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Abstract

In this paper, we propose two parametric alternatives to the standard GARCH model.
They allow the variance of the model to have a smooth time-varying structure of either ad-
ditive or multiplicative type. The suggested parameterisations describe both nonlinearity
and structural change in the conditional and unconditional variances where the transition
between regimes over time is smooth. The main focus is on the multiplicative decom-
position that decomposes the variance into an unconditional and conditional component.
A modelling strategy for the time-varying GARCH model based on the multiplicative
decomposition of the variance is developed. It is heavily dependent on Lagrange multi-
plier type misspeci�cation tests. Finite-sample properties of the strategy and tests are
examined by simulation. An empirical application to daily stock returns and another one
to daily exchange rate returns illustrate the functioning and properties of our modelling
strategy in practice. The results show that the long memory type behaviour of the sample
autocorrelation functions of the absolute returns can also be explained by deterministic
changes in the unconditional variance.

JEL classi�cation: C12; C22; C51; C52

Key words: Conditional heteroskedasticity; Structural change; Lagrange multiplier test;
Misspeci�cation test; Nonlinear time series; Time-varying parameter model.
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1 Introduction

Modelling time-varying volatility of �nancial returns has been a �ourishing �eld of research
for a quarter of a century following the introduction of the Autoregressive Conditional
Heteroskedasticity (ARCH) model by Engle (1982) and the Generalized ARCH (GARCH)
model developed by Bollerslev (1986). These basic models have since been generalised
in many ways, see Teräsvirta (2009) for a recent survey. The increasing popularity of
GARCH models has been mainly due to their ability to describe the dynamic structure
of volatility clustering of stock return series, speci�cally over short periods of time. How-
ever, one may expect that economic or political events or changes in institutions cause the
structure of volatility to change over time. This means that the assumption of station-
arity may be inappropriate under the evidence of structural changes in �nancial return
series. Recently, Mikosch and St¼aric¼a (2004) argued that stylized facts in �nancial return
series such as the long-range dependence and the �integrated GARCH e¤ect�can be well
explained by unaccounted structural breaks in the unconditional variance; see also Lam-
oureux and Lastrapes (1990). Diebold (1986) was the �rst to suggest that occasional level
shifts in the intercept of the GARCHmodel can bias the estimates towards the parameters
of an integrated GARCH model.
Another line of research has focussed on explaining nonstationary behaviour of volatil-

ity by long-memory models, such as the Fractionally Integrated GARCH (FIGARCH)
model by Baillie, Bollerslev, and Mikkelsen (1996). The FIGARCH model is not the
only way of handling the �integrated GARCH e¤ect�in return series. Baillie and Morana
(2009) generalized the FIGARCH model by allowing a deterministically changing inter-
cept. Hamilton and Susmel (1994) and Cai (1994) suggested a Markov-switching ARCH
model for the purpose, and their model has later been generalized by others. One may
also assume that the GARCH process contains sudden deterministic switches and try and
detect them; see Berkes, Gombay, Horváth, and Kokoszka (2004) who proposed a method
of sequential switch or change-point detection.
Yet another way of dealing with high persistence would be to explicitly assume that

the volatility process is �smoothly�nonstationary and model it accordingly. Dahlhaus and
Subba Rao (2006) introduced a time-varying ARCH process for modelling nonstation-
ary volatility. Their tvARCH model is asymptotically locally stationary at every point
of observation but it is globally nonstationary because of time-varying parameters. Van
Bellegem and von Sachs (2004) and, later, Engle and Gonzalo Rangel (2008) assumed
that the variance of the process of interest can be decomposed into two components, a
stationary and a nonstationary one. The former authors �tted the deterministic com-
ponent nonparametrically to the squared observations, whereas the latter described the
nonstationary component by using splines. Both assumed that the stationary component
follows a GARCH process. For a similar approach using a di¤erent version of splines,
see Brownlees and Gallo (2010). Mishra, Su, and Ullah (2010) did not explicitly mention
nonstationarity but used the multiplicative decomposition to correct the potential mis-
speci�cation due to a �rough�parametric GARCH speci�cation by a smooth nonparamet-
ric component. Yet another multiplicative decomposition was introduced in Osiewalski
(2009) and Osiewalski and Pajor (2009). Some of these developments are described in
detail in van Bellegem (2011) and Teräsvirta (2011).
In this paper, we introduce two nonstationary GARCH models for situations in which

volatility appears to be nonstationary. First, we propose an additive time-varying pa-
rameter model, in which a directly time-dependent component is added to the GARCH
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speci�cation. In the second alternative, the variance is multiplicatively decomposed into
the stationary and nonstationary component as in van Bellegem and von Sachs (2004)
or Engle and Gonzalo Rangel (2008). We show that the multiplicative decomposition is
a special case of the general additive decomposition. These two alternatives are quite
�exible representations of volatility and can describe many types of nonstationary be-
haviour. We emphasize the role of model building in this approach. The model is �rst
speci�ed, which includes determining the structure of the deterministic component and
then estimated. After parameter estimation, the model is evaluated by misspeci�cation
tests, following the ideas in Eitrheim and Teräsvirta (1996) and Lundbergh and Teräsvirta
(2002).
The outline of this paper is as follows. In Section 2 we present the new Time-Varying

(TV-) GARCH or GJR-GARCH model and highlight some of its properties. Maximum
likelihood estimation of the model is discussed in Section 3. The modelling strategy is
presented in Section 4. Speci�cation and misspeci�cation tests for the TV-GARCH model
are considered in Section 5. Section 6 contains simulation results on the empirical per-
formance of the tests and the speci�cation strategy. In Section 7 we apply our modelling
cycle to both stock and exchange rate returns. Finally, Section 8 contains concluding
remarks.

2 The model

Let the model for an asset or index return yt be

yt = �t + "t

where f"tg is an innovation sequence with the conditional mean E("tjFt�1) = 0 and a
potentially time-varying conditional variance E("2t jFt�1) = �2t ; and Ft�1 is the �-�eld
generated by the available information until t � 1: We assume that E(ytjFt�1) = 0 and
focus solely on �2t : Let

"t = �t�t (1)

where f�tg is a sequence of independent random variables with mean zero and variance
one. Furthermore, assume that �2t is a time-varying representation measurable with re-
spect to Ft�1 with either an additive structure

�2t = ht + gt (2)

or a multiplicative one
�2t = htgt: (3)

The function ht is a component describing conditional heteroskedasticity in the observed
process yt, whereas gt introduces nonstationarity. Since we are going apply our model
to stock return series, where asymmetry of the response to shocks becomes an issue, we
assume that ht follows the stationary GJR-GARCH(p; q) model

ht = �0 +

qX
i=1

(�i + �iI("t�i < 0))"
2
t�i +

pX
j=1

�jht�j (4)

where I(A) is the indicator variable: I(A) = 1 when A is true, and zero otherwise. Then
the GJR-GARCH(p; q) model is nested in (2) when gt � 0 and in (3) when gt � 1: Note
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that when (3) holds, "2t�i is replaced by �
2
t�i = "2t�i=gt�i; i = 1; :::; q; in (4). Both (2) and

(3) combined with (1) de�ne a time-varying parameter GARCH model.
In order to characterize smooth changes in the conditional variance we assume that

the parameters in (4) vary smoothly over time. This is done for example by de�ning the
function gt in (2) as follows:

gt = f��0 +
qX
i=1

(��i + ��i I("t�i < 0))"
2
t�i +

pX
j=1

��jht�jgG(t�; ; c); (5)

whereG(t�; ; c) is the so-called transition function which is a continuous and non-negative
function bounded between zero and one. Furthermore, the rescaled time t� = t=T; where
T is the number of observations. A suitable choice for G(t�; ; c) is the general logistic
transition function

G(t�; ; c) =

 
1 + exp

(
�

KY
k=1

(t� � ck)

)!�1
;  > 0; c1 � ::: � cK : (6)

This function is such that the parameters of the GJR-GARCH model (1)-(2) �uctuate
smoothly over time between (�i; �i; �j) and (�i + ��i ; �i + ��i ; �j + ��j), i = 0; 1; :::; q;
j = 1; :::; p: The slope parameter  controls the degree of smoothness of the transition
function. When  �! 1; the switch from one set of parameters to another in (2) is
abrupt, that is, the process contains structural breaks at c1; c2; :::; cK : The order K 2 Z+
determines the shape of the transition function. Typical choices for the transition function
in practice areK = 1 andK = 2. These are illustrated in Figure 1 for a set of values for ;
c1; and c2: Large values of  increase the velocity of transition from 0 to 1 as a function of
t�: The TV-GARCH model with K = 1 is suitable for describing return processes whose
volatility dynamics are di¤erent before and after the smooth structural change. When
K = 2; the parameters change but eventually return towards their original values as a
function of time.
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Figure 1. Plots of the logistic transition function (6) for: (a) K = 1 with location
parameter c1 = 0:5; and (b) K = 2 with location parameters c1 = 0:2 and c2 = 0:7 for
 = 5; 10; 50; and 100; where the lowest value of  corresponds to the smoothest function.

