for every i = 1, . . . , p. The
vector ∂θi

ăj∗(θ)
T is the jth row of the matrix

(∂θi
Φu,1(θ), . . . , ∂θi

Φu,u(θ)) ,

where ∂θi
Φu,k(θ) is obtained by the following algorithm.

∂θi
Φℓ,ℓ(θ) = ∂θi

∆ℓ−1(θ)Ṽ
−1
ℓ−1(θ) + ∆ℓ−1(θ)W̃ℓ−1(θ)

∂θi
Φ̃ℓ,ℓ(θ) = ∂θi

∆̃ℓ−1(θ)V
−1
ℓ−1(θ) + ∆̃ℓ−1(θ)Wℓ−1(θ)

and for k = 1, . . . , ℓ − 1

∂θi
Φℓ,k(θ) = ∂θi

Φℓ−1,k(θ)

− ∂θi
Φℓ,ℓ(θ)Φ̃ℓ−1,ℓ−k(θ) − Φℓ,ℓ(θ)∂θi

Φ̃ℓ−1,ℓ−k(θ)
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∂θi
Φ̃ℓ,k(θ) = ∂θi

Φ̃ℓ−1,k(θ)

− ∂θi
Φ̃ℓ,ℓ(θ)Φℓ−1,ℓ−k(θ) − Φ̃ℓ,ℓ(θ)∂θi

Φℓ−1,ℓ−k(θ),

where

Wℓ(θ) = −Vℓ(θ)
−1∂θi

Vℓ(θ)Vℓ(θ)
−1,

W̃ℓ(θ) = −Ṽℓ(θ)
−1∂θi

Ṽℓ(θ)Ṽℓ(θ)
−1,

V0 = Ṽ0 = Γ0(θ) and ∆0 = ∆̃T
0 = Γ1(θ). For ℓ ∈ IN

∂θi
Vℓ(θ) = ∂θi

Γ0(θ) − ∂θi
Φℓ,1(θ)Γ1(θ)

T − · · · − ∂θi
Φℓ,ℓ(θ)Γℓ(θ)

T

− Φℓ,1(θ)∂θi
Γ1(θ)

T − · · · − Φℓ,ℓ(θ)∂θi
Γℓ(θ)

T

∂θi
Ṽℓ(θ) = ∂θi

Γ0(θ) − ∂θi
Φ̃ℓ,1(θ)Γ1(θ) − · · · − ∂θi

Φ̃ℓ,ℓ(θ)Γℓ(θ)

− Φ̃ℓ,1(θ)∂θi
Γ1(θ) − · · · − Φ̃ℓ,ℓ(θ)∂θi

Γℓ(θ)

∂θi
∆ℓ(θ) = ∂θi

Γℓ+1(θ) − ∂θi
Φℓ,1(θ)Γℓ(θ) − · · · − ∂θi

Φℓ,ℓ(θ)Γ1(θ)

− Φℓ,1(θ)∂θi
Γℓ(θ) − · · · − Φℓ,ℓ(θ)∂θi

Γ1(θ)

∂θi
∆̃ℓ(θ) = ∂θi

Γℓ+1(θ)
T − ∂θi

Φ̃ℓ,1(θ)Γℓ(θ)
T − · · · − ∂θi

Φ̃ℓ,ℓ(θ)Γ1(θ)
T

− Φ̃ℓ,1(θ)∂θi
Γℓ(θ)

T − · · · − Φ̃ℓ,ℓ(θ)∂θi
Γ1(θ)

T .

The matrices Φℓ,k(θ) and Φ̃ℓ,k(θ), k = 1, . . . ℓ are given by (2.18) – (2.21), and Vℓ(θ), Ṽℓ(θ),
∆ℓ(θ) and ∆̃ℓ(θ) by (2.22) – (2.25).

4 Asymptotic theory

In this section we give conditions ensuring that a prediction-based estimating function gives
an estimator that is consistent, asymptotically normal, and ultimately unique. The result is
based on general asymptotic statistical theory for stochastic processes, which is presented in
a generality suitable for our purpose in Sørensen (1999) and Jacod & Sørensen (2011). We
give asymptotic results for estimating functions of the form

Gn(θ) = An(θ)
n
∑

i=r+1

H(i)(θ), (4.1)

only. Here An(θ) is a (possibly data-dependent) p × p̄-matrix (p̄ = q1 + · · · + qN + N),
and H(i)(θ) is given by (3.2). This is the most useful case in practice, and in this case the
conditions for the asymptotic theory are particularly simple.

We assume the following conditions, where θ0 is the true parameter value. We denote
the state space of the observed process Y by D.

Condition 4.1

(1) The observed process Y is stationary and geometrically α-mixing.

(2) There exists a δ > 0 such that

Eθ0

(

|hjk(Yr, . . . , Y1)fj(Yr+1, . . . , Yr+1−s; θ0)|2+δ
)

< ∞
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and
Eθ0

(

|hjk(Yr, . . . , Y1)hjℓ(Yr, . . . , Y1)|2+δ
)

< ∞,

for j = 1, . . . , N, k, ℓ = 0, . . . , qj.

For a definition of the concept of α-mixing, see Doukhan (1994). Condition 4.1 ensures
that we can apply a central limit theorem to the estimating function.

