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Abstract

This paper proposes a new method for forecasting covariance matrices of finan-

cial returns. The model mixes volatility forecasts from a dynamic model of daily

realized volatilities estimated with high-frequency data with correlation forecasts

based on daily data. This new approach allows for flexible dependence patterns

for volatilities and correlations, and can be applied to covariance matrices of large

dimensions. The separate modeling of volatility and correlation forecasts consider-

ably reduces the estimation and measurement error implied by the joint estimation

and modeling of covariance matrix dynamics. Our empirical results show that the

new mixing approach provides superior forecasts compared to multivariate volatility

specifications using single sources of information.
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1 Introduction

Volatility modeling and forecasting have been of prime interest in financial econometrics

since the seminal contributions of Engle (1982) and Bollerslev (1986). Recently, research

developments in the field have been refueled by the availability of high-frequency financial

data on various financial instruments.

In this paper, we propose a mixed-frequency approach for covariance matrix forecasting,

which uses the decomposition of the covariance matrix into a diagonal volatility matrix

and a correlation matrix. The same decomposition has been used by Engle (2002) and

Tse & Tsui (2002) in their dynamic conditional correlation (DCC) models. Differently

from these studies, we propose to forecast the volatility using a dynamic model for the

univariate series of realized volatilities, which can be estimated by any of the below-

mentioned techniques. The correlation matrix forecast is conceptually identical to the

DCC specification, but with the important difference that we standardize (de-volatilize)

the daily returns by realized volatilities rather than by GARCH volatilities. The forecast-

ing improvement over daily-data models such as the standard DCC is thus driven by the

improvement in volatility forecasts and by the less noisy standardized residuals used as

an input to the correlation model. Comparing to pure high-frequency data approaches,

our method only requires the estimation of realized volatility series, rather than realized

covariance matrices, which, as discussed below, is more problematic. This gives the ad-

vantage that the mixed-frequency framework is better suited to handle matrices of large

dimensions. Furthermore, model specifications for realized covariance/correlation matri-

ces are only recently gaining more attention (see, e.g., Gourieroux et al. (2009), Bauer &

Vorkink (2007), Chiriac & Voev (2010)) and there is still a lot of empirical work needed

in order for these models to gain broader recognition. We derive the theoretical condi-

tions under which the mixed-frequency model provides a smaller element-wise forecast

mean squared error relative to a pure daily (low-frequency) and a pure high-frequency

model, which we refer to collectively as single-frequency approaches. The empirical study

of the paper finds evidence that confirms the validity of these conditions and thus not

surprisingly, the mixed-frequency model outperforms the single-frequency specifications.

The reason we resort to high-frequency data is that it contains information that allow

for almost error-free measurement of volatility ex-post, based on the estimation of the

quadratic variation of the price process. Early studies in the area (see e.g. Andersen,

Bollerslev, Diebold & Labys (2001), Andersen, Bollerslev, Diebold & Ebens (2001), An-
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dersen et al. (2003)) recognized that market microstructure effects can distort estimation

at very high frequencies and proposed a sparse sampling approach, in which the available

data is sampled every 5, 10 or 15 minutes to mitigate the impact of the market mi-

crostructure noise. More recently, techniques have been developed to use the data more

efficiently by designing estimators that are noise-robust (see e.g. Barndorff-Nielsen et al.

(2008), Barndorff-Nielsen et al. (2009), Jacod et al. (2009), Zhang (2006b), Zhang et al.

(2005), Nolte & Voev (2009), etc.). Most of these approaches are applicable to univari-

ate series, i.e., for volatility, rather than for covariance estimation. While multivariate

extensions of the above mentioned approaches do exist (see e.g., Voev & Lunde (2007),

Barndorff-Nielsen et al. (2010), Nolte & Voev (2008), Christensen et al. (2010)) they suffer

from limitations especially when applied to many assets. In most empirical work, real-

ized covariance estimation is still carried out using the sparse-sampling approach. The

problem with the sparse-sampling method is that for dimensions higher than the number

of observations on the sparse subgrid (e.g., at the typical 5-minute frequency there are

78 observations on a NYSE traded stock) the realized covariance matrices are of reduced

rank and thus singular. Generally, it can be stated that covariance/correlation estimation

with high-frequency data is much more challenging than volatility estimation due to issues

of non-synchronicity of the raw multivariate series and parameter proliferation.

Beyond ex-post volatility measurement, high-frequency data has also proven very useful in

forecasting future volatility. Currently, there are a number of methods, mostly univariate,

which propose dynamic models for realized volatility time-series, or alternatively, ways to

integrate realized volatility measures into standard GARCH-type specifications. Hansen

& Lunde (2010) provide a review of this growing literature.

To the best of our knowledge, the paper of Bannouh et al. (2009) is the only other study

that considers a mixed-frequency covariance model. The differences of their study to ours

are very stark and it suffices to mention the two main points of departure. Firstly, their

model uses a factor structure in which the factor covariance matrix is estimated with

high-frequency data and the loadings on the factors are estimated with daily data. Our

approach does not assume a factor structure of the covariance matrix, while it clearly does

not exclude that there is one. Secondly, their model is a static one, in the sense that they

focus on the issue of estimation of covariance matrices of very large dimension, rather

than on forecasting. In fact, the only thing that the two papers have in common is that

they both use in some way data at different frequencies.
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The remainder of the paper is structured as follows: Section 2 introduces the dynamic

mixed-frequency model, Section 3 contains the empirical study, and Section 4 concludes.

The proofs to the three propositions in Section 2 are contained in Appendix A. Appendix B

contains tables with descriptive statistics of the data and graphs related to the theoretical

results from Section 2.

2 Dynamic Mixed-Frequency Model

Let rt be a vector of daily log returns of dimension n× 1, where n represents the number

of assets considered. In this section we introduce a new approach for forecasting the

time-varying variance-covariance matrix of the vector of daily returns, Σt, based on the

following decomposition:

Σt = DtRtDt, (1)

where Dt is a diagonal matrix given by the conditional standard deviations of each stock

and Rt is the correlation matrix. This decomposition has been used in Engle (2002) and

Tse & Tsui (2002) in a dynamic conditional correlation (DCC) framework. Conditional

forecasts of Σt are given by the conditional forecasts of Dt and Rt as follows:

Σ̂t+1|t = D̂t+1|tR̂t+1|tD̂t+1|t, (2)

where D̂t+1|t ≡ E[Dt+1|Ft], R̂t+1|t ≡ E[Rt+1|Ft] and Ft is the information set at time t.

The novelty of our approach is that it allows for the conditional forecasts of Dt and Rt to

stem from different information sets and dynamic frameworks. We refer to this specifica-

tion as a mixed frequency approach since we use high-frequency (intradaily) data in the

model for volatilities (Dt) and daily data in the model for correlations (Rt). Equation (2)

trivially implies:

σ̂ii,t+1|t = d̂2
i,t+1|t, ∀i = 1, . . . , n (3)

σ̂ij,t+1|t = d̂i,t+1|tρ̂ij,t+1|td̂j,t+1|t, ∀i 6= j, i, j = 1, . . . , n (4)

where σ̂ii,t+1|t and d̂ii,t+1|t are the i-th diagonal elements of Σ̂t+1|t and D̂t+1|t, and σ̂ij,t+1|t

and ρ̂ij,t+1|t are the ij-th off-diagonal elements of Σ̂t+1|t and R̂t+1|t. In the sequel, we will

differentiate between forecasts based on the information set containing high-frequency
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data (time series of realized volatilities and correlations), FH
t , and forecasts based on the

information set containing data at the low frequency (typically daily returns), FL
t . Thus,

let d̂H
i,t+1|t and ρ̂H

ij,t+1|t be the i-th volatility and ij-th correlation forecast from a dynamic

model for the daily series of realized measures such as the Autoregressive Fractionally Inte-

grated Moving Average (ARFIMA) approach suggested by Andersen, Bollerslev, Diebold

& Labys (2001) and Andersen, Bollerslev, Diebold & Ebens (2001) or the Heterogenous

Autoregressive (HAR) model of Corsi (2009) and Corsi & Audrino (2010). Further, let

d̂L
i,t+1|t and ρ̂L

ij,t+1|t be the i-th and ij-th volatility and correlation forecasts from conditional

volatility and correlation models using daily data, such as the (Generalized) Autoregres-

sive Conditional Heteroscedastic ((G)ARCH) model of Engle (1982) and Bollerslev (1986)

and the Dynamic Conditional Correlation (DCC) approach of Engle (2002).