More generally, one can de�ne an extended version of the additive TV-GJR-GARCH
model by allowing more than one transition function in gt. The result becomes

gt =
rX
l=1

f�0l +
qX
i=1

(�il + �ilI("t�i < 0))"
2
t�i +

pX
j=1

�jlht�jgGl(t�; l; cl) (7)
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where Gl(t�; l; cl); l = 1; :::; r; are logistic functions as in (6) with smoothness parameter
l and a threshold parameter vector cl: The parameters in (4) and (7) satisfy the restric-
tions �0+

Pj
l=1 �0l > 0; �i+�i=2+

Pj
l=1(�il+�i=2) > 0; i = 1; :::; q; and �i+

Pj
l=1 �il � 0;

i = 1; :::; p; all for any j 2 f1; :::; rg: These conditions are su¢ cient for gt > 0 for all t.
The model (1), (2), (4) and (5) or, more generally (7), is an additive TV-GJR-GARCH

models whose intercept, ARCH and GARCH parameters are all time-varying. This implies
that the model is capable of accommodating systematic changes both in the �baseline
volatility�(or unconditional variance) and in the amplitude of volatility clusters. Such
changes cannot be explained by a constant parameter GARCH model.
Function (7) with r > 1 is extremely �exible, which is likely to make the model

di¢ cult to estimate in practice. A more applicable but still �exible model is obtained by
only letting the intercept change smoothly over time. This leads to the following de�nition
for gt:

gt =

rX
l=1

�0lGl(t
�; l; cl): (8)

It may be mentioned that Baillie and Morana (2009) recently proposed a GARCH model
which also has a deterministically time-varying intercept. It is modelled using the �exible
functional form of Gallant (1984) based on the Fourier decomposition. Their model di¤ers
from our time-varying-intercept GARCH model with (8) in the sense that it is in other
respects a FIGARCH model, and the authors called it the Adaptive FIGARCH model.
In the stationary GJR-GARCH(p; q) model, the unconditional variance of the returns

is constant over time, that is, E"2t = �0=(1�
Pq

i=1(�i+�i=2)�
Pp

j=1 �j) <1 if and only
if
Pq

i=1(�i+�i=2)+
Pp

j=1 �j < 1: This assumption is not consistent with the behaviour of
the volatility of the stock market returns, however, if the dynamic behaviour of volatility
changes over time. The additive TV-GARCH model with a time-varying intercept is
capable of generating changes in the dynamic behaviour of the unconditional variance.
The model (2), (4) and (8) can be seen as a GARCH(p; q) model with a stochastic time-
varying intercept �uctuating smoothly over time. Such a model can thus explain both
the clustering of volatility and smooth changes in the conditional variance.
Consider again the model (1), (2), (4) and (7) and assume that �0l = �0�l; �il + �il =

(�i + �i)�l; i = 1; :::; q; �jl = �j�l; j = 1; :::; p; for l = 1; :::; r: Imposing these restrictions
on (7) and rewriting (2) yields

�2t = htf1 +
rX
l=1

�lGl(t
�; l; cl)g (9)

which is the multiplicative representation (3) as gt = 1 +
Pr

l=1 �lGl(t
�; l; cl). Equation

(9) is thus a special case of the additive TV-GJR-GARCH model (2), (4) and (7). The
proportionality factors �l; l = 1; :::; r; have to satisfy certain restrictions for gt > 0 for all t:
The argument for favouring this representation of gt is based on the fact that gt as a linear
combination of logistic functions is a universal approximator. It is possible to approximate
any function H(t�) satisfying mild regularity conditions arbitrarily accurately with gt in
the sense that there exists an r � r0 < 1 such that jH(t�) � gtj < "=T for any " > 0
and for all t. This indicates that gt is a very �exible function capable of describing many
types of change in the unconditional variance.
The multiplicative model has a straightforward interpretation. Writing it in terms of

(1) and (3) as follows:

�t = "t=g
1=2
t = �th

1=2
t ; t = 1; :::; T (10)
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it is seen that �t has a constant unconditional variance Eht and, moreover, that �t has
a standard stationary GJR-GARCH(p; q) representation: Turning (10) around, one �nds
that

 t = "t=h
1=2
t = �tg

1=2
t ; t = 1; :::; T

form a sequence of independent but not identically distributed observations, as the un-
conditional variance of  t changes smoothly as a function of time. In the following we
shall focus on the multiplicative TV-GJR-GARCH model and leave the additive version
of the model for further research.

3 Estimation of multiplicative TV-GJR-GARCHmod-
els

3.1 Estimation applying maximisation by parts

The conditional (quasi) log-likelihood function of the multiplicative TV-GJR-GARCH
model has the following form:

LT (�1;�2; ") = k � (1=2)
TX
t=1

(lnht(�1;�2) + ln gt(�1))� (1=2)
TX
t=1

"2t
ht(�1;�2)gt(�1)

(11)

where �1 = (�0; 0; c0)0 with � = (�1; :::; �r)0;  = (1; :::; r)
0; l > 0; l = 1; :::; r; and

c = (c1; :::; cr)
0; c1 < ::: < cr. (For notational simplicity, we assume that each transition

function in gt(�1) is a simple logistic function: K = 1 in (6).) Furthermore, �2 =
(�0;�

0;�0;�0)0 where � = (�1; :::; �q)
0; � = (�1; :::; �q)

0; and � = (�1; :::; �p)
0: Estimation

of the parameters by straightforward maximization of (11) tends to be numerically very
di¢ cult. A solution to this problem is to apply maximization by parts; see Song, Fan, and
Kalb�eisch (2005) and Fan, Pastorello, and Renault (2007) for discussion. The estimation
proceeds as follows:

1. Estimate �1 and �2 by assuming �2 = �0; obtain �
(1)
1 (and �(0)2 = b�(0)0 ): At this

stage, it is useful to set ht � 1; de�ne

gt(�0;�1) = �0 +
rX
l=1

��lGl(t
�; l; cl) (12)

where �0 > 0; in (11), and then estimate �0; �
�
1; :::; �

�
r;  and c: Finally, the estimate

of �(1) is obtained as follows: �(1)l = �
�(1)
l =�

(0)
0 ; l = 1; :::; r:

2. Estimate �2 including �0; letting gt(�1) = gt(�
(1)
1 ):

3. Estimate �1 assuming

gt(�1) = 1 +
rX
l=1

�lGl(t
�; l; cl)

while setting ht(�1;�2) = ht(�
(1)
1 ;�

(1)
2 ): This yields �

(2)
1 : The important detail here

is that �1 is re-estimated holding the parameter estimates in ht(�1;�2) unchanged.
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Repeat Steps 2 and 3 until convergence.

Song, Fan, and Kalb�eisch (2005) showed that under regularity conditions, the result-
ing estimators are consistent and asymptotically normal. In order to prove that this is
the case even for the TV-GJR-GARCH model, we make the following assumptions.

AG1. The parameter space �1 = f�0�����Cg is compact, where  = (1; :::; r)
0 2

�; l > 0; l = 1; :::; r; and c = (c1; :::; cr)
0 2 C. The true parameter �01 is an interior point

of �1:
AG2. The elements of � 2 � are restricted such that maxj=1;:::;q �j �M� <1; and

inf
�12�1

gt(�1) � gmin > 0 (13)

for all t: Furthermore, �0 > 0:
AG3. In (1), Ej�tj2(2+�) <1 for some � > 0:

The restrictions l > 0; l = 1; :::; r; in AG1 are identi�cation restrictions required for
obtaining a unique maximum value for (11). AG2 stipulates that gt(�1) is a positive and
�nite-valued function of t:

Theorem 1 Let b�1T be the maximum likelihood estimator of �01;b�1T = argmaxLT (�1; ")
where the quasi log-likelihood function for the model is

LT (�1; ") =
TX
t=1

`(�1;"t) (14)

with

`(�1;"t) = k � (1=2)fln gt(�1) +
"2t

gt(�1)
g: (15)

Then
T 1=2(b�1T � �01) D! N (0;A�1(�01)B(�

0
1)A

�1(�01))

where

A(�01) = �(1=2)limT!1T�1
TX
t=1

1

g2t (�
0
1)
f@gt(�1)

@�1

@gt(�1)

@�01
gj�1=�01

and

B(�01) =
�4 � 1
4

limT!1T�1
TX
t=1

1

g2t (�
0
1)
f@gt(�1)

@�1

@gt(�1)

@�01
gj�1=�01 :

when T !1:

Proof. See the Appendix.

The estimator b�1 is consistent for �01 and asymptotically normal but not e¢ cient,
because it has been assumed that ht = �0: It o¤ers, however, an adequate starting-point
for further iteration, see Song, Fan, and Kalb�eisch (2005).
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In order to show that the maximum likelihood estimators of �1 and �2 are both
consistent and asymptotically normal, we have to prove that the parameter vector �2 of
the model

�t = �th
1=2
t (16)

can be consistently estimated at iteration k, and that the estimators of �2 are asymp-
totically normal when �1 = �

(k)
1 ; the consistent estimate of �01 from the kth iteration.

Straumann and Mikosch (2006) recently proved the consistency and asymptotic normality
of the maximum likelihood estimators of the parameters of the Asymmetric GARCH(p; q)
model

ht = �0 +

qX
i=1

��i (j"t�ij � �"t�i)
2 +

pX
i=1

��iht�1 (17)

under general conditions. This model can be written in the GJR-GARCH form as pointed
out by Meitz and Saikkonen (in press). Note, however, that for q > 1; the analogy between
(17) and the GJR-GARCH formulation (3) implies the restrictions �i = ��i; i = 1; :::; q;
in the latter. We can then use the results of Straumann and Mikosch (2006).
We make the following assumptions:

AH1. In (4), �0 > 0; and
Pq

i=1(�i + �i=2) +
Pp

j=1 �j < 1; where �i = ��i; i =
1; :::; q: This, together with Assumption AG3 made above, is a su¢ cient condition for
weak stationarity of the GJR-GARCH model.

Remark. This condition is much stronger than what is actually needed. Nevertheless,
since idea of the decomposition in Equation (10) is that f�tg is a weakly stationary
sequence (nonstationarity is modelled by gt), we use this assumption. See Straumann and
Mikosch (2006) for considerably weaker assumptions.