Let Q denote the distribution of (Y1, . . . , Ys+1). A function f : Ds+1 × Θ 7→ IR is
called locally dominated integrable with respect to Q if for each θ′ ∈ Θ there exists a
neighbourhood Uθ′ of θ′ and a non-negative Q-integrable function hθ′ : Ds+1 7→ IR such that
| f(y1, . . . , ys+1; θ) | ≤ hθ′(y1, . . . , ys+1) for all (y1, . . . , ys+1, θ) ∈ Ds+1 × Uθ′.

Condition 4.2

(1) The components of F (y1, . . . , ys+1; θ), An(θ) and ă(θ), given by (3.4), are continuously
differentiable functions of θ.

(2) The functions ‖∂θfj(y1, . . . , ys+1; θ)‖, j = 1, . . . , N , are locally dominated integrable with
respect to Q.

(3) There exists a non-random matrix A(θ) such that for any compact subset K ⊆ Θ

An(θ)
Pθ0−→ A(θ), ∂θAn(θ)

Pθ0−→ ∂θA(θ)

uniformly for θ ∈ K as n → ∞.

(4) The matrix
W = A(θ0)S(θ0)

T = A(θ0)(U(θ0)
T − D(θ0)∂θT ă(θ0))

has full rank p. The matrices S(θ), U(θ) and D(θ) are given by (3.8), (3.5) and (3.9).

(5)
A(θ)

(

Eθ0

(

Z(r)F (Yr+1, . . . , Yr+1−s; θ)
)

− D(θ0)ă(θ))
)

6= 0

for all θ 6= θ0.

Theorem 4.3 Assume that the true parameter value θ0 belongs to the interior of the param-
eter space Θ, and that the Conditions 4.1 and 4.2 are satisfied. Then a consistent estimator
θ̂n exists that, with a probability tending to one as n → ∞, solves the estimating equation
Gn(θ̂n) = 0 and is unique in any compact subset K ⊆ Θ for which θ0 ∈ intK. Moreover,

√
n(θ̂n − θ0)

D−→ Np

(

0, W−1A(θ0)M(θ0)A(θ0)
T W T −1

)

as n → ∞, where

M(θ) = Eθ

(

H(r+1)(θ)H(r+1)(θ)T
)

(4.2)

+
∞
∑

k=1

{

Eθ

(

H(r+1)(θ)H(r+1+k)(θ)T
)

+ Eθ

(

H(r+1+k)(θ)H(r+1)(θ)T
)}

.
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Proof: Consider Hn(θ) given by (3.11). Condition 4.2 (1) and (2) implies that for any
compact K ⊆ Θ

sup
θ∈K

‖Hn(θ) − W̃ (θ)‖ Pθ0−→ 0

sup
θ∈K

‖∂θT Hn(θ) − W̃ ′(θ)‖ Pθ0−→ 0,

where

W̃ (θ) = Eθ0

(

Z(r)F (Yr+1, . . . , Yr+1−s; θ)
)

− D(θ0)ă(θ))

W̃ ′(θ) = Eθ0

(

Z(r)∂θT F (Yr+1, . . . , Yr+1−s; θ)
)

− D(θ0)∂θT ă(θ)).

The components of W̃ (θ) and W̃ ′(θ) are continuous functions of θ. Define

W (θ) = ∂θT A(θ)W̃ (θ) + A(θ)W̃ ′(θ).

From the unbiasedness of Gn, cf. (2.7), we see that W̃ (θ0) = 0, so W (θ0) = A(θ0)W̃
′(θ0) = W ,

which is assumed to be an invertible matrix. By using that
∥

∥

∥n−1∂θT Gn(θ) − W (θ)
∥

∥

∥

≤
∥

∥

∥(∂θT An(θ) − ∂θT A(θ))
(

(Hn(θ) − W̃ (θ)) + W̃ (θ)
)∥

∥

∥

+
∥

∥

∥(An(θ) − A(θ))
(

(∂θT Hn(θ) − W̃ ′(θ)) + W̃ ′(θ)
)∥

∥

∥

+
∥

∥

∥∂θT A(θ)
(

Hn(θ) − W̃ (θ)
)

‖ + ‖A(θ)
(

∂θT Hn(θ) − W̃ ′(θ)
)∥

∥

∥ ,

it follows that there exists a constant C > 0 such that

sup
θ∈K

∥

∥

∥n−1∂θT Gn(θ) − W (θ)
∥

∥

∥ ≤ C

(

sup
θ∈K

‖∂θT An(θ) − ∂θT A(θ)‖+

sup
θ∈K

‖An(θ) − A(θ)‖ + sup
θ∈K

∥

∥

∥Hn(θ) − W̃ (θ)
∥

∥

∥+ sup
θ∈K

∥

∥

∥∂θT Hn(θ) − W̃ ′(θ)
∥

∥

∥

)

,

where the right hand side goes to zero in probability under Pθ0
as n → ∞. This together

with the observation that

n−1Gn(θ0)
Pθ0−→ A(θ0)W̃ (θ0) = 0

imply the existence of a consistent estimator that ultimately solves the estimating equation.
For details of this and the following arguments, see Jacod & Sørensen (2011). The uniqueness
of the estimator follows from the fact that by Condition 4.2 (5) the continuous function
A(θ)W̃ (θ) (the limit of n−1Gn(θ)) is bounded away from zero on K \ B for any compact
K ⊆ Θ with θ0 ∈ intK and any open neighbourhood B of θ0.

