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Abstract

The paper introduces themodel confidence set(MCS) and applies it to the selection of models. A

MCS is a set of models that is constructed such that it will contain thebestmodel with a given level

of confidence. The MCS is in this sense analogous to a confidence interval for a parameter. The MCS

acknowledges the limitations of the data, such that uninformative data yields a MCS with many models,

whereas informative data yields a MCS with only a few models.The MCS procedure does not assume

that a particular model is the true model, in fact the MCS procedure can be used to compare more general

objects, beyond the comparison of models. We apply the MCS procedure to two empirical problems.

First, we revisit the inflation forecasting problem posed byStock and Watson (1999), and compute the

MCS for their set of inflation forecasts. Second, we compare anumber of Taylor rule regressions and

determine the MCS of the best in terms of in-sample likelihood criteria.
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Model Confidence Set

1 Introduction

Econometricians often face a situation where several models or methods are available for a particular em-

pirical problem. A relevant question is:Which is the best?This question is onerous for most data to answer,

especially when the set of competing alternatives is large.Many applications will not yield a single model

that significantly dominates all competitors because the data is not sufficiently informative to give an un-

equivocal answer to this question. Nonetheless, it is possible to reduce the set of models to a smaller set of

models – a model confidence set – that contains the best model with a given level of confidence.

The objective of the model confidence set (MCS) procedure is to determine the set of models,M∗, that

consists of the best model(s) from a collection of models,M0, wherebestis defined in terms of a criterion

that is user-specified. The MCS procedure yields a model confidence set,̂M∗, that is a collection of models

built to contain the best models with a given level of confidence. The process of winnowing models out

of M0 relies on sample information about the relative performances of the models inM0. This sample

information drives the MCS to create a random data-dependent set of models,̂M∗. The setM̂∗ includes

the best model(s) with a certain probability in the same sense that a confidence interval covers a population

parameter.

An attractive feature of the MCS approach is that it acknowledges the limitations of the data. Informa-

tive data will result in a MCS that contains only the best model. Less informative data makes it difficult to

distinguish between models and may result in a MCS that contains several (or possibly all) models. Thus,

the MCS differs from extant model selection criteria that choose a single model without regard to the in-

formation content of the data. Another advantage is that theMCS procedure makes it possible to make

statements about significance that are valid in the traditional sense. A property that is not satisfied by the

commonly used approach of reportingp-values from multiple pairwise comparisons. Another attractive

feature of the MCS procedure is that it allows for the possibility that more than one model can be the best,

in which caseM∗ contains more than a single model.

The contributions of this paper can be summarized as follows: First, we introduce a model confidence

set procedure and establish its theoretical properties. Second, we propose a practical bootstrap implementa-

tion of the MCS procedure for a set of problems that includes comparisons of forecasting models evaluated

out-of-sample and regression models evaluated in-sample.This implementation is particularly useful when

the number of objects to be compared is large. Third, the finite sample properties of the bootstrap MCS

procedure are analyzed in simulation studies. Fourth, we apply the MCS procedure to two empirical appli-

cations. We revisit the out-of-sample prediction problem of Stock and Watson (1999) and construct MCSs

for their inflation forecasts. We also build a MCS for Taylor rule regressions using three likelihood criteria

that include the AIC and BIC.

1.1 Theory of Model Confidence Sets

We do not treatmodelsas sacred objects, nor do we assume that a particular model represents the true data

generating process. Models are evaluated in terms of a user-specified criterion function. Consequently, the

‘best’ model is unlikely to be replicated for all criteria. Also, we use the term ‘models’ loosely. It can refer to

econometric models, competing forecasts, or alternativesthat need not involve any modelling of data, such

as trading rules. So the MCS procedure is not specific to comparisons of models. For example, one could
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construct a MCS for a set of different ‘treatments’ by comparing sample estimates of the corresponding

treatment effects, or a MCS for trading rules with the best Sharpe ratio.

A MCS is constructed from a collection of competing objects,M0, and a criterion for evaluating these

objects empirically. The MCS procedure is based on anequivalence test, δM; and anelimination rule,

eM. The equivalence test is applied to the setM = M0. If δM is rejected, there is evidence that the

objects inM are not equally ‘good’ andeM is used to eliminate an object with poor sample performance

from M. This procedure is repeated untilδM is ‘accepted’, and the MCS is now defined by the set of

‘surviving’ objects. By using the same significance level,α, in all tests, the procedure guarantees that

limn→∞ P(M∗ ⊂ M̂∗
1−α) ≥ 1 − α, and in the case whereM∗ consists of one object we have the stronger

result that limn→∞ P(M∗ = M̂∗
1−α) = 1. The MCS procedure also yieldsp-values for each of the objects.

For a given object,i ∈ M0, the MCSp-value, p̂i , is the threshold at whichi ∈ M̂∗
1−α, if and only if p̂i ≥ α.

Thus, an object with a small MCSp-value makes it unlikely that it is one of the ‘best’ alternatives inM0.

The idea behind the sequential testing procedure that we useto construct the MCS may be recognized

by readers who are familiar with the trace-test procedure for selecting the rank of a matrix. This procedure

involves a sequence of trace-tests, see Anderson (1984), and is commonly used to select the number of

cointegration relations within a vector autoregressive model, see Johansen (1988). The MCS procedure

determines the number of superior models in the same way the trace-test is used to select the number of

cointegration relations. A key difference is that the trace-test procedure has a natural ordering in which

the hypotheses are to be tested, whereas the MCS procedure requires a carefully chosen elimination rule to

define the sequence of tests. We discuss this issue and related testing procedures in Section 4.

1.2 Bootstrap Implementation and Simulation Results

We propose a bootstrap implementation of the MCS procedure that is convenient when the number of models

is large. The bootstrap implementation is simple to use in practice and avoids the need to estimate a high-

dimensional covariance matrix. White (2000b) is the sourceof many of the ideas that underlies our bootstrap

implementation.

We study the properties of our bootstrap implementation of the MCS procedure through simulation

experiments. The results are very encouraging as the best model does end up in the MCS at the appropriate

frequency, and the MCS procedure does have power to weed out all the poor models when the data contains

sufficient information.

1.3 Empirical Analysis of Inflation Forecasts and Taylor Rules

We apply the MCS to two empirical problems. First, the MCS is used to study the inflation forecasting

problem. The choice of an inflation forecasting model is an especially important issue for central banks,

treasuries, and private sector agents. The fifty plus year tradition of the Phillips curve suggests it remains

an effective vehicle for the task of inflation forecasting. Stock and Watson (1999) make the case that “a

reasonably specified Phillips curve is the best tool for forecasting inflation”; also see Gordon (1997), Staiger,

Stock, and Watson (1997b), and Stock and Watson (2003). Atkeson and Ohanian (2001) conclude that this

is not the case because they find it is difficult for any of the Phillips curves they study to beat a simple

no-change forecast in out-of-sample point prediction.
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Our first empirical application is based on the Stock and Watson (1999) data set. Several interesting

results come out of our analysis. We partition the evaluation period in the same two subsamples as did

Stock and Watson (1999). The earlier subsample covers a period with persistent and volatile inflation, this

sample is expected to be relatively informative about whichmodels might be the best forecasting models.

