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Abstract

This paper contains a brief survey of nonlinear models of autore-
gressive conditional heteroskedasticity. The models in question are
parametric nonlinear extensions of the original model by Engle (1982).
After presenting the individual models, linearity testing and parameter
estimation are discussed. Forecasting volatility with nonlinear models
is considered. Finally, parametric nonlinear models based on multi-
plicative decomposition of the variance receive attention.
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1 Introduction

One of the �rst occasions for at least European econometricians to hear about
autoregressive conditional heteroskedasticity (ARCH) was at the 1979 Econo-
metric Society European Meeting in Athens, where Robert Engle presented a
paper with that title in a session named Time Series II: Speci�cation, chaired
by David Hendry. The published version of the paper (Engle, 1982) appeared
three years later. The number of models for describing and forecasting au-
toregressive conditional heteroskedasticity has increased dramatically from
those early days, as is the number of applications. Recent overviews include
Bauwens, Hafner and Laurent (2011) and Teräsvirta (2009). Several chap-
ters of Andersen, Davis, Kreiss and Mikosch (2009) are devoted to various
theoretical and computational aspects of these models.
The focus of this chapter is on univariate nonlinear generalized ARCH

(GARCH) models. There are examples of strongly nonlinear multivariate
GARCH models, but they will not be discussed here; for recent surveys see
Bauwens, Laurent and Rombouts (2006) and Silvennoinen and Teräsvirta
(2009). The de�nition of a nonlinear GARCHmodel adopted in this overview
is quite narrow and only covers parametric nonlinear models. The Exponen-
tial GARCH model of Nelson (1991) is excluded from the consideration, how-
ever, because the logarithm of the conditional variance is linear in parame-
ters. The hidden Markov or Markov-switching models, such as the variance-
switching model of Rydén, Teräsvirta and Åsbrink (1998) or its more com-
plicated ARCH and GARCH variants, that can be viewed as nonlinear, are
discussed in Paolella and Haas (2011) and will not be taken up here. The
models to be considered include the smooth transition GARCH, the double
threshold GARCH, the asymmetric power GARCH, and a particular class of
time-varying GARCH models. The arti�cial neural network GARCH model
will be mentioned as well, although the number of applications of the model
appears to be very small.
A general treatment of volatility models based on multiplicative decom-

position of the variance can be found in Van Bellegem (2011). This chapter
contains a brief discussion of fully parametric variants of such models. A
majority of them are semiparametric and are therefore not covered by this
account.
The plan of the chapter is as follows. Sections 2 and 3 contain short

presentations of the standard GARCH model and linear predecessors to non-
linear GARCH models. Smooth transition GARCH and related models are
considered in Section 4. Testing linearity against various nonlinear GARCH
models is discussed in Section 5 and parameter estimation in Section 6. Fore-
casting with nonlinear GARCH models is the topic of Section 7. Parametric
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special cases of models based on multiplicative decomposition of the variance
are considered in Section 8. Section 9 contains �nal remarks.

2 The standard GARCH model

Assume a random variable yt can be modelled as follows: yt = �t+ "t; where
�t = EfytjFt�1g; Ft�1 = fyt�j; j � 1g being the information set available
at t � 1; and "t is a random error with mean zero and variance �2. In the
standard GARCH(p; q) model as de�ned by Bollerslev (1986) the error term
is parameterised as follows:

"t = zth
1=2
t (1)

with zt � iid(0; 1); and the positive-valued conditional variance function is

ht = �0 +

qX
j=1

�j"
2
t�j +

pX
j=1

�jht�j (2)

where �0 > 0: It is seen from (1) that E"t"t�j = 0 for j 6= 0: In what
follows, we assume that the conditional mean �t � 0: Su¢ cient conditions
for ht being positive almost surely include �j � 0; �j � 0; j = 1; :::; q:
Identi�cation requires that at least one �j > 0 for j > 0: These conditions
are not necessary, however, unless p = q = 1; see Nelson and Cao (1992).
The unconditional variance

E"2t = �0(1�
qX
j=1

�j �
pX
j=1

�j)
�1

provided the weak stationarity condition
Pq

j=1 �j +
Pp

j=1 �j < 1 holds.
The GARCH model, de�ned by (1) and (2), is linear in parameters. It

has been generalised in many ways to accommodate things such as regime
switches, asymmetries and the like. A number of these extensions to the stan-
dard GARCH model are described in Bauwens et al. (2011) and Teräsvirta
(2009). The next section will look at ones that may be regarded as prede-
cessors to parametric nonlinear GARCH models.

3 Predecessors to nonlinear GARCH models

Predecessors to nonlinear GARCH models, as the concept is de�ned here,
have the property that they are linear in parameters but could be made
nonlinear by assuming a certain known quantity in them to be an unknown
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parameter. The most frequently applied models of this kind are the GJR-
GARCH model by Glosten, Jagannathan and Runkle (1993) and the Thresh-
old GARCH (TGARCH) model by Rabemananjara and Zakoïan (1993) and
Zakoïan (1994). In applications, the GJR-GARCH model is typically as-
sumed to be a �rst-order GARCH model. It can be generalised to have
higher-order lags although in practice this almost never seems to happen.
The conditional variance of this model has the following representation:

ht = �0 +

qX
j=1

f�j + �jI("t�j < 0)g"2t�j +
pX
j=1

�jht�j (3)

where I(A) is an indicator variable: I(A) = 1 when A holds, and zero oth-
erwise. The idea of this model is to capture the leverage e¤ect present in
stock return series. This e¤ect manifests itself as an asymmetry: a negative
shock has a greater impact on the conditional variance than the positive one
with the same absolute value. This implies a positive value for �j: As already
mentioned, in applications p = q = 1; so one would expect that the estimateb�1 > 0:
The GJR-GARCH model can be generalised by extending the asymme-

try in (3) to the other components of the model. The Volatility-Switching
GARCH (VS-GARCH) model of Fornari and Mele (1997) is such an exten-
sion. The �rst-order VS-GARCH model is de�ned as follows:

ht = �0+ 0sgn("t�1)+f�1+ 1sgn("t�1)g"2t�1+f�1+ 2sgn("t�1)ght�1 (4)

where sgn is the sign operator: sgn(x) = 1 for x > 0; sgn(x) = 0 for x = 0;
and sgn(x) = 0 for x < 0: It is seen that by setting  0 =  2 = 0 in (4) one
obtains a model that is equivalent to the �rst-order GJR-GARCH model.
The TGARCH model is similar to (3) with one important di¤erence:

what is being modelled is the conditional standard deviation and not the
conditional variance. The model is de�ned by replacing ht in (3) by its
square root and each "2t�j by the corresponding absolute value j"t�jj: Some
authors muddle the distinction between these two models by applying the
term TGARCH model to the GJR-GARCH model.
Engle and Ng (1993) suggested the following (�rst-order) generalisation

of the (�rst-order) GJR-GARCH model (3):

ht = �0 +
m+X
i=0

�+j I("t�1 > � i)("t�1 � � i) +
m�X
i=0

��j I("t�1 < ��i)("t�1 � ��i)

+�1ht�1 (5)
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where � i = i�; and � is the unconditional standard deviation of "t: This is
essentially a spline model, where � i; i = m�;m� + 1; :::;m+; are the knots.
There is another di¤erence: "t�1 does not appear squared in (5). As a con-
sequence, even when the simplest case m+ = m� = 0 is considered, it seems
that one cannot derive a closed form for the unconditional variance of "2t ;
if it exists. This is due to the fact that an analytical expression for Eh1=2t
is not available. The necessary and su¢ cient positivity conditions for ht in
this case are �0 > 0; ��0 < 0; �+0 > 0; and �1 � 0: For the general model
(5), the corresponding conditions are �0 > 0;

Pn�

i=0 �
�
j < 0; n� = 0; :::;m�;Pn+

i=0 �
+
j > 0; n+ = 0; :::;m+; and �1 � 0: They are not satis�ed by the

estimated model of Engle and Ng (1993, Table VII) where m� = m+ = 4,
due to the estimates of parameters �+3 and �

�
3 : The splines make the para-

meterisation more �exible than that of (3), but the latter does not have the
discontinuities present in the former.
Finally, it may be mentioned that there exists a threshold autoregressive

stochastic volatility model in which the threshold parameter, analogously to
(3), equals zero. It has been de�ned and applied in So, Li and Lam (2002).
For overviews of stochastic volatility models, see Shephard and Andersen
(2009) and Bos (2011).

4 Nonlinear ARCH and GARCH models

4.1 Engle�s nonlinear GARCH model

Let g("t�1;�) be a generic function representing the function of "t�1 in (3),
(8), (5) and in the TGARCH model. For all these models, g("t�1;�) = 0;
that is, "t = 0 does not contribute to the conditional variance at t+ 1: This
is no longer true for the nonlinear GARCH model of Engle (1990). The
conditional variance of this model has the following (�rst-order) form:

ht = �0 + �1("t�1 � �)2 + �1ht�1 (6)

where �0; �1 > 0 and �1 � 0: Thus, g(0;�) = �1�
2:When � = 0; (6) collapses

into the standard GARCH(1,1) model (2). These models share the same weak
stationarity condition �1+�1 < 1; and for (6), E"

2
t = (�1+�

2)=(1��1��1):
Although (6) de�nes a rather simple nonlinear GARCH model, it has been
less popular among users than, say, the GJR-GARCH model.
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4.2 Nonlinear ARCH model

Higgins and Bera (1992) introduced a nonlinear ARCH model (NLARCH)
that nests both the standard ARCH model and the logarithmic GARCH
model. It is an ARCH model with Box-Cox transformed variables:

h�t � 1
�

= �0
!� � 1
�

+ �1
"2�t�1 � 1

�
+ :::+ �q

"2�t�q � 1
�

(7)

where 0 � � � 1; ! > 0; �0 > 0; �j � 0; j = 1; :::; q; and
Pq

j=0 �j = 1: It
can also be written as follows:

ht = f�0!� + �1"
2�
t�1 + :::+ �q"

2�
t�qg1=�:

When � ! 1; (7) approaches Engle�s ARCH(q) model. The purpose of the
restriction

Pq
j=0 �j = 1 that also helps identify ! becomes obvious from this

special case. When � ! 0; the result is the qth order logarithmic ARCH
model. As the GARCH family of models have become a normal speci�cation
in applications to �nancial time series, the NLARCH model has been rarely
used in practice.

4.3 Asymmetric Power GARCH model

Ding, Granger and Engle (1993) introduced the Asymmetric Power GARCH
(APGARCH) model. The �rst-order APGARCH model has the following
de�nition:

h�t = �0 + �1(j"t�1j � �"t�1)
2� + �1h

�
t�1 (8)

where �0 > 0; �1 > 0; �1 � 0; � > 0 and j�j � 1; so it is nonlinear in
parameters. Meitz and Saikkonen (in press) considered the special case � = 1
and called the model the Asymmetric GARCH model. Using the indicator
variable they showed that for � = 1 (8) can be written as a GJR-GARCH(1,1)
model with p = q = 1 :

ht = �0 + �1(1� �)2"2t�1 + 4��1I("t�1 < 0)"
2
t�1 + �1ht�1: (9)

This implies that the conditions for the existence of unconditional moments
of the AGARCH model can be obtained from the corresponding conditions
for the �rst-order GJR-GARCH model. For the general APGARCH model,
the only analytic �fourth-moment�condition available is for the fractional mo-
ment Ej"tj4�; see He and Teräsvirta (1999b). Ding et al. (1993) also discussed
some stylized facts of return series. Considering a number of long daily return
series they found that the autocorrelations �(j"tj2�; j"t�jj2�) were maximized
for � = 1=2: Fitting the APGARCH model to a long daily S&P 500 return
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series yielded (in our notation) b� = 0:72: He, Malmsten and Teräsvirta (2008)
�tted the model to daily return series of the 30 most actively traded stocks
in the Stockholm Stock Exchange and in all cases obtained an estimate of �
that was remarkably close to the value reported by Ding, Granger and Engle.
For similar results, see Brooks, Fa¤, McKenzie and Mitchell (2000).