Condition 4.1 ensures that the central limit theorem for α-mixing processes can be applied
to the estimating function Gn(θ0), see Doukhan (1994), Section 1.5. Specifically, Condition
4.1 and Condition 4.2 (3) imply that

1√
n

Gn(θ0)
D−→ N(0, A(θ0)M(θ0)A(θ0)

T ).
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This implies the asymptotic normality of θ̂n by standard arguments.
2

For the optimal estimator A(θ) = A∗(θ) = S(θ)M(θ)−1, so

W = S(θ0)M(θ0)
−1S(θ0)

T

and the asymptotic variance simplifies to

√
n(θ̂n − θ0)

D−→ Np

(

0, W−1
)

.

If the matrix An(θ) does not depend on n, then Condition 4.2 (3) is trivially satisfied.
This is, for instance, the case if the asymptotic optimal matrix A∗(θ) given by (3.12) is used.
If An(θ) = A(θ̃n) for some matrix A(θ) independent of n, e.g. A∗(θ), and some consistent
estimator θ̃n, then Condition 4.2 (3) is satisfied if A(θ) is a continuous function of θ.

In most applications the functions fj do not depend on θ. If this is the case, Condition
4.2 (2) is trivially satisfied, and U(θ) = 0 in Condition 4.2 (4).

Suppose the functions fj do not depend on θ, and that the predictor-space is given by
the natural specification (2.13) and (2.14). Suppose, moreover, that An(θ) = A(θ̃n) for some
consistent estimator θ̃n and some matrix A(θ) independent of n. Then Conditions 4.1 and
4.2 are implied by the following simpler condition.

Condition 4.4

(1) The observed process Y is stationary and geometrically α-mixing.

(2) There exists a δ > 0 such that

Eθ0

(

|fj(Ys+u+1, . . . , Yu+1)fk(Ys+u+1−v, . . . , Yu+1−v; θ0)|2+δ
)

< ∞

for j, k = 1, . . . , N, v = 1, . . . , u.

(3) The components of ă(θ), given by (3.4), are continuously differentiable functions of θ,
and the components of A(θ) are continuous functions of θ.

(4) The matrix W = −A(θ0)D(θ0)∂θT ă(θ0) has full rank p. The matrix D(θ) is given by (3.9).

(5)
A(θ0)

(

Eθ0

(

Z(s+u)F (Ys+u+1, . . . , Yu+1)
)

− D(θ0)ă(θ))
)

6= 0

for all θ 6= θ0.

Similar asymptotic results can be given for general prediction-based estimating functions,
provided that the predictor-spaces are subsets of the space of all functions h(Yi−1, . . . , Yi−r)
(for a fixed r ≥ s) satisfying that Eθ(h(Yi−1, . . . , Yi−r)

2) < ∞. If predictors can depend on
all past observations, the situation is much more complicated, and it is an open question
how to prove general asymptotic results. The situation is similar to that for hidden Markov
models, which is a particular case.
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5 Gaussian models

In this section we consider prediction-based estimating functions when the observed process
Y is a one-dimensional stationary and α-mixing Gaussian process. We simplify the exposition
by assuming that the expectation of Yi is zero. The following theory can easily be modified
to cover the case of a non-zero mean.

The distribution of Y is determined by the autocovariances

Ki(θ) = Eθ(Y1Y1+i), i ∈ IN0, (5.1)

which depend on the p-dimensional parameter θ ∈ Θ. We define K−i(θ) = Ki(θ) for all i ∈ IN.
A natural estimator is obtained by maximizing the pseudo-likelihood function defined as the
product of the conditional densities of Yi given Yi−1, . . . , Yi−s for i = s + 1, . . . , n. Here s
will typically be relatively small. This pseudo-likelihood function was proposed by Sørensen
(2003) in connection with stochastic volatility models, but the idea is more widely applicable.
To calculate the pseudo-likelihood function, we define the s-dimensional vector

κ(θ) = (K1(θ), . . . , Ks(θ))
T

and the s × s-matrix
K(θ) = {Ki−j(θ)}i,j=1,...,s.

The matrix K(θ) is the covariance matrix of the vector of the s consecutive observations, for
instance (Y1, . . . , Ys). We will make the very weak assumption that K(θ) is invertible. The
conditional distribution of the observation Yi given the s previous observations Yi−s, . . . , Yi−1

is the normal distribution with expectation φ(θ)TYi−1:i−s and variance v(θ), where Yi:j =
(Yi, . . . , Yj)

T , i > j ≥ 1, φ(θ) is the s-dimensional vector given by

φ(θ) = K(θ)−1κ(θ),

and
v(θ) = K0(θ) − κ(θ)TK(θ)−1κ(θ).

The vector φ(θ) and the conditional variance vs(θ) can be found by means of the Durbin-
Levinson algorithm, see Section 2.