Indeed, the MCS consists of relatively few models, so the MCSproves to be effective at purging the inferior

forecasts. The later subsample is a period in which inflationis relatively smooth and exhibits little volatility.

This yields a sample that contains relatively little information about which of the models deliver the best

forecasts. However Stock and Watson (1999) report that a no-change forecast, which uses last month’s

inflation rate as the point forecast, is inferior in either subsamples. In spite of the relatively low degree of

information in the more recent subsample, we are able to conclude that this no-change forecast is indeed

inferior to other forecasts. We come to this conclusion because the Stock and Watson no-change forecast

never ends up in the MCS. Next, we add the no-change forecast employed by Atkeson and Ohanian (2001)

to the comparison. Their forecast uses the past year’s inflation rate as the point prediction rather than

month over month inflation. This turns out to matter for the second subsample, because the no-change

(year) forecast has the smallest mean square prediction error (MSPE) of all forecasts. This enables us to

reconcile Stock and Watson (1999) with Atkeson and Ohanian (2001) by showing their different definitions

of the benchmark forecast, no-change (month) and no-change(year), respectively, explain the different

conclusions they reach about these forecasts.

Our second empirical example shows that the MCS approach is auseful tool for in-sample evaluation of

regression models. This example applies the MCS to choosingfrom a set of competing (nominal) interest

rate rule regressions on a quarterly U.S. sample that runs from 1979 through 2006. These regressions fall

into the class of interest rate rules promoted by Taylor (1993). His Taylor rule forms the basis of a class

of monetary policy rules that gauge the success of monetary policy at keeping inflation low and the real

economy close to trend. The MCS does not reveal which Taylor rule regressions best describe the actual

U.S. monetary policy, nor does it identify the best policy rule. Rather the MCS selects the Taylor rule

regressions that have the best empirical fit of the U.S. federal funds rate in this sample period, where the

‘best fit’ is defined by different likelihood criteria.

The MCS procedure begins with 25 regression models. We include a pure first-order autoregression,

AR(1), of the federal funds rate in the initial MCS. The remaining 24 models are Taylor rule regressions

that contain different combinations of lagged inflation, lags of various definitions of real economic activity

(i.e., the output gap, the unemployment rate gap, or real marginal cost), and in some cases the lagged federal

funds rate.

It seems that there is limited information in our U.S. samplefor the MCS procedure to narrow the set

of Taylor rule regressions. The one exception is that the MCSonly holds regressions that admit the lagged

interest rate. This includes the pure AR(1). The reason is that the time-series properties of the federal funds

rate is well explained by its own lag. Thus, the lagged federal funds rate appears to dominate lags of inflation

and the real activity variables for explaining the current funds rate. There is some solace for advocates of

interest rate rules because under one likelihood criterionthe MCS often tosses out Taylor rule regression

lacking in lags of inflation. Nonetheless, the MCS indicatesthat the data is consistent with either lags of the

output gap, the unemployment rate gap, or real marginal costplaying the role of the real activity variables in

the Taylor rule regression. This is not a surprising result.Measurement of ‘gap’ and marginal cost variables
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remain an unresolved issue for macroeconometrics; for example see Orphanides and Van Norden (2002)

and Staiger, Stock, and Watson (1997a). It is also true that monetary policymakers rely on sophisticated

information sets that cannot be spanned by a few aggregate variables, see Bernanke and Boivin (2003). The

upshot is that the sample used to calculate the MCS has difficulties extracting useful information to separate

the pure AR(1) from Taylor rule regressions that include thelagged federal funds rate.

1.4 Outline of Paper

The paper is organized as follows. We present the theoretical framework of the MCS in Section 2. Section

3 outlines practical bootstrap methods to implement the MCS. Multiple model comparison methods related

to the MCS are discussed in Section 4. Section 5 reports the results of simulation experiments. The MCS is

applied to two empirical examples in Section 6. Section 7 concludes.

2 General Theory for Model Confidence Set

In this section, we discuss the theory of model confidence sets for a general set of alternatives. Our leading

example concerns the comparison of empirical models, such as forecasting models. Nevertheless, we do not

make specific references to ‘models’ in the first part of this section, in which we lay out the general theory.

We consider a set,M0, that contains a finite number of objects that are indexed byi = 1, . . . ,m0. The

objects are evaluated in terms of a loss function and we denote the loss that is associated with objecti in

periodt asL i,t , t = 1, . . . ,n. For example, in the situation where a point forecast,Ŷi,t , of Yt is evaluated in

terms of a loss function,L , we defineL i,t = L(Yt, Ŷi,t ).

Define the relative performance variables

di j ,t ≡ L i,t − L j ,t, for all i, j ∈ M
0,

This paper assumes thatµi j ≡ E(di j ,t ) is finite and does not depend ont, for all i, j ∈ M0. We rank

alternatives in terms of expected loss, so that alternativei is preferred to alternativej if µi j < 0.

Definition 1 The set of superior objects is defined by

M∗ ≡ {i ∈ M0 : µi j ≤ 0 for all j ∈ M0}.

The objective of the MCS procedure is to determineM∗. This is done through a sequence of significance

tests, where objects that are found to be significantly inferior to other elements ofM0 are eliminated. The

hypotheses that are being tested take the form:

H0,M : µi j = 0 for all i, j ∈ M, (1)

whereM ⊂ M0. We denote the alternative hypothesis,µi j 6= 0 for somei, j ∈ M, by HA,M. Note that

H0,M∗ is true given our definition ofM∗, whereasH0,M is false ifM contains elements fromM∗ and its

complement,M0\M∗. Naturally, the MCS is specific to set of candidate models,M0, and therefore silent

about the relative merits of objects that are not included inM0.

We define a model confidence set to be any subset ofM0 that contains all ofM∗ with a given proba-

bility (its coverage probability). The challenge is to design a procedure that produces a set with the proper
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coverage probability. The next subsection introduced a generic MCS procedure that meets this requirement.

This MCS procedure is constructed from an equivalence test and an elimination rule that are assumed to

have certain properties. Next, Section 3 presents feasibletests and elimination rules that can be used for

specific problems, such as comparing out-of-sample forecasts and in-sample regression models.

2.1 The MCS Algorithm and Its Properties

As stated in the introduction, the MCS procedure is based on an equivalence test,δM, and anelimination

rule, eM. The equivalence test,δM, is used to test the hypothesisH0,M for anyM ⊂ M0, andeM identifies

the object ofM that is to be removed fromM in the event thatH0,M is rejected. As a convention we let

δM = 0 andδM = 1 correspond to the cases whereH0,M are ‘accepted’ and ‘rejected’ respectively.

Definition 2 (MCS Algorithm) Step 0: Initially setM = M0. Step 1: Test H0,M usingδM at levelα.

Step 2: If H0,M is ‘accepted’ we define thêM∗
1−α = M, otherwise we use eM to eliminate an object from

M and repeat the procedure from Step 1.

