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Abstract

In practice, the choice of using a local volatility model or a stochastic
volatility model is made according to their respective ability to fit implied
volatility surfaces. In this paper, we adopt an opposite point of view.
Indeed, based on historical data, we design a statistical procedure aiming
at testing the assumption of a local volatility model for the price dynamics,
against the alternative of a stochastic volatility model.
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1 Introduction

It is well known that the Black-Scholes model does not allow for important styl-
ized facts of asset returns such as heavy tails, gain/loss asymmetry or leverage
effect. A classical way to obtain these features of financial data is to use models
in which the volatility, that is the diffusion coefficient of the log price, is itself a
random process. However, the success of these models with random volatility is
clearly not due to their statistical properties. Indeed, practitioners essentially
focus on the fact that they enable to fit the implied volatility surface much bet-
ter than the Black-Scholes model does. Two main types of models in which the

∗We would like to thank Holger Dette for turning our attention to the statistical problem
discussed in this paper. Mark Podolskij acknowledges financial support from CREATES
funded by the Danish National Research Foundation.
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volatility is a random process are particularly used: models with local volatility
and models with stochastic volatility.

In local volatility models, the volatility is assumed to depend on time and of
the present value of the asset only. They can be written on the form

dXt = µtdt+ σtdWt, σt = σ(Xt, t),

where Xt represents the price of the asset at time t, Wt is a Brownian motion and
σ(x, t) is a deterministic function. Therefore, in these models, the price Xt and
the volatility σt/Xt can both be stochastic. However, there is only one factor of
randomness, the Brownian motion Wt. In particular, the Black-Scholes model
belongs to the class of local volatility models. In that case, σ(Xt, t) = σXt,
where σ is a positive constant and so the volatility is constant. Among the
other local volatility models, the most famous one is probably the constant
elasticity of variance model (CEV model) introduced in [6]. In the CEV model,
the function σ(x, t) is of the form αx1+β , where α > 0 and 0 ≤ β ≤ 1 are
constants.

A first interest of local volatility models is that in spite of the random nature of
the volatility, they remain arbitrage free and complete. Mostly, the popularity
of these models is due to the work of Dupire. He showed in [10] that provided
the market is arbitrage free, one can find a local volatility function which en-
ables to fit exactly the implied volatility surface of the European call options,
see also [7]. However, local volatility models have several drawbacks. In par-
ticular, since only a finite number of strikes and maturities are available on the
market, the derivation of the local volatility function requires interpolation-type
methods, leading sometimes to highly unstable results. Moreover, such models
do not allow for relevant smile dynamics. In particular, it is shown in [13] that
under this specification for the volatility, the spot volatility smile moves in the
opposite direction as the underlying. Also, in these models, the forward smile
has a flattening dynamic, see [12]. These facts are not in agreement with the
behaviors observed on the market. Thus, one source of randomness is not al-
ways enough to manage the smile risk.

To remedy this, in so-called stochastic volatility models, one therefore increases
the dimension of the underlying Brownian motion. Indeed, they can be written
as

dXt = µtdt+ σtdWt,

where the process σt satisfies

dσ2
t = atdt+ σtdWt + vtdVt,

with W and V two independent Brownian motions and vt a non degenerate pro-
cess. Various specifications for stochastic volatility models have been proposed
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in the literature and are largely used in practice. Let us cite among others the
works by Hull and White [15], Heston [14] and the SABR model introduced
in [13]. Despite incomplete, these models are very popular among practition-
ers since they enable to obtain more suitable smiles and smile dynamics. Also,
pricing formulas can be semi explicit, as in the case of the Heston model, see [14].

Thus, it is quite clear that the practical relevance of a model is essentially as-
sessed through the lenses of derivatives pricing and hedging. Historical data
from the underlying are hardly taken into account. In this paper, we adopt an
opposite point of view. Indeed, we are interested in what historical data have
to say about volatility model selection. More precisely, we want to know if the
historical data are “compatible” with a local volatility model.