Below we define three approaches of forecasting Σt based on the decomposition given in

Equation (2):

Σ̂MF
t+1|t = D̂H

t+1|tR̂
L
t+1|tD̂

H
t+1|t (5)

Σ̂LF
t+1|t = D̂L

t+1|tR̂
L
t+1|tD̂

L
t+1|t (6)

Σ̂HF
t+1|t = D̂H

t+1|tR̂
H
t+1|tD̂

H
t+1|t (7)

Model (5) describes our mixed-frequency (MF) approach. To forecast volatilities we make

use of high-frequency data in the form of time series of realized volatility measures, such

as the ones obtained by the OLS approach of Nolte & Voev (2009) or an alternative noise-

robust method.1 The correlation forecasts are based on daily data in the spirit of the DCC

model of Engle (2002). Models (6) and (7) describe single-frequency approaches based on

daily (we will refer to this as the low-frequency (LF) model) and high-frequency data (the

high-frequency (HF) model), respectively. It is important to note that for the MF model

FH
t contains only realized volatilities and not realized correlations, which are required for

the HF model. Clearly, the mixed-frequency model DL
t+1|tR̂

H
t+1|tD̂

L
t+1|t is also conceivable,

but not of practical interest. We note that the HF model (7) has been mentioned in

Andersen et al. (2006) who also have a brief section on a version of the mixed-frequency

model of Bannouh et al. (2009).

Before turning to the formal comparison of the three approaches above, we provide some

intuition on why we believe that the mixed-frequency approach might be a valuable alter-

1Such methods have been developed by Barndorff-Nielsen et al. (2008), Zhang (2006a), Jacod et al. (2009),
among others.
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native to the single-frequency models. High-frequency data has proven to be extremely

useful in the ex-post measurement of volatility. Nevertheless, multivariate approaches are

not so well developed and suffer from difficulties associated with non-synchronous trading.

This leads to data loss in approaches such as the multivariate kernels of Barndorff-Nielsen

et al. (2010) who employ a synchronized sampling scheme or, alternatively, necessitates es-

timation of all covariances on an element-by-element basis (see, e.g., Nolte & Voev (2008)

and Christensen et al. (2010)), which does not guarantee positive-definiteness of the ma-

trix and involves an exponentially growing number of estimations as n increases. In this

respect, correlations are much harder to estimate with high-frequency data compared to

volatilities. Furthermore, dynamic model specifications for realized covariance matrices

are only recently starting to get more attention (see, e.g., Gourieroux et al. (2009), Chiriac

& Voev (2010) and Bauer & Vorkink (2007)) and estimation and forecasting with these

models, especially with many assets, needs further empirical investigation. Consequently,

we view the mixing approach developed in this paper as a method which allows us to

extract the informational content of HF data in the estimation of volatilities and make

use of the developed body of literature on modelling correlations with daily data. In terms

of ease of implementation, the model is much more attractive compared to pure high fre-

quency data models, since it only requires the estimation of n series of realized volatility

measures (compared to a series of n × n realized covariance/correlation matrices).

In the following, we derive and discuss the conditions under which the MF approach

provides smaller forecast mean squared errors (MSE) compared to the single-frequency

models in equations (6) and (7). We focus on one-step ahead forecasts and simplify the

notation in the following manner: σ̂ij ≡ σ̂ij,t+1|t, d̂i ≡ d̂i,t+1|t and ρ̂ij ≡ ρ̂ij,t+1|t for all

i, j = 1, . . . , n. We will use the representations:

σ̂ij = σij + εσij
, ∀i, j = 1, . . . , n (8)

d̂i = di + εdi
, ∀i = 1, . . . , n (9)

ρ̂ij = ρij + ερij
, ∀i 6= j, i, j = 1, . . . , n (10)

where the ε’s represent forecast errors and σij , di and ρij are the true ex-post values of

the variables at time t + 1. Based on this notation, we can rewrite equations (3) and (4)
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as follows:

σ̂ii = (di + εdi
)2 = d2

i + 2diεdi
+ ε2

di
≡ σii + εσii

∀i = 1, . . . , n (11)

σ̂ij = (di + εdi
)(ρij + ερij

)(dj + εdj
)

= diρijdj + diρijεdj
+ djρijεdi

+ didjερij
+ djεdi

ερij
+ diεdj

ερij
+ ρijεdi

εdj
+ εdi

ερij
εdj

≡ σij + εσij
∀i 6= j, i, j = 1, . . . , n, (12)

with εσii
≡ 2diεdi

+ ε2
di

and εσij
≡ diρijεdj

+ djρijεdi
+ didjερij

+ djεdi
ερij

+ diεdj
ερij

+

ρijεdi
εdj

+ εdi
ερij

εdj
. In the following, we compare the models based on their MSE where

we make use of the decomposition:

MSE(σ̂ij) = E[εσij
]2 + V [εσij

]. (13)

The mean and variance of εσij
in the general case without assumptions on moments of

the forecast errors are derived in Appendix A. We are now in a position to derive the

conditions under which the forecast MSE of the mixing approach, σ̂MF
ij , is smaller than

the forecast MSE of the single-frequency models, σ̂LF
ij and σ̂HF

ij for each i, j = 1, . . . , n.

Initially, we make restrictive assumptions on the dependence among the forecast errors

in order to derive an easily interpretable result. We relax most of these assumptions

and present a general result further in the paper. Note that we look at elementwise

MSE. Alternatively, one can define a matrix error term as the discrepancy between the

true covariance matrix and the forecast and consider as a loss function some norm of

this error, e.g., the Frobenius norm. We opt for the elementwise MSE, since it is more

conservative and more straightforward to interpret. Furthermore, loss functions based on

the matrix error can have the undesirable feature that a very large error on one or more of

the elements in the matrix can be compensated by very small errors on the other elements.

In many applications (e.g., portfolio optimization), what is required is the inverse of the

covariance matrix, which can be very badly behaved in such a scenario. Being able to

demonstrate a uniform dominance of one model over another is clearly a much stronger

statement than showing that the dominance only holds “on average” over the elements in

the matrix.
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Proposition 1: Variance elements

If, for a given i ∈ {1, 2, . . . , n}, it holds that E[εX
di

] = 0, for X ∈ {H, L}, then

MSE(σ̂MF
ii ) − MSE(σ̂LF

ii )

= 4(V [εH
di

] − V [εL
di

])d2
i + 4(E[(εH

di
)3] − E[(εL

di
)3])di + (E[(εH

di
)4] − E[(εL

di
)4]). (14)

A set of sufficient (but not necessary) conditions for MSE(σ̂MF
ii ) ≤ MSE(σ̂LF

ii ) is that

V [εH
di

] − V [εL
di

] ≤ 0, E[(εH
di

)3] − E[(εL
di

)3] ≤ 0 and E[(εH
di

)4] − E[(εL
di

)4] ≤ 0. The minimal

sufficient conditions, i.e., the necessary and sufficient conditions for the inequality to hold

are clearly weaker and are provided in Appendix A.

In Proposition 1, we assume that volatility forecasts are unbiased. The assumption of

unbiasedness is rather natural and intuitive. Nevertheless, with daily data, it will be

violated, at least in theory, if we use GARCH models to forecast variances and then take

the square root of the forecast as the forecast of the volatility. One can either think

of this bias as negligible (which is to be expected empirically) or as volatility forecasts

stemming for a GARCH model for the standard deviation rather than for the variance

(e.g., the threshold GARCH model of Zakoian (1994)). With high frequency data we have

the flexibility of directly forecasting realized volatilities as opposed to realized variances

so that the unbiasedness assumption is less problematic. In any case, if the unbiasedness

assumption is clearly violated, then bias correction should be employed so that eventually

unbiasedness is restored. The sufficient conditions we provide reveal that it is sufficient

for the mixed-frequency approach to outperform the daily data model if the second, third

and fourth moment of the volatility errors from the HF model are smaller than their

counterparts from the LF model. We believe that the conditions on the second and fourth

moment are likely to be satisfied (and show that they are empirically), since the basic

motivation of using HF data is that it helps in measuring and forecasting volatility more

precisely than with daily data. As for the third moment, there is no reason to assume

that it should be theoretically different from zero for both models. The minimal sufficient

conditions (which are also necessary) are clearly weaker and require that a quadratic

polynomial in di is less then zero. These conditions are derived in Appendix A. Note that

we do not compare variance forecast from the MF model to the HF model since they are

identical by construction.
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Proposition 2: Covariance elements I

If, for a given i 6= j, i, j ∈ {1, 2, . . . , n} it holds that

(i) E[εX
x ] = 0, for all combinations of x and X where x ∈ {di, dj, ρij} and X ∈ {H, L}

(ii) εX
x ⊥εY

y , for all combinations of x, y, X and Y , where x, y ∈ {di, dj, ρij} and X, Y ∈

{H, L},

then it follows that:

1. (mixed frequency to low frequency model comparison)

MSE(σ̂MF
ij ) − MSE(σ̂LF

ij ) = (ρ2
ij + V [εL

ρij
])
(

(V [εH
dj

] − V [εL
dj

])d2
j

+(V [εH
di

] − V [εL
di

])d2
i + (V [εH

di
]V [εH

dj
] − V [εL

di
]V [εL

dj
])
)

.

A set of sufficient (but not necessary) conditions for MSE(σ̂MF
ij ) ≤ MSE(σ̂LF

ij ) is

that V [εH
di

] ≤ V [εL
di

] and V [εH
dj

] ≤ V [εL
dj

]. The minimal sufficient conditions, i.e., the

necessary and sufficient conditions for the inequality to hold are clearly weaker and

are provided in Appendix A.