The set,M̂∗
1−α, which consists of the set of ‘surviving’ objects (those that survived all tests without

being eliminated) is referred to as themodel confidence set. Theorem 1 that is stated below shows that the

term ‘confidence set’ is appropriate in this context, provided that the equivalence test and the elimination

rule satisfy the following assumption.

Assumption 1 For anyM ⊂ M0 we assume the following about(δM,eM): (a) lim supn→∞ P(δM =
1|H0,M) ≤ α; (b) limn→∞ P(δM = 1|HA,M) = 1; and(c) limn→∞ P(eM ∈ M∗|HA,M) = 0.

The conditions that Assumption 1 states forδM are standard requirements for hypothesis tests.(a)

requires the asymptotic level not to exceedα; (b) requires the asymptotic power to be one; whereas(c)

requires that a superior objecti ∗ ∈ M∗ is not eliminated (asn → ∞) as long as there are inferior models

in M.

Theorem 1 (Properties of MCS) Given Assumption 1, it holds that(i ) lim inf n→∞ P(M∗ ⊂ M̂∗
1−α) ≥

1 − α, and(i i ) limn→∞ P(i ∈ M̂∗
1−α) = 0 for all i /∈ M∗.

Proof. Let i ∗ ∈ M∗. To prove(i ) we consider the event thati ∗ is eliminated fromM. From Assumption

1.c it follows that P(δM = 1,eM = i ∗|HA,M) ≤ P(eM = i ∗|HA,M) → 0 asn → ∞. So the probability

that a good model is eliminated whenM contains poor models vanishes asn → ∞. Next, Assumption

1.a shows that lim supn→∞ P(δM = 1,eM = i ∗|H0,M) = lim supn→∞ P(δM = 1|H0,M) ≤ α, such that

the probability thati ∗ is eliminated when all models inM are good models, is asymptotically bounded by

α. To prove(i i ), we first note that limn→∞ P(eM = i ∗|HA,M) = 0 such that only poor models will be

eliminated (asymptotically) as long asM * M∗. On the other hand, Assumption 1.b ensures that models

will be eliminated as long as the null hypothesis is false.

Consider first the situation where the data contains little information, such that the equivalence test

lacks power and the elimination rule may question a superiormodel prior to the elimination of all inferior

models. The lack of power causes the procedure to terminate too early (on average), and the MCS will

contain a large number of models, including several inferior models. We view this as a strength of the MCS
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procedure. Since lack of power is tied to the lack of information in the data, the MCS should be large when

there is insufficient information to distinguish good and bad models.

In the situation where the data is informative, the equivalence test is powerful and will reject all false

hypotheses. Moreover, the elimination rule will not question any superior model until all inferior models

have been eliminated. (This situation is guaranteed asymptotically). The result is that the first time a

superior model is questioned by the elimination rule is whenthe equivalence test is applied toM∗. Thus,

the probability that one (or more) superior model is eliminated is bounded (asymptotically) by the size of the

test! Note that additional superior models may be eliminated in subsequent tests, but these tests will only be

performed ifH0,M∗ is rejected. Thus, the asymptotic familywise error rate (FWE), which is the probability

of making one or more false rejections, is bounded by the level that is used in all tests.

Sequential testing is key for building a MCS. However, econometricians often worry about the properties

of a sequential testing procedure, because it can ‘accumulate’ Type I errors with unfortunate consequences,

see e.g. Leeb and Pötscher (2003). The MCS procedure does not suffer from this problem because the

sequential testing is halted when the first hypothesis is ‘accepted’.

When there is only a single model inM∗ (one best model) we obtain a stronger result.

Corollary 1 Suppose that Assumption 1 holds and thatM∗ is a singleton. Thenlimn→∞ P(M∗ =
M̂∗

1−α) = 1.

Proof. WhenM∗ is a singleton,M∗ = {i ∗}, then it follows from Theorem 1 thati ∗ will be the last surviving

element with probability approaching one asn → ∞. The result now follows, because the last surviving

element is never eliminated.

2.2 Coherency between Test and Elimination Rule

The previous asymptotic results do not rely on any direct connection between the hypothesis test,δM,

and the elimination rule,eM. Nonetheless when the MCS is implemented in finite samples, there is an

advantage to the hypothesis test and elimination rule beingcoherent. The next theorem establishes a finite

sample version of the result in Theorem 1.i when there is a certain coherency between the hypothesis test

and elimination rule.

Theorem 2 Suppose that P(δM = 1,eM ∈ M∗) ≤ α then we have

P(M∗ ⊂ M̂
∗
1−α) ≥ 1 − α.

Proof. We only need to consider the first instance thateM ∈ M∗ because all preceding tests will not

eliminate elements that are inM∗. Regardless of the null hypothesis being true or false, we have P(δM =
1,eM ∈ M∗) ≤ α. So it follows thatα bounds the probability that an element fromM∗ is eliminated.

Additional elements fromM∗ may be eliminated in subsequent tests, but these test will only be undertaken

if all preceding tests are rejected. So we conclude thatP(M∗ ⊂ M̂∗
1−α) ≥ 1 − α.

The property thatP(δM = 1,eM ∈ M∗) ≤ α holds under both the null hypothesis and the alter-

native hypothesis is key for the result in Theorem 2. For a test with the correct size, we haveP(δM =
1|H0,M) ≤ α, which implies P(δM = 1,eM ∈ M∗|H0,M) ≤ α. The additional condition,P(δM =
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1,eM ∈ M∗|HA,M) ≤ α, ensures that a rejection,δM = 1, can be taken as significant evidence thateM is

not inM∗.

In practice, hypothesis tests often rely on asymptotic results that cannot guaranteeP(δM = 1,eM ∈
M∗) ≤ α holds in finite samples. We provide a definition of coherency between a test and an elimination

rule that is useful in situations where testing is grounded on asymptotic distributions. In what follows, we

useP0 to denote the probability measure that arises by imposing the null hypothesis by the transformation

di j ,t 7→ di j ,t − µi j . ThusP is the true probability measure, whereasP0 is a simple transformation ofP that

satisfies the null hypothesis.

Definition 3 There is said to be coherency between test and elimination rule when

P(δM = 1,eM ∈ M
∗) ≤ P0(δM = 1).

The coherency in conjunction with an asymptotic control of the Type I error, lim supn→∞ P0(δM =
1) ≤ α, translate into an asymptotic version of the assumption we made in Theorem 2. Coherency places

restrictions on the combinations of tests and elimination rules we can employ. These restrictions go beyond

those imposed by the asymptotic conditions we formulated inAssumption 1. In fact, coherency serves to

curb the reliance on asymptotic properties, in order to avoid perverse outcomes in finite samples that could

result from absurd combinations of test and elimination rule. Coherency prevents us from adopting the

most powerful test of the hypothesisH0,M in some situations. The reason is that tests do not necessarily

identify a single element as the cause for the rejection. A good analogy is found in the standard regression

model, where aF-test may reject the joint hypothesis that all regression coefficients are zero, even though

all t-statistics are insignificant.1

In our bootstrap implementations of the MCS procedure, we adopt the required coherency between the

test and the elimination rule.