The pseudo-likelihood is given by

Ln(θ) =
n
∏

i=s+1





1
√

2πv(θ)
exp

(

− 1

2v(θ)

(

Yi − φ(θ)T Yi−1:i−s

)2
)



 . (5.2)

If we assume that the autocovariances Kθ(i), i = 0, 1, . . . are continuously differentiable
with respect to θ, we obtain the pseudo-score function as the vector of partial derivatives of
log Ln(θ) with respect to the coordinates of θ:

G◦

n(θ) = ∂θ log Ln(θ) (5.3)

=
n
∑

i=s+1

{

∂θφ(θ)TYi−1:i−s

v(θ)

(

Yi − φ(θ)T Yi−1:i−s

)

+
∂θv(θ)

2v(θ)2

n
∑

i=s+1

[

(

Yi − φ(θ)TYi−1:i−s

)2 − v(θ)
]







.
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The derivatives ∂θφ(θ) and ∂θv(θ) can be found from the autocovariances Ki(θ) and
their derivatives with respect to θ by the algorithm that is obtained by differentiating the
Durbin-Levinson algorithm, see Section 3.

The minimum mean square error linear predictors of Yi and (Yi − φ(θ)T Yi−1:i−s)
2 given

Yi−1:i−s are φ(θ)T Yi−1:i−s and v(θ), respectively. This is because for Gaussian processes the
two conditional expectations are linear in Yi−1:i−s. Hence the pseudo-score function (5.3) is
a prediction-based estimating function. Specifically, it is of the form

Gn(θ) = A(θ)
n
∑

i=s+1

H(i)(θ),

where A(θ) is a p× (s + 1)-matrix of weights that can depend on the parameter, but not on
the data, and

H(i)(θ) = Z(i)





Yi − φ(θ)T Yi−1:i−s

(Yi − φ(θ)T Yi−1:i−s)
2 − v(θ)





with

Z(i) =





Y T
i−1:i−s 0

0 · · ·0 1





T

,

i = s + 1, . . . , n. The pseudo-score, G◦
n(θ), is obtained if the weight matrix A(θ) is chosen as

Ã(θ) =

(

∂θφ(θ)T

v(θ)
,

∂θv(θ)
2v(θ)2

)

.

The asymptotic optimal weight matrix is given by

A∗(θ) = S(θ)M(θ)−1,

where the matrix M(θ) is given by (4.2) with r = s, and

S(θ)T = Eθ(∂θT H(i)(θ)) = −




K(θ)∂θT φ(θ)

∂θT v(θ)



 .

In the expression for M(θ) the first term is given by

M (1)(θ) = Eθ

(

H(s+1)(θ)H(s+1)(θ)T
)

=







v(θ)K(θ) Os,1

O1,s 2v(θ)2





 ,

with Oj1,j2 denoting the j1 × j2-matrix of zeros. The optimal matrix A∗
n(θ) is given by a

similar expression where M(θ) is replaced by the matrix (3.10). The pseudo-score function,
G◦

n(θ), is not equal to the optimal prediction-based estimating function. In fact,

Ã(θ) = −S(θ)M (1)(θ)−1.

The class of estimating functions considered here is not the full class of prediction-based
estimating function to which the pseudo-score (5.3) belongs. The full class is obtained by
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replacing A(θ) by a p × 2(s + 1)-matrix and H(i)(θ) by the 2(s + 1)-dimensional vectors
H̆(i)(θ) obtained when Z(i) is replaced by the 2(s + 1) × 2-matrix

Z̆(i) =





Y T
i−1:i−s 0 1 O1,s

O1,s 1 0 Y T
i−1:i−s





T

in the definition of H(i)(θ). In this way H(i)(θ) is extended by s+1 extra coordinates. Using
that all moments of an odd order of a centered multivariate normal distribution equal zero, we
see that the extra s+1 coordinates of H̆(i)(θ) have expectation zero under the true probability
measure irrespectively of the value of the parameter θ. Therefore they cannot be expected
to be a useful addition to H(i)(θ). The extra coordinates might, however, be correlated with
the coordinates of H(i)(θ), and might thus be used to reduce the variance of the estimating
function. To see that this is not the case, the optimal estimating function based on H̆(i)(θ)
can be calculated. The covariance matrix of the random vector

∑n
i=s+1 H̆(i)(θ)/

√
n − s can

be shown to be a block-diagonal matrix with two (s + 1)× (s + 1)-blocks, the first of which
equals M̄n(θ) given by (3.10). Here we use again that moments of an odd order of a centered
multivariate Gaussian distribution equal zero. Since

Eθ(∂θT H̆(i)(θ)) = −









K(θ)∂θT φ(θ)

∂θT v(θ)

Os+1,p









,

it follows that the asymptotic optimal weight-matrix in the full class is

Ă∗

n(θ) =
(

A∗
n(θ) Op,s+1

)

.

Thus the optimal prediction-based estimating functions obtained from H̆(i)(θ) equal the
optimal estimating function obtained from H(i)(θ). It is therefore sufficient to consider the
smaller class of prediction-based estimating functions above.

We have generally assumed that the observed process is α-mixing, so the Conditions
4.1 and 4.2 ensuring the asymptotic results in Theorem 4.3 are implied by the following
condition.

Condition 5.1

(a) The functions Ki(θ) and A(θ) are twice continuously differentiable with respect to θ.