AH2. The polynomials
Pq

i=1(1 + �=2)�iz
i and 1 �

Pp
j=1 �jz

j do not have common
roots.
AH3. The parameter space �2 = f�0;�;�;�g is compact and the true parameter

value �02 belongs to the interior of �2:

Theorem 2 Consider the GJR-GARCH model (16) with (17) and assume that the as-
sumptions AG3 and AH1-3 hold. Then the maximum likelihood estimator b�2T of �02 given
�
(k)
1 ; where �(k)1 is �xed, is consistent and

p
T (b�2T � �02) D! N (0;V(k)

2 )

as T !1; where V(k)
2 is the asymptotic covariance matrix of b�2T given �(k)1 :

Proof. Due to the analogy between the GJR-GARCH model and the Asymmetric
GARCH model, the desired result follows from Straumann and Mikosch (2006), Theo-
rems 5.5 and 8.1. Assumption AG3 is needed because the proof in that article requires
E�4t <1:

Combining Theorems 1 and 2 and the results in Song, Fan, and Kalb�eisch (2005),
Theorem 3, one can conclude that after the kth iteration, the maximum likelihood esti-

mator b�(k)T = (b�(k)01T ;
b�(k)02T )

0 is consistent and asymptotically normal, that is,
p
T (b�(k)T � �0) D! N (0;V(k))
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as T !1; with the asymptotic covariance matrixV(k) given in Song, Fan, and Kalb�eisch
(2005). When k ! 1; V(k) converges to the asymptotic covariance matrix of

p
Tb�T ;

where b�T is the �nal maximum likelihood estimator.

3.2 Numerical aspects

Two remarks are in order regarding numerical aspects of the estimation of TV-GARCH
models. The �rst one concerns the accuracy of the slope estimates when the true parame-
ters l are very large. In order to achieve an accurate estimate for a large l; the number
of observations of the transition variable in the neighbourhood of cl must be very large.
This is due to the fact that even large changes in l only have an e¤ect on the transition
function in a small neighbourhood of cl: But then, for the same reason for large l it is
su¢ cient to obtain an estimate that is large; whether or not it is very accurate is not
of utmost importance. Note that if ̂l is large, an �insigni�cant� ̂l is an indication of a
large l; not of l � 0: Besides, because of the identi�cation problem the t-ratio does not
have its standard asymptotic distribution when l � 0. A more serious problem is that
large estimates for the slope parameter l may lead to numerical problems when carrying
out parameter constancy tests. A simple solution, suggested in Eitrheim and Teräsvirta
(1996), is to omit those elements of the score that are partial derivatives with respect to
the parameters in the transition function. When l is su¢ ciently large, this can be done
with only a negligible e¤ect on the value of the test statistic.
The second remark has to do with the computation of the derivatives of the log-

likelihood function. Many of the existing optimization algorithms require the computa-
tion of at least the �rst and, in some cases, also the second derivatives of the log-likelihood
function. It has been a common practice to use numerical derivatives that are relatively
fast to compute and reliable and thus avoid the derivation of exact analytic derivatives.
Fiorentini, Calzolari, and Panattoni (1996), however, encourage the employment of ana-
lytic derivatives, because that leads to fewer iterations than optimization with numerical
derivatives. Furthermore, the use of analytic derivatives also improves the accuracy of
the estimates of the standard errors of the parameter estimates. Consequently, we use
analytic �rst derivatives in all the computations, both in calculating values of the test
statistics and in estimating TV-GARCH models.

4 A three-stage modelling strategy for building TV-
GJR-GARCH models

We propose a model-building cycle for TV-GJR-GARCH or TV-GARCH models similar
to the speci�c-to-general strategy for nonlinear models of the conditional mean considered
in Teräsvirta (1998) and Teräsvirta, Tjøstheim and Granger (2010, Chapter 16), among
others. The cycle or strategy consists of the following three stages:

1. Test the null hypothesis of no conditional heteroskedasticity in f�tg: If it is rejected,
model the conditional variance ht as de�ned in (4) with p = q = 1. In some
applications, it may be assumed �1 = 0: In �nancial applications the test of no
conditional heteroskedasticity can most often be omitted, however, because return
series of su¢ ciently high frequency are likely to contain at least some conditional
heteroskedasticity. The assumption p = q = 1 re�ects the fact that a �rst-order
GARCH model is very often found a su¢ cient description of the data.
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2. After estimating the GJR-GARCH- or GARCH model, test the null hypothesis
of constant variance against a time-varying unconditional variance with a single
transition function. This implies testing H10 : gt � 1 in (3) against H11 : gt = 1 +
�1G1(t

�; 1; c1): Let � denote the signi�cance level of the test. In case of a rejection,
estimate a model with one transition and test H20 : gt = 1+ �1G1(t�; 1; c1) against
H21 : gt = 1 +

P2
l=1 �lGl(t

�; l; cl) at the signi�cance level ��; 0 < � < 1: Continue
until the �rst non-rejection of the null hypothesis. For reasons of parsimony, the
signi�cance level is reduced at each step of the testing procedure and converges to
zero. After rejecting a null hypothesis, choose the type of transition, K = 1 or
K = 2 in (6). The appropriate test will be described in Section 5.

3. Evaluate the estimated model by means of LM or LM-type diagnostic tests to be
discussed in Section 5. They are generalisations of tests proposed by Lundbergh and
Teräsvirta (2002). If the model passes all of them, tentatively accept it. Otherwise,
respecify the model or consider another family of volatility models.

Modelling could in theory also be initiated by �rst specifying and estimating the model
(1) and (3) with ht = �0: The ensuing speci�cation tests would then su¤er from size
distortion due to ignored conditional heteroskedasticity. This drawback could in principle
be remedied by a wild bootstrap, but our experiments with two-point distributions along
the lines in Davidson, Monticini, and Peel (2007) did not bring satisfactory results. This
led us to prefer the order of speci�cation described above.

5 Misspeci�cation testing of multiplicative TV-GJR-
GARCH models

In this section we shall consider misspeci�cation tests relevant for Stage 3 of our modelling
strategy. One of the tests is of particular interest for Stage 2 and can be viewed as a
speci�cation test. The general idea is to construct an augmented version of the TV-GJR-
GARCH model by introducing a new component into the original model. This component
is a function that is at least twice continuously di¤erentiable with respect to the elements
of �3; the vector of additional parameters. Misspeci�cation tests considered here may be
divided into three categories. The �rst two correspond to additive and the third one to
multiplicative misspeci�cation.
In order to construct the alternative hypotheses, de�ne a new function ft(�3) which is

at least twice continuously di¤erentiable in an open neighbourhood of �3 = 0: The three
alternative hypotheses are as follows:

1. The deterministic component is additively misspeci�ed:

�2t = ht(�1;�2;�3)fgt(�1) + ft(�3)g:

2. The conditional variance component is additively misspeci�ed:

�2t = fht(�1;�2) + ft(�3)ggt(�1):

3. The variance is multiplicatively misspeci�ed:

�2t = ht(�1;�2)gt(�1)ft(�3):
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In the �rst two cases the null hypothesis is ft(�3) � 0; and it is assumed that this
identity holds if and only if �3 = 0: In the �rst case one can thus test the hypothesis that
the number of transitions in gt equals r; whereas it is greater than r in the alternative.
In the second case one can test a GARCH(p; q) model against either a GARCH(p+ s; q)
or GARCH(p; q + s), s > 0; model. Likewise, testing a linear GARCH model such as a
standard GARCH but also a GJR-GARCH model against a smooth transition GARCH
model �ts into this framework. In the third case ft(�3) is a positive-valued function
such that under the null hypothesis ft(�3) � 1; and this occurs if and only if �3 = 0:
This design covers the case in which under the null hypothesis f�tg is a sequence of
independent standard normal variables as in (1). Under the alternative, �t has an ARCH
structure. This implies �t = ztf

1=2
t ; where fztg is a sequence of independent standard

normal variables and

ft = 1 +
kX
j=0

�j�
2
t�j (18)

so �3 = (�1; :::; �k)0 with �j � 0; j = 1; :::; k; and at least one inequality is strict. Another
possibility is to assume "t = zt(htgtft)

1=2; where ft = 1 +
Pk

j=0 �jy
2
t�j such that yt is

a positive-valued stationary stochastic variable, weakly exogenous to the parameters of
interest. An interesting special case may be the one in which gt � 1; and the multiplicative
structure of the model opens up another way of introducing exogenous information to the
model.
In order to consider the �rst testing problem, assume that the null model is a stationary

TV-GJR-GARCH model in which the GARCH component is of order one (p = q = 1)
in (4). The latter assumption is made for notational convenience, and a higher-order
GARCH component is not excluded from consideration.
In Case 1, the log-likelihood for observation t has the form

`(�;"t) = k � (1=2)flnht(�1;�2;�3) + lnfgt(�1) + ft(�3)g

+
"2t

ht(�1;�2;�3)fgt(�1) + ft(�3)g
g:

In order to shorten the notation, set ht = ht(�1;�2;�3); gt = gt(�1) and ft = ft(�3): The
average score vector has the form

s(�; ") = (s1(�; ")
0; s2(�; ")

0)0 (19)

where s1(�; ") = (s11(�; ")0; s12(�; ")0)0: The components of (19) are

s11(�; ") = (2T )�1
TX
t=1

@`(�;"t)

@�1
= (2T )�1

TX
t=1

(�2t � 1)(
1

(gt + ft)

@gt
@�1

+
1

ht

@ht
@�1

)

s12(�; ") = (2T )�1
TX
t=1

@`(�;"t)

@�2
= (2T )�1

TX
t=1

(�2t � 1)
1

ht

@ht
@�2

and

s2(�; ") = (2T )
�1

TX
t=1

@`(�;"t)

@�3
= (2T )�1

TX
t=1

(�2t � 1)(
1

(gt + ft)

@ft
@�3

+
1

ht

@ht
@�3

)
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where �2t = "2t=fht(gt+ ft)g and ft = 0 if and only if �3 = 0: The partial derivatives of ht
are as follows:

@ht
@�1

= �f�1
"2t�1

(gt�1 + ft�1)2
+ 1

"2t�1I("t�1 < 0)

(gt�1 + ft�1)2
g@gt�1
@�1

+ �1
@ht�1
@�1

@ht
@�2

=
@

@�2
f�0 + �1

"2t�1
gt�1 + ft�1

+ 1
"2t�1I("t�1 < 0)

gt�1 + ft�1
+ �1ht�1g

= (1;
"2t�1

gt�1 + ft�1
;
"2t�1I("t�1 < 0)

gt�1 + ft�1
; ht�1)

0 + �1
@ht�1
@�2

and
@ht
@�3

= �(�1
"2t�1

(gt�1 + ft�1)2
+ 1

"2t�1I("t�1 < 0)

(gt�1 + ft�1)2
)
@ft�1
@�3

+ �1
@ht�1
@�3

: (20)

Furthermore, @gt=@�1 is de�ned in Lemma A.1. When gt with r transitions is tested
against r + 1; @ft=@�3 = t� = (t�; t�2; t�3)0: This follows from the fact that the (r + 1)st
transition function is approximated by its third-order Taylor expansion around r+1 = 0;
see Eitrheim and Teräsvirta (1996) and Lundbergh and Teräsvirta (2002) for discussion.
Setting bht = ht(b�1T ; b�2T ;0) and bgt = gt(b�1T ); and evaluating the average score under

H0: �3= 0 yields

s11(b�1T ; b�2T ;0) = (2T )�1
TX
t=1

(b�2t � 1)( 1bgt @gt@�1
jH0 +

1bht @ht@�1
jH0) (21)

s12(b�1T ; b�2T ;0) = (2T )�1
TX
t=1

(b�2t � 1) 1bht @ht@�2
jH0 (22)

and

s2(b�1T ; b�2T ;0) = (2T )�1 TX
t=1

(b�2t � 1)( 1bgt @ft@�3
jH0 +

1bht @ht@�3
jH0)

where b�2t = "2t=(
bhtbgt); and b�1T ! �01 and b�2T ! �02 in probability as T !1: The partial

derivatives, evaluated at H0; are as follows:

@ht
@�1

jH0 = �fb�1 + b1I("t�1 < 0)gb�2t�1bgt�1 @gt�1@�1
jH0 + b�1@ht�1@�1

jH0
@ht
@�2

jH0 = (1; b�2t�1; b�2t�1I("t�1 < 0);bht�1)0 + b�1@ht�1@�2
jH0

where b�2t = "2t=bgt; and
@ht
@�3

jH0 = �fb�1 + b1I("t�1 < 0)gb�2t�1bgt�1 @ft�1@�3
jH0 + b�1@ht�1@�3

jH0 :

where (@ft=@�3)jH0 = @ft=@�3 = t
�: Denoting

B(�0) = Es(�01;�
0
2;0)s(�

0
1;�

0
2;0)

0 =

�
B11(�

0) B12(�
0)

B21(�
0) B22(�

0)

�
we have that

T s2(b�1T ; b�2T ;0)0(�22 ��21��111�12)
�1s2(b�1T ; b�2T ;0) D! �2(m)
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when �3 = 0; where m is the dimension of �3: Set bxjt = bh�1t (@ht=@�j)jH0 ; j = 1; 2; 3;bu1t = bg�1t (@gt=@�1)jH0 and bv3t = bg�1t (@ft=@�3)jH0 : Furthermore,
�ij =

�4 � 1
4T

TX
t=1

britbr0jt; i; j = 1; 2
is a consistent estimator of Bij(�

0) under H0; where br1t = (bu01t + bx01t; bx02t)0 and br2t =bv3t + bx3t:
The test can be carried out in stages:

1. Estimate the TV-GJR-GARCH model, save the standardised residuals b�t and con-
struct the �residual sum of squares�SSR0 =

PT
t=1(
b�2t � 1)2:

2. Regress b�2t � 1 on br1t and br2t and form the residual sum of squares SSR1:

3. Compute the test statistic

LMadd-g = T
SSR0 � SSR1

SSR0
: (23)

The statistic (23) has an asymptotic �2-distribution with dim(�3) degrees of freedom
when the null hypothesis is valid.

An interesting special case of this test is obtained by assuming ht = �0 > 0: It may
be relevant in situations, in which the error variance of a macroeconometric model can be
time-varying but without volatility clustering. The great moderation serves as a recent
example. Note, however, that in this case the conditional mean is being modelled as well,
whereas it was assumed away in Section 2.
In Case 2, the log-likelihood for observation t has the form

`(�;"t) = k � (1=2)[lnfht(�1;�2) + ft(�3)g+ ln gt(�1) +
"2t

fht(�1;�2) + f(�3)ggt(�1)
]

and the components of the score are

s11(�; ") = (2T )�1
TX
t=1

@`(�;"t)

@�1
= (2T )�1

TX
t=1

(�2t � 1)(
1

gt

@gt
@�1

+
1

(ht + ft)

@ht
@�1

)

s12(�; ") = (2T )�1
TX
t=1

@`(�;"t)

@�2
= (2T )�1

TX
t=1

(�2t � 1)
1

ht + ft

@ht
@�2

and

s2(�; ") = (2T )
�1

TX
t=1

@`(�;"t)

@�3
= (2T )�1

TX
t=1

(�2t � 1)
1

(ht + ft)

@ft
@�3

where

@ht
@�1

=
@

@�1
f�0 + �1

"2t�1
gt�1

+ 1
"2t�1I("t�1 < 0)

gt�1
+ �1ht�1g

= �f�1
"2t�1
g2t�1

+ 1
"2t�1I("t�1 < 0)

g2t�1
g@gt�1
@�1

+ �1
@ht�1
@�1

@ht
@�2

= (1;
"2t�1
gt�1

;
"2t�1I("t�1 < 0)

gt�1
; ht�1)

0 + �1
@ht
@�2

:
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Analogously, �2t = "2t=f(ht + ft)gtg: The partial derivatives, evaluated at H0; are

@ht
@�1

jH0 = �(b�1b�21 + b1b�21I("t�1 < 0))@gt�1@�1
jH0 + b�1@ht�1@�1

jH0
@ht
@�2

jH0 = (1; b�2t�1; b�2t�1I("t�1 < 0);bht�1)0 + b�1@ht�1@�2
jH0

whereas @ft=@�3 depends on the alternative hypothesis. For example, if the alternative
hypothesis is that p = 2 in the GJR-GARCH model, then ft = �2ht�2; so �3 = �2: The
blocks s11(b�1T ; b�2T ;0) and s12(b�1T ; b�2T ;0) of the average score are the same as (21) and
(22), whereas

s2(b�1T ; b�2T ;0) = (2T )�1 TX
t=1

(b�2t � 1) 1bht @ft@�3
jH0 :

The test is carried out in stages as in the previous case, the only di¤erence being thatbr2t = bh�1t (@ft=@�3)jH0 : To continue the example, if ft = �2ht�2; then (@ft=@�3)jH0 = bht�2:
When gt � 1; s11(�; ") = 0; and the test collapses into the corresponding misspeci�cation
test of the (GJR-)GARCH model in Lundbergh and Teräsvirta (2002).
As for Case 3, the components of the average score are

s11(�; ") = (2T )�1
TX
t=1

@`(�;"t)

@�1
= (2T )�1

TX
t=1

(z2t � 1)(
1

gt

@gt
@�1

+
1

ht

@ht
@�1

)

s12(�; ") = (2T )�1
TX
t=1

@`(�;"t)

@�2
= (2T )�1

TX
t=1

(z2t � 1)
1

ht

@ht
@�2

and

s2(�; ") = (2T )
�1

TX
t=1

@`(�;"t)

@�3
= (2T )�1

TX
t=1

(z2t � 1)
1

ft

@ft
@�3

where z2t = "2t=(htftgt): Evaluated under H0; s11(�; ") and s12(�; ") again equal (21) and
(22), whereas

s2(b�1T ; b�2T ;0) = (2T )�1 TX
t=1

(b�2t � 1) @ft@�3
jH0

since zt � �t and ft � 1 under H0: The test can be carried out in stages as before, and nowbr2t = (@ft=@�3)jH0 :When the alternative is �ARCH in GARCH�, br2t = (b�2t�1; :::;b�2t�k)0; and
the asymptotic �2-statistic has k degrees of freedom. Even here, gt � 1 implies s11(�; ") =
0; in which case the test collapses into the �ARCH in GARCH�test in Lundbergh and
Teräsvirta (2002), which is asymptotically equivalent to the test of Li and Mak (1994).
If, in addition, ht � �0; we have the test of no ARCH of Engle (1982) which in turn is
asymptotically equivalent to the portmanteau test of of McLeod and Li (1983).