4.4 Smooth transition GARCH model

As mentioned in Section 3, the GJR-GARCH model may be generalised by
making it nonlinear in parameters. This is done for example substituting an
unknown parameter for the zero in the argument of the indicator function
of (3). The same substitution may be made for the TGARCH model. This
generalisation can be further extended by replacing the indicator function by
a continuous function of its argument and extending the transition to also
include the intercept. In the (p; q) case this yields the following conditional
variance

ht = �10 +

qX
j=1

�1j"
2
t�j + (�20 +

qX
j=1

�2j"
2
t�j)G(
; c; "t�j) +

pX
j=1

�jht�j (10)

where the transition function

GK(
; c; "t�j) = (1 + expf�

KY
k=1

("t�j � ck)g)�1; 
 > 0 (11)

and c = (c1; :::; cK)0: For K = 1; this model corresponds to the one Hagerud
(1997) introduced. The restriction 
 > 0 is an identi�cation restriction.
Furthermore, global identi�cation requires another restriction such as c1 �
::: � cK ; but this restriction does not have any practical signi�cance in the
estimation of parameters. The transition function is bounded between zero
and one. The parameter 
 represents the slope and c the location of the
transition(s). When K = 1; the �ARCH parameters�and the intercept of the
model change from �1j to �1j + �2j as a function of "t�j; j = 0; 1; :::; q: This
means that the impact of each shock on the conditional variance is nonlinear.
When K = 1; 
 ! 1 and c1 = 0; (10) becomes the GJR-GARCH model
(3). When K = 2; the transition function (11) is nonmonotonic and symmet-
ric around (c1 + c2)=2: The model (10) could be called an additive Smooth
Transition GARCH (STGARCH) model. Hagerud�s choice corresponding to
K = 2 was the exponential transition function

GE(
; c; "t�j) = 1� expf�
"2t�jg: (12)
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The limiting behaviour of (12) when 
 ! 1 is di¤erent from that of (11).
When 
 !1 in (12), GE(
; c; "t�j) = 1 except for "t�j = 0; where the func-
tion equals zero. As to (11), the function equals zero for c1 � "t�j < c2 and is
one otherwise. At least for q = 1, (11) may be preferred to (12), because ap-
plying (12), the STGARCH model (for all practical purposes) collapses into
the standard GARCH(1,1) model when 
 !1: The transition function (11)
is symmetric around zero if c1 = �c2: Function GE is symmetric around zero
but can easily be made asymmetric by adding a location parameter to the
exponent as in Teräsvirta (1994). Lubrano (2001) considered this extension
in the STGARCH context.
In the model by Gonzalez-Rivera (1998) the intercept does not switch,

and the same lag of "t controls the transition:

ht = �10 +

qX
j=1

�1j"
2
t�j + (

qX
j=1

�2j"
2
t�j)G(
; c1; "t�d) +

pX
j=1

�jht�j (13)

where � > 0: It is also assumed that c1 = 0; but that is not crucial. Ander-
son, Nam and Vahid (1999) extended (13) by also allowing the conditional
variance to switch according to the same transition function as in (13).
Smooth transition GARCH models are useful in situations where the as-

sumption of two distinct regimes is too rough an approximation to the asym-
metric behaviour of the conditional variance. Among other things, Hagerud
(1997) discussed a speci�cation strategy that allows the investigator to choose
between K = 1 and K = 2 in (11). Larger values of K may also be con-
sidered, but they are likely to be less common in applications than the two
simplest choices.
The standard GARCH model has the undesirable property that the esti-

mated model often exaggerates the persistence in volatility. This means that
the estimated sum of the �- and �-coe¢ cients in (2) is close to one. Over-
estimated persistence results in poor volatility forecasts in the sense that
following a large shock, the forecasts indicate �too slow�a decrease of the
conditional variance to more normal levels. In order to remedy this problem,
Lanne and Saikkonen (2005) proposed a smooth transition GARCH model
whose �rst-order version has the form

ht = �0 + �1"
2
t�1 + �1G1(�;ht�1) + �1ht�1: (14)

In (14), G1(�;ht�1) is a continuous, monotonically increasing bounded func-
tion of ht�1. Since ht�1 > 0 almost surely, Lanne and Saikkonen used the
cumulative distribution function of the gamma-distribution as the transition
function. A major di¤erence between (13) and (14) is that in the latter model
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the transition variable is a lagged conditional variance. In empirical exam-
ples given in the paper, this parameterization clearly alleviates the problem
of exaggerated persistence.
Lanne and Saikkonen (2005) also considered a general family of models

of the conditional variance of order (p; 1):

ht = g(ht�1; :::; ht�p) + f("t�1) (15)

where the functions g and f are de�ned in such a way that (15) contains as
special cases all the GARCH(p; 1) models discussed in this chapter, includ-
ing the smooth transition GARCH model (13) and (6): They �nd conditions
for geometric ergodicity of ht de�ned by (15) and for the existence of mo-
ments of "t: These conditions are quite general in the sense that unlike the
other conditions available in the literature, they cover the smooth transition
GARCH models as well. For even more general results on �rst-order models,
see Meitz and Saikkonen (2008).