(b) The p × (s + 1)-matrix (∂θφ
T (θ), ∂θv(θ)) has rank p (in particular, s + 1 ≥ p).

(c) A(θ)K̄(φ̄(θ0) − φ̄(θ)) = 0 if and only if θ = θ0, where

K̄ =





K(θ0) Os,1

O1,s 1



 ,

and

φ̄(θ) =





φ(θ)

v(θ) + 2φ(θ)T κ(θ0) − φ(θ)TK(θ0)φ(θ)



 .
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Example 5.2 Consider the stochastic delay differential equation

dYt = −β
(∫ 0

−c
Yt+sds

)

dt + σdWt,

where Y is one-dimensional, c > 0, σ > 0. According to Reiß (2002), a stationary solution
exists exactly when 0 < b < 1

2
π2/c2. The stationary solution is an exponentially β-mixing

Gaussian process with expectation zero and auto-covariance function

Kt(θ) = Eθ(Y1, Y1+t) =
σ2 sin

(

c
√

2β(1
2
− t)

)

2c
√

2β cos
(

c
√

β/2
) +

σ2

2βc2
, 0 ≤ t ≤ c,

see Reiß (2002). Küchler & Sørensen (2009) studied prediction-based estimating functions
for more general affine stochastic delay differential equation. 2

6 Pearson diffusions

The Pearson diffusions, see Wong (1964) and Forman & Sørensen (2008), is a widely ap-
plicable class of diffusion models for which explicit expressions are available for the mixed
moments (2.26) and (3.13) needed to calculate polynomial prediction-based estimating func-
tions.

A Pearson diffusion is a stationary solution to a stochastic differential equation of the
form

dXt = −β(Xt − α)dt +
√

2β(aX2
t + bXt + c)dWt, (6.1)

where β > 0, and a, b and c are such that the square root is well defined when Xt is in the
state space. A list of all possible cases is given below. The parameter β > 0 is a scaling of
time that determines how fast the diffusion moves. The parameters α, a, b, and c determine
the state space of the diffusion as well as the shape of the invariant distribution. In particular,
α is the expectation of the invariant distribution. The Pearson diffusions are ergodic and
ρ-mixing with exponentially decaying mixing coefficients. This follows from Genon-Catalot,
Jeantheau & Laredo (2000), Theorem 2.6

The moments of the Pearson diffusions can, when they exist, be found explicitly. In fact,
E(|Xt|κ) < ∞ if and only if a < (κ − 1)−1. Thus if a ≤ 0 all moments exist, while for a > 0
only the moments satisfying that κ < a−1 + 1 exist. In particular, the expectation always
exists. The moments of the invariant distribution can be found by the recursion

E(Xn
t ) = a−1

n {bn · E(Xn−1
t ) + cn · E(Xn−2

t )}, n = 2, 3, . . . , (6.2)

where
an = n{1 − (n − 1)a}β, bn = n{α + (n − 1)b}β, cn = n(n − 1)cβ

for n = 0, 1, 2, . . .. The initial conditions are E(X0
t ) = 1 and E(Xt) = α. To see this, note

that by Ito’s formula

dXn
t = −βnXn−1

t (Xt − α)dt + βn(n − 1)Xn−2
t (aX2

t + bXt + c)dt

+nXn−1
t σ(Xt)dWt,
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and use that if E(X2n
t ) is finite, i.e. if a < (2n − 1)−1, then the last term is a martingale

with expectation zero.
Explicit formulae for the conditional moments of a Pearson diffusion are given by

E(Xn
t |X0 = x) =

n
∑

k=0

(

n
∑

ℓ=0

qn,k,ℓe
−aℓt

)

xk, (6.3)

where qn,k,n = pn,k, qn,n,ℓ = 0 for ℓ ≤ n − 1, and

qn,k,ℓ = −
n−1
∑

j=k∨ℓ

pn,jqj,k,ℓ

for k, ℓ = 0, . . . , n − 1. Here pn,n = 1, pn,n+1 = 0 and {pn,j}j=0,...,n−1, solve the linear system
of equations

(aj − an)pn,j = bj+1pn,j+1 + cj+2pn,j+2.

This equation defines a simple recursive formula if an − aj 6= 0 for all j = 0, 1, . . . , n − 1.
Note that an − aj = 0 if and only if there exists an integer n − 1 ≤ m < 2n − 1 such that
a = m−1 and j = m − n + 1. In particular, an − aj = 0 cannot occur if a < (n − 1)−1, i.e.
if the nth moment exists. Note also that an is positive if and only if a < (n − 1)−1. The
formula (6.3) can be proved by using that explicit polynomial eigenfunctions are available
for the Pearson diffusions; for details see Wong (1964) or Forman & Sørensen (2008).

From a modeling point of view, it is important that the class of stationary distributions
equals the full Pearson system of distributions. Thus a very wide spectrum of standard
distributions is available as marginal distributions ranging from distributions with compact
support to heavy-tailed distributions with tails of the Pareto-type. The density µ of the
stationary distribution of the process given by (6.1) solves the differential equation

µ′(x) = −(2a + 1)x − α + b

ax2 + bx + c
µ(x),

and the Pearson system is defined as the class of probability densities obtained by solving a
differential equation of this form, see Pearson (1895).