2.3 MCS p-Values

In this section we introduce the notion of MCSp-values. The elimination rule,eM, defines a sequence of

(random) sets,M0 = M1 ⊃ M2 ⊃ · · · ⊃ Mm0, whereMi = {eMi , . . . ,eMm0
} andm0 is the number of

elements inM0. SoeM0 = eM1 is the first element to be eliminated in the event thatH0,M1, is rejected,

eM2 is the second element to be eliminated, etc.

Definition 4 (MCS p-values) Let PH0,Mi
denote the p-value associated with the null hypothesis H0,Mi ,

with the convention that PH0,Mm0
≡ 1. The MCS p-value for model eM j ∈ M0 is defined byp̂eM j

≡
maxi≤ j PH0,Mi

.

The advantage of this definition of MCSp-values will be evident from Theorem 3 that is stated below.

SinceMm0 consists of a single model, the null hypothesis,H0,Mm0
, simply states that the last surviving

model is as good as itself, making the convention,PH0,Mm0
≡ 1, logical.

1Another analogy is that it is easier to conclude that a murderhas taken place, than it is to determine who committed the murder.
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Table 1: Computation of MCSp-values
Elimination Rule p-value forH0,Mk MCS p-value

eM1 PH0,M1
= 0.01 p̂eM1

= 0.01

eM2 PH0,M2
= 0.04 p̂eM2

= 0.04

eM3 PH0,M3
= 0.02 p̂eM3

= 0.04

eM4 PH0,M4
= 0.03 p̂eM4

= 0.04

eM5 PH0,M5
= 0.07 p̂eM5

= 0.07

eM6 PH0,M6
= 0.04 p̂eM6

= 0.07

eM7 PH0,M7
= 0.11 p̂eM7

= 0.11

eM8 PH0,M8
= 0.25 p̂eM8

= 0.25
...

...
...

eM(m0)
PH0,Mm0

≡ 1.00 p̂eMm0
= 1.00

The table illustrates the computation of MCSp-values. Note that MCSp-values for some models do not coincide
with the p-values for the corresponding null hypotheses. For example, the MCSp-value foreM3 (the third model to
be eliminated) exceeds thep-value forH0,M3 because thep-value associated withH0,M2 – a null hypothesis tested
prior to H0,M3 – is larger.

Table 1 illustrates how MCSp-values are computed and how they relate top-values of the individual

tests,PH0,Mi
, i = 1, . . . ,m0. The MCSp-values are convenient because they make it easy to determine

whether a particular object is in̂M∗
1−α or not, for anyα. Thus, the MCSp-values are an effective way of

conveying the information in the data.

Theorem 3 Let the elements ofM0 be indexed by i= 1, . . . ,m0. The MCS p-value,̂pi , is such that

i ∈ M̂∗
1−α if and only if p̂i ≥ α, for any i ∈ M0.

Proof. Suppose that̂pi < α and determine thek for which i = eMk . Since p̂i = p̂eMk
= maxj ≤k PH0,M j

it

follows thatH0,M1, . . . , H0,Mk are all rejected at significance levelα. Hence, the first accepted hypothesis

(if any) occurs afteri = eMk has been eliminated. Sôpi < α implies i /∈ M̂∗
1−α. Suppose now that̂pi ≥ α.

Then for somej ≤ k we havePH0,M j
≥ α, in which caseH0,M j is accepted at significance levelα which

terminates the MCS procedure before the elimination rule gets toeMk = i . So p̂i ≥ α implies i ∈ M̂∗
1−α.

This completes the proof.

The interpretation of a MCSp-value is analogous to that of a classicalp-value. The analogy is to a

(1−α) confidence interval that contains the ‘true’ parameter witha probability no less than 1−α. The MCS

p-value also cannot be interpreted as the probability that a particular model is the best model, exactly as a

classicalp-value is not the probability that the null hypothesis is true. Rather, the probability interpretation

of a MCS p-value is tied to the random nature of the MCS because the MCS is arandomsubset of models

that containsM∗ with a certain probability.
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3 Bootstrap Implementation

3.1 Equivalence Tests and Elimination Rules

Now we consider specific equivalence tests and an elimination rule that satisfy Assumption 1. The following

assumption is sufficiently strong to enable us to implement the MCS procedure with bootstrap methods.

Assumption 2 For some r > 2 and γ > 0 it holds thatE|di j ,t |r+γ < ∞ for all i , j ∈ M0, and that

{di j ,t }i, j ∈M0 is strictly stationary withvar(di j ,t ) > 0 andα-mixing of order−r/(r − 2).

Assumption 2 places restrictions on the relative performance variables,{di j ,t }, not directly on the loss

variables{L i,t }. For example, a loss function need not be stationary as long asthe loss differentials,{di j ,t },
i, j ∈ M0, satisfy Assumption 2. The assumption allows for some types of structural breaks and other

features that can create non-stationary{L i,t }, as long as all objects inM0 are affected in a ‘similar’ way that

preserves the stationarity of{di j ,t }.

3.1.1 Quadratic-Form Test

LetM be some subset ofM0 and letm be the number of models inM = {i1, . . . , im}.We define the vector

of loss-variables,L t ≡ (L i1,t , . . . , L im,t)
′, t = 1, . . . ,n, and its sample average,L̄ ≡ n−1∑n

t=1 L t , and we

let ι ≡ (1, . . . ,1)′ be the column vector where allm entries equal one. The orthogonal complement toι, is

anm × (m − 1) matrix, ι⊥, that has full column rank and satisfiesι′⊥ι = 0 (a vector of zeros). Them − 1

dimensional vectorXt ≡ ι′⊥L t can be viewed asm − 1 contrasts because each element ofXt is a linear

combination ofdi j ,t , i, j ∈ M, which has mean zero under the null hypothesis.

Lemma 1 Given Assumption 2, let Xt ≡ ι′⊥L t and defineθ ≡ E(Xt). The null hypothesis H0,M is

equivalent toθ = 0 and it holds that n1/2(X̄ − θ)
d→ N(0, 6), where X̄ ≡ n−1∑n

t=1 Xt and 6 ≡
limn→∞ var(n1/2X̄).

Proof. Note thatXt = ι′⊥L t can be written as a linear combination ofdi j ,t , i, j ∈ M0, becauseι′⊥ι = 0.

Thus H0,M is given byθ = 0, and the asymptotic normality follows by the central limit theorem forα-

mixing processes, see e.g. White (2000a).

Lemma 1 shows thatH0,M can be tested using traditional quadratic-form statistics. An example is

TQ ≡ nX̄′6̂#X̄, where6̂ is some consistent estimator of6 and6̂# denotes the Moore-Penrose inverse of

6̂.2 The rankq ≡ rank(6̂) represents the effective number ofcontrasts(the number of linearly independent

comparisons) underH0,M. Since6̂
p→ 6 (by assumption) it follows thatTQ

d→ χ2
(q) whereχ2

(q) denotes

theχ2-distribution withq degrees of freedom. Under the alternative hypothesis,TQ diverge to infinity with

probability one. So the testδM will meet the requirements of Assumption 1 when constructedfrom TQ.