2. (mixed frequency to high frequency model comparison)

MSE(σ̂MF
ij )−MSE(σ̂HF

ij ) = (V [εL
ρij

]−V [εH
ρij

])(d2
i d

2
j+d2

jV [εH
di

]+d2
i V [εH

dj
]+V [εH

di
]V [εH

dj
]).

It follows that MSE(σ̂MF
ij ) ≤ MSE(σ̂HF

ij ) if and only if V [εL
ρij

] ≤ V [εH
ρij

].

In Proposition 2, beside assuming unbiased volatility forecasts, we also assume that corre-

lation forecasts are unbiased and that all forecasting errors are mutually independent both

in the volatility/correlation dimension and in the high-frequency/daily data dimension.

This independence assumption is clearly too strong (and will be relaxed substantially in

the following proposition), but provides a good starting point for the analysis. For the

MSE comparison of the mixed frequency model to the low frequency model, the sufficient

conditions described in the proposition are satisfied in our empirical work. For com-

pleteness, the weaker necessary and sufficient conditions for which a bivariate quadratic

polynomial is less than zero while still observing the positivity of di and dj are derived in

Appendix A.
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The second result states that a necessary and sufficient condition for the MF approach to

have smaller elementwise MSE than the HF model is that the LF correlation model pro-

vides more precise correlation forecasts than the HF model. Whether this condition holds

empirically depends on the particular HF model, on the input to the HF model (realized

correlation series) and the quality of daily correlation model. We expect that especially

in high-dimensional applications the daily model will be much easier to implement and

will have an edge over the HF model. Ultimately, the choice of modeling correlations

with daily data is not only motivated by the precision of the forecasts but also by better

tractability and ease of implementation.

In the following proposition, we relax almost all independence assumptions and only re-

quire that volatility and correlation forecast errors from the HF and LF models are inde-

pendent, which we believe is the least stringent among the assumptions in Proposition 2.

It should be noted that this assumption can be relaxed as well. In the proposition below,

we only compare MSE of covariance elements, as for the variances we only needed the

unbiasedness assumption and therefore the result from Proposition 1 does not change.

Proposition 3: Covariance elements II

If, for a given i 6= j, i, j ∈ {1, 2, . . . , n} it holds that

(i) E[εX
x ] = 0, for all combinations of x and X where x ∈ {di, dj, ρij} and X ∈ {H, L}

(ii) εH
x ⊥εL

y , for all combinations of x, y, where x, y ∈ {di, dj, ρij},

then it follows that

1. (mixed frequency to low frequency model comparison)

MSE(σ̂MF
ij ) − MSE(σ̂LF

ij ) = F1(di, dj, ρij), (15)

where F1(di, dj, ρij) is a fourth-order polynomial in di, dj and ρij as given in Equa-

tion (28) in Appendix A. If ρij ≥ 0, sufficient (but not necessary) conditions that

MSE(σ̂MF
ij ) ≤ MSE(σ̂LF

ij ) are that all parameters of F1(di, dj, ρij) are non-positive

(see Proof A.3 in Appendix A).

2. (mixed frequency to high frequency model comparison)

MSE(σ̂MF
ij ) − MSE(σ̂HF

ij ) = F2(di, dj, ρij), (16)
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where F2(di, dj, ρij) is a fourth-order polynomial in di, dj and ρij as given in Equa-

tion (30) in Appendix A. If ρij ≥ 0, sufficient (but not necessary) conditions that

MSE(σ̂MF
ij ) ≤ MSE(σ̂HF

ij ) are that all parameters of the F2(di, dj, ρij) polynomial

are non-positive (see Proof A.3 in Appendix A).

As can be inferred from the above results, relaxing most of the independence assumptions

comes with a significant degree of complication. Sufficient conditions for the MSE of the

mixed frequency model to be smaller than that of the single-frequency models cannot be

summarized anymore in a few simple restrictions on moments of the forecasting errors

as before. Nevertheless, if we assume that ρij ≥ 0 which is empirically relevant, some

intuition can be provided. Loosely speaking, the MF model outperforms the LF model if,

firstly, variances and certain cross-moments of volatility errors εdi
and εdj

up to fifth order

are smaller with HF data than with LF data. Secondly, dependence (e.g., the covariance

and the co-skewness) between volatility and correlation forecasts from LF data should be

generally positive or zero. When compared to the HF approach, the sufficient conditions

reduce to requiring that the dependence between volatility and correlation forecast errors

stemming from HF data is generally non-negative and larger than the dependence between

the volatility forecast errors stemming from HF data and the correlation forecast errors

stemming from LF data. These conditions, however, can be too stringent in the sense

that much weaker conditions can suffice to obtain the desired result.

The usefulness of Proposition 3, however, is not in providing intuition (that is why we had

Propositions 1 and 2). More importantly, it gives us the exact form of the MSE difference

as a function of the variables di, dj and ρij . Since the parameters of the polynomials F1

and F2 are easily estimated from data (simply as sample counterparts of the population

moments), we can use the results in Proposition 3 to plot F1 and F2 against a range of

values for di, dj and ρij. Since we cannot plot four-dimensional graphs, we view both F1

and F2 as functions of di and dj and plot three-dimensional surfaces for a range of (positive

and negative) values of ρij . Whenever the surfaces lie below zero, the MF approach has a

smaller MSE than the corresponding single-frequency model.

3 Empirical Application

In this section, we present the forecasting results for the mixing and single-frequency

multivariate volatility forecasting approaches presented in Section 2. We measure the sta-
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tistical precision of the forecasts by means of the MSE criterion discussed in the previous

section. As volatility is not observable, we use a realized covariance proxy in our evalu-

ation. We note that the MSE is a loss function which satisfies the conditions in Patton

(2009) of being robust to the noise in the volatility proxy.

3.1 Data

The data consists of tick-by-tick bid and ask quotes from the NYSE Trade and Quotations

(TAQ) database sampled from 9:30 until 16:00 for the period 01.01.2000 – 30.07.2008

(T = 2156 trading days).2 For the current analysis, we select the following six highly

liquid stocks: American Express Inc. (AXP), Citigroup (C), General Electric (GE), Home

Depot Inc. (HD), International Business Machines (IBM) and JPMorgan Chase & Co

(JPM). We employ the previous-tick interpolation method, described in Dacorogna et al.

(2001) and obtain 78 intraday returns by sampling every 5 minutes and 1 open-to-close

daily return. Table B.1 in Appendix B reports summary statistics for the 5-minute and

daily return series.

For each t = 1, . . . , 2156, a series of daily realized covariance matrices can be constructed

as:

RCovt =
M
∑

j=1

rj,tr
′
j,t (17)

where M = 78. The 5-minute returns, rj,t, are computed as

rj,t = pj∆,t − p(j−1)∆,t, j = 1, . . . , M

where ∆ = 1/M and pj∆,t is the log midquote price at time j∆ in day t. The realized

covariance matrices are symmetric by construction and, for n < M , positive definite almost

surely. Since by sampling sparsely we disregard a lot of data, we refine the estimator by

subsampling. With ∆ = 300 seconds, we construct 30 regularly ∆-spaced subgrids starting

at seconds 1, 11, 21, . . . , 291, compute the realized covariance matrix on each subgrid and

take the average. The resulting subsampled realized covariance is much more robust to

the so called market microstructure noise than the simple 5-minute based one. Given the

high liquidity of all the stocks and the very recent sample, we are confident that the effect

of non-synchronicity is rather mild at the chosen frequency. In order to avoid the noise

2We are grateful to Asger Lunde for providing us with the data.
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induced by measuring the overnight volatility as the squared overnight return we apply

all models to open-to-close data and measure the volatility over the trading session. Table

B.2 in Appendix B reports summary statistics of realized variances and covariances of

the six stocks considered in the study. As already documented in Andersen, Bollerslev,

Diebold & Ebens (2001), both realized variance and covariance distributions are extremely

right skewed and leptokurtic.

It is important to emphasize that the sparse sampling realized covariance estimator can

only lead to positive definite estimates for the covariance matrix as long as the number

of intradaily returns (here M = 78) is larger than the number of assets (here n = 6).

The HF data models presented below are thus only applicable if this condition is satisfied.

The MF model does not involve this restriction making it much more suitable for larger

dimensional systems.

The six daily realized variance series are given by the diagonal elements of the realized co-

variance (RCov) matrix defined above. Please note the distinction we make here between

realized variance (RV ) and its square root, for which we use the term realized volatili-

ties (RV ol). The series of daily realized correlation matrices RCorrt are computed from

RCovt in the usual way.

3.2 Forecasting Models

In this section we elaborate on the implementation of the three forecasting models intro-

duced in Section 2.