This question might appear surprising. Indeed, smile dynamics already seem
to give an answer. However we want to stress the following fact: option prices,
and more generally implied quantities, are clearly the most important data to
deal with when one wants to hedge derivatives. Nevertheless, from a statistical
point of view, options data are in practice not “fully reliable”, in the sense that
their link with historical data through the no free lunch assumption remains
arguable. Therefore, although our question is probably not of very first interest
from a classical mathematical finance perspective, it is however very natural
and important if one really wants to understand the dynamics of asset returns.

Our way to partially answer the preceding question is the following. We use
historical data of an asset X regularly observed over a fixed time period [0, T ]:

X0, X∆n , X2∆n , . . .

and work in a high frequency context, which means our asymptotic is that the
time span between two observations ∆n goes to zero. From these data, we build
a test statistics Sn whose behavior is approximately standard Gaussian when
X belongs to a given class Θ0 of processes following local volatility models.
Therefore, thanks to this statistics, we can construct a statistical test with level
α through the rejection area {S2

n > u1−α}, where u1−α is the 1 − α quantile
of a χ2(1) distribution. Since our aim is to compare local volatility models
and stochastic volatility models, in order to get a meaningful test, we will also
impose that our test statistics diverges to infinity when the data generating
process belongs to a class Θ1 of stochastic volatility models. The “tricky” part
of the paper will be the construction of this test statistics Sn. Then, deriving
its asymptotic behavior when X ∈ Θ0 or X ∈ Θ1 will be essentially a direct use
of recent general results about semi-martingales.

Remark that this kind of tests is in the spirit of several procedures recently devel-
oped in the literature. The papers [8], [9], for instance, deal with goodness-of-fit
tests for the local volatility models in the high-frequency framework. On the
other hand, Aı̈t-Sahalia and Jacod have addressed the following testing prob-
lems for Itō semi-martingales: Is the jump part of the semi-martingale equal
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to zero? Do the jumps have finite or infinite activity? Is the Brownian part
equal to zero? Such kind of test procedures is also designed in [11] in order to
assess the multifractal nature of data from a semi-martingale. Note that as in
all these works, since we want to distinguish between two very large classes, we
will only be able to give pointwise results and so the level of the test will not
hold uniformly over Θ0 (which means that the supremum over all X ∈ Θ0 of
the probabilities of being in the rejection area will not be controlled).

In this paper, we treat the situation where the null hypothesis is that the asset
price follows a local volatility model against the alternative that it follows a
stochastic volatility model. One can also ask about the case where the null and
alternative hypothesis are switched. We highlight the answer to this problem,
which is in fact an easier one, in Remark 3.2.

The paper is organized as follows. In Section 2, we propose a test procedure in
the (unrealistic) case where both X and σ2 are observed at times 0,∆n, 2∆n . . .
In Section 3, we explain how to deduce from it a feasible test statistics when the
volatility process is not observed. A simulation study is performed in Section 4
and the proofs are relegated to Section 5.

2 Case with observed volatility

In this section, we focus on the case where both the price X and the process
σ2 are observed at regular times. Remark that it implies that the volatility
process σt/Xt is also observed at regular times. The results in the case where
the volatility is not observed will naturally follow from those obtained in this
section.

2.1 Statistical problem

On a given filtered probability space (Ω,F , (Ft)t≥0,P) we consider a one dimen-
sional continuous Itō process of the form

dXt = atdt+ σtdWt, t ∈ [0, T ],

where a is an adapted càdlàg drift process, σ is a positive adapted càdlàg pro-
cess and W denotes a standard Brownian motion. The process X is assumed to
be observed at equidistant time points ti = i∆n, i = 0, . . . , [T/∆n] and ∆n → 0.

Our aim is to decide on the basis of observations (Xi∆n , σ
2
i∆n

), i = 0, . . . , [T/∆n],
whether the process σ is a deterministic function of X (Markov diffusion case)
or if it follows a stochastic volatility model. Formally, the null hypothesis is
given as
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H0 : The process σ2
t has the form σ2

t = z(Xt) for a positive function z ∈ C2(R)
with z′ > 0.

while the alternative is given by

H1 : The process σ2
t follows a stochastic volatility model dσ2

t = atdt+ σtdWt +
vtdVt for two independent Brownian motions W and V and some adapted
càdlàg processes a, σ and v with v being non-vanishing on some measurable
set A ⊂ [0, T ] with λ(A) > 0 (a.s.). Moreover, the processes σ and v are Itō
semi-martingales.