Although the matrixι⊥ is not fully identified by the requirements:ι′⊥ι = 0 and det(ι′⊥ι⊥) 6= 0 (but the

sub-space spanned by the columns ofι⊥ is), there is no problem because the statisticTQ is invariant to the

choice forι⊥.

2Under the additional assumption that{di j ,t }i, j ∈M is uncorrelated (acrosst), we can usê6 = n−1∑n
t=1(Xt − X̄)(Xt − X̄)′.

Otherwise, we need a robust estimator along the lines of Newey and West (1987). In the context of comparing forecasts, West and

Cho (1995) were first to use the test statisticTQ. They based their test on (asymptotic) critical values fromχ2
(m−1).
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A rejection of the null hypothesis based on the quadratic-form test need not identify an inferior alter-

native. The reason is that a large value ofTQ can stem from several̄di j being slightly different from zero.

In order to achieve the required coherence between test and elimination rule additional testing is needed.

Specifically one needs to test all sub-hypotheses of any rejected hypothesis, unless the sub-hypothesis is

nested in an accepted hypothesis, before further elimination is justified. The underlying principle is known

as theclosed testing procedure, see Lehmann and Romano (2005, 366-367).

Whenm is large relative to the sample size,n, reliable estimates of6 are difficult to obtain. The reason

is that the number of elements of6 to be estimated are of orderm2. It is convenient to use a test statistic

that does not require an explicit estimate of6 in this case. We consider test statistics that resolve this issue

in the next section.

3.1.2 Tests Constructed fromt-Statistics

This section develops two tests that are based on multiplet-statistics. This approach has two advantages.

First, it bypasses the need for an explicit estimate of6. Second, the multiplet-statistic approach simplifies

the construction of an elimination rule that satisfies the notion of coherency formulated in Definition 3.

Define the relative sample loss statistics,d̄i j ≡ n−1∑n
t=1 di j ,t andd̄i · ≡ m−1∑

j ∈M d̄i j . Hered̄i j mea-

sures the relative sample loss between thei -th and j -th models, whiled̄i · is the sample loss of thei -th model

relative to the average across models inM. The latter can be seen from the identityd̄i · = (L̄ i − L̄ ·), where

L̄ i ≡ n−1∑n
t=1 L i,t and L̄ · ≡ m−1∑

i∈M L̄ i . From these statistics we construct thet-statistics

ti j = d̄i j√
v̂ar(d̄i j )

and ti · = d̄i ·√
v̂ar(d̄i ·)

, for i, j ∈ M,

wherev̂ar(d̄i j ) andv̂ar(d̄i ·) denote estimates of var(d̄i j ) and var(d̄i ·) respectively. The first statistic,ti j , is

used in the well known test for comparing two forecasts, see Diebold and Mariano (1995) and West (1996).

Thet-statistics,ti j andti ·, are associated with the null hypothesis thatHi j : µi j = 0 andHi · : µi · = 0 where

µi · = E(d̄i ·). These statistics form the basis of tests of the hypothesisH0,M. We take advantages of the

equivalence betweenH0,M, {Hi j , for all i, j ∈ M}, and{Hi · for all i ∈ M}. With M = {i1, . . . , im} the

equivalence follows from

µi1 = · · · = µim ⇔ µi j = 0 for all i, j ∈ M ⇔ µi · = 0 for all i ∈ M.

Moreover, the equivalence extends to{µi · ≤ 0 for all i ∈ M} as well as{|µi j | ≤ 0 for all i, j ∈ M}, and

these two formulations of the null hypothesis map naturallyinto the test statistics

Tmax,M = max
i∈M

ti · and TR,M ≡ max
i, j ∈M

|ti j |,

which are available to test the hypothesisH0,M.
3 The asymptotic distributions of these test statistics are

non-standard because they depend on nuisance parameters (under the null and the alternative). However, the

nuisance parameters pose few obstacles as the relevant distributions can be estimated with bootstrap methods

that implicitly deal with the nuisance parameter problem. This feature of the bootstrap has previously been

3An earlier version of this paper has results for the test statistics,TD =
∑n

j =1 t2
i · andTQ.
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used in this context by Kilian (1999), White (2000b), Hansen(2003b, 2005), and Clark and McCracken

(2005).

Characterization of the MCS procedure needs an eliminationrule, eM, that meets the requirements of

Assumption 1.c and the coherency of Definition 3. For the teststatisticTmax,M the natural elimination rule

is emax,M ≡ arg maxi∈M ti · because a rejection of the null hypothesis identifies the hypothesisµ j · = 0 as

false, for j = emax,M. In this case the elimination rule removes the model that contributes most to the test

statistic. This model has the largest standardized excess loss relative to the average across all models inM.

With the other test statistic,TR,M, the natural elimination rule iseR,M = arg maxi∈M supj ∈M ti j because

this model is such thatteR,M j = TR,M, for some j ∈ M. These combinations of test and elimination rule

will satisfy the required coherency.

Proposition 1 Letδmax,M andδR,M denote the tests based on the statistics Tmax,M and TR,M, respectively.

Then(δmax,M,emax,M) and(δR,M,eR,M) satisfy the coherency of Definition 3.

Proof. Let Ti denote eitherti · or maxj ∈M ti j , and note that the test statistics,Tmax,M andTR,M, are both of

the formT = maxi∈M Ti . Let P0 be as defined in Section 2.2. From the definitions ofti · and ti j we have

for i ∈ M∗ the first order stochastic dominance result,P0(maxi∈M′ Ti > x) ≥ P(maxi∈M′ Ti > x) for any

M′ ⊂ M∗ and allx ∈ R. The coherency now follows from

P(T > c,eM = i for somei ∈ M∗) = P(T > c, T = Ti for somei ∈ M∗)

= P( max
i∈M∩M∗

Ti > c, Ti ≥ Tj for all j ∈ M) ≤ P( max
i∈M∩M∗

Ti > c)

≤ P0( max
i∈M∩M∗

Ti > c) ≤ P0(max
i∈M

Ti > c) = P0(T > c).

This completes the proof.

Next, we establish two intermediate results that underpin the bootstrap implementation of the MCS.

Lemma 2 Suppose that Assumption 2 holds and defineZ̄ = (d̄1·, . . . , d̄m·)
′. Then

n1/2(Z̄ − ψ)
d→ Nm(0,�), as n→ ∞, (2)

whereψ ≡ E(Z̄) and� ≡ limn→∞ var(n1/2Z̄), and the null hypothesis, H0,M, is equivalent to:ψ = 0.

Proof. From the identityd̄i · = L̄ i − L̄ · = L̄ i − m−1∑
j ∈M L̄ j = m−1∑

j ∈M(L̄ i − L̄ j ) = m−1∑
j ∈M d̄i j ,

we see that the elements ofZ̄ are linear transformations of̄X from Lemma 1. Thus for some (m − 1) × m

matrix G we haveZ̄ = G′ X̄, and the result now follows, whereψ = G′θ and� = G′6G. (Them × m

covariance matrix,�, has reduced rank, as rank(�) ≤ m − 1.)

In the following, we let̺ denote them×m correlation matrix that is implied by the covariance matrix,�,

of Lemma 2. Further, given the vector of random variablesξ ∼ Nm(0, ̺), we let F̺ denote the distribution

of maxi ξi .