6 Simulation study

6.1 Design of the study

In this section, we conduct a small simulation experiment to evaluate the �nite-sample
properties of the test against a multiplicative TV-GARCH speci�cation. Speci�cally, we
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shall investigate the size and power properties of the LM-type test involved in the mod-
elling strategy as well as the success rate of the speci�cation procedures. Sample lengths
of 1000, 2500 and 5000 observations are used in all simulations. To avoid the initialization
e¤ects, the �rst 1000 observations have been discarded before generating the actual series.
All the computations have been carried out using Ox, version 5.00 (see Doornik (2007)).
The behaviour of the test statistics is examined for several data generating processes
(DGPs) that can be nested in the following TV-GARCH speci�cation:

yt = �t(htgt)
1=2; f�tg � iidN (0; 1) (24)

The data generating processes are as follows:

DGP (i) ht = 0:10 + 0:10"
2
t�1 + 0:80ht�1; gt � 1

DGP (ii) ht = 0:10 + 0:10"
2
t�1 + 0:85ht�1; gt � 1

DGP (iii) ht = 0:05 + 0:05"
2
t�1 + 0:90ht�1; gt � 1

DGP (iv) ht = 0:005 + f0:05 + 0:10I("t�1 < 0)g"2t�1 + 0:80ht�1; gt � 1

DGP (v) ht = 0:10 + 0:10"
2
t�1 + 0:80ht�1

gt = 1 + �1G1(t
�; 1; c1); �1 = f�0:05; 0:05g

G1(t
�; 1; c1) = (1 + exp(�1(t� � c1)))

�1

The last design concerns the multiplicative TV-GARCH model where the midpoint of
the change in volatility is at c1 = 0:5; whereas the slope parameter 1 varies in the interval
1 = f5; 10g: Following the suggestion in Bollerslev (1986), recursive computation of ht is
initialized by using the estimated unconditional variance for the pre-sample values t � 0:

6.2 Results of the study

In this section we shall �rst report results on the size and power properties of our parame-
ter constancy tests. Then we turn to the results on the performance of our speci�cation
strategy.

6.2.1 Size and power simulations

Results of the size simulations are presented graphically in Figure 2. The graphs show
the discrepancies in size (the actual minus the nominal size) plotted against the nominal
sizes from 0:1%; 0:3%; 0:5%; :::; 10%: In each subgraph we present the size discrepancies
for DGPs (i)-(iv) and the three sample sizes. In most panels, one can observe that the
parameter constancy test is positively size-distorted at the sample size T = 1000; but
the empirical size becomes more accurate as the sample size increases. For sample sizes
typically used for modelling volatility clustering, such as T = 2500 and T = 5000, the
tests are reasonably well-sized. Furthermore, we also investigated the size results of the
test statistics when the errors are not identically distributed. The size distortions in the
robust version of the test were similar to those reported in Figure 2 and are not presented
here. Our main conclusion is that both the non-robust and robust versions of the test
statistics are rather good approximations to the �nite-sample distributions for T � 2500:
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Figure 2. Size discrepancy plots of the parameter constancy test. The size discrepancy
is plotted against the nominal size. The lines in each plot correspond to sample sizes 1000
(�); 2500 (+), and 5000 (�): The total number of replications equals 5000.

Although there exist several parameter constancy tests in the GARCH literature, none
of them can be considered a direct benchmark for our parameter constancy tests. In what
follows, we only show results of the power simulations for our test. On each graph of
Figure 3, the actual rejection frequencies are plotted against the nominal signi�cance
levels 0:1%; 0:3%; 0:5%; :::; 10%: Instead of the size-adjusted power curves suggested by
Davidson and MacKinnon (1998), we simply report power curves as the tests have good
size properties.
Rejection frequencies for the non-robust LM-type test against a multiplicative alterna-

tive are shown in Figure 3. The power results have been obtained by generating arti�cial
data from DGP (v). As before, we consider sample sizes of 1000; 2500 and 5000 obser-
vations. The rejection frequencies of the LM test statistics shown in the left panel are
moderate when T = 1000 and increase with the sample size. As expected, the rejection
frequencies are an increasing function of the sample size and of the slope parameter 1: It
is interesting to note that, the LM-type test statistic turns out to be quite powerful even
for small values of the parameter �1 and short time series.
Again, we compute both the ordinary and robusti�ed versions of the LM test. The

behaviour of the robusti�ed version of the test in the power simulations is similar to that
of the non-robust version and results are not shown here.

6.2.2 Simulating the model selection strategy

In this section we consider the performance of the speci�c-to-general speci�cation strategy
for the multiplicative TV-GARCHmodels. This is done by studying the selection frequen-
cies of various models. The speci�cation procedure has been discussed in Section 4. For
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each DGP, we consider all three sample sizes. As before, the �rst 1000 observations of
each generated series are discarded to minimise the initialization e¤ects. Throughout, we
set � = 0:05 for both the LM1 (@ft=@�3 = t� in (20)) and LM3 (@ft=@�3 = (t�; t�2; t�3)0 in
(20)) versions of the test: The maximum number of transitions considered equals two.
Furthermore, � = 1=2; which means that we halve the signi�cance level of the test at each
stage of the sequence.
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(b) DGP (v): �1=�0:05; 1=10
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Figure 3. Power curves of the parameter constancy test. The actual rejection frequency
is plotted against the nominal size. The lines in each plot correspond to sample sizes 1000
(�); 2500 (+), and 5000 (�): The total number of replications equals 5000.

Results for DGPs (i)-(iv) are reported in Table 1. For each DGP, the total of number
of replications equals 5000. The frequencies (in percentages) of the correct number of
transitions are shown in boldface. The second column refers to the number of transition
functions selected. In general, the statistic LM1 (has better size properties than LM3.
However, in most cases, the test based on the third-order Taylor expansion also has an
empirical size very close to the nominal size except when the sum �1 + �1 is close to one
and the sample size is less than 2500 observations.
Results for series generated from a model with a single transition function (DGP (v))

can be found in Table 2. The total number of replications equals 2000. The results concern
the case where the centre of the change is located halfway through the sample. Clearly,
the constant-parameter GARCH model is chosen too often for parameterizations with
smoothest changes and shortest series. As T becomes large, the correct model is chosen
more frequently, as may be expected. For large sample sizes, the selection frequencies
of the true model become quite high even for very smooth changes. It also becomes
easier to identify a single transition when the slope parameter 1 increases. Again, the
LM1-test has higher power than LM3. As expected, the correct model is selected slightly
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more often for high than for low values of �1: Overall, the speci�cation strategy seems to
work relatively well for all combinations of parameters considered and for sample sizes
T � 2500:

7 Applications

In this section we shall consider two empirical examples, each of them involving a �nancial
time series. The series in the �rst example is the Standard and Poor 500 composite index
(S&P 500), while the second application concerns the spot exchange rate of the Singapore
dollar versus the U.S. dollar (SPD/USD). Both series are observed at a daily frequency
and transformed into continuously compounded rates of return.

7.1 Stock index returns

The daily S&P 500 return series originates from the Yahoo-Quotes database. The sample
extends from January 2, 1990, to December 31, 1999, which amounts to 2531 observations.
The series is plotted in Figure 4. It contains a period of large volatility in the beginning
and another at the end of the sample period, whereas the average volatility in the middle
of the sample is somewhat lower than in both ends. Volatility clustering can be observed
throughout the period.
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Figure 4. Daily returns of the S&P 500 composite index from January 2, 1990 until
December 31, 1999 (2531 observations).

Summary statistics for the series can be found in the second column of Table 3. It is
seen that there is both negative skewness and excess kurtosis in the series. Normality of
the marginal distribution of the S&P 500 returns is strongly rejected. Robust skewness
and kurtosis estimates (see Kim and White (2004) and Teräsvirta and Zhao (in press))
are also provided. The robust skewness measure is positive but very close to zero, which
suggests that the asymmetry of the empirical distribution of the returns is due to a
small number of outliers. The robust centred kurtosis that has value zero for the normal
distribution indicates some excess kurtosis but much less than the conventional measure.
This is in line with the robust skewness estimate. As expected, the null hypothesis of no
ARCH is strongly rejected.
Since our returns are stock index returns, we begin by �tting a GJR-GARCH(1,1)

model to this series. The results can be found in the leftmost columns of Table 4. It is
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seen that the heteroskedasticity is extremely persistent: the persistence measure b�1+b�1+b1=2 = 0:992: note that the unconditional variance ceases to exist when �1+�1+1=2 = 1:
Misspeci�cation tests of this model (other than tests of gt � 1) can be found in Table
6. Both the test against a higher-order GARCH and the one against smooth transition
GARCH model strongly reject the model. The latter rejection seems to suggest that the
GJR-GARCH model fails to adequately describe the asymmetry of the response of the
conditional variance to shocks.
Instead of respecifying this model following the outcomes of these tests we turn our

attention to the tests of gt (type 2 additive misspeci�cation). This is Step 1 in the
speci�cation of multiplicative TV-GJR-GARCH models outlined in Section 4. The results
can be found in Table 5. The null hypothesis gt � 1 is rejected very strongly as the p-
value of the test equals 7 � 10�4: The test sequence for specifying the structure of the
deterministic function gt points towards K = 2; as H02 is rejected more strongly than
either H01 or H03: Fitting the TV-GJR-GARCH model with a single transition function
andK = 2 to the series and testing for another transition leads to rejecting the hypothesis
of a single transition. The p-value, however, is now considerably larger, equalling 0:023;
and the speci�cation test sequence clearly suggests K = 1 for the second transition.
Accepting this outcome, �tting the corresponding TV-GJR-GARCH model to the series
and testing for yet another transition yields the p-value 0:497 for the test. It can be
concluded that no more than two transitions are needed to adequately characterise the
deterministic component of the TV-GJR-GARCH model.
The estimated gt has the following form:

bgt = f1 + 1:6034
(0:1216)

G1(t
�; b1;bc1) + 1:7378

(0:3429)
G2(t

�; b2;bc2)g (25)

with
G1(t

�; b1;bc1) = (1 + expf�250
(�)
(t� � 0:2055

(0:0009)
)(t� � 0:6918

(0:0031)
)g)�1 (26)

and
G2(t

�; b2;bc2) = (1 + expf�250
(�)
(t� � 0:8540

(0:0026)
)g)�1 (27)