The mixed-frequency (MF) model

The covariance matrix forecast from the MF approach is given by:

Σ̂MF
t+1|t = D̂H

t+1|tR̂
L
t+1|tD̂

H
t+1|t, (18)

where D̂H
t+1|t = diag(RV ol1,t+1|t, RV ol2,t+1|t, RV ol3,t+1|t, RV ol4,t+1|t, RV ol5,t+1|t, RV ol6,t+1|t)

and RV oli,t+1|t, i = 1 . . . , 6 are volatility forecasts from the following ARFIMA(1,d,1)

model:

(1 − φiL)diRV ol∗i,t = (1 − θiL)εi,t, εi,t ∼ N(0, ωi), (19)

where RV ol∗i,t are the demeaned series of daily realized volatilities, φi and θi are the AR

and MA parameters and di is the parameter of fractional integration. The RV ol∗i,t series

12



are stationary and invertible as long as di < 0.5, −1 < φi < 1 and −1 < θi < 1. R̂L
t+1|t is

the correlation matrix forecast derived from the dynamic correlation (DCC) approach of

Engle (2002) estimated on daily data as follows:

RL
t = (diag(QL

t ))−
1

2 QL
t (diag(QL

t ))−
1

2 (20)

QL
t = (1 − θ1 − θ2)Q̄

L + θ1ut−1u
′
t−1 + θ2Q

L
t−1,

where ut is the vector of de-volatilized residuals with elements

ui,t =
ǫi,t

RV oli,t
, i = 1, . . . , 6,

and Q̄L is the unconditional covariance of ut. Furthermore, we assume that the conditional

mean of daily returns is constant, ri,t = E[ri,t|Ft−1]+ǫi,t = µi+ǫi,t and estimate the model

in Equation (20) on the demeaned series of daily returns. Note that we standardize the

daily returns here by realized volatilities, rather than by GARCH volatilities as in the

standard implementation of the DCC. In the theoretical section of the paper, we treated

correlation errors from the MF and the LF model as identical. In fact, the standardization

by RV ol is likely to improve upon the correlation model and is a secondary channel

through which HF data leads to improvements. In this sense, the theoretical results on

the conditions for the MF model to outperform the LF model are too conservative since

they do not take into account these additional gains.

The low frequency (LF) model

The covariance matrix forecasts with daily data are obtained with the DCC model of

Engle (2002):

Σ̂LF
t+1|t = D̂L

t+1|tR̂
L
t+1|tD̂

L
t+1|t (21)

where D̂L
t+1|t = diag(h

1/2
1,t+1|t . . . h

1/2
6,t+1|t) and hi,t+1|t are forecasts from the GARCH(1,1)

model

hi,t = wi + αiǫ
2
i,t−1 + βihi,t−1 ∀i = 1, . . . , 6 (22)

with wi, αi, βi ≥ 0 and αi +βi < 1, ∀i = 1, . . . , 6. The correlation forecast R̂L
t+1|t is given in

Equation (20), however, importantly, the standardized (de-volatilized) residuals are now

13



given by

ui,t =
ǫi,t
√

hi,t

, i = 1, . . . , 6.

The high frequency (HF) model

The covariance matrix forecasts stemming from high-frequency data model are given by:

Σ̂HF
t+1|t = D̂H

t+1|tR̂
H
t+1|tD̂

H
t+1|t (23)

where D̂H
t+1|t are obtained in the same manner as in the MF model and R̂H

t+1|t is given by:

R̂H
t+1|t =

(

1 −
t
∑

l=1

λ̂l

)

R̄Corr +
t
∑

l=1

λ̂lR̃Corrt−l+1, (24)

where RCorrt is the realized correlation matrix implied by RCovt, R̄Corr = 1
t

∑t
i=1 RCorri,

R̃Corrt = RCorrt−R̄Corr and λl is the sequence of coefficients of a pure AR-representation

of the following vector ARFIMA(1,d,1) model:

(1 − φL)D(L)Xt = (1 − θL)ζt, ζt ∼ N(0, Ω), (25)

where Xt is the vector obtained by stacking the lower triangular portion of R̃Corrt without

the main diagonal and D(L) = (1 − L)dIm, where m is the number of correlation series

m = n(n − 1)/2. For comparison purposes and in order to integrate the new mixing ap-

proach in the current literature, we consider additionally the multivariate volatility model

introduced by Chiriac & Voev (2010), who apply a VARFIMA model on the Cholesky

factors of daily realized covariance matrices. This approach may be considered as an al-

ternative to the HF model described in this section with a different model specification

than the one in Equation (23). We will refer to this model as the HF2 model in the sequel.

3.3 Forecast Evaluation

We split the whole sample of data into an in-sample period from 01.01.2000 to 31.12.2005

(1508 days) and an out-of-sample period from 01.01.2006 to 30.07.2008 (648 days). The

forecasts are carried out in a recursive manner, i.e., at each step the models are re-

estimated with all of the available data.
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Table 1 reports some statistics on the MSE of variance and covariance forecasts across

the stocks and pairs of stocks for all four approaches. It is evident in the table that the

MF approach leads to the smallest forecast MSE both for the variance and the covariance

series. Of course the statistics of the MSE of variance forecast errors are identical for the

MF and the HF model since both approaches use the same data and model specification

to forecast daily volatilities. Due to the precise measurement of volatilities based on high

frequency data and their long memory specification, the MF and the HF models provide

a clear improvement in the variance forecast when compared to the DCC (the LF) model,

which uses daily data and the GARCH variance specification. The improvements of

the MF in forecasting covariances is also substantial compared to the LF model. It is

reassuring that the MF model provides some improvements over the HF models even in

such a small system with only six assets for which we expect that realized correlations are

well estimated and modelled. Clearly, one can argue that the correlation dynamics are

not well specified in the HF models. While this might be the case, the model specification

in Equations (24) – (25) is clearly not inferior in terms of flexibility to the DCC model.

Furthermore, the extant literature in the field does not provide many alternatives.

In order to have an idea of the matrix-wise error of the models, we also compute a MSE

criterion based on the Frobenius norm of the matrix error term Σt+1 − Σ̂t+1|t.
3 which is

2.885 for the MF model and thus much smaller than for the LF model (4.625) and the

HF2 model (3.012), but only slightly smaller than for the HF model (2.896). These results

should be viewed in the light of the considerable simplicity of the MF model compared

to the HF models. Furthermore, as mentioned above, HF models use realized covariance

matrices, which can become rank-deficient with many assets. The MF approach does not

suffer from this limitation.

Model
Variances Covariances

min median mean max min median mean max

MF 0.915 4.576 5.577 12.040 0.259 1.132 1.808 6.483
LF 1.208 7.469 9.126 19.746 0.337 1.582 2.824 10.591
HF 0.915 4.576 5.577 12.040 0.256 1.180 1.823 6.524
HF2 0.947 4.800 5.970 12.866 0.259 1.197 1.828 6.572

Table 1: Descriptive statistics across stocks (for the variance) and pairs of stocks (for the covari-
ance) of the MSE of variance and covariance forecast errors.

3The Frobenius norm of a real m × n matrix A is defined as ||A|| =
∑m

i=1

∑n

j=1
a2

ij .
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Figure 1: Estimates of the quadratic polynomial in Equation (14).

In the following, we report some empirical results on the necessary and sufficient conditions

for the superiority of the MF approach, derived in Proposition 1. The average (across the

stocks) estimates of the parameters A1,i ≡ V [εH
di

] − V [εL
di

], A2,i ≡ E[(εH
di

)3] − E[(εL
di

)3]

and A3,i ≡ E[(εH
di

)4] − E[(εL
di

)4] from Equation (14) are
¯̂
A1 = −0.136,

¯̂
A2 = 0.140 and

¯̂
A3 = −0.588. Although on average the three parameters do not fulfill the sufficient

conditions of Proposition 1 (to be negative), they fulfill the necessary conditions presented

in Appendix A (see case 3 in the proof). These empirically validated conditions are very

intuitive: on average, one expects a gain in the variance (efficiency) and in the kurtosis

of volatility forecasts stemming from HF data compared to LF data, while there are no

particular reasons for asymmetric forecast errors (skewness almost zero). The sign and

relative magnitude of the estimated average parameters reported above confirm these

expectations. Thus the MSE of the variance forecasts stemming from high frequency data

is smaller than the one stemming from low frequency data due to a larger gain in the

efficiency and in the kurtosis of the HF forecast errors.

In Figure 1 we plot the polynomial from Equation (14) for a wide range of values for di,

i.e, di = [0, 1.2], where the upper limit is chosen to correspond to an annualized standard

deviation of approximately 20%. One may observe that for all values of d and all stocks,

16



the parabola lies under the zero line, which indicates that the HF data based models

provide smaller variance mean squared forecast errors than the LF models.

Next, we verify empirically the conditions of Proposition 3 on the MSE inequalities of

covariance forecasts. We choose to discuss Proposition 3 rather than Proposition 2 because

the former allows for a more general dependence across forecast errors. We plot the

estimated polynomials from Proposition 3, F̂1(di, dj, ρij) and F̂2(di, dj, ρij) for di = [0, 1.2]

and dj = [0, 1.2] and for different values of ρij : e.g., for three of the 15 covariance pairs

and ρij = 0.3 in Figures 2 and 3, respectively. The plots for the rest of the covariance

pairs as well as for other values of the correlation coefficient (ρij = −0.3 and ρij = 0.9)

can be found in Appendix B, Figures B.1 – B.6. The choice of ρij is motivated by the

descriptive statistics of the realized correlations over the whole window: on average, the

daily realized correlation among all stocks is around 0.3, the maximum is around 0.9 and

the minimum is around −0.3.