Some remarks are in order.

Remark 2.1. By Itō’s formula we obtain under H0 that

dσ2
t =

(
atz
′(Xt) +

σ2
t

2
z′′(Xt)

)
dt+ σtz

′(Xt)dWt.

That is, under H0, σ2 follows a stochastic volatility model as in H1, but with
v = 0. Note however that the models in H0 and H1 do not contain all Itō semi-
martingale processes for σ2: the model dσ2

t = atdt+ σtdWt with σt 6= σtz
′(Xt)

belongs neither to H0 nor to H1.

Remark 2.2. The ad-hoc assumption z′ > 0 in the null hypothesis enables us
to provide a test procedure. It looks rather strange, but it is satisfied for many
price models. This is in particular true in the Black-Scholes and CEV models
mentioned in the introduction. Indeed, in these cases z(x) = xp for some p > 0
and Xt > 0.

2.2 Building the test statistics

The starting idea for the construction of our test is quite simple. For any s, t > 0,
since z is increasing, we have under H0

(Xt −Xs)(σ2
t − σ2

s) = (Xt −Xs)
(
z(Xt)− z(Xs)

)
≥ 0.

Under H1, the above positivity cannot hold a.s. as long as v is non-vanishing
(in the sense of H1).

The first step for our procedure is to choose a function g : R → R with the
following properties:

(i) g ∈ C1
p(R) (C1-functions of polynomial growth) with g(x) > 0 for x > 0

and g(x) < 0 for x < 0.

(ii) g+ = max(g, 0) ∈ C1(R).
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A simple example of such a function is given by g(x) = x3 (or more generally
by g(x) = x2k+1, k ≥ 1). Our test statistic will be based on the quantity Mn,T ,
with for t ≤ T ,

Mn,t = ∆n

( [t/∆n]∑
i=2

g+
(Xi∆n

−X(i−2)∆n√
2∆n

·
σ2
i∆n
− σ2

(i−2)∆n√
2∆n

)
−

[t/∆n]∑
i=1

g
(Xi∆n

−X(i−1)∆n√
∆n

·
σ2
i∆n
− σ2

(i−1)∆n√
∆n

))
.

Thanks to the properties of g, the products of increments involved in Mn,t are
always positive under H0. Since g+ = g on {g(x) > 0} = {x > 0}, this will
imply that, under H0, Mn,T goes to 0 in probability (see Corollary 2.5). On the
other hand, under the alternative, we will have limn→∞Mn,t > 0.

Remark 2.3. Notice that we compare two estimators at frequencies ∆n and
2∆n in the definition of Mn,t. When the process σ2 is fully observed it is more
natural to use the same frequency ∆n. Indeed, in this case we would accept the
null hypothesis only if Mn,t = 0 identically. However, in practice, the process
σ2 is not observed (see Section 3). Thus, we need to use an estimator σ̂2 instead
of the true process σ2 in the definition of Mn,t. Now, if we would use the same
frequency in our test statistic, say ∆n, the asymptotic results would solely come
from the approximation error when replacing σ2 by its empirical analogue σ̂2. In
such situation, the obtained central limit theorems would be typically infeasible
(i.e. the asymptotic results cannot be used for statistical inference). The reason
is the following: the resulting centered and properly normalized statistics would
essentially be an odd functional of the price process X and in this case central
limit theorems are known to be infeasible. We refer to [18] for asymptotic results
for general functionals of continuous semi-martingales.

2.3 Law of large numbers

Before we proceed with the weak law of large numbers for Mn,t, we need to
introduce some notation. For k a positive integer, Ψ a 2 × 2-matrix and f a
function from (R2)k to R, we set

ρ⊗kΨ (f) = E[f(ΨU1, . . . ,ΨUk)],

where U1, . . . , Uk are iid bidimensional Gaussian vector with covariance matrix
equal to identity. If k = 1, we simply write ρΨ(f). We also use the following
representation of (X,σ2):

d
( Xt

σ2
t

)
=
( at
at

)
dt+ Σtd

( Wt

Vt

)
, Σt =

( σt 0
σt vt

)
.