The graph of bgt is depicted in Figure 6. The two transitions are clearly visible and
illustrate how volatility �rst decreases and then increases over time. A double increase at
the end suggests that volatility there is even higher than in the beginning of the series.
The estimated model is subjected to misspeci�cation tests described in Section 5. The

results can be found in Table 6. The p-values of the two tests, the one against higher-order
GARCH and the one against STGARCH are now considerably higher than previously,
which suggests that the main source of misspeci�cation in the GJR-GARCH model was
the lack of the proper deterministic component. If we, somewhat arbitrarily, apply the
1% signi�cance level for our tests, the estimated TV-GJR-GARCH model may be deemed
adequate. If we, however, wanted to improve the model further, we could add another
lag of ht to the model.
It is of interest to compare the TV-GJR-GARCH model with the GJR-GARCH spec-

i�cation. The log-likelihood of the former model is considerably higher than that of the
latter. The most dramatic change in the dynamic properties is that the persistence has
decreased remarkably: in the TV-GJR-GARCH model, b�1 + b�1 + b1=2 = 0:917, which
is a strikingly low �gure. It is seen that this decrease is mainly due to the decrease in
the estimate of �1; which is the coe¢ cient of ht�1: There is an increase in the value of
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1; which is partly attributed to the fact that the estimate of �1 became statistically
insigni�cant, it was in fact slightly negative, and the term "t�1=g

1=2
t�1 was therefore omitted

from the model. These changes have the following explanation. When it is assumed that
the process is stationary there is only one level (the unconditional variance) to which the
conditional variance converges when it is assumed that �t = 0 for t > t0: The convergence
then takes a very long time (b�1 + b�1 + b1=2 = 0:992 is very close to unity). In the TV-
GJR-GARCH model the corresponding level is time-varying, and the rate of convergence
to this �exible level can thus be much more rapid than it is in the standard GJR-GARCH
model to a �xed level.
The fourth column in Table 3 contains the skewness and kurtosis estimates for "t=bg1=2t :

The negative skewness remains when measured using the standard nonrobust estimate
but, as can be expected from the other results, the excess kurtosis of the �nal "t=bg1=2t
series is considerably less (equal to 2:8) than the original number that equalled 5:3: This
is another illustration of the fact that volatility to be modelled by ht in the TV-GJR-
GARCH model is much smaller than it is in the GJR-GARCH(1,1) model without the
nonstationary component. Even the robust kurtosis estimate in Table 3 shows some
decrease, but because its nonrobust value was already small, the decrease has remained
rather moderate.
The di¤erences between the two speci�cations are further illustrated by two �gures.

Figure 7 contains the autocorrelations of j"tj in Panel (a) and those of j"tj=bg1=2t in Panel
(b). It is seen that the increase in the log-likelihood is mainly due to a decrease in the
general level of the autocorrelations. In Panel (a), the autocorrelations retain the �long-
memory property�, the very slow decay as a function of the lag, which translates into
the high value of the persistence measure in the GJR-GARCH model. Panel (b) shows
that the autocorrelations of j"tj=bg1=2t are rather small, and only few of them exceed two
standard deviations of j"tj under the iid normality assumption, marked by the horizontal
line in the �gure. A major part of the variation in the daily S&P 500 return series
can thus be attributed to the slow-moving component gt, and only a minor portion of
the variation is left to be parameterised by the stationary GJR-GARCH component. It
may be argued that the unconditional variance component gt completely dominates the
conditional variance.
Figure 8 contains the estimated conditional standard deviations h1=2t of f"tg for the

GJR-GARCH(1,1) model and the ones of f"t=bg1=2t g. For the GJR-GARCH model, see
Panel (a), the graph looks rather �nonstationary�in that there appears to be a nonlinear
�trend�. From the graph in Panel (b) it is seen that volatility (the conditional standard
deviation of f"t=bg1=2t g) is still changing over time, but the persistent level changes have
been absorbed by the deterministic component.
In Figure 9, the estimated news impact curve of the standard GJR-GARCH(1,1)

model is compared with corresponding curves of the TV-GJR-GARCH(1,1) model. The
news impact curve of the TV-GJR-GARCH model is time-varying because it depends on
gt�1: The news impact curve of the GJR-GARCH model is time-invariant, and from the
�gure it is seen how the curve can vary over time in the TV-GJR-GARCH model. This
curve is completely �at for "t�1 > 0 because �1 = 0 in the model. The curves based on
the TV-GJR-GARCH model clearly show the obvious fact that when there is plenty of
turbulence in the market, the news impact of a particular negative shock is smaller than
it is when calm prevails. In the latter case, even a minor piece of �bad news�(a negative
shock) can be �news�, whereas in the former case, even a relatively large negative shock
can have a rather small news component. This distinction cannot be made in the standard

19



GJR-GARCH model. According to our TV-GJR-GARCH model, �good news�(positive
shocks) have no impact on volatility in this application.

7.2 Exchange rate returns

The time series of this section consists of daily returns of the spot SPD/USD exchange
rate provided by the Federal Reserve Bank of New York. A graph of the series is shown
in Figure 5. It covers the period from May 1, 1997 until July 11, 2005, yielding a total of
2060 observations. At �rst sight, it appears that one can distinguish two di¤erent regimes
in the series. A period of high volatility occurs during the East Asian �nancial crisis due
to the signi�cant depreciation of the Singapore dollar relative to the U.S. dollar. After
the crisis, the volatility of the currency returns descends to a low level.
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Figure 5. Daily returns of the Singapore Dollar versus US dollar exchange rate from
May 1, 1997 until July 11, 2005 (2060 observations).

Descriptive statistics for the SPD/USD exchange rate returns are reported in Table 3.
There is plenty of excess kurtosis, and the estimated skewness is strongly negative. These
values are due to a limited number of large negative returns early in the series during
the so-called Asian crisis. Naturally, the marginal distribution of the returns is far from
normal. The robust measure of skewness indicates that there is in fact little skewness and
the robust centred kurtosis is substantially smaller than its standard measure. The hy-
pothesis of no ARCH is strongly rejected. The GARCH(1,1) model �tted to this exchange
rate return series again shows high persistence of volatility. The estimate of �1 is larger
and that of �1 smaller than in the S&P 500 model, which is a consequence of the fact that
the kurtosis is larger in the exchange rate series than it is in the S&P 500 returns. The
misspeci�cation tests in Table 7 that does not contain the test of constant unconditional
variance, do not generally indicate misspeci�cation. The �no ARCH in GARCH�test is
the only exception when r = 5:
The speci�cation test of constant unconditional variance against a time-varying one in

Table 5 has the p-value equal to 0:002: The short test sequence indicates that one should
choose K = 2; which at �rst may appear a bit surprising, given Figure 5. A TV-GARCH
model with a single transition appears adequate in the sense that the test for another
transition has p = 0:22:
The diagnostic tests of this model in Table 7 do not indicate misspeci�cation. In

particular, the linearity test against the smooth transition GARCH does not indicate
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remaining nonlinearity, which agrees with the commonly observed fact that a symmet-
ric GARCH component is adequate for exchange rate return series. The model is thus
accepted as our �nal model for the SPD/USD daily return series.
Turning to the properties of the estimated model, it is seen from Table 3 that the

excess kurtosis of the rescaled returns f"t=bg1=2t g is substantially smaller than that of f"tg:
Furthermore, negative skewness has been reduced from �0:9 to less than �0:3: This can
be ascribed to the fact that the original skewness estimate was due to a couple of very
large negative returns during the Asian crisis. Their signi�cance has subsequently been
reduced in rescaled returns. As may be expected, the robust skewness estimate is not
a¤ected by rescaling.
The estimated gt has the following form:

bgt = f1� 0:8184
(0:0062)

G1(t
�; b1;bc1)g; (28)

where
G1(t

�; b1;bc1) = (1 + expf�250
(�)
(t� � 0:0227

(0:0003)
)(t� � 0:1888

(0:0014)
)g)�1 (29)

The graph of the transition function can be found in Figure 10. It shows how the tranquil
period just before the crisis in the cause for selecting K = 2; which then gives bgt its hump
shape.
The parameter estimates of the GARCH component of the TV-GARCH model appear

in Table 4. While b�1+b�1 = 0:994 in the GARCHmodel, after introducing gt the same sum
equals 0:962; which suggests a remarkable drop in persistence. As in the previous example,
the characteristics of the model are further illustrated by two �gures. Figure 11 shows how
the autocorrelations of j"tj=bg1=2t are considerably lower than those of j"tj: The �rst-order
autocorrelation that equals 0:304 for j"tj is only equal to 0:117 for j"tj=bg1=2t :The decay rate
of the autocorrelations of of j"tj=bg1=2t is quite rapid. Again, it seems that the unconditional
variance component dominates, and the amount of conditional heteroskedasticity left to
be modelled after the changing unconditional variance has been accounted for, is relatively
small in comparison.
The graph of the conditional standard deviation h1=2t in Panel (a) of Figure 12 clearly

shows a long period of high volatility that is more than a simple cluster. Panel (b) shows
that in the �nal model this period is explained by the deterministic component gt; and
that the graph of h1=2t does not show signs of nonstationarity. This is precisely what one
would expect after seeing the GARCH parameter estimates in Table 4.
Figure 13 contains the estimated news impact curves of the traditional GARCH(1,1)

model and the ones of the TV-GARCH(1,1) model for three regimes. It is seen that
symmetry in the response of volatility to news is preserved in the latter model. This is
obviously because of certain �symmetry�of the exchange rates: good news for the US
dollar may be bad news for the SPD, and vice versa. As in the previous example, the
time-varying news impact curves distinguishes di¤erent reaction levels of volatility to news
in calm and turbulent times. When there is plenty of turbulence, a piece of news of a
given size may drown in the general uncertainty, while the same news can have a large
impact during a tranquil period.
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8 Concluding remarks