4.5 The double threshold ARCH model

The TGARCH model is linear in parameters, because the threshold para-
meter appearing in nonlinear threshold models is assumed to equal zero. A
genuine nonlinear threshold model does exist, namely the Double Thresh-
old ARCH (DTARCH) model of Li and Li (1996). It is called a double
threshold model, because both the autoregressive conditional mean and the
conditional variance have a threshold-type structure. The conditional mean
model is de�ned as follows:

yt =

KX
k=1

(�0k +

pkX
j=1

�jkyt�j)I(c
(m)
k�1 < yt�b � c

(m)
k ) + "t (16)

and the conditional variance has the form

ht =
LX
`=1

(�0` +

pX̀
j=1

�j`"
2
t�j)I(c

(v)
`�1 < yt�d � c

(v)
` ): (17)

where c(m)0 = c
(v)
0 = �1; and c(m)K = c

(v)
L = 1: Furthermore, b and d are

delay parameters, b; d � 1: The number of regimes in (16) and (17); K and
L; respectively, need not be the same, and the two delay parameters need
not be equal either. Other threshold variables than lags of yt are possible.
The conditional variance model (17) di¤ers from a typical GARCH model in
the sense that the transition variable in (17) is yt�d and not a function of
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"t�d: This feature is somewhat analogous to the Threshold Moving Average
(TMA) model, see Ling and Tong (2005) and Ling, Tong and Li (2007). The
TMA model is a generalisation of the standard moving average model for the
conditional mean, but the threshold variable is a lag of yt; not "t:

4.6 Neural network ARCH and GARCH models

The literature on nonlinear GARCH models also comprises models based
on arti�cial neural network (ANN) type of speci�cations. As an example,
consider the following model by Donaldson and Kamstra (1997). It is an
extension of the GJR-GARCH model, but for simplicity it is here given
without the asymmetric component as an extension to the standard GARCH
model. The ANN-GARCH model of the authors has the following form:

ht = �0 +

qX
j=1

�j"
2
t�j +

pX
j=1

�jht�j +
sX
j=1

�jG(wt�j;�j)

where the �hidden units�are de�ned as follows:

G(wt�j;�j) = (1 + expf
0j +
uX
i=1

(w0
t�j
ji)g)�1 (18)

j = 1; :::; s: In (18), 
0j and �j = (
j1 : ::: : 
ju) are parameters such
that each m � 1 vector 
ji = (
j1; :::; 
ji; 0; :::; 0)

0, i = 1; :::;m; and wt =
(wt; w

2
t ; :::; w

m
t )

0 with wt = "t=�: Note that G(wt;�j) as a logistic function is
bounded between zero and one. Each standardised and lagged "t appears in
powers up to m: For a user of this model, speci�cation of p; q; s and u is an
important issue, and the authors suggest the use of BIC of Rissanen (1978)
and Schwarz (1978) for this purpose. More details about this can be found
in Section 6.
A simpler ANN-GARCH model can be obtained by de�ning the hidden

unit as in Caulet and Péguin-Feissolle (2000). This results in the following
ANN-GARCH model:

ht = �0 +

qX
j=1

�j"
2
t�j +

pX
j=1

�jht�j +

sX
j=1

�jG(
0j + "
0
t
j) (19)

where
G(
0j + "

0
t
j) = (1 + expf
0j + "0t
j)g)�1 (20)

j = 1; :::; s, with the k � 1 parameter vector 
j and "t = ("t�1; :::; "t�k)
0:

In fact, Caulet and Péguin-Feissolle (2000) assumed �j = 0; j = 1; :::; q;
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and �j = 0; j = 1; :::; p; in (19), because their purpose was to set up a test
of no conditional heteroskedasticity against conditional heteroskedasticity
of rather general form. Nevertheless, their speci�cation can be generalised
to an ANN-GARCH model (19) with (20). Since (20) is a positive-valued
function, assuming �j � 0; j = 1; :::s; would, jointly with the restrictions
�0 > 0; �i; �j � 0; 8i; j; guarantee positivity of the conditional variance.
Because of the positivity of (20), one could even think of deleting the linear
combination

Pq
j=1 �j"

2
t�j from the model altogether.

4.7 Time-varying GARCH

It has been argued, see for example Mikosch and Starica (2004), that the
assumption of the standard GARCH model having constant parameters may
not hold in practice unless the series to be modelled are su¢ ciently short.
The standard model may be generalised by assuming that the parameters
change at speci�c points of time, divide the series into subseries according
to the location of the break-points, and �t separate GARCH models to the
subseries. The main statistical problem is then �nding the number of the
unknown break-points and their location. It is also possible to model the
switching standard deviation regimes using the threshold GARCH model.
This is done by assuming that the threshold variable is the time. A recent
survey by Andreou and Ghysels (2009) expertly covers this area of research.
Another possibility is to consider the smooth transition GARCH model

(13) to �t this situation. It is done by assuming the transition function in
(13) to be a function of time:

G(
; c; t�) = (1 + expf�

KY
k=1

(t� � ck)g)�1; 
 > 0

where t� = t=T is rescaled time (T is the number of observations). The
resulting time-varying parameter GARCH (TV-GARCH) model has the form

ht = �0(t) +

qX
j=1

�j(t)"
2
t�j +

pX
j=1

�j(t)ht�j (21)

where �0(t) = �01 + �02G(
; c; t
�); �j(t) = �j1 + �j2G(
; c; t

�); j = 1; :::; q;
and �j(t) = �j1 + �j2G(
; c; t

�); j = 1; :::; p: This is quite a �exible para-
meterization. The TV-GARCH model is nonstationary as the unconditional
variance of "t varies deterministically over time.
Some of the time-varying parameters in (21) may be restricted to con-

stants a priori. For example, it may be assumed that only the intercept
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�0(t) is time-varying. This implies that while the unconditional variance is
changing over time, the dynamic behaviour of volatility remains unchanged.
If change is allowed in the other GARCH parameters as well, the model is
capable of describing systematic changes in the amplitude of the volatility
clusters. The standard weakly stationary constant-parameter GARCHmodel
cannot accommodate such changes. For a general survey of time-varying
ARCH and GARCH models, see Cizek and Spokoiny (2009).