Note that this representation holds under H1, and under H0 with v = 0 and
σt = σtz

′(Xt). We have the following law of large numbers.
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Theorem 2.4. Let h(x, y) = g(xy). Under H0 and under H1, it holds that

Mn,t →Mt =
∫ t

0

ρΣu
(h+ − h)du,

in probability, uniformly over compact sets in [0, T ].

Let A = {s, vs 6= 0} ⊂ [0, t] (then A = ∅ under H0 and λ(A) > 0 (a.s.) under
H1). Under H1, since P(U1U2 > 0) > 0 and P(U1U2 < 0) > 0 for any normal
variable (U1, U2) with correlation |ρ| < 1, we have∫

A

ρΣu(h+ − h)du > 0.

On the other hand, it holds that Mt = 0 under H0. Therefore, Mn,T has dif-
ferent behaviors under H0 and under H1. Thus we have the following corollary
which will enable us to construct a test statistics in the remaining part of the
section.

Corollary 2.5. We have the following convergence in probability: under H0,
Mn,T → 0 and under H1, Mn,T →MT > 0.

2.4 Central limit theorem

Before defining the test statistics, we first give a general central limit theorem
associated to the preceding law of large numbers. Let fi : (R2)2 → R, i = 1, 2,
be defined by

f1

(
(x1, x2), (y1, y2)

)
= g+

( (x1 + y1)(x2 + y2)
2

)
, f2

(
(x1, x2), (y1, y2)

)
= g(x1x2).

Define also f̃i : (R2)3 → R, i = 1, 2, by

f̃i
(
(x1, x2), (y1, y2), (z1, z2)

)
= f1

(
(x1, x2), (y1, y2)

)
fi
(
(y1, y2), (z1, z2)

)
.

Finally, we set ∆n
i X = Xi∆n

−X(i−1)∆n
and ∆n,2

i X = Xi∆n
−X(i−2)∆n

. We
have the following result which will be our basis for the test statistics.

Theorem 2.6. Under H0 and under H1, the process

∆−1/2
n

 ∆n

∑[t/∆n]
i=2 g+

(
∆n,2

i X∆n,2
i σ2

2∆n

)
−
∫ t

0
ρΣu

(h+)du

∆n

∑[t/∆n]
i=1 g

(
∆n

i X∆n
i σ

2

∆n

)
−
∫ t

0
ρΣu

(h)du


converges stably in law towards a process Vt that is, conditionally on F , a cen-
tered Gaussian process with independent increments, such that (i, j = 1, 2)

Θij,t = E[Vi,tVj,t|F ] =
∫ t

0

RijΣu
du,
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where

R11
Σ = ρ⊗2

Σ (f2
1 ) + 2ρ⊗3

Σ (f̃1)− 3
(
ρ⊗2

Σ (f1)
)2

R12
Σ = ρ⊗2

Σ (f1f2) + ρ⊗3
Σ (f̃2)− 2ρ⊗2

Σ (f1)ρ⊗2
Σ (f2)

R22
Σ = ρ⊗2

Σ (f2
2 )−

(
ρ⊗2

Σ (f2)
)2
.

Consequently, we deduce that

∆−1/2
n

(
Mn,t −

∫ t

0

ρΣu
(h+ − h)du

)
converges stably in law towards a mixed normal random variable with conditional
variance equal to Θ11,t − 2Θ12,t + Θ22,t.

2.5 The test statistics

In order to obtain a formal test statistics, we need to estimate the conditional
covariance matrix Θ. We give such estimates in the following theorem. For a
function k, we define

k[i, n] = k
(∆n

i X∆n
i σ

2

∆n

)
, k[i, n, 2] = k

(∆n,2
i X∆n,2

i σ2

2∆n

)
.

We have the following result.