In this paper we introduce two new nonstationary GARCH models whose parameters are
allowed to have a smoothly time-varying structure. Time-variation of the (un)conditional
variance is incorporated in the model either in an additive or a multiplicative form, of
which we focus on the latter. This approach is appealing since most daily �nancial return
series cover a long time period and non-constancy of parameters in models describing
them therefore appears quite likely. We also develop a modelling strategy for our multi-
plicative TV-GARCH model. In order to determine the appropriate number of transitions
we propose a procedure consisting of a sequence of Lagrange multiplier tests. The test
statistics can be robusti�ed against deviations from the iid assumption. Our simulation
experiments suggest that the parameter constancy tests have reasonably good size prop-
erties already in samples of moderate size. The modelling strategy appears to work quite
well for the data-generating processes that we simulate.
We put our TV-GARCH models to test by applying the modelling strategy to daily

stock index and exchange rate returns. We �nd that parameter constancy against an
additive and a multiplicative structure is strongly rejected for both return series. Fitting
a traditional GARCH or GJR-GARCH model to these series yields results that are quite
di¤erent from the ones obtained by our approach and point at the presence of long mem-
ory in volatility. Our results show that the long-memory type behaviour of the sample
autocorrelation functions of the absolute returns may also be induced by changes in the
unconditional variance. Once the model accounts for the time-variation in the uncondi-
tional variance, the evidence for long memory is considerably weakened or even vanishes
altogether.
An extension to multivariate GARCHmodels appears possible. The so-called Constant

Conditional Correlation (CCC-) GARCH model by Bollerslev (1990) and its extensions
typically make use of a standard GARCH(1,1) speci�cation for conditional variances.
These GARCH equations may be generalized to account for time-variation in parameters.
An interesting question to investigate with our TV-GARCH speci�cations is how such a
generalization would a¤ect estimates of time-varying correlations in a situation in which
there are changes in the unconditional variance of the return series. This and other
extensions to multivariate models will be left for future work.
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Appendix A

Theorem 1 will be proved by verifying the assumptions of Theorem 4.1.6 in Amemiya
(1985, p. 114). The quasi log-likelihood function for the model is

LT (�1; ") =

TX
t=1

`(�1;"t)

where

`(�1;"t) = k � (1=2)fln gt(�1) +
"2t

gt(�1)
g

and gt(�1) is de�ned in (12). For notational simplicity, we set �1 = (�0; �
�0; 0; c0)0:

We begin by considering the �rst and the second partial derivatives of the function
(15) and show that they are continuous and bounded:

Lemma A.1. The function @`(�1;"t)=@�1 has the form

@`(�1;"t)=@�1 = �(1=2) @
@�1

fln gt(�1) +
"2t

gt(�1)
g

= (1=2)(
"2t

gt(�1)
� 1) 1

gt(�1)

@gt(�1)

@�1

where
@gt(�1)

@�1
= (

@gt(�1)

@�0

@gt(�1)

@��0
@gt(�1)

@ 0
@gt(�1)

@c0
)0:

with

@gt=@�0 = 1

@gt=@�
� = (G1t; :::; Grt)

0 (30)

@gt=@ = (g1t; :::; grt)
0 (31)

@gt=@c = (gc1t; :::; gcrt)
0: (32)

In (31),
gjt = ��jGjt(1�Gjt)(t

� � cj)

and in (32),
gcjt = �j��jGjt(1�Gjt)

for j = 1; :::; r:

The next lemma gives the second partial derivatives of (15).

Lemma A.2.

@2gt(�1)=@�1@�
0
1 =

2664
0 01�r 01�r 01�r
0r�r diag(g��1t; :::; g�rt) diag(g��c1t; :::; g�crt)

diag(g1t; :::; grt) diag(gc1t; :::; gcrt)
diag(gcc1t; :::; gccrt)

3775
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where

gjt = ��jGjt(1�Gjt)(1� 2Gjt)(t� � cj)
2

gccjt = ��j
2
jGjt(1�Gjt)(1� 2Gjt)

g�jt = Gjt(1�Gjt)(t
� � cj)

g�cjt = �jGjt(1�Gjt)

gcjt = ���jjGjt(1�Gjt)(1� 2Gjt)(t� � cj)

for j = 1; :::; r:

Lemma A.3. E sup�12� j`(�1;"t)j <1:

Proof. From AG1 it follows that � is a compact set such that �01 is an interior point
of this set. Then, ignoring the constant k which is irrelevant in this context,

E sup
�12�

j`(�1;"t)j = E sup
�12�

j ln gt(�1) +
"2t

gt(�1)
j � E sup

�12�
fj ln gt(�1)j+

"2t
gt(�1)

g

� Ef sup
�12�

j ln gt(�1)j+ sup
�12�

"2t
gt(�1)

g � sup
�12�

j ln gt(�1)j+ sup
�12�

gt(�
0
1)

gt(�1)
<1:

because gt(�1) is bounded away from zero and sup�12� gt(�1) <1. �

Lemma A.4 [Thm 4.1.3, Assumption (A)]. LT (�1; ") continuous in �1 for each ":

Proof. From Lemma A.1 and the fact that gt(�1) is continuous for all �1 and "t;
it follows that `(�1;"t) is continuous in �1 for each "t; and the same is then true for
LT (�1; "). �

Lemma A.5 [Thm 4.1.3, Assumption (B)]. The average Hessian

T�1HT (�1; ") = T�1
@2LT (�1; ")

@�1@�
0
1

= T�1
TX
t=1

@2`(�1;"t)

@�1@�
0
1

converges to a �nite nonsingular matrixA(�01) for any sequence �
�
1T such that plimT!1�

�
1T =

�01:

Proof. A straightforward calculation yields

T�1HT (�1; ") = �(1=2T�1)
TX
t=1

(
2"2t
gt(�1)

� 1) 1

g2t (�1)

@gt(�1)

@�1

@gt(�1)

@�01

+(1=2T�1)
TX
t=1

(
"2t

gt(�1)
� 1) 1

gt(�1)

@2gt(�1)

@�1@�
0
1

: (33)

Since the elements of (33) are continuous and bounded, it can be shown that

E sup
�12�

j( "2t
gt(�1)

� 1) 1

gt(�1)
[
@2gt(�1)

@�1@�
0
1

]ijj <1 (34)
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for each (i; j) element of @2gt(�1)=(@�1@�
0
1). By Kolmogorov�s LLN 1,

plimT!1T
�1@

2LT (�1; ")

@�1@�
0
1

= �(1=2)limT!1T
�1

TX
t=1

(
2gt(�

0
1)

gt(�1)
� 1) 1

g2t (�1)

@gt(�1)

@�1

@gt(�1)

@�01

+(1=2)limT!1T
�1

TX
t=1

(
gt(�

0
1)

gt(�1)
� 1) 1

gt(�1)

@2gt(�1)

@�1@�
0
1

(35)

because `(�1;"s) and `(�1;"t) are independent for s 6= t and because gt(�1) is twice con-
tinuously di¤erentiable for all �1 and every "t: Since the elements of (33) are continuous
in �1 and (34) holds, convergence is uniform. Then, applying Theorem 4.1.5 in Amemiya
(1985, p. 113) yields

plimT!1T
�1@

2LT (�1; ")

@�1@�
0
1

j�1=��1T = plimT!1T
�1@

2LT (�1; ")

@�1@�
0
1

j�1=�01

for any sequence f��1Tg such that plimT!1�
�
1T = �

0
1: From (35) it follows that

plimT!1T
�1HT (�

�
1T ; ")

= �(1=2)limT!1T
�1

TX
t=1

1

g2t (�
0
1)
f@gt(�1)

@�1

@gt(�1)

@�01
gj�1=�01 = A(�

0
1)

for ��1T ! �01: �

Let s(�1; ") = T�1@LT (�1; ")=@�1 be the average score of (14). We have

Lemma A.6 [Thm 4.1.3, Assumption C].

T 1=2s(�01; ") = (1=2T 1=2)
TX
t=1

f@`(�1;"t)=@�1gj�1=�01
D!N (0;B(�01)):

Proof. From Lemma A.1 one obtains

T 1=2s(�1; ") = (1=2T
1=2)

TX
t=1

(
"2t

gt(�1)
� 1) 1

gt(�1)

@gt(�1)

@�1
:

We have

Ef@`(�1;"t)=@�1j
�1=�

0
1

g = (1=2)E( "2t
gt(�

0
1)
� 1) 1

gt(�
0
1)

@gt(�1)

@�1
j�1=�01 = 0

and

covf@`(�1;"t)=@�1j
�1=�

0
1

g = (1=4)E(
"2t

gt(�
0
1)
� 1)2 1

g2t (�
0
1)
f@gt(�1)

@�1

@gt(�1)

@�01
gj�1=�01

=
�4 � 1
4

1

g2t (�
0
1)
f@gt(�1)

@�1

@gt(�1)

@�01
gj�1=�01
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because E�4t = �4: Let �1 = (�1; :::; �3r+1)
0 and xjt = @`(�1;"t)=@�jj�1=�01 : Then Exjt = 0

and

var(xjt) = Ex2jt =
�4 � 1
4

1

g2t (�
0
1)
f@gt(�1)

@�j
j�1=�01g

2:

Applying Kolmogorov�s LLN 1 to the sum T�1
PT

t=1 xjt yields

plimT!1T
�1

TX
t=1

xjt = 0:

Furthermore, since Ej�tj2(2+�) < 1 for some � > 0; all elements of fjxjtj2+�g are Op(1);
and so

max
t=1;:::;T

jxjtj2+� = Op(1):

This implies that the p-norm

jjxjtjj2+� = (Ejxjtj2+�)1=(2+�) = O(1):

Also, due to the continuity and di¤erentiability of gt(�1);

fg�2t (�01)(@gt(�1)=@�jj�=�0
1
)g2 <1

for all t; and nearly all the variables in the sequence are positive as T ! 1: It then
follows that

fT�1
TX
t=1

var(xjt)g1=2 = O(1)

and, consequently, for some � > 0;

maxj=1;:::;T jjxjtjj2+�
fT�1

PT
t=1 var(xjt)g1=2

�M <1; T � 1:

Thus xjt satis�es the assumptions of Theorem 3.3.2 in Davidson (2000, p. 44), which

proves that T�1=2
PT

t=1 xjt
D! xj � N (0; limT!1 T

�1PT
t=1var(xjt)); j = 1; :::; 3r + 1:

It follows for all linear combinations �0xt with � 6= 0 that �0xt
D! �0x; where x =

(x1; :::; x3r+1)
0: From Theorems 3.3.3 and 3.3.4 in Davidson (2000, p. 46) one concludes

that x � N (0;B(�01)); where

B(�01) =
�4 � 1
4

lim
T!1

T�1
TX
t=1

1

g2t (�
0
1)
f@gt(�1)

@�1

@gt(�1)

@�01
gj�1=�01 :� (36)

Lemma A.7 [Thm 4.1.6, Assumption (A)]. Function T�1LT (�1; ") converges to a
nonstochastic function L(�1) in probability uniformly in �1 (in a neighbourhood of �

0
1):

Proof. We have

T�1LT (�1; ") = T�1
TX
t=1

`(�1;"t) = T�1
TX
t=1

[k � (1=2)fln gt(�1) +
"2t

gt(�1)
g]

= T�1
TX
t=1

[k � (1=2)fln gt(�1) + (
"2t

gt(�
0
1)
� 1)gt(�

0
1)

gt(�1)
+
gt(�

0
1)

gt(�1)
g]

! L(�1) = k � (1=2) lim
T!1

T�1
TX
t=1

fln gt(�1) +
gt(�

0
1)

gt(�1)
g

29



as T !1. This follows from the Kolmogorov LLN 1 applied to the sequence of indepen-
dent variables

ut = (
"2t

gt(�
0
1)
� 1)gt(�

0
1)

gt(�1)
:

That the convergence is uniform is a consequence of Lemmata A.3 and A.4. �

Lemma A.8. [Thm 4.1.6, Assumption (C)] The probability limit

plimT!1T
�1HT (�1; ") = plimT!1T

�1
TX
t=1

@2

@�1@�
0
1

`T (�1; ")

exists and is continuous in a neighbourhood of �01:

Proof. The probability limit of the average Hessian is given in (35). It is continuous
for all �1: The continuity follows from the fact that gt(�1) is bounded and in�nitely many
times di¤erentiable in �1: �

When �1 = �
0
1; (35) becomes

plimT!1T
�1HT (�

0
1; ")

= �(1=2)limT!1T
�1

TX
t=1

1

g2t (�
0
1)
f@gt(�1)

@�1

@gt(�1)

@�01
gj�1=�01 = A(�

0
1)

which is a negative de�nite matrix.

Proof of Theorem 1. The result follows from the fact thatA(�01) is negative de�nite
and from Lemmata A.3�A.8. �
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Appendix B: Tables and Figures

Table 1. Model selection frequencies for the sequential testing procedure (r = 0)

Number of T = 1000 T = 2500 T = 5000

DGPs transitions LM1 LM3 LM1 LM3 LM1 LM3

DGP (i) r = 0 95.56 93.46 95.16 94.66 95.88 95.12
r = 1 3.54 5.50 4.78 4.12 4.02 4.24
r � 2 0.90 1.04 0.06 1.22 0.10 0.64

DGP (ii) r = 0 94.08 91.82 94.74 93.88 95.52 94.36
r = 1 4.24 5.02 3.50 3.74 2.96 3.34
r � 2 1.68 3.16 1.76 2.38 1.52 2.30

DGP (iii) r = 0 93.56 90.48 93.82 93.20 94.92 93.98
r = 1 5.12 7.24 6.02 5.06 5.04 5.08
r � 2 1.32 2.28 0.16 1.74 0.04 0.94

DGP (iv) r = 0 94.44 93.30 94.82 94.44 95.12 95.54
r = 1 3.14 4.46 2.86 3.70 2.72 3.34
r � 2 2.42 2.24 2.32 1.86 2.16 2.12

Notes: Selection frequencies in percentage of the standard LM parameter constancy test based
on the DGPs described in Section 6.1. The number of replications is 5000 for each simulation.
The initial nominal signi�cance level equals 5%. The columns �LM1�and �LM3�correspond to
the test procedure based on the �rst-order and third-order Taylor expansions, respectively.

31



Table 2. Model selection frequencies for the sequential testing procedure (r = 1)

Number of T = 1000 T = 2500 T = 5000

�1 1 transitions LM1 LM3 LM1 LM3 LM1 LM3

�0:05 5 r = 0 71.95 80.10 39.55 55.75 10.15 22.75
r = 1 27.65 18.25 59.20 43.00 84.25 73.55
r � 2 0.40 1.65 1.25 1.25 5.60 3.70

10 r = 0 53.00 65.90 14.30 24.70 0.60 2.20
r = 1 46.15 32.00 83.40 73.05 92.90 94.05
r � 2 0.85 2.10 2.30 2.25 6.50 3.75

0:05 5 r = 0 57.95 69.85 24.20 42.70 3.65 11.40
r = 1 41.35 28.05 73.60 54.15 86.30 81.27
r � 2 0.70 2.10 2.20 3.15 10.05 7.33

10 r = 0 39.00 52.35 5.40 13.30 0.10 0.53
r = 1 59.85 44.35 90.65 82.25 89.65 93.37
r � 2 1.15 3.30 3.95 4.45 10.25 6.10

Notes: Selection frequencies in percentage of the standard LM parameter constancy test based
on the DGPs described in Section 6.1. The number of replications is 2000 for each simulation.
The initial nominal signi�cance level equals 5%. The columns �LM1�and �LM3�correspond to
the test procedure based on the �rst-order and third-order Taylor expansions, respectively.
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Table 3. Descriptive statistics and diagnostics for the daily returns

S&P 500 returns SPD/USD returns

S&P 500 "t=ĝ
1=2
t "t=(ĥtĝt)

1=2 SPD/USD "t=ĝ
1=2
t "t=(ĥtĝt)

1=2

Minimum �7:1127 �4:4083 �6:1887 �4:1444 �1:9206 �6:2395
Maximum 4:9887 3:0918 3:5742 2:7618 1:4231 3:9959

Skewness �0:3678 �0:3427 �0:3922 �0:9045 �0:2908 �0:2450
Robust SK 0:0325 0:0216 0:0280 �0:0044 �0:0265 �0:0185
Ex.kurtosis 5:2867 2:7575 1:8776 14:593 3:2007 2:2351

Robust KR 0:2541 0:1713 0:1342 0:1662 0:0969 0:0983

Std. dev. 0:8912 0:6093 0:9533 0:4150 0:2913 0:9975

Mean 0:0538 0:0407 0:0594 0:0077 0:0037 0:0144

LJB 3004
(0:0000)

851
(0:0000)

437
(0:0000)

18600
(0:0000)

908
(0:0000)

449
(0:0000)

ARCH(4) 154
(3�10�32)

� � 340
(3�10�72)

� �

T 2531 2531 2531 2060 2060 2060

Notes: LJB denotes the Lomnicki-Jarque-Bera normality test. ARCH(4) is the fourth-order
ARCH LM test statistic described in Engle (1982). Robust SK denotes the robust measure for
skewness based on quantiles proposed by Bowley (see Kim and White (2004)) and the robust
KR denotes the robust centred coe¢ cient for kurtosis proposed by Moors (see Kim and White
(2004)). The numbers in parentheses are p-values.
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Figure 6. Graph of the �nal estimated function gt for the S&P 500 returns model as a
smooth function of the rescaled time variable t� as given in (25)-(27).
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(a) S&P 500 returns
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(b) 16th iteration

Figure 7. Sample autocorrelations of absolute log returns of the S&P 500 returns and
the standardized variable j"tj=ĝ1=2tS&P500 for the �rst and the �nal iterations with the 95%
con�dence bounds.
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(b) 16th iteration

Figure 8. Conditional standard deviation of the GJR-GARCH(1,1) model for the S&P
500 returns and the standardized variable "t=ĝ

1=2
tS&P500

for the �rst and the �nal iterations.
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Figure 9. News impact curves of the GJR-GARCH(1,1) (solid line in boldface) and the
TV-GJR-GARCH(1,1) models for several regimes in the stock returns application. The
time-varying news impact curves are plotted for the lower regime, i.e. G1(t�) = G2(t

�) = 0
(dotted line), for an intermediate regime, i.e. G1(t�) = 1 and G2(t�) = 0 (dashed line)
and for the higher regime, i.e. G1(t�) = G2(t

�) = 1 (solid line).
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Figure 10. Graph of the �nal estimated function gt for the SPD/USD returns model as
a smooth function of the rescaled time variable t� as given in (28)-(29).
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(a) SPD/USD returns
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Figure 11. Sample autocorrelations of absolute log returns of the SPD/USD returns and
for the standardized variable j"tj=ĝ1=2tSPD=USD for the �rst and the �nal iterations with the
95% con�dence bounds.
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Figure 12. Conditional standard deviation of the GARCH(1,1) model for the SPD/USD
returns and for the standardized variable "t=ĝ

1=2
tSPD=USD

for the �rst and the �nal iterations.

42



4 3 2 1 0 1 2 3 4
0.2

0.5

0.8

1.1

1.4

1.7

2.0

2.3

2.6

Figure 13. News impact curves of the GARCH(1,1) (solid line in boldface) and the TV-
GARCH(1,1) models for several regimes in the exchange rate returns application. The
time-varying news impact curves are plotted for the lower regime, i.e. G1(t�) = 0 (dotted
line), for an intermediate regime, i.e. G1(t�) = 0:5 (dashed line) and for the higher regime,
i.e. G1(t�) = 1 (solid line).
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