Figure 2 depicts the behavior of F̂1(di, dj, ρij) for three of the covariance pairs for the

average value of ρij = 0.3. As one may notice, compared to the LF model, the MF model

provides large MSE improvements in particular for large values of the volatilities. This

indicates that the MF approach is especially attractive in a highly volatile environment.

However, during volatile periods, the correlations also tend to be large. In this scenario,

the MSE gains of the MF model are even stronger – Figure B.2 in Appendix B presents

the case in focus with ρij = 0.9. Generally, we observe that for positive correlations the

polynomial surfaces lie under the zero surface for all pair of stocks in the whole range of

volatilities. Interestingly, the slope of the MSE difference surfaces reverses for negative

correlation. As figure B.3 shows, for ρij = −0.3, the surface lies above zero for large values

of volatilities.
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Figure 2: Estimates of the quadratic polynomial in Equation (15) for the stock pairs C-AXP
(left), GE-AXP (middle) and GE-C (right) with ρ = 0.3. The red surface indicates the zero limit.

17



Although theoretically possible, negative correlations in the stock market are very un-

likely; in our sample negative correlation days are on average (across stock pairs) about

1% of the total number of 2165 days. Given that the polynomial parameter estimates are

based on 99% data with positive correlations, they are hardly representative of this sce-

nario. Moreover, the empirical evidence shows that days of low and negative correlations

correspond to days of low volatility, while high volatility drives high correlations. There-

fore, the empirically relevant portion of Figure B.3 is in the lower right corner, indicating

better performance of the MF model against the LF model.

Figure 3 features plots of F̂2(di, dj, ρij) for three of the covariance pairs for the average

value of ρij = 0.3. Similarly to the previous results, for an average correlation, the

choice of the MF model over the HF models is particulary reasonable during periods of

high volatility. This result is more pronounced during periods of high correlations which

are also typically characterized by high volatilities (see Figure B.5 in Appendix B for

ρij = 0.9). As in the MF to LF model comparison, the behavior changes for negative

correlations (see Figure B.6 in Appendix B for ρij = −0.3). As argued above, however,

the empirical irrelevance of negative stock correlations and the lack of representativeness

of the estimated parameters in this case imply that these results are not very reliable.

A clear strength of the HF models considered in this study is that they model correlations

as a long-memory process, which is empirically justified. The MF model on the contrary

employs a standard DCC specification which cannot account for long-memory type of

dynamics. In this respect, the HF models are more flexible and not directly comparable

to the MF model. Arguably, a more versatile correlation specification can improve the

performance of the MF model. We leave this research direction open for now.
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4 Conclusion

In this paper, we introduce a new methodology for forecasting multivariate volatility of

possibly large dimensions by mixing forecasts stemming from daily and high frequency

data. It consists of decomposing the covariance matrix of returns into a diagonal volatility

matrix and a correlation matrix and predicting each of these matrices using data sampled

at different frequencies. We forecast daily volatilities using univariate autoregressive frac-

tionally integrated moving average models for the time series of daily realized volatilities.

Correlations are modeled with the DCC model of Engle (2002) applied on daily returns

standardized by realized volatility. This methodology provides an intuitive mixture of

volatility and correlation forecasts by simultaneously exploiting the advantages of using

high-frequency data to precisely measure daily volatilities and the advantages of using

a DCC-type framework for forecasting correlation matrices. In terms of estimation, the

new approach is easy to implement since it only requires estimation of univariate series

of daily realized volatilities and a single estimation of the DCC model. In the theoretical

section of the paper, we derive the conditions under which the new model outperforms

the single-frequency forecasting approaches in terms of forecast mean squared error. Al-

though seemingly cumbersome, the relevant theoretical conditions are easily verifiable in

empirical work. In our application, we show that forecasting the covariance matrix of a

portfolio of six highly liquid stocks traded on NYSE by means of the mixing approach

provides smaller mean squared errors compared to the single-frequency models. Moreover,

the empirical results show that the benefits of using the new method to forecast covariance

matrices are particulary large during turbulent, highly volatile periods. In further work,

we plan to consider a larger universe of assets in order to fully demonstrate the power of

the proposed methodology.
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A Appendix

In this appendix, in order to keep notational burden at a minimum, whenever we do not index
variables by superscripts for models (MF,LF,HF ) or data frequency (H,L), it means that the
equation holds for any model/data frequency.

Preliminaries
We have that:

E[εσii
] = 2diE[εdi

] + E[ε2
di

]

E[εσij
] = diρijE[εdj

] + djρijE[εdi
] + didjE[ερij

] + diE[εdj
ερij

] + djE[εdi
ερij

]

+ ρijE[εdi
εdj

] + E[εdi
ερij

εdj
]

V [εσii
] = V [2diεdi

+ ε2
di

] = 4d2
i V [εdi

] + V [ε2
di

] + 4diCov[εdi
, ε2

di
]

= 4d2
i V [εdi

] + (E[ε4
di

] − E[ε2
di

]2) + 4di(E[ε3
di

] − E[εdi
]E[ε2

di
])

V [εσij
] = d2

i ρ
2
ijV [εdj

] + d2
jρ

2
ijV [εdi

] + d2
i d

2
jV [ερij

] + d2
i V [εdj

ερij
] + d2

jV [εdi
ερij

]

+ ρ2
ijV [εdi

εdj
] + V [εdi

ερij
εdj

]

+ 2didjρ
2
ijCov[εdi

, εdj
] + 2d2

i djρijCov[εdj
, ερij

] + 2did
2
jρijCov[εdi

, ερij
]

+ 2didjρijCov[εdi
, εdj

ερij
] + 2d2

jρijCov[εdi
, εdi

ερij
] + 2djρ

2
ijCov[εdi

, εdi
εdj

]

+ 2didjρijCov[εdj
, εdi

ερij
] + 2d2

i ρijCov[εdj
, εdj

ερij
] + 2diρ

2
ijCov[εdj

, εdi
εdj

]

+ 2d2
i djCov[ερij

, εdj
ερij

] + 2did
2
jCov[ερij

, εdi
ερij

] + 2didjρijCov[ερij
, εdi

εdj
]

+ 2diρijCov[εdj
, εdi

ερij
εdj

] + 2djρijCov[εdi
, εdi

ερij
εdj

] + 2didjCov[ερij
, εdi

ερij
εdj

]

+ 2didjCov[εdj
ερij

, εdi
ερij

] + 2diρijCov[εdj
ερij

, εdi
εdj

] + 2djρijCov[εdi
ερij

, εdi
εdj

]

+ 2diCov[εdj
ερij

, εdi
ερij

εdj
] + 2djCov[εdi

ερij
, εdi

ερij
εdj

] + 2ρijCov[εdi
εdj

, εdi
ερij

εdj
].

Proof A.1 (Proposition 1):
Under the unbiasedness assumption E[εX

di
] = 0, for X ∈ {H,L}, we have that

E[εσii
] = 2diE[εdi

] + E[ε2
di

] = V [εdi
].

Thus the MSE of σ̂ii is given by

MSE(σ̂ii) = E[εσii
]2 + V [εσii

] = V [εdi
]2 + 4d2

i V [εdi
] + E[ε4

di
] − V [εdi

]2 + 4diE[ε3
di

]

= 4d2
i V [εdi

] + E[ε4
di

] + 4diE[ε3
di

]

It follows that

MSE(σ̂MF
ii ) − MSE(σ̂LF

ii ) = 4d2
i

(

V [εH
di

] − V [εL
di

]
)

+ E[(εH
di

)4] − E[(εL
di

)4] + 4di

(

E[(εH
di

)3] − E[(εL
di

)3]
)

.

Let

A1,i ≡ V [εH
di

] − V [εL
di

], A2,i ≡ E[(εH
di

)3] − E[(εL
di

)3], A3,i ≡ E[(εH
di

)4] − E[(εL
di

)4] (26)
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Then we have that

MSE(σ̂MF
ii ) − MSE(σ̂LF

ii ) = 4A1,id
2
i + 4A2,idi + A3,i. (27)

Clearly, V [εH
di

]− V [εL
di

] ≤ 0, E[(εH
di

)3]− E[(εL
di

)3] ≤ 0 and E[(εH
di

)4]−E[(εL
di

)4] ≤ 0 are sufficient

conditions for MSE(σ̂MF
ii ) ≤ MSE(σ̂LF

ii ) since di ≥ 0. To verify the necessary and sufficient
conditions, consider that 4A1,id

2
i + 4diA2,i + A3,i ≤ 0 if and only if

1. A1,i = 0, and di ≤ −
A3,i

4A2,i
or

2. A1,i > 0, A2
2,i − A1,iA3,i > 0 and di ∈ [d1,i, d2,i] where d1/2,ij =

−A2,i∓
√

A2

2,i
−A1,iA3,i

2A1,i
or

3. A1,i < 0 and if either

3.1 A2
2,i − A1,iA3,i ≤ 0 or

3.2 A2
2,i − A1,iA3,i > 0 and di /∈ (d1,i, d2,i) where d1/2,ij =

−A2,i∓
√

A2

2,i
−A1,iA3,i

2A1,i
.