Theorem 2.7. Consistent estimates for the terms of asymptotic covariance
matrix in Theorem 2.6 are given by

Θ̂11,t = ∆n

[t/∆n]∑
i=1

{
g+[i+ 1, n, 2](g+[i+ 1, n, 2] + 2g+[i+ 2, n, 2]− 3g+[i+ 3, n, 2])

}
Θ̂12,t = ∆n

[t/∆n]∑
i=1

{
g+[i+ 1, n, 2](g[i, n] + g[i+ 1, n]− 2g[i+ 2, n]

}
Θ̂22,t = ∆n

[t/∆n]∑
i=1

{
g[i, n](g[i, n]− g[i+ 1, n]

}
.

We can now define our test statistics Sn by

Sn =
∆−1/2
n Mn,T√

Θ̂11,T − 2Θ̂12,T + Θ̂22,T

.

We have the following corollary.

Corollary 2.8. Under H0, S2
n converges in law to a χ2(1) distribution. Under

H1, S2
n converges in probability to infinity.

Therefore, we reject the null hypothesis at level α ∈ (0, 1) when S2
n > u1−α,

where u1−α denotes the 1− α quantile of a χ2(1) distribution.
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3 Non observed volatility

Of course, in practice, we only observe over [0, T ] the sample

X0, X∆n , X2∆n , . . .

The process σ2 is not observed and needs to be locally estimated. To adapt the
test statistics built in Section 2, the idea is to use a subsample

(X0, σ̂
2
0), (X∆′

n
, σ̂2

∆′
n
), (X2∆′

n
, σ̂2

2∆′
n
), . . .

with a slower frequency ∆′n (instead of ∆n), where σ̂2
s is a consistent estimate of

the true value σ2
s based on the price observations (Xi∆n

)i≥1. If the estimation
accuracy of the volatility σ2 is sufficiently good compared to ∆′n, the asymptotic
results of Section 2 remain valid when ∆n is replaced by ∆′n and σ2 is replaced
by σ̂2. More precisely, using classical localization procedures, we immediately
deduce the following result.

Theorem 3.1. Assume that there exists an estimator σ̂2 of σ2 such that the
sequence

u−1
n sup

s∈[0,T ]

|σ̂2
s − σ2

s |

is tight, for some un tending to zero such that (∆′n)−1un → 0. If we replace in
the definition of Mn,t and in all the results of Section 2 the increments ∆n

i σ
2

by their empirical counterpart ∆n
i σ̂

2, then all the results of Section 2 still hold
provided we also replace ∆n by ∆′n. In particular, the test statistic

Ŝn =
∆′1/2n

(∑[T/∆′
n]

i=2 g+
(

∆′n,2
i X∆′n,2

i σ̂2

2∆′
n

)
−
∑[T/∆′

n]
i=1 g

(
∆′n

i X∆′n
i σ̂2

∆′
n

))
√

Θ̂11,T − 2Θ̂12,T + Θ̂22,T

, (3.1)

where the quantities Θ̂kl,T are defined as in Theorem 2.7 with (∆n, σ
2) replaced

by (∆′n, σ̂
2), converges in distribution to a standard normal variable under H0

and diverges to infinity in probability under H1.

Consistent pointwise estimates σ2
n,s of the process σ2

s can be obtained using
realized variance over some local window around the time s, that is

σ2
n,s =

1
2kn∆n

[s/∆n]+kn∑
i=[s/∆n]−kn

(∆n
i X)2 → σ2

s , kn∆n ≤ s ≤ T − kn∆n, (3.2)

in probability, provided kn →∞ with kn∆n → 0; see for example [4], [19] (the
estimates σ2

n,s for s ∈ [0, kn∆n) (resp. s ∈ (T −kn∆n, T ]) are obtained similarly
by using kn increments of X on the right hand side of s (resp. on the left hand
side of s)). The estimator σ2

n,s is probably the most intuitive one; however, one
can also use any type of kernel estimators to get a proxy for σ2

s .
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The uniform bound un for the estimator σ̂2 = σ2
n is given by un = (kn∆n)1/2,

where kn satisfies kn ≤ c∆−1/2
n for some constant c > 0 (see e.g. [4]). The

restriction on the window size kn comes from the smoothness of the process σ2.
We see that the best attainable rate is essentially un = ∆1/4

n , which implies that
∆′n has to converge to 0 slower than ∆1/4

n .