4.8 Probabilistic properties for families of GARCHmod-
els

Some authors have de�ned families of GARCH models, often with the pur-
pose of proving results on probabilistic properties of GARCH models for the
whole family. The corresponding results for individual GARCH models in
the family then follow as special cases. A rather general family of �rst-order
GARCH models is de�ned by Duan (1997). The general process is called
the augmented GARCH(1,1) process, and it is partly based on the Box-Cox
transformation of the variables of the GARCH model. It accommodates sev-
eral models presented in Sections 3 and 4. These include the TGARCH,
the GJR-GARCH and the nonlinear GARCH model by Engle (1990). Duan
(1997) derived conditions for strict stationarity for the augmented GARCH
model, and so they apply to these three special cases.
Hentschel (1995) has introduced another family of �rst-order GARCH

models that is less general than that of Duan (1997). Nevertheless, it also
nests the three aforementioned models and the NARCH(1) model or its
GARCH generalisation. The idea is to de�ne a general model, estimate
its parameters and consider the adequacy of nested special cases by the like-
lihood ratio test. It appears, however, that this speci�cation strategy has
not been often used in practice.
He and Teräsvirta (1999a) de�ne their family of �rst-order GARCH processes

in order to obtain general results of weak stationarity, existence of the fourth
moment, and the autocorrelation function of f"2tg of the processes belonging
to this family. Since in that work the integer moments of GARCH processes
are the object of interest, the family is restricted to models of h1=2t and ht:
The more general case h�t is excluded because there do not exist analytic
expressions for the integer moments of "t except for the two special cases
� = 1=2 and � = 1: This family contains as special cases, among others, the
TGARCH, the GJR-GARCH and the VS-GARCH model.
Meitz and Saikkonen (2008) consider a very general Markov chain with

one observable and another unobservable process that contains a rather gen-
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eral family of �rst-order GARCHmodel as a special case. For example, in the
standard GARCH(1,1) process (1) and (2), f"tg is the observable process and
fhtg is the unobservable one. The joint sequence f("t; ht)g is also a Markov
chain. Using the theory of Markov chains, the authors derive conditions for
geometric ergodicity and �-mixing for a large number of GARCH(1,1) mod-
els. These include the Hentschel (1995) family of GARCH models but also a
STGARCH model that nests both the model of Hagerud (1997) and the one
considered by Lanne and Saikkonen (2005). The �rst-order GARCH version
of the TARCH model of Li and Li (1996), p` = 1 for ` = 1; :::; L in (17), is
another special case.

5 Testing standard GARCH against nonlin-
ear GARCH

5.1 Size and sign bias tests

After a GARCH model, for example the standard GARCH model, has been
estimated, it would be wise to subject it to misspeci�cation tests to see
whether the model adequately describes the data. In this section we consider
tests that are designed for alternatives that incorporate asymmetry or, more
generally, missing exogenous variables or nonlinearity. The leading testing
principle is the score or Lagrange multiplier principle, because then only the
null model has to be estimated. As explained for example in Engle (1982b),
these tests can be carried out in the so-called TR2 form, and under the null
hypothesis the test statistic has an asymptotic �2-distribution. When the
null hypothesis is the standard GARCH model (2), the test can be carried
out in stages as follows:

1. Estimate the parameters of the GARCH model (2) and compute �the
residual sum of squares� SSR0 =

PT
j=1("

2
t=
eht � 1)2, where eht is the

estimated conditional variance at t:

2. Regress ez2t = "2t=
eht on the gradient of the log-likelihood function and

the new variables (assuming the component excluded under the null
hypothesis is linear in parameters), and compute the residual sum of
squares SSR1 from this auxiliary regression.

3. Form the test statistic

T
SSR0 � SSR1

SSR0
d! �2(m)
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under the null hypothesis of dimension m. When the null model is
(2), the gradient equals egt = eh�1t (@ht=@!)0; where ! = (�0; �1; :::; �q;
�1; :::; �p)

0; and

(@ht=@!)0=eut + pX
i=1

e�i(@ht�i=@!)0:
with eut = (1; "2t�1; :::; "2t�q;eht�1; :::;eht�p)0:The subscript 0 indicates that
the partial derivatives are evaluated under H0. They are available from
the estimation of the null model and need not be computed separately.

The auxiliary regression is thus

ez2t = a+ eg0t�0 + v0t�1 + �t (22)

where ez2t = "2t=
eht and vt is them�1 vector of the variables under test, so H0:

�1 = 0. Many of the tests discussed in this section �t into this framework.
Engle and Ng (1993) propose asymmetry tests such that vt = I("t�1 < 0)
(the sign bias test), vt = I("t�1 < 0)"t�1 (negative size bias test), and
vt = f1� I("t�1 < 0)g"t�1 (positive size bias test). They also suggest a joint
test in which

vt = (I("t�1 < 0); I("t�1 < 0)"t�1; f1� I("t�1 < 0)g"t�1)0

and note that the tests can be generalised to involve more lags than the
�rst one. These three tests are the most often used tests for asymmetry in
empirical work.

5.2 Testing GARCH against smooth transition GARCH

An STGARCH model must not be �tted to a return series without �rst
testing the standard GARCH model against it. The reason is that the
STGARCH model is not identi�ed if the data are generated from the stan-
dard GARCH model. As an example, consider the model (10). If �2j = 0;
j = 0; 1; :::; q; the model collapses into the GARCH model. In this case,
the parameters 
 and c1; :::; cK in (11) are nuisance parameters that cannot
be estimated consistently. Setting 
 = 0 also makes the model into a stan-
dard GARCH model, and in this case �2j = 0; j = 0; 1; :::; q; and c1; :::; cK
are unidenti�ed. The problem is that the lack of identi�cation under the
null hypothesis which is the standard GARCH model, invalidates standard
asymptotic inference. Consequently, the asymptotic null distribution of the
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customary �2-statistic is unknown. This is a common problem in testing lin-
earity against many nonlinear conditional mean models such as the threshold
autoregressive, the smooth transition autoregressive or the hidden Markov
model. It was �rst considered by Davies (1977); see Teräsvirta, Tjøstheim
and Granger (2010, Chapter 5) for further discussion.
A straightforward solution to the problem of testing GARCH against