The following list of the possible Pearson diffusions shows that all distributions in the
Pearson system can be obtained as invariant distributions for a model in the class of Pearson
diffusions. Note that if Xt solves (6.1), then X̃t = γXt + δ is also a Pearson diffusion with
parameters ã = a, b̃ = bγ − 2aδ, c̃ = cγ2 − bγδ + aδ2, β̃ = β, and α̃ = γα + δ. Up to affine
transformations, the Pearson diffusions can take the following forms.
Case 1: σ2(x) = 2β. This is the Ornstein-Uhlenbeck process with invariant distribution
equal to the normal distribution with mean α and variance 1.
Case 2: σ2(x) = 2βx. This is the square root process (CIR process) with state space (0,∞).
For α > 0 the invariant distribution is the gamma distribution with scale parameter 1 and
shape parameter α.
Case 3: a > 0 and σ2(x) = 2βa(x2 + 1). The state space is the real line. The solution
is ergodic for all a > 0 and all α ∈ IR. The invariant density is given by µ(x) ∝ (x2 +

1)−
1

2a
−1 exp(α

a
tan−1 x). If α = 0, the invariant distribution is a scaled t-distribution with

ν = 1+a−1 degrees of freedom and scale parameter ν−
1

2 . If α 6= 0, the invariant distribution
is skew and has tails decaying at the same rate as the t-distribution with 1 + a−1 degrees of
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freedom. This distribution is a skew t-distribution known as Pearson’s type IV distribution.
Because of its skew and heavy tailed marginal distribution, the class of diffusions with α 6= 0
is potentially very useful in many applications, e.g. finance. It was studied and fitted to
financial data by Nagahara (1996).
Case 4: a > 0 and σ2(x) = 2βax2. The state space is (0,∞) and the process is ergodic if
and only if α > 0. The invariant distribution is the inverse gamma distribution with shape
parameter 1+ 1

a
and scale parameter a

α
. This process is sometimes referred to as the GARCH

diffusion model.
Case 5: a > 0 and σ2(x) = 2βax(x + 1). The state space is (0,∞). For a > 0 and α > 0,
the invariant distribution is a scaled F-distribution with 2α

a
and 2

a
+2 degrees of freedom and

scale parameter α
1+a

.
Case 6: a < 0 and σ2(x) = 2βax(x − 1). This is a Jacobi diffusion with state space (0, 1).
For all a < 0 and all α ∈ (0, 1) the invariant distribution is the Beta distribution with shape
parameters α

−a
and 1−α

−a
.

Let X be a Pearson diffusion. If we define a new diffusion by the transformation Yt =
T (Xt), where T is an invertible and twice continuously differentiable real function, then we
can find the moments and conditional moments of T−1(Yt). Thus we can find estimating
functions based on predictions of powers of T−1(Yt). Thus by transformations we obtain a
very broad class of diffusions for which we can calculate prediction-based estimating functions
explicitly. We illustrate this idea by a single example.

Example 6.1 If the transformation, F (x) = log(x/(1−x)), is applied to the general Jacobi
diffusion (case 6), then we obtain a process that, by Ito’s formula, solves the equation

dYt = −β
{

1 − 2α + (1 − α)eYt − αe−Yt − 16a cosh4(Yt/2)
}

dt

+2
√

−2aβ cosh(Yt/2)dWt.

This is a diffusion for which the invariant distribution is the generalized logistic distribution
with density

f(x) =
eκ1x

(1 + ex)κ1+κ2B(κ1, κ2)
, x ∈ IR,

where κ1 = −(1 − α)/a, κ2 = α/a and B denotes the Beta-function. This distribution was
introduced and studied in Barndorff-Nielsen, Kent & Sørensen (1982).

2

7 Partially observed systems of stochastic differential

equations

Let the D-dimensional process X be the solution to the stochastic differential equation (2.1),
where, as usual, the parameter θ varies in a subset Θ of IRp. We assume that X is stationary.
In this section we will consider a number of examples, where X is not observed directly, but
where we have observations of the form (2.2) or (2.3).
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7.1 Discrete time observations with measurement errors

First we consider observations of the type (2.2), where k is real valued, i.e. d = 1. Let us
find a polynomial prediction-based estimating function of the type considered in Example
2.6. To find the minimum mean square error predictor, we must find mixed moments of the
form (2.26). By the binomial formula,

Eθ(Y
k1

1 Y k2

ℓ ) = Eθ

(

(k(Xt1) + Z1)
k1(k(Xtℓ) + Zℓ)

k2

)

=
k1
∑

i1=0

k2
∑

i2=0

(

k1

i1

)(

k2

i2

)

Eθ(k(Xt1)
i1k(Xtℓ)

i2)Eθ(Z
k1−i1
1 )Eθ(Z

k2−i2
ℓ ).