Theorem 4 Let Assumption 2 hold and suppose thatω̂2
i ≡ v̂ar(n1/2d̄i ·) = n v̂ar(d̄i ·)

p→ ω2
i , whereω2

i ,

i = 1, . . . ,m are the diagonal elements of�.Under H0,M we have Tmax,M
d→ F̺ and under the alternative

hypothesis, HA,M, we have that Tmax,M → ∞ in probability. Moreover, under the alternative hypothesis

we have Tmax,M = t j · where j = emax,M /∈ M∗, for n sufficiently large.

12
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Proof. Let D ≡ diag(ω2
1, . . . , ω

2
m) and D̂ ≡ diag(ω̂2

1, . . . , ω̂
2
m). From Lemma 2 it follows thatξn =

(ξ1,n, . . . , ξm,n)
′ ≡ D−1/2n1/2Z̄

d→ Nm(0, ̺), since̺ = D−1/2�D−1/2. From ti · = d̄i ·/
√

v̂ar(d̄i ·) =
n1/2d̄i ·/ω̂i = ξi,n

ωi
ω̂i

it now follows thatTmax,M = maxi ti · = maxi (D̂−1/2n1/2Z̄)i
d→ F̺. Under the al-

ternative hypothesis we havēd j ·
p→ µ j · > 0 for any j /∈ M∗, so that botht j · andTmax,M diverge to infinity

at raten1/2 in probability. Moreover, it follows thatemax,M /∈ M∗, for n sufficiently large.

Theorem 4 shows that the asymptotic distribution ofTmax,M depends on the correlation matrix,̺.

Nonetheless, as discussed earlier, bootstrap methods can be employed to deal with this nuisance param-

eter problem. Thus, we construct a test ofH0,M by comparing the test statisticTmax,M to an estimate of the

95%-quantile, say, of its limit distribution under the nullhypothesis. Although the quantile may depend on

̺, our bootstrap implementation leads to an asymptotically valid test because the bootstrap consistently esti-

mates the desired quantile. A detailed description of our bootstrap implementation is available in a separate

appendix, Hansen, Lunde, and Nason (2010).

Theorem 4 formulates results for the situation where the MCSis constructed withTmax,M andemax,M =
arg maxi ti ·. Similar results hold for the MCS that is constructed fromTR,M andeR,M. The arguments are

almost identical to those used for Theorem 4.

3.2 MCS for Regression Models

This section shows how to construct the MCS for regression models using likelihood-based criteria. Infor-

mation criteria, such as the AIC and BIC, are special cases for building a MCS of regression models. The

MCS approach departs from standard practice where the AIC and BIC select a single model, but are silent

about the uncertainty associated with this selection.4 Thus, the MCS procedure yields valuable additional

information about the uncertainty surrounding model selection. In Section 6.2, we apply the MCS procedure

in-sample to Taylor rule regressions that indicates this uncertainty can be substantial.

Although we focus on regression models for simplicity, it will be evident that the MCS procedure laid

out in this setting can be adapted to more complex models, such as the type of models analyzed in Sin and

White (1996).

3.2.1 Framework and Assumptions

Consider the family of regression models,Yt = β ′
j X j ,t + ε j ,t , t = 1, . . . ,n, whereX j ,t is a subset of the

variables inXt , for j = 1, . . . ,m0. The set of regression models,M0, may consist of nested, nonnested,

and overlapping specifications.

Throughout we assume that the pair(Yt , X′
t ) is strictly stationary and satisfies Assumption 1 in Goncalves

and White (2005). This justifies our use of the moving-block bootstrap to implement our resampling proce-

dure. The framework of Goncalves and White (2005) permits weak serial dependence in(Yt , X′
t), which is

important for many applications.

The population parameters for each of the models are defined by β0 j = [E(X j ,t X′
j ,t)]

−1E(X j ,tYt) and

σ 2
0 j = E(ε2

j ,t), whereε j ,t = Yt − β ′
0 j X j ,t , t = 1, . . . ,n. Furthermore, the Gaussian quasi-log-likelihood

4The same point applies to the Autometrics procedure, see Doornik (2009) and references therein. Autometrics is constructed

from a collection of tests and decision rules but does not control a familywise error rate. Nor is the set of models that Autometrics

seeks to identify defined from a single criterion, such as KLIC.
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function is, apart from a constant, given by

ℓ(β j , σ
2
j ) = −n

2
logσ 2

j − σ−2
j

1

2

n∑

t=1

(Yt − β ′
j X j ,t)

2.

3.2.2 MCS by Kullback-Leibler Divergence

One way to define the best regression model is in terms of the Kullback-Leibler information criterion

(KLIC), see e.g. Sin and White (1996). This is equivalent to ranking the models in terms of the expected

value of the quasi-log-likelihood function, when evaluated at their respective population parameters, i.e.

E[ℓ(β0 j , σ
2
0 j )]. It is convenient to define

Q(Z, θ j ) = −2ℓ(β j , σ
2
j ) = n logσ 2

j +
n∑

t=1

(Yt − β ′
j X j ,t)

2

σ 2
j

,

whereθ j can be viewed as a high dimensional vector that is restrictedby the parameter space,2 j ⊂ 2, that

defines thej -th regression model. The population parameters are here given byθ0 j = argminθ∈2 j
E[Q(Z, θ)],

j = 1, . . . ,m0, and the best model is defined by minj E[Q(Z, θ0 j )]. In the notation of the MCS framework

the KLIC leads to,

M
∗
KLIC =

{
j : E[Q(Z, θ0 j )] = min

i
E[Q(Z, θ0i )]

}
,

which (as always) permits the existence of more than one bestmodel.5 The extension to other criteria, such

as the AIC and the BIC, is straight forward. For instance, theset of best models in terms of the AIC is given

by M∗
AIC =

{
j : E[Q(Z, θ0 j )+ 2k j ] = mini E[Q(Z, θ0i )+ 2ki ]

}
, wherek j is the degrees of freedom in

the j -th model.

The likelihood framework enables us to construct eitherM̂∗
KLIC or M̂∗

AIC by drawing on the theory of

quasi-maximum likelihood estimation, see e.g. White (1994). Since the family of regression models are

linear, the quasi-maximum likelihood estimators are standard, β̂ j =
(∑n

t=1 X j ,t X′
j ,t

)−1∑n
t=1 X j ,tYt , and

σ̂ 2
j = n−1∑n

t=1 ε̂
2
j ,t , whereε̂ j ,t = Yt − β̂ ′

j X j ,t . We have

Q(Z, θ̂ j )− Q(Z, θ0 j ) = n

{
(
logσ 2

0 j − log σ̂ 2
j

)
+
(

n−1
n∑

t=1

ε2
j ,t/σ

2
0 j − 1

)}
,

which is the quasi-likelihood ratio (QLR) statistic for thenull hypothesis,H0 : θ = θ0 j .