STGARCH would be to construct an empirical distribution of the test sta-
tistic by simulation, see Hansen (1996). Gonzalez-Rivera (1998) already
mentioned this possibility in her discussion of testing for smooth transition
GARCH. Since the time series in applications are often quite long, this ap-
proach, however, could be computationally demanding. Following Luukko-
nen, Saikkonen and Teräsvirta (1988), Hagerud (1997) and later Lundbergh
and Teräsvirta (2002), suggested circumventing the identi�cation problem
by approximating the transition function (11) by a Taylor expansion around
the null hypothesis 
 = 0. As a simple example, let q = 1 in (10) and K = 1
in (11). A �rst-order Taylor expansion of the transition function becomes

T1("t�1; 
) = 1=2 + (1=4)("t�1 � c1)
 +R1("t�1; 
) (23)

where R1("t�1; 
) is the remainder. Substituting (23) for the transition func-
tion in (10) and reparameterising yields

ht = ��10 + �1"t�1 + ��11"
2
t�j + ��111"

3
t�1 +R�1("t�1; 
) +

pX
j=1

�jht�j

where R�1("t�1; 
) = (�20 + �21"
2
t�j)R1("t�1; 
); �1 = 
=4; and ��11 = 
�21=4:

Since the resulting test is a Lagrange multiplier test and R1("t�1; 
) � 0
under the null hypothesis, the remainder can be ignored in the test. The
null hypothesis equals �1 = ��111 = 0: In the TR

2 version of the test, vt =eh�1t (@ht=@!)0 where
(@ht=@!)0 = ("t�1; "

3
t�1)

0 +

pX
j=1

e�j(@ht�j=@!)0
and ! = (�1; ��111)

0: The asymptotically (under H0) �2-distributed test sta-
tistic has two degrees of freedom. The test requires E"6t < 1: General-
isations to q > 1 are obvious: When p = q = 1 and �21 = 0; one obtains
vt = eh�1t f"t�1+e�1(@ht�1=@�1)0g and the test can be viewed as the test of the
GARCH(1,1) model against the Quadratic GARCH(1,1) model of Sentana
(1995).
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5.3 Testing GARCH against Arti�cial Neural Network
GARCH

Caulet and Péguin-Feissolle (2000) developed a test of the hypothesis of in-
dependent, identically distributed observations against autoregressive condi-
tional heteroskedasticity. The model was thus (19) with �i; �j = 0; i; j � 1;
and the null hypothesis was �j = 0; j = 1; :::; s: The model can be generalised
for testing GARCH against (19) with (20). To solve the identi�cation prob-
lem, the authors adopted the method introduced by Lee, White and Granger
(1993). The idea was to choose a large s and draw the nuisance parameters
for each hidden unit from a uniform distribution after appropriate rescaling
of "t; t = 1; :::; T: It follows that

vt = eh�1t (G(b
01 + "0tb
1); :::; G(b
0s + "0tb
s))0 (24)

where b
0j and b
j are the parameters from the jth random draw. The power
of the test is dependent on s: The dimension of the null hypothesis and vt
may be reduced by considering the principal components of the hidden units
corresponding to the largest eigenvalues. The test of Caulet and Péguin-
Feissolle (2000) is a special case of the test mentioned here. Note that in that
case, eht in (24) is a positive constant and can be ignored. Another possibility,
discussed in Péguin-Feissolle (1999), is to develop each hidden unit into a
Taylor series around the null hypothesis H0: 
j = 0 as in Teräsvirta, Lin
and Granger (1993). After merging terms and reparameterising, a third-order
Taylor expansion has the form

T3("t;
1; :::;
s) = ��0 +
kX
j=1

��j"t�j +
kX
i=1

kX
j=i

��ij"t�i"t�j

+
kX
i=1

kX
j=i

kX
j=`

��ij`"t�i"t�j"t�` +R3("t;�)

where R3("t;�) is the combined remainder. Similarly to the remainder in
(23), R3("t;�) = 0 under the null hypothesis H0 and does not a¤ect the
asymptotic null distribution of the test statistic. The new null hypothesis is
H00: �

�
j = 0; j = 1; :::; s; �

�
ij = 0; i 6= j; and ��ij` = 0; i = 1; :::; s; j = i; :::; s;

and ` = j; :::; s: The moment condition is E"6t <1:When k = 1; H00: �
�
1 = 0;

��111 = 0; and the test is the same as the test of GARCH against STGARCH
when q = 1 in (10). Since the power comparisons of Péguin-Feissolle (1999)
only concerned the null hypothesis of no conditional heteroskedasticity, little
is known about the power properties of these tests in the GARCH context.
They may be regarded as rather general misspeci�cation tests of the standard
GARCH model.
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6 Estimation of parameters in nonlinear GARCH
models

6.1 Smooth transition GARCH

Parameters of the smooth transition GARCH models can be estimated by
(quasi) maximum likelihood (QML) method. The use of QML requires,
among other things, that the slope parameter 
 be bounded away from both
zero and in�nity. General conditions for asymptotic normality of the QML
estimators of nonlinear �rst-order GARCH models are discussed in Meitz
and Saikkonen (in press). The moment conditions required for asymptotic
normality include the existence of the fourth moment of "t: It is seen from (1)
that a necessary condition for this is Ez4t < 1; but it is not su¢ cient. One
of the examples in Meitz and Saikkonen (in press) is the STGARCH model
(10) with p = q = 1, and it is shown how the model satis�es the general
conditions given in the paper.
In practice, estimation of the parameters of the STGARCHmodel is quite

straightforward. Numerical problems in the form of slow convergence may
be expected, however, when the slope parameter 
 is large, that is, much
larger in magnitude than the other parameters. The reasons for this have
been discussed in the context of smooth transition autoregressive model; see
for example Teräsvirta, Tjøstheim and Granger (2010, Chapter 16). A major
reason is that even a substantial change in the value of 
 only leads to a very
small change the shape of the transition function when the transition is very
steep or, in other words, when 
 is large.
Computing the partial derivatives is another numerical issue. Brooks,