Remark 3.2. If we consider the null hypothesis of a stochastic volatility model
(as described in Section 2) against the alternative of a local volatility model,
the testing procedure is somewhat easier (in particular, we do not require the
monotonicity assumption on the function z ∈ C2(R)). Recall that the dynamics
of the bivariate process (Xt, σ

2
t ) is given by

d
( Xt

σ2
t

)
=
( at
at

)
dt+ Σtd

( Wt

Vt

)
, Σt =

( σt 0
σt vt

)
,

where v = 0 in the local volatility case while v is a non-degenerate process
for the stochastic volatility model. Thus, our test problem is equivalent to
testing whether the bivariate process (Xt, σ

2
t ) is generated by two independent

Brownian motions (null hypothesis) or not (the alternative). The latter testing
problem has been discussed in [17] for a general d-dimensional continuous Itō
semi-martingale. Since the volatility process σ2 is not observed, it has to be
estimated by some σ̂2 (say, by σ2

n) and then we can apply the procedure proposed
in [17] for d = 2 (again we have to use a subsample (Xi∆′

n
, σ̂2
i∆′

n
) as above).

4 A simulation study

We give in this section some numerical results about our test procedure with
g(x) = x3. In the following, we work with equidistant observations

(X0, X1/n, . . . , X1),

in one of the two following model:

- The Black-Scholes model:

dXt = σXtdWt.

The value of the parameters in the simulations are X0 = 1 and σ = 0.2.
- The non correlated Heston model:

dXt = σtdWt, σt = stXt,

ds2
t = (a− ks2

t )dt+ εstdVt,

where W et V are two non correlated Brownian motions. The value of the
parameters in the simulations are X0 = 1, s2

0 =, 0.04, a = 0.02, k = 0.5 and
ε = 0.1, so that the Feller condition is satisfied.
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4.1 Observed volatility

We begin with the case where σt is observed at the same instants as Xt. The
obtained results for the behavior of our test over 3000 simulations with n = 1025
and n = 131 073 are given in Figure 1 and Table 1.
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Figure 1: Histogram of the test statistics in the Black-Scholes case, when the
volatility is observed, for n = 1025 (left) and n = 131 073 (right).

Simulated Process Black-Scholes Heston
Number n of data 1025 131 073 1025 131 073
Level of the test

10% 9.7% 10.4% 51.9% 100%
5% 3.7% 5.5% 39.9% 99.9%
1% 0.8% 1.0% 19.9% 99.8%

Table 1: Percentage of rejection of the local volatility assumption.

The results are quite satisfactory. Indeed, under H0, for both values of n, the
distributions of the test statistics are quite close to standard Gaussian and the
rejection rates are not far from the theoretical ones. Also, the obtained empirical
powers are quite reasonable.

4.2 Estimated volatility

We now assume that we observe n data from the price X and estimate the
process σ2 at n′ < n equidistant points. The squared volatility at time t is
estimated using the estimator (3.2) on log price data and then converting it
in order to obtain estimates for σ2. In the simulations, we use n = 131 073,
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n′ = 1025, kn = 1000 and compute the test statistic Ŝ2
n introduced in (3.1).

The value kn = 1000 enables to obtain satisfying estimates σ2 in the Heston
case. Remark that σ2 is particularly well estimated in the Black-Scholes case
since the volatility is constant. The results from 3000 simulations are given in
Figure 2 and Table 2.
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Figure 2: Histogram of the test statistics in the Black-Scholes case, when the
volatility is not observed.

Simulated Process Black-Scholes Heston
Number n of data 131 073 131 073

Number n′ of volatility estimates 1025 1025
Level of the test

10% 9.2% 47.7%
5% 3.9% 36.1%
1% 0.7% 17.2%

Table 2: Percentage of rejection of the local volatility assumption.