In the event that thej -th model is correctly specified, it is well known that the limit distribution of

Q(Z, θ̂ j ) − Q(Z, θ0 j ) is χ2
(k j )
, where the degrees of freedom,k j , is given by the dimension ofθ0 j =

(β ′
0 j , σ

2
0 j )

′. In the present multi-model setup, it is unlikely that all models are correctly specified. More

generally, the limit distribution of the QLR statistic has the form,
∑k j

i=1 λi, j Z2
i, j , whereλ1, j , . . . , λk j , j are

the eigenvalues ofI−1
j J j and Z1, j , . . . , Zk j , j ∼ iidN(0,1). The information matricesI j andJ j are those

associated with thej -th model,I j = diag
(
σ−2

0 j E(X j ,t X
′
j ,t),

1
2σ

−4
0 j

)
and

J j = E

(
σ−4

0 j n−1∑n
s,t=1 X j ,sε j ,sε j ,t X′

j ,t
1
2σ

−6
0 j n−1∑n

s,t=1 X j ,sε j ,sε
2
j ,t

• 1
4σ

−8
0 j n−1∑n

s,t=1 (ε
2
j ,sε

2
j ,t−σ 4

0 j )

)
.

5In the present situation, we have E[Q(Z j , θ0 j )] ∝ σ2
0 j . The implication is that the error variance,σ2

0 j , induces the same

ranking as KLIC, so thatM∗
KLIC = { j : σ2

0 j = min j ′ σ
2
0 j ′}.
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The effective degrees of freedom,k⋆j , is defined by the mean of the QLR’s limit distribution,

k⋆j = λ1, j + · · · + λk j , j = tr{I−1
j J j }

= tr

{
[E(X j ,t X

′
j ,t)]

−1σ−2
0 j n−1

n∑

s,t=1

E(X j ,sε j ,sX′
j ,tε j ,t)

}
+ n−1 1

2

n∑

s,t=1

E

(
ε2

j ,sε
2
j ,t

σ 4
0 j

− 1

)
.

The previous expression points to estimatingk⋆j with HAC-type estimators that account for the autocorre-

lation in {X j ,tε j ,t} and{ε2
j ,t}, e.g. Newey and West (1987) and Andrews (1991). Below we use a simple

bootstrap estimate ofk⋆j , which is also employed in our simulations and our empirical Taylor rule regression

application.

The effective degrees of freedom in the context of misspecified models was first derived by Takeuchi

(1976). He proposed a modified AIC, sometimes referred to as the TIC, which computes the penalty with the

effective degrees of freedom, rather than the number of parameters as is used by the AIC, see also Sin and

White (1996) and Hong and Preston (2008). We use the notationAIC⋆ and BIC⋆ to denote the information

criteria that are defined by substituting the effective degrees of freedom,k⋆j , for k j , in the AIC and BIC,

respectively. In this case, our AIC⋆ is identical to the TIC by Takeuchi (1976).

3.2.3 The MCS Procedure

The MCS procedure can be implemented by the moving-block bootstrap applied to the pair,(Yt, Xt), see

Goncalves and White (2005). We compute resamplesZ∗
b = (Y∗

b,t, X∗
b,t)

n
t=1 for b = 1, . . . , B,which equates

the original point estimate,̂θ j , to the population parameter in thej -th model under the bootstrap scheme.

The literature has proposed several bootstrap estimators of the effective degrees of freedom, k⋆j =
E[Q(Z, θ0 j ) − Q(Z, θ̂ j )], see e.g. Efron (1983, 1986) and Cavanaugh and Shumway (1997). These and

additional estimators are analyzed and compared in Shibata(1997). We adopt the estimator fork⋆j that is

labelledB3 in Shibata (1997). In the regression context this estimatortakes the form

k̂⋆j = B−1
B∑

b=1

Q(Z∗
b, θ̂ j )− Q(Z∗

b, θ̂
∗
b, j ) = B−1

B∑

b=1

{
n log

σ̂ 2
j

σ̂ ∗2
b, j

+
∑n

t=1(ε
∗
b, j ,t)

2

σ̂ 2
j

− n

}
,

whereε∗
b, j ,t = Y∗

b,t − β̂ ′
j X∗

b, j ,t, ε̂
∗
b, j ,t = Y∗

b,t − β̂∗′
b, j X

∗
b, j ,t, andσ̂ ∗2

b, j = n−1∑n
t=1(ε̂

∗
b, j ,t)

2. This is an estimate

of the expected overfit that results from maximization of thelikelihood function. For a correctly specified

model we havek⋆j = k j , so we would expect̂k⋆j ≈ k j when the j -th model is correctly specified. This is

indeed what we find in our simulations, see Section 5.2.

Given an estimate of the effective degrees of freedom,k̂⋆j , compute the AIC⋆ statisticQ(Z, θ̂ j ) + k̂⋆j ,

which is centered aboutE{Q(Z, θ0 j )}. The null hypothesisH0,M states that E[Q(Z, θ0i )− Q(Z, θ0 j )] = 0

for all i, j ∈ M. This motivates the range statistic:

TR,M = max
i, j ∈M

∣∣∣[Q(Z, θ̂i )+ k̂⋆i ] − [Q(Z, θ̂ j )+ k̂⋆j ]
∣∣∣ ,

and the elimination ruleeM = argmaxj ∈M[Q(Z, θ̂ j ) + k̂⋆j ]. This elimination rule removes the model with

the largest bias adjusted residual variance. Our test statistic, TR,M, is a range-statistic over recentered QLR

statistics computed for all pairs of model inM. In the special case with iid data and just two models inM,

we could simply adopt the QLR test of Vuong (1989) as our equivalence test.
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Next, we estimate the distribution ofTR,M under the null hypothesis. The estimate is calculated with

methods similar to those used in White (2000b) and Hansen (2005). The joint distribution of

(Q(Z, θ̂1)+ k⋆1 − E[Q(Z, θ01)], . . . ,Q(Z, θ̂m0)+ k⋆m0
− E[Q(Z, θ0m0)]),

is estimated by the empirical distribution of

{Q(Z∗
b, θ̂

∗
b,1)+ k̂⋆1 − Q(Z, θ̂1), . . . ,Q(Z∗

b , θ̂
∗
b,m0

)+ k̂⋆m0
− Q(Z, θ̂m0)}, (3)

for b = 1, . . . , B, becauseQ(Z, θ̂ j ) play the role of E[Q(Z, θ0 j )] under the resampling scheme. These

bootstrap statistics are relatively easy to compute because the structure of the likelihood function is

Q(Z∗
b, θ̂

∗
b, j )− Q(Z, θ̂ j ) = n(log σ̂ ∗2

b, j + 1)− n(log σ̂ 2
j + 1) = n log

σ̂ ∗2
b, j

σ̂ 2
j

,

whereσ̂ ∗2
b, j = n−1

∑n
t=1(Y

∗
b,t − β̂∗′

b, j X
∗
b, j ,t)

2. For each of the bootstrap resamples, we compute the test statistic

T∗
b,R,M = max

i, j ∈M

∣∣∣
{

Q(Z∗
b, θ̂

∗
b,i )+ k̂⋆i − Q(Z, θ̂i )

}
−
{

Q(Z∗
b, θ̂

∗
b, j )+ k̂⋆j − Q(Z, θ̂ j )

}∣∣∣ .