Burke and Persand (2001) already emphasised the importance of using ana-
lytical derivatives in the estimation of parameters of standard GARCH mod-
els. It is even more important to apply them when the GARCH model to
be estimated is nonlinear. The reason is increased precision of the estimates.
If the user chooses to use the Berndt-Hall-Hall-Hausman (BHHH) algorithm
discussed in many textbooks, then only the �rst derivatives are needed. This
algorithm has been quite popular in the estimation of GARCHmodels, where
computing the analytic second derivatives is most often avoided despite the
work of Fiorentini, Calzolari and Panattoni (1996).
The choice of initial values is important in the estimation of nonlinear

models. The initial values of the conditional variance may be chosen in
the same way as in linear GARCH models by setting them equal to the
sample unconditional variance. The initial values "0; :::; "q�1 are set to zero
as are the partial derivatives of the conditional variance. It may be harder to
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�nd appropriate initial values for the parameters of the STGARCH model.
Obtaining them by applying a heuristic method such as simulated annealing
or a genetic algorithm would be a possibility. That would help avoiding
inferior local optima. For applications of these to standard GARCH models
see for example Amilon (2003) or Adanu (2006). The latter article considers
and compares several heuristic methods with each other. Finally, it can be
mentioned that smooth transition GARCH models can also be estimated
using Bayesian techniques; see Lubrano (2001) for discussion. Wago (2004)
later showed how estimation can be carried out using the Gibbs sampler.

6.2 Neural Network GARCH

Estimation of ANN-GARCH models using analytical derivatives may be dif-
�cult due to many nonlinear parameters, unless the number of hidden units
is very small. For this reason, Donaldson and Kamstra (1997) proposed to
draw �ve sets of parameters �j; j = 1; :::; s; randomly and then estimate the
remaining parameters for each of these �ve sets with a grid on the dimensions
p; q; s; u and m; de�ned as (p; q; s; u;m) 2 [0; 5]: Once this is done, a model
selection criterion such as BIC is employed to choose the best model from
the set of estimated models. The statistical properties of this ad hoc method
are not known.
It seems that the parameters of the ANN-GARCHmodel (19) could be es-

timated by simulated annealing, although empirical evidence of this is scarce.
Go¤e, Ferrier and Rogers (1994) considered applying simulated annealing
in the situation where an autoregressive single-hidden-layer neural network
model was �tted to a time series generated from a chaotic model. The results
showed a number of local maxima. Furthermore, in repeated experiments
with di¤erent starting-values and temperatures they were not able to �nd
the same local maximum twice. The optima found were nevertheless better
than the ones obtained using derivative-based estimation methods. The esti-
mation of GARCH models o¤ers an extra complication since the conditional
variance ht is not observed but has to be re-estimated for each iteration.
Estimation of a pure ANN-ARCH model would in this respect be a compu-
tationally easier problem. Simulations and applications would be needed to
assess the usefulness of simulated annealing in the estimation of models such
as (19).
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7 Forecasting with nonlinear GARCH mod-
els

7.1 Smooth transition GARCH

It may be useful to begin this section by considering the �rst-order GJR-
GARCH model, one of the predecessors of the smooth transition GARCH
model. What is being forecast is the conditional variance ht. The forecasts
are conditional means, so the forecast of ht+1 given the information Ft up to
t equals, see Zivot (2009),

ht+1jt = E(ht+1jFt) = �0 + �(zt)ht (25)

where �(zt) = �1z
2
t +�1I(zt < 0)gz2t +�1: Accordingly, assuming that zt has

a symmetric distribution,

ht+2jt = �0 + f�1Ez2t+1 + �1EI(zt+1 < 0)gz2t+1 + �1ght+1jt
= �0 + f�1 + (�1=2) + �1ght+1jt
= �0(1 + f�1 + (�1=2) + �1g) + f�1 + (�1=2) + �1g�(zt)ht:

Generally, for k � 1;

ht+kjt = �0

k�1X
j=0

f�1 + (�1=2) + �1gj + f�1 + (�1=2) + �1gk�1�(zt)ht:

When �1+ (�1=2) + �1 < 1; that is, when the unconditional variance of "t is
�nite,

ht+kjt ! �0(1� f�1 + (�1=2) + �1g)�1

as k !1:
Next consider the �rst-order smooth transition GARCH model assuming

K = 1 and zt � iid(0; 1) with a continuous density fz(z). The forecast
corresponding to (25) equals

ht+1jt = �10 + �1z
2
t + �1ht + �(zt; ht)ht

where
�(zt; ht) = (�20 + �21z

2
t )(1 + expf�
(zth

1=2
t � c)g)�1

is a nonlinear function of ht: This makes a di¤erence. Consider

ht+2jt = �10 + (�1 + �1)ht+1jt + Ef�(zt+1; ht+1jt)jFtght+1jt:
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where

Ef�(zt+1; ht+1jt)jFtg =
Z 1

�1
(�20+�21z

2)(1+expf�
(zh1=2t+1jt�c)g)
�1fz(z)dz:

(26)
The expectation (26) can be computed by numerical integration, but the
integration becomes a multiple integral when the forecast horizon k > 2: A
similar situation has been discussed in the context of forecasting with non-
linear conditional mean models, see for example Teräsvirta (2006), Kock and
Teräsvirta (in press) or Teräsvirta, Tjøstheim and Granger (2010, Chapter
14). The suggestion has been to compute an approximation to the integral by
simulation or bootstrap, for details see the aforementioned references. As a
by-product, this method generates a density forecast, based on the simulated
or bootstrapped values of the argument of (26).
The same procedure applies to a few other nonlinear models including

the ANN-GARCH model of Caulet and Péguin-Feissolle (2000) but is not
necessary for Engle�s nonlinear GARCH model (6). For that model,

ht+1jt = �0 + �1(zth
1=2
t � �)2 + �1ht

is a nonlinear function of ht: Nevertheless,

ht+2jt = �0 + �1E(zt+1h
1=2
t+1jt � �)2 + �1ht+1jt

= �0 + �1�
2 + (�1 + �1)ht+1jt

which implies that forecasts for k > 2 can be obtained by a simple recursion.