Note that the distribution of the measurement error Zi can depend on components of the
unknown parameter θ. We need to find the mixed moments Eθ(k(Xt1)

i1k(Xt2)
i2), (t1 < t2),

which can easily be determined by simulation.
Sometimes these mixed moments can be found explicitly. As an example, consider the

situation where a Pearson diffusion, see Section 6, has been observed with measurement
errors. In this case k(x) = x, and by (6.3)

Eθ(X
i1
t1

X i2
t2

) = Eθ(X
i1
t1

Eθ(X
i2
t2
|Xt1 )) (7.1)

=
i2
∑

k=0

(

i2
∑

ℓ=0

qi2,k,ℓe
−λℓ(t2−t1)

)

Eθ(X
i1+k
t1

),

where Eθ(X
i1+k
t1 ) can be found by (6.2), provided that it exists.

In order to find the the optimal polynomial prediction-based estimating function, we
must find the mixed moments of the form (3.13), which can be calculated in a similar way
and for a Pearson diffusion can be found explicitly.

An more complex example is when the coordinates of X are D independent diffusions
given by

dXi,t = −βi(Xi,t − αi) + σi(Xi,t)dWi,t, i = 1, . . . , D, (7.2)

and where
Yi = X1,ti + · · · + XD,ti + Zi.

The sum
St = X1,t + · · ·+ XD,t

is a useful model because its autocorrelation function has D time-scales. Specifically, the
autocorrelation function is

r(t) = φ1 exp(−β1t) + . . . + φD exp(−βDt),

where φi = Var(Xi,t)/(Var(X1,t) + · · ·+ Var(XD,t)). An autocorrelation of this form is often
found in observed time series. Examples are financial time series, see Barndorff-Nielsen
& Shephard (2001), and turbulence, see Barndorff-Nielsen, Jensen & Sørensen (1990) and
Bibby, Skovgaard & Sørensen (2005).

Again we must find mixed moments of the form (2.26). The measurement errors can be
taken care of as above, so we need to calculate mixed moments of the type Eθ(S

κ
t1S

ν
tℓ
). By

the multinomial formula,

E(Sκ
t1S

ν
tℓ
) =

∑∑ κ!

κ1! · · ·κD!

ν!

ν1! · · ·νD!
E(Xκ1

1,t1X
ν1

1,tℓ
) . . . E(XκD

D,t1X
νD

D,tℓ
),
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where the first sum is over 0 ≤ κ1, . . . , κD such that κ1 + . . . κD = κ, and the second sum
is analogous for the νis. The higher order mixed moments of the form (3.13) can be found
by using a similar formula with four sums and four multinomial coefficients. Such formulae
may appear daunting, but are easy to program. For a Pearson diffusion, mixed moments of
the form E(Xκ1

t1 · · ·Xκk
tk ) can be calculated as explained above.

Example 7.1 Sum of two skew t-diffusions. Consider a sum of two independent diffusion
of the form (7.2) with αi = 0 and

σ2
i (x) = 2βi(ν − 1)−1

(

x2 + 2ρ
√

νx + (1 + ρ2)ν
)

,

i = 1, 2, where ν > 3. This is one of the Pearson diffusions. The stationary distribution
of Xi,t is a skew t-distribution, ρ is the skewness parameter, and for ρ = 0 the stationary
distribution is a t-distribution with ν degrees of freedom. To simplify the exposition we
consider equidistant observations at time points ti = ∆i, and assume that there are no
measurement errors, and that the value, r(∆), of the autocorrelation function at time ∆ is
known. Then the optimal estimating function based on predictions of Y 2

i with predictors of
the form π(i−1) = a0 + a1Yi−1 is

n
∑

i=2

[

Y 2
i − 2(1 + ρ2)ν/(ν − 2) − 4ρ

√
νr(∆)Yi−1/(ν − 3)

Yi−1Y
2
i − Yi−12(1 + ρ2)ν/(ν − 2) − 4ρ

√
νr(∆)Y 2

i−1/(ν − 3)

]

.

From this we can obtain estimators of ρ and ν. We can estimate r(∆) by the value at time ∆
of the empirical autocorrelation function based on the observations Yi and insert this value
in the expressions for ρ̂ and ν̂. The remaining parameters can be estimated by fitting the
theoretical autocorrelation function to the empirical autocorrelation functions, or by using
an estimating function where more power functions of the data are predicted.

2

7.2 Integrated diffusions

Next we consider observations of the form (2.3), where k is real valued. Again we will
find polynomial prediction-based estimating functions. Measurement errors can be treated
exactly as in the previous subsection, so to simplify the presentation we will here assume
that there is no measurement error.

To find the minimum mean square error predictor, we must find mixed moments for the
form

E
(

Y k1

1 Y k2

ℓ

)

=
∫

A
E
(

k(Xv1
) · · ·k(Xvk1

)k(Xu1
) · · · k(Xuk2

)
)

duk2
· · · du1 dvk1

· · · dv1,

where 1 ≤ ℓ and A = [0 , t1]
k1 × [tℓ−1 , tℓ]

k2 . Thus we need to calculate mixed moments of
the type E(k(Xt1) · · ·k(Xtm)). Such mixed moments can be determined by simulation. In
order to find the the optimal polynomial prediction-based estimating function, we must find
the mixed moments of the form (3.13). By a similar argument such mixed moments can also
be expressed as an integral of mixed moments of the type E(k(Xt1) · · · k(Xtm)).
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If X is a Pearson diffusion and k(x) = x, these mixed moments can be calculated by a sim-
ple iterative formula obtained from (6.3) and (6.2), as explained in the previous subsection.
Moreover, for the Pearson diffusions, E(Xt1 · · ·Xtm) depends on t1, . . . , tm through sums and
products of exponential functions, cf. (6.3) and (7.1). Therefore the integral above can be
explicitly calculated, and thus explicit optimal estimating functions of the type considered
in Example 2.6 are available for observations of integrated Pearson diffusions.