Here again the results are fairly satisfactory. Indeed, they are of the same order
of magnitude as those obtained for n = 1025 when the volatility is observed.
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5 Proofs

5.1 Proof of Theorem 2.4

Let Y = (X,σ2). For i = 1, 2, we write

V (fi,∆n)t =
bt/∆nc∑
i=1

fi

(∆n
i Y√
∆n

,
∆n
i+1Y√
∆n

)
,

where the fi are defined before Theorem 2.6. Note that

∆n

[t/∆n]∑
i=1

f1

(∆n
i Y√
∆n

,
∆n
i+1Y√
∆n

)
= ∆n

[t/∆n]+1∑
i=2

g+
(∆n,2

i X∆n,2
i σ2

2∆n

)

∆n

[t/∆n]∑
i=1

f2

(∆n
i Y√
∆n

,
∆n
i+1Y√
∆n

)
= ∆n

[t/∆n]∑
i=1

g
(∆n

i X∆n
i σ

2

∆n

)
.

From Theorem 6.1 in [16] (see also [5]), we obtain that for i = 1, 2,

∆nV (fi,∆n)t →
∫ t

0

ρ⊗2
Σu

(fi)du,

in probability, uniformly over compact sets in [0, T ]. The result follows remark-
ing that ρ⊗2

Σu
(f1) = ρΣu(h+) and ρ⊗2

Σu
(f2) = ρΣu(h).

5.2 Proof of Theorem 2.6

Now consider

V (f,∆n)t =
bt/∆nc∑
i=1

fi

(∆n
i Y√
∆n

,
∆n
i+1Y√
∆n

)
,

where f
(
(x1, x2), (y1, y2)

)
is equal to

(
f1

(
x1, x2), (y1, y2)

)
f2

(
x1, x2), (y1, y2)

) ) . Since for i =

1, 2, fi
(
− x1,−x2), (−y1,−y2)

)
= fi

(
x1, x2), (y1, y2)

)
, from Theorem 7.1 in

[16], we obtain the following stable convergence in law:

∆−1/2
n

(
∆nV (f,∆n)t −

∫ t

0

ρ⊗2
Σu

(f)
)
→ V (f)t,

where V (f) is, conditionally on F , a centered Gaussian process with indepen-
dent increments such that for i = 1, 2 and j = 1, 2,

E[V (fi)tV (fj)t|F ] =
∫ t

0

RijΣu
(f)du,

where RijΣ (f) is equal to

1∑
l=−1

(
E[fi(ΣU2,ΣU3)fj(ΣUl+2,ΣUl+3)]

)
− 3E[fi(ΣU1,ΣU2)]E[fj(ΣU1,ΣU2)],
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with U1, U2, U3 some iid bidimensional Gaussian vector with covariance matrix
equal to identity. After straightforward computations and using that f2 only
depends on the first variable, we obtain the expression for the asymptotic con-
ditional covariance matrix in the first part of Theorem 2.6. An application of
the ∆-method (for stable convergence) gives the second statement.

5.3 Proof of Theorem 2.7

For the proof of Theorem 2.7, simply remark that for i = 1, 2,(
ρ⊗2

Σ (fi)
)2 = ρ⊗4

Σ (f ′i),

with f ′i : (R2)4 → R such that

f ′i
(
(x1, x2), (y1, y2), (x′1, x

′
2), (y′1, y

′
2)
)

= fi
(
(x1, x2), (y1, y2)

)
fi
(
(x′1, x

′
2), (y′1, y

′
2)
)

and that
ρ⊗2

Σ (f1)ρ⊗2
Σ (f2) = ρ⊗4

Σ (f ′12),

with f ′12 : (R2)4 → R such that

f ′12

(
(x1, x2), (y1, y2), (x′1, x

′
2), (y′1, y

′
2)
)

= f1

(
(x1, x2), (y1, y2)

)
f2

(
(x′1, x

′
2), (y′1, y

′
2)
)
.

Then the result follows directly from Theorem 6.1 in [16].
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[2] Äıt-Sahalia, Y. and J. Jacod (2010). Is Brownian motion necessary to
model high frequency data? The Annals of Statistics, 38 3093–312.
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