The following table summarizes the necessary and sufficient conditions for MSE(σ̂MF
ii ) ≤

MSE(σ̂LF
ii ) taking into account that di ≥ 0:

A1,i A2,i A3,i di

≤ 0 ≤ 0 ≤ 0 ∀di

> 0 ≤ 0 ≤ 0 di ≤
−A2,i+

√

A2

2,i
−A1,iA3,i

2A1,i

≤
A2

2,i

A3,i
> 0 ≤ 0 ∀di

0 > A1,i >
A2

2,i

A3,i
> 0 ≤ 0 0 ≤ di ≤

−A2,i−
√

A2

2,i
−A1,iA3,i

2A1,i
, di ≥

−A2,i+
√

A2

2,i
−A1,iA3,i

2A1,i

= 0 > 0 ≤ 0 0 ≤ di ≤ −
A3,j

4A2,i

> 0 > 0 ≤ 0 0 ≤ di ≤
−A2,i+

√

A2

2,i
−A1,iA3,i

2A1,i

≥ 0 ≥ 0 = 0 di = 0

< 0 < 0 > 0 di ≥
−A2,i+

√

A2

2,i
−A1,iA3,i

2A1,i

= 0 < 0 > 0 di ≥ −
A3,i

4A2,i

0 < A1,i ≤
A2

2,i

A3,i
< 0 > 0

−A2,i−
√

A2

2,i
−A1,iA3,i

2A1,i
≤ di ≤

−A2,i+
√

A2

2,i
−A1,iA3,i

2A1,i

< 0 ≥ 0 ≥ 0 di ≥
−A2,i+

√

A2

2,i
−A1,iA3,i

2A1,i

�
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Proof A.2 (Proposition 2):
Under the assumptions of Proposition 2, E[εMF

σij
] = E[εLF

σij
] = E[εHF

σij
] = 0, and the variances of

the forecasting errors of the three models are given by:

V [εMF
σij

] = d2
i ρ

2
ijV [εH

dj
] + d2

jρ
2
ijV [εH

di
] + d2

i d
2
jV [εL

ρij
] + d2

i V [εH
dj

εL
ρij

] + d2
jV [εH

di
εL
ρij

]

+ ρ2
ijV [εH

di
εH
dj

] + V [εH
di

εL
ρij

εH
dj

]

= d2
i ρ

2
ijV [εH

dj
] + d2

jρ
2
ijV [εH

di
] + d2

i d
2
jV [εL

ρij
] + d2

i V [εH
dj

]V [εL
ρij

] + d2
jV [εH

di
]V [εL

ρij
]

+ ρ2
ijV [εH

di
]V [εH

dj
] + V [εH

di
]V [εL

ρij
]V [εH

dj
]

V [εLF
σij

] = d2
i ρ

2
ijV [εL

dj
] + d2

jρ
2
ijV [εL

di
] + d2

i d
2
jV [εL

ρij
] + d2

i V [εL
dj

εL
ρij

] + d2
jV [εL

di
εL
ρij

]

+ ρ2
ijV [εL

di
εL
dj

] + V [εL
di

εL
ρij

εL
dj

]

= d2
i ρ

2
ijV [εL

dj
] + d2

jρ
2
ijV [εL

di
] + d2

i d
2
jV [εL

ρij
] + d2

i V [εL
dj

]V [εL
ρij

] + d2
jV [εL

di
]V [εL

ρij
]

+ ρ2
ijV [εL

di
]V [εL

dj
] + V [εL

di
]V [εL

ρij
]V [εL

dj
]

V [εHF
σij

] = d2
i ρ

2
ijV [εH

dj
] + d2

jρ
2
ijV [εH

di
] + d2

i d
2
jV [εH

ρij
] + d2

i V [εH
dj

εH
ρij

] + d2
jV [εH

di
εH
ρij

]

+ ρ2
ijV [εH

di
εH
dj

] + V [εH
di

εH
ρij

εH
dj

]

= d2
i ρ

2
ijV [εH

dj
] + d2

jρ
2
ijV [εH

di
] + d2

i d
2
jV [εH

ρij
] + d2

i V [εH
dj

]V [εH
ρij

] + d2
jV [εH

di
]V [εH

ρij
]

+ ρ2
ijV [εH

di
]V [εH

dj
] + V [εH

di
]V [εH

ρij
]V [εH

dj
]

Let

B1,i ≡ V [εH
di

] − V [εL
di

]

B1,j ≡ V [εH
dj

] − V [εL
dj

]

B2,ij ≡ V [εH
di

]V [εH
dj

] − V [εL
di

]V [εL
dj

]

B3,ij ≡ d2
jB1,i + d2

i B1,j + B2,ij

B4,ij ≡ d2
i d

2
j + d2

jV [εH
di

] + d2
i V [εH

dj
] + V [εH

di
]V [εH

dj
]

Then for a given i 6= j, we can write:

1. MSE(σ̂MF
ij ) − MSE(σ̂LF

ij ) = {ρ2
ij + V [εL

ρij
]}B3,ij .

clearly, a set of sufficient conditions for MSE(σ̂1
ij) ≤ MSE(σ̂2

ij) is that V [εH
di

] ≤ V [εL
di

] and

V [εH
dj

] ≤ V [εL
dj

]. Considering necessary and sufficient conditions, since ρ2
ij + V [εL

ρij
] ≥ 0,

MSE(σ̂MF
ij ) ≤ MSE(σ̂LF

ij ) if and only if

B3,ij = d2
j

(

V [εH
di

] − V [εL
di

]
)

+ d2
i

(

V [εH
dj

] − V [εL
dj

]
)

+
(

V [εH
di

]V [εH
dj

] − V [εL
di

]V [εL
dj

]
)

≤ 0,

which holds if and only if either:

1. B1,i = B1,j = 0 and B2,ij ≤ 0 or

25



2. B1,i = 0 and B1,jd
2
i + B2,ij ≤ 0, which holds if either

(a) B1,j > 0 and −B1,jB2,ij > 0 ⇔ B2,ij < 0 and di ∈ [d1,i, d2,i] where d1/2,i = ∓
√

−B2,ij

B1,j

or

(b) B1,j < 0 and −B1,jB2,ij > 0 ⇔ B2,ij > 0 and di /∈ (d1,i, d2,i) where d1/2,i are given
in condition 2.(a) from above, or

(c) B1,j < 0 and −B1,jB2,ij ≤ 0 ⇔ B2,ij ≤ 0

or

3. B1,i > 0 and −B1,i(B1,jd
2
i + B2,ij) > 0 ⇔ B1,jd

2
i + B2,ij < 0, which holds if either

one of the conditions 2.(a)-2.(c) from above holds and dj ∈ [d1,j , d2,j ] where d1/2,j =

∓

√

−(B1,jd2

i
+B2,ij )

B1,i
or

4. B1,i < 0 and either

(a) −B1,i(B1,jd
2
i + B2,ij) ≤ 0 ⇔ B1,jd

2
i + B2,ij ≤ 0, which holds if either one of the

conditions 2.(a)-2.(c) from above holds or

(b) −B1,i(B1,jd
2
i +B2,ij) > 0 ⇔ B1,jd

2
i +B2,ij > 0, which holds if neither of the conditions

2.(a)-2.(c) from above holds and dj /∈ (d1,j , d2,j) where d1/2,j are given in condition
3 from above.

The following table summarizes the necessary and sufficient conditions for MSE(σ̂MF
ij ) ≤

MSE(σ̂LF
ij ):

B1,i B1,j B2,ij di, dj

≤ 0 ≤ 0 ≤ 0 ∀di, ∀dj

0 > 0 ≤ 0 ∀di, dj ≤
√

−
B2,ij

B1,j

> 0 0 ≤ 0 di ≤
√

−
B2,ij

B1,i
, ∀dj

0 < 0 ≥ 0 ∀di, dj ≥
√

−
B2,ij

B1,j

< 0 0 ≥ 0 di ≥
√

−
B2,ij

B1,i
, ∀dj

> 0 > 0 ≤ 0 di ≤

√

−
(B1,jd2

j
+B2,ij)

B1,i
, dj ≤

√

−
B2,ij

B1,j

> 0 < 0 ≥ 0 di ≤

√

−
(B1,jd2

j
+B2,ij)

B1,i
, dj ≥

√

−
B2,ij

B1,j

< 0 > 0 ≥ 0 di ≥
√

−
B2,ij

B1,i
, dj ≤

√

−
(B1,id2

i
+B2,ij )

B1,j

> 0 < 0 ≤ 0 di ≤

√

−
(B1,jd2

j
+B2,ij)

B1,i
, ∀dj

< 0 > 0 ≤ 0 ∀di, dj ≤

√

−
(B1,id2

i
+B2,ij)

B1,j

< 0 < 0 ≥ 0
∀di, dj ≥

√

−
B2,ij

B1,j

di ≥

√

−
(B1,jd2

j
+B2,ij)