7.2 Asymmetric Power GARCH

Consider �rst the special case of (8) with � = 1; discussed by Meitz and
Saikkonen (in press). Since this model can be written as a GJR-GARCH
model, forecasting several periods ahead is straightforward. The one-period-
ahead forecast equals

ht+1jt = �0 + f�1(1� �)2 + 4��1EI(zt < 0)z
2
t + �1ght: (27)

where, retaining the assumption that zt � N (0; 1); EI(zt < 0)z2t = (1=4)f(�=2)�
1g: Forecasts for longer horizons are obtained by recursion. In general,

ht+hjt = �0

h�1X
j=0

�(z; �)j + �(z; �)h�1ht

where �(z; �) = �1(1� �)2 + 4��1EI(z < 0)z
2 + �1; and z � N (0; 1):
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When � 6= 1; the forecast ht+1jt already has to be computed numerically.
From (8) one obtains

ht = f�0 + �1(j"t�1j � �"t�1)
2� + �1h

�
t�1g1=�

so

ht+1jt = E[�0 + f�1(jztj � �zt)
2� + �1gh�t ]1=�

=

Z 1

�1
[�0 + f�1(jzj � �z)2� + �1gh�t ]1=��(z)dz

where �(z) is the density function of the standard normal random variable.
The integral can be computed by simulation or by a bootstrap as in the case
of the smooth transition GARCH model.
There is another special case that is of interest: � = 1=2: What is being

modelled is the conditional standard deviation. In that case it is natural
to also forecast the conditional standard deviation and not the conditional
variance. Thus,

h
1=2
t+1jt = E[�0+ f�1(jztj ��zt)+ �1gh

1=2
t ] = �0+ f�1(2=�)1=2+ �1gh

1=2
t (28)

and the forecasts for longer horizons follow by simple recursion from (28).

8 Models based on multiplicative decompo-
sition of the variance

So far the nonlinear extensions of the standard GARCH model considered in
this review have concerned the parameterisation of the conditional variance.
There is another strand of literature aiming at extending the GARCH model
by decomposing the variance into two components, one which is stationary
and another one that can be nonstationary. Many of the models belonging
to this category are semiparametric and discussed in Van Bellegem (2011).
In this section we shall look at two parametric models: one by Amado and
Teräsvirta (2011) and the other one by Osiewalski (2009) and Osiewalski and
Pajor (2009).
The multiplicative variance decomposition is as follows: Write

"t = zt�t = zt(htgt)
1=2 (29)

where the variance �2t = htgt: The �rst component ht is de�ned in (2) or (3),
and the positive-valued function

gt = 1 +

rX
l=1

�lGl(t
�; 
l; cl): (30)
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with

Gl(t
�; 
l; cl) = (1 + expf�
l

KY
k=1

(t� � clk)g)�1; 
l > 0; cl1 � cl2 � ::: � clK

(31)
is a �exible deterministic function of time describing shifts in the uncon-
ditional variance. This makes f"tg a (globally) nonstationary sequence in
variance. Analogously to (11), the function (31) is a generalised logistic
function. In practice, typically K = 1 or K = 2: The function ht charac-
terises volatility clustering as in the standard GARCHmodel. Rewriting (29)
as follows:

�t = "t=g
1=2
t = zth

1=2
t (32)

it is seen that after adjusting for shifts in the unconditional variance, the
�rst-order conditional variance process ht has the form

ht = �0 + �1�
2
t�1 + �1ht�1: (33)

The number of shifts in (30) is determined by sequential testing after
�tting a GARCH or GJR-GARCH model to the time series under consider-
ation. Maximum likelihood estimation of the parameters in (29) is carried
out by maximising the log-likelihood in parts as discussed in Song, Fan and
Kalb�eisch (2005); see Amado and Teräsvirta (2011) for details. Evaluation
of the estimated model is carried out by misspeci�cation tests in Lundbergh
and Teräsvirta (2002) that are generalised to this situation. Examples can
be found in Amado and Teräsvirta (2011). Semi- and nonparametric alter-
natives to (30) are considered in Van Bellegem (2011).
The hybrid volatility model of Osiewalski (2009) and Osiewalski and Pajor

(2009) makes use of the decomposition (29), but gt is stochastic and de�ned
as a �rst-order autoregressive stochastic volatility process:

ln gt =  ln gt�1 + �t (34)

where j j < 1; and f�tg � iidN (0; �2�) and independent of fztg: The original
version of the model is multivariate, and the conditional covariance matrix
follows a BEKK-GARCH process. In this review the focus is on the univariate
special case. The authors distinguish between two di¤erent speci�cation. In
the �rst one,

ht = �0 + �1"
2
t�1 + �1ht�1

so the conditional variance evolves independently of (34). The second version
bears resemblance to the model of Amado and Teräsvirta (2011) in that ht

22



is modelled as in (33) using (32). In that case, ht is dependent on two in-
dependent sources of noise, zt and �t: Stationarity conditions for this model
are probably not well known, and analytic expressions for unconditional mo-
ments of "t do not as yet seem to be available.
The treatment of these two models in Osiewalski (2009) and Osiewalski

and Pajor (2009) is completely Bayesian, and the authors discuss appropriate
algorithms for estimation. Multivariate applications to �nancial time series
can be found in these two papers.

9 Final remarks

This review covers the most common nonlinear models of conditional het-
eroskedasticity. Parametric models in which the variance is decomposed
into an unconditional and conditional component are also brie�y consid-
ered. Many of these models can characterise various types of nonlinearity
such as asymmetric, or symmetric but nonlinear, responses to shocks. Nev-
ertheless, it seems that none of these models is widely used in practice. The
practitioners often favour simpler models, of which the GJR-GARCH model
designed for describing asymmetric response to shocks constitutes an ex-
ample. Increased computational power and improved numerical methods of
optimisation may be expected to change the situation in the future.
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