Estimation based on observations that are integrals of a diffusion (D = d = 1, k(x) = x)
with no measurement error was studied by Bollerslev & Wooldridge (1992), Ditlevsen &
Sørensen (2004) and Gloter (2006), while maximum likelihood estimation in the case of
measurement errors was studied by Baltazar-Larios & Sørensen (2010).

An interesting more general case is that of hypoelliptic stochastic differential equations,
where one or more components are not directly affected by the Wiener process and hence
are smooth. If the smooth components are observed at discrete time points, then we obtain
data of the type (2.3). Hypoelliptic stochastic differential equations are, for instance, used
to model molecular dynamics, see e.g. Pokern, Stuart & Wiberg (2009). A simple example
is the stochastic harmonic oscillator

dX1,t = −(β1X1,t + β2X2,t) dt + γdWt

dX2,t = X1,t dt,

β1, β2, γ > 0, where the position of the oscillator, X2, is observed at discrete time points.

Example 7.2 Consider observations where D = d = 1 and k(x) = x, and where the
diffusion process X is the square root process

dXt = −β(Xt − α)dt + τ
√

XtdWt, X0 > 0.

We will find a prediction-based estimating function with f1(x) = x and f2(x) = x2 and with

predictors given by π
(i−1)
1 = a1,0+a1,1Yi−1 and π

(i−1)
2 = a2,0. Then the minimum mean square

error predictors are

π̆
(i−1)
1 (Yi−1; θ) = µ (1 − a(β)) + a(β)Yi−1,

π̆
(i−1)
2 (θ) = α2 + ατ 2β−3∆−2(e−β∆ − 1 + β∆)

with

a(β) =
(1 − e−β∆)2

2(β∆ − 1 + e−β∆)
.

The optimal prediction-based estimating function is

n
∑

i=1







1
Yi−1

0





 [Yi − π̄
(i−1)
1 (Yi−1; θ)] +

n
∑

i=1







0
0
1





 [Y 2
i − π̄

(i−1)
2 (θ)],

from which we obtain the estimators

α̂ =
1

n

n
∑

i=1

Yi +
a(β̂)Yn − Y1

(n − 1)(1 − a(β̂))

24



n
∑

i=2

Yi−1Yi = α̂(1 − a(β̂))
n
∑

i=2

Yi−1 + a(β̂)
n
∑

i=2

Y 2
i−1

τ̂ 2 =
β̂3∆2∑n

i=2 (Y 2
i − α̂2)

(n − 1)α̂(e−β̂∆ − 1 + β̂∆)
.

The estimators are explicit apart from β̂, which can easily be found numerically by solving
a non-linear equation in one variable. For details, see Ditlevsen & Sørensen (2004).

2

7.3 Stochastic volatility models

Consider a stochastic volatility model given by

dXt = (κ + βvt)dt +
√

vtdWt,

where the volatility, vt, is a stochastic process that cannot be observed directly. If the data
are observations of X at the time points ∆i, i = 0, 1, 2, . . . , n, then Yi = Xi∆ − X(i−1)∆ can
be written in the form

Yi = κ∆ + βSi +
√

SiAi,

where the Ai’s are independent, standard normal distributed random variables, and where

Si =
∫ i∆

(i−1)∆
vtdt.

In order to find a polynomial prediction-based estimating function of the type considered
in Example 2.6, we must find mixed moments of the form (2.26). We assume that v and W
are independent, so that the sequences {Ai} and {Si} are independent. By the multinomial
formula we find that

E
(

Y k1

1 Y k2

t1

)

=
∑

Kk11,...,k23
E
(

S
k12+k13/2
1 S

k22+k23/2
t1

)

E
(

Ak13

1

)

E
(

Ak23

t1

)

,

where the sum is over all non-negative integers kij, i = 1, 2, j = 1, 2, 3 such that ki1 + ki2 +
ki3 = ki (i = 1, 2), and where

Kk11,...,k23
=

k1!

k11!k12!k13!

k2!

k21!k22!k23!
(κ∆)k·1βk·2

with k·j = k1j + k2j. The moments E(Aki3

i ) are the well-known moments of the standard
normal distribution. When ki3 is odd, these moments are zero. Thus we only need to
calculate the mixed moments of the form E(Sℓ1

1 Sℓ2
t1 ), where ℓ1 and ℓ2 are integers. The

moments (3.13), which are needed to find the optimal polynomial prediction-based estimating
function, can be obtained in a similar way. To calculate these, we need mixed moments of
the form E(Sℓ1

1 Sℓ2
t1 Sℓ3

t2 Sℓ4
t3 ), where ℓ1, . . . , ℓ4 are integers.

If the volatility model is a diffusion process, then Si is an integrated diffusion, so such
mixed moments can be calculated by the methods in Subsection 7.2. In particular, they can
be calculated explicitly if the volatility process is a Pearson diffusion.
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