B1,i
, dj <

√

−
B2,ij

B1,j
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2. MSE(σ̂MF
ij ) − MSE(σ̂HF

ij ) = {V [εL
ρij

] − V [εH
ρij

]}B4,ij

Given that B4,ij > 0, ∀di, dj , MSE(σ̂MF
ij ) ≤ MSE(σ̂HF

ij ) if and only if V [εL
ρij

] ≤ V [εH
ρij

]. �

Proof A.3 (Proposition 3):
Under the assumptions of Proposition 3, we have that:

E[εMF
σij

] = ρijE[εH
di

εH
dj

]

V [εMF
σij

] = d2
i ρ

2
ijV [εH

dj
] + d2

jρ
2
ijV [εH

di
] + d2

i d
2
jV [εL

ρij
] + d2

i V [εH
dj

]V [εL
ρij

] + d2
jV [εH

di
]V [εL

ρij
] + ρ2

ijV [εH
di

εH
dj

]

+ V [εH
di

εH
dj

]V [εL
ρij

] + 2didjρ
2
ijE[εH

di
εH
dj

] + 2djρ
2
ijE[(εH

di
)2εH

dj
] + 2diρ

2
ijE[εH

di
(εH

dj
)2]

+ 4didjE[εH
di

εH
dj

]V [εL
ρij

] + 2diE[εH
di

(εH
dj

)2]V [εL
ρij

] + 2djE[(εH
di

)2εH
dj

]V [εL
ρij

]

E[εLF
σij

] = diE[εL
dj

εL
ρij

] + djE[εL
di

εL
ρij

] + ρijE[εL
di

εL
dj

] + E[εL
di

εL
ρij

εL
dj

]

V [εLF
σij

] = d2
i ρ

2
ijV [εL

dj
] + d2

jρ
2
ijV [εL

di
] + d2

i d
2
jV [εL

ρij
] + d2

i V [εL
dj

εL
ρij

] + d2
jV [εL

di
εL
ρij

] + ρ2
ijV [εL

di
εL
dj

]

+ V [εL
di

εL
ρij

εL
dj

] + 2didjρ
2
ijE[εL

di
εL
dj

] + 2d2
i djρijE[εL

dj
εL
ρij

] + 2did
2
jρijE[εL

di
εL
ρij

]

+ 6didjρijE[εL
di

εL
ρij

εL
dj

] + 2d2
jρijE[(εL

di
)2εL

ρij
] + 2djρ

2
ijE[(εL

di
)2εL

dj
] + 2d2

i ρijE[(εL
dj

)2εL
ρij

]

+ 2diρ
2
ijE[εL

di
(εL

dj
)2] + 2d2

i djE[(εL
ρij

)2εL
dj

] + 2did
2
jE[εL

di
(εL

ρij
)2] + 4diρijE[εL

di
εL
ρij

(εL
dj

)2]

+ 4djρijE[(εL
di

)2εL
ρij

εL
dj

] + 4didjE[εL
di

(εL
ρij

)2εL
dj

] − 2didjE[εL
dj

εL
ρij

]E[εL
di

εL
ρij

]

− 2diρijE[εL
dj

εL
ρij

]E[εL
di

εL
dj

] − 2djρijE[εL
di

εL
ρij

]E[εL
di

εL
dj

] + 2diE[εL
di

(εL
ρij

)2(εL
dj

)2]

− 2diE[εL
ρij

εL
dj

]E[εL
di

εL
ρij

εL
dj

] + 2djE[(εL
di

)2(εL
ρij

)2εL
dj

] − 2djE[εL
di

εL
ρij

]E[εL
di

εL
ρij

εL
dj

]

+ 2ρijE[(εL
di

)2εL
ρij

(εL
dj

)2] − 2ρijE[εL
di

εL
dj

]E[εL
di

εL
ρij

εL
dj

]

E[εHF
σij

] = diE[εH
dj

εH
ρij

] + djE[εH
di

εH
ρij

] + ρijE[εH
di

εH
dj

] + E[εH
di

εH
ρij

εH
dj

]

V [εHF
σij

] = d2
i ρ

2
ijV [εH

dj
] + d2

jρ
2
ijV [εH

di
] + d2

i d
2
jV [εH

ρij
] + d2

i V [εH
dj

εH
ρij

] + d2
jV [εH

di
εH
ρij

] + ρ2
ijV [εH

di
εH
dj

]

+ V [εH
di

εH
ρij

εH
dj

] + 2didjρ
2
ijE[εH

di
εH
dj

] + 2d2
i djρijE[εH

dj
εH
ρij

] + 2did
2
jρijE[εH

di
εH
ρij

]

+ 6didjρijE[εH
di

εH
ρij

εH
dj

] + 2d2
jρijE[(εH

di
)2εH

ρij
] + 2djρ

2
ijE[(εH

di
)2εH

dj
] + 2d2

i ρijE[(εH
dj

)2εH
ρij

]

+ 2diρ
2
ijE[εH

di
(εH

dj
)2] + 2d2

i djE[(εH
ρij

)2εH
dj

] + 2did
2
jE[εH

di
(εH

ρij
)2] + 4diρijE[εH

di
εH
ρij

(εH
dj

)2]

+ 4djρijE[(εH
di

)2εH
ρij

εH
dj

] + 4didjE[εH
di

(εH
ρij

)2εH
dj

] − 2didjE[εH
dj

εH
ρij

]E[εH
di

εH
ρij

]

− 2diρijE[εH
dj

εH
ρij

]E[εH
di

εH
dj

] − 2djρijE[εH
di

εH
ρij

]E[εH
di

εH
dj

] + 2diE[εH
di

(εH
ρij

)2(εH
dj

)2]

− 2diE[εH
ρij

εH
dj

]E[εH
di

εH
ρij

εH
dj

] + 2djE[(εH
di

)2(εH
ρij

)2εH
dj

] − 2djE[εH
di

εH
ρij

]E[εH
di

εH
ρij

εH
dj

]

+ 2ρijE[(εH
di

)2εH
ρij

(εH
dj

)2] − 2ρijE[εH
di

εH
dj

]E[εH
di

εH
ρij

εH
dj

]

In order to compute the corresponding MSE’s we need the expression for the squared bias, which
are given by
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E[εMF
σij

]2 = ρ2
ijE[εH

di
εH
dj

]2

E[εLF
σij

]2 = d2
i E[εL

dj
εL
ρij

]2 + d2
jE[εL

di
εL
ρij

]2 + ρ2
ijE[εL

di
εL
dj

]2 + E[εL
di

εL
ρij

εL
dj

]2

+ 2didjE[εL
dj

εL
ρij

]E[εL
di

εL
ρij

] + 2diρijE[εL
dj

εL
ρij

]E[εL
di

εL
dj

] + 2diE[εL
dj

εL
ρij

]E[εL
di

εL
ρij

εL
dj

]

+ 2djρijE[εL
di

εL
ρij

]E[εL
di

εL
dj

] + 2djE[εL
di

εL
ρij

]E[εL
di

εL
ρij

εL
dj

] + 2ρijE[εL
di

εL
dj

]E[εL
di

εL
ρij

εL
dj

]

E[εHF
σij

]2 = d2
i E[εH

dj
εH
ρij

]2 + d2
jE[εH

di
εH
ρij

]2 + ρ2
ijE[εH

di
εH
dj

]2 + E[εH
di

εH
ρij

εH
dj

]2

+ 2didjE[εH
dj

εH
ρij

]E[εH
di

εH
ρij

] + 2diρijE[εH
dj

εH
ρij

]E[εH
di

εH
dj

] + 2diE[εH
dj

εH
ρij

]E[εH
di

εH
ρij

εH
dj

]

+ 2djρijE[εH
di

εH
ρij

]E[εH
di

εH
dj

] + 2djE[εH
di

εH
ρij

]E[εH
di

εH
ρij

εH
dj

] + 2ρijE[εH
di

εH
dj

]E[εH
di

εH
ρij

εH
dj

].

Combining terms of the same order, we obtain that:

MSE(σ̂MF
ij ) − MSE(σ̂LF

ij ) = C1,jρ
2
ijd

2
i + C2,iρ

2
ijd

2
j + C3,ijρ

2
ijdidj + C4,ijρijd

2
i dj + C5,ijρijdid

2
j

+ C6,ijρ
2
ijdi + C7,ijρ

2
ijdj + C8,ijρijdidj + C9,ijρijd

2
i + C10,ijρijd

2
j + C11,ijd

2
i dj

+ C12,ijdid
2
j + C13,ijρijdi + C14,ijρijdj + C15,ijdidj + C16,ijρ

2
ij + C17,ijd

2
i

+ C18,ijd
2
j + C19,ijρij + C20,ijdi + C21,ijdj + C22,ij (28)

≡ F1(di, dj , ρij), (29)

where

C1,j = V [εH
dj

] − V [εL
dj

]

C2,i = V [εH
di

] − V [εL
di

]

C3,ij = 2
(

E[εH
di

εH
dj

] − E[εL
di

εL
dj

]
)

C4,ij = −2E[εL
dj

εL
ρij

]

C5,ij = −2E[εL
di

εL
ρij

]

C6,ij = 2
(

E[εH
di

(εH
dj

)2] − E[εL
di

(εL
dj

)2]
)

C7,ij = 2
(

E[(εH
di

)2εH
dj

] − E[(εL
di

)2εL
dj

)]
)

C8,ij = −6E[εL
di

εL
ρij

εL
dj

]

C9,ij = −2E[(εL
dj

)2εL
ρij

]

C10,ij = −2E[(εL
di

)2εL
ρij

]

C11,ij = −2E[εL
dj

(εL
ρij

)2]

C12,ij = −2E[εL
di

(εL
ρij

)2]

C13,ij = −4E[εL
di

εL
ρij

(εL
dj

)2]

C14,ij = −4E[(εL
di

)2εL
ρij

εL
dj

]

C15,ij = 4
(

E[εH
di

εH
dj

]V [εL
ρij

] − E[εL
di

(εL
ρij

)2εL
dj

]
)

C16,ij = E[(εH
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Furthermore, the difference between the MSE’s of the MF and the HF model is given by

MSE(σ̂MF
ij ) − MSE(σ̂HF
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2
i d

2
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B Appendix

Stock Mean Max Min Std. dev. Skewness Kurtosis
5-minute returns

AXP 0.000 0.054 -0.034 0.0021 0.353 22.679
C -0.100 0.060 -0.048 0.0022 0.235 24.834
GE -0.050 0.039 -0.029 0.0018 0.257 15.937
HD -0.061 0.033 -0.029 0.0021 0.078 12.680
IBM 0.080 0.074 -0.022 0.0017 0.849 36.369
JPM 0.039 0.056 -0.051 0.0023 0.198 22.785

Daily returns
AXP 0.004 0.094 -0.093 0.186 -0.049 5.917
C -7.829 0.159 -0.130 0.179 0.312 10.732
GE -3.911 0.099 -0.083 0.154 0.213 6.687
HD -4.770 0.120 -0.086 0.184 0.466 6.369
IBM 6.225 0.123 -0.095 0.153 0.093 7.671
JPM 3.056 0.254 -0.164 0.203 1.258 20.051

Table B.1: Descriptive statistics of the 5-minute and daily returns over the period 01.01.2000
– 30.07.2008. The means are scaled by 104.

Stock Mean Max Min Std. dev. Skewness Kurtosis
Realized Variance

AXP 3.443 57.583 0.073 4.684 4.229 32.783
C 3.610 119.857 0.107 5.910 7.646 108.488
GE 2.429 51.402 0.103 3.174 4.904 46.966
HD 3.456 51.376 0.165 3.968 3.919 28.013
IBM 2.275 56.909 0.119 3.049 5.684 67.597
JPM 1.009 118.766 0.116 1.644 6.415 74.871

Realized Covariance
AXP-C 1.587 37.664 -0.548 2.775 5.320 46.132
AXP-GE 1.106 26.317 -1.467 1.845 5.899 58.081
AXP-HD 1.161 27.657 -2.452 1.967 5.327 47.599
AXP-IBM 0.917 23.434 -0.789 1.464 5.647 55.889
AXP-JPM 1.582 40.305 -0.975 2.812 6.098 62.128
C-GE 1.241 41.686 -0.583 2.117 7.019 91.587
C-HD 1.269 27.336 -0.928 2.175 5.019 39.512
C-IBM 1.028 36.726 -3.269 1.737 7.558 109.960
C-JPM 2.003 107.553 -0.472 3.995 11.349 245.086
GE-HD 1.040 26.852 -1.139 1.702 5.903 59.205
GE-IBM 0.901 24.054 -0.329 1.445 5.757 57.766
GE-JPM 1.197 49.23 -0.624 2.136 8.667 144.595
HD-IBM 0.875 18.318 -1.203 1.339 5.213 44.183
HD-JPM 1.233 26.399 -2.567 2.077 5.003 39.756
IBM-JPM 4.017 188.049 0.117 6.924 11.919 262.259

Table B.2: Descriptive statistics of realized variances of the six stocks. The realized variances
are calculated from 5-minute intraday returns (measured in %), as described in the main text.
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Figure B.1: Estimates of the quadratic polynomial in Equation (15) for the following stock
pairs: first row – HD-AXP (left), HD-C (middle) and HD-GE (right), second row – IBM-AXP
(left), IBM-C (middle) and IBM-GE (right), third row – IBM-HD (left), JPM-AXP (middle) and
JPM-C (right), fourth row: JPM-GE (left), JPM-HD (middle) and JPM-IBM (right) and ρ = 0.3.
The red surface indicates the zero limit.
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Figure B.2: Estimates of the quadratic polynomial in Equation (15) for the following stock pairs:
first row – C-AXP (left), GE-AXP (middle) and GE-C (third plot), second row – HD-AXP (left),
HD-C (middle) and HD-GE (right), third row – IBM-AXP (left), IBM-C (middle) and IBM-GE
(right), fourth row – IBM-HD (left), JPM-AXP (middle) and JPM-C (right), fifth row: JPM-GE
(left), JPM-HD (middle) and JPM-IBM (right) and ρ = 0.9. The red surface indicates the zero
limit.
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Figure B.3: Estimates of the quadratic polynomial in Equation (15) for the following stock pairs:
first row – C-AXP (left), GE-AXP (middle) and GE-C (third plot), second row – HD-AXP (left),
HD-C (middle) and HD-GE (right), third row – IBM-AXP (left), IBM-C (middle) and IBM-GE
(right), fourth row – IBM-HD (left), JPM-AXP (middle) and JPM-C (right), fifth row: JPM-GE
(left), JPM-HD (middle) and JPM-IBM (right) and ρ = −0.3. The red surface indicates the zero
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Figure B.4: Estimates of the quadratic polynomial in Equation (16) for the following stock
pairs: first row – HD-AXP (left), HD-C (middle) and HD-GE (third plot), second row – IBM-AXP
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Figure B.5: Estimates of the quadratic polynomial in Equation (16) for the following stock pairs:
first row – C-AXP (left), GE-AXP (middle) and GE-C (third plot), second row – HD-AXP (left),
HD-C (middle) and HD-GE (right), third row – IBM-AXP (left), IBM-C (middle) and IBM-GE
(right), fourth row – IBM-HD (left), JPM-AXP (middle) and JPM-C (right), fifth row: JPM-GE
(left), JPM-HD (middle) and JPM-IBM (right) and ρ = 0.9. The red surface indicates the zero
limit.
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Figure B.6: Estimates of the quadratic polynomial in Equation (16) for the following stock pairs:
first row – C-AXP (left), GE-AXP (middle) and GE-C (third plot), second row – HD-AXP (left),
HD-C (middle) and HD-GE (right), third row – IBM-AXP (left), IBM-C (middle) and IBM-GE
(right), fourth row – IBM-HD (left), JPM-AXP (middle) and JPM-C (right), fifth row: JPM-GE
(left), JPM-HD (middle) and JPM-IBM (right) and ρ = −0.3. The red surface indicates the zero
limit.

36



Research Papers 
2011 

 
 

 
2010-66: Ole E. Barndorff-Nielsen, David G. Pollard and Neil Shephard: 

Integer-valued Lévy processes and low latency financial 
econometrics 

 

2010-67: Shin Kanaya and Dennis Kristensen: Estimation of Stochastic 
Volatility Models by Nonparametric Filtering 

 

2010-68: Dennis Kristensen and Anders Rahbek: Testing and Inference in 
Nonlinear Cointegrating Vector Error Correction Models 

 

2010-69: Søren Johansen: The analysis of nonstationary time series using 
regression, correlation and cointegration –with an application to 
annual mean temperature and sea level 

 

2010-70: Søren Johansen and Morten Ørregaard Nielsen: A necessary moment 
condition for the fractional functional central limit theorem 

 

2010-71: Nektarios Aslanidis and Isabel Casas : Modelling asset correlations 
during the recent financial crisis: A semiparametric approach 

 

2010-72: Søren Johansen and Katarina Juselius: An invariance property of the 
common trends under linear transformations of the data 

 

2010-73: Peter Sandholt Jensen and Allan H. Würtz: Estimating the effect of a 
variable in a high-dimensional regression model 

 

2010-74: Peter R. Hansen, Asger Lunde and Valeri Voev: Realized Beta GARCH: 
A Multivariate GARCH Model with Realized Measures of Volatility and 
CoVolatility 

 

2010-75: Laurent A.F. Callot: A Bootstrap Cointegration Rank Test for Panels 
of VAR Models 

 

2010-76: Peter R. Hansen, Asger Lunde and James M. Nason: The Model 
Confidence Set 

 

2011-01: Cristina Amado and Timo Teräsvirta: Modelling Volatility by Variance 
Decomposition 

 

2011-02: Timo Teräsvirta: Nonlinear models for autoregressive conditional 
heteroskedasticity 

 

2011-03: Roxana Halbleib and Valeri Voev: Forecasting Covariance Matrices: A 
Mixed Frequency Approach 

 

 


	Introduction
	Dynamic Mixed-Frequency Model
	Empirical Application
	Data
	Forecasting Models
	Forecast Evaluation

	Conclusion
	Appendix
	Appendix