The p-value for the hypothesis test with which we are concerned iscomputed by

pM = B−1
B∑

b=1

1{
T∗

b,R,M≥TR,M

}.

The empirical distribution ofn−1/2T∗
b,R,M yields a conservative estimate of the distribution ofn−1/2TR,M,

asn, B → ∞. The conservative nature of this estimate refers to thep-value, pM, being conservative in

situations where the comparisons involve nested models. Wediscuss this issue at some length in the next

subsection.

It is also straightforward to construct the MCS using eitherthe AIC, the BIC, the AIC⋆, or the BIC⋆.

The relevant test statistic has the form

TR,M = max
i, j ∈M

∣∣∣[Q(Z, θ̂i )+ ci ] − [Q(Z, θ̂ j )+ c j ]
∣∣∣ ,

wherec j = 2k j for the AIC,c j = log(n)k j for the BIC,c j = 2k̂⋆j for the AIC⋆, andc j = log(n)k̂⋆j for the

BIC⋆. The computation of the resampled test statistics,T∗
b,R,M, is identical for the three criteria. The reason

is that the location shift,c j , has no effect on the bootstrap statistics, once the null hypothesis is imposed.

Under the null hypothesis we recenter the bootstrap statistics about zero and this offsets the location shift

ci − c j .

3.2.4 Issues Related to the Comparison of Nested Models

When two models are nested, the null hypothesis used with KLIC, E[Q(Z, θ0i )] = E[Q(Z, θ0 j )], has

the strong implication thatQ(Z, θ0i ) = Q(Z, θ0 j ) a.e. (almost everywhere), and this causes the limit

distribution of the quasi likelihood ratio statistic,Q(Z, θ̂i ) − Q(Z, θ̂ j ), to differ for nested or non-nested

comparisons, see Vuong (1989). This property of nested comparisons can be imposed on the bootstrap

resamples, by replacingQ(Z, θ̂ j ) with Q(Z∗, θ̂ j ), because the latter is the bootstrap variant ofQ(Z, θ0 j ).
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The MCS procedure can be adapted, so that different bootstrap schemes are used for nested and non-nested

comparisons, and imposing the stronger null hypothesis,Q(Z, θ0i ) = Q(Z, θ0 j ) a.e., may improve the

power of the procedure. The key difference is that the null hypothesis with KLIC hasQ(Z, θ̂i )−Q(Z, θ̂ j ) =
Op(1) for nested comparisons andQ(Z, θ̂i ) − Q(Z, θ̂ j ) = Op(n1/2) for non-nested comparisons. Our

bootstrap implementations is such that
{

Q(Z∗
b, θ̂

∗
b,i )+ k̂⋆i − Q(Z, θ̂i )

}
−
{

Q(Z∗
b, θ̂

∗
b, j )+ k̂⋆j − Q(Z, θ̂ j )

}

is Op(n1/2), whether the comparison involves nested or non-nested models, which causes the bootstrap

critical values to be conservative. Under the alternativeQ(Z, θ̂i ) − Q(Z, θ̂ j ) diverges at raten for nested

and non-nested comparisons, so the bootstrap testing procedure is consistent in both cases.

Since nested and non-nested comparisons results in different rates of convergence and different limit

distributions, there are better ways to construct an adaptive procedure than through the test statistic,TR,M.

For instance by combining thep-values for the individual subhypotheses. We shall not pursue such an

adaptive bootstrap implementation in this paper. It is, however, important to note that the issue with nested

models is only relevant for KLIC because the underlying nullhypotheses of other criteria, including AIC⋆

and BIC⋆, do not implyQ(Z, θ0i ) = Q(Z, θ0 j ) a.e. for nested models.

4 Relation to Existing Multiple Comparisons Methods

The introduction discusses the relation between the MCS andthe trace-test used to select the number of coin-

tegration relations, see Johansen (1988). The MCS and the trace-test share an underlying testing principle

known asintersection-union testing(IUT). Berger (1982) is responsible for formalizing the IUT, while Pan-

tula (1989) applies the IUT to the problem of selecting the lag-length and order of integration in univariate

autoregressive processes.

Another way to cast the MCS problem is as a multiple comparisons problem. The multiple comparisons

problem has a long history in the statistics literature, seeGupta and Panchapakesan (1979), Hsu (1996),

Dudoit, Shaffer, and Boldrick (2003) and Lehmann and Romano(2005, chapter 9) and references therein.

Results from this literature have recently been adopted in the econometrics literature. One problem is that

of multiple comparisons with best, where objects are compared to that with the ‘best’ sample performance.

Statistical procedures formultiple comparisons with bestare discussed and applied to economic problems

in Horrace and Schmidt (2000). Shimodaira (1998) uses a variant of Gupta’s subset selection, see Gupta

and Panchapakesan (1979), to construct a set of models that he terms a model confidence set. His procedure

is specific to a ranking of models in terms of E(AIC j ), and his framework is different from ours in a number

of ways. For instance, his preferred set of models does not control the FWE. He also invokes a Gaussian

approximation that rules out comparisons of nested models.

Our MCS employs a sequential testing procedure that mimics step-down procedures for multiple hy-

pothesis testing, see e.g. Dudoit, Shaffer, and Boldrick (2003), Lehmann and Romano (2005, chapter

9) or Romano, Shaikh, and Wolf (2008). Our definition of MCSp-values implies the monotonicity,

p̂eM1
≤ p̂eM2

≤ · · · ≤ p̂eMm0
, that is key for the result of Theorem 3. This monotonicity is also a

feature of the so-calledstep-down Holm adjusted p-values.
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4.1 Relation to Tests for Superior Predictive Ability

Another related problem is the case where the benchmark, to which all objects are compared, is selected

independent of the data used for the comparison. This problem is known asmultiple comparisons with

control. In the context of forecast comparisons, this is the problemthat arises when testing forsuperior

predictive ability(SPA), see White (2000b), Hansen (2005), and Romano and Wolf(2005).

The MCS has several advantages over tests for superior predictive ability. Thereality check for data

snoopingof White (2000b) and the SPA test of Hansen (2005) are designed to address whether a particular

benchmark is significantly outperformed by any of the alternatives used in the comparison. Unlike these

tests the MCS procedure does not require a benchmark to be specified, which is very useful in applications

without an obvious benchmark. In the situation where there is a natural benchmark, the MCS procedure can

still address the same objective as that of the SPA tests. This is done by observing whether the designated

benchmark is in the MCS or not, where the latter corresponds to a rejection of the null hypothesis that is

relevant for a SPA test.

The MCS procedure has the advantage that it can be employed for model selection, whereas a SPA-test

is ill-suited for this problem. A rejection of the SPA-test only identifies one or more models as significantly

better than the benchmark.6 Thus, the SPA-test offers little guidance about which models reside inM∗. We

are also faced with a similar problem in the event that the null hypothesis is not rejected by the SPA-test. In

this case the benchmark may be the best model, but this label may also be applied to other models. This issue

can be resolved if all models serve as the benchmark in a series of comparisons. The result is a sequence

of SPA-tests that define the MCS to be the set of ‘benchmark’ models that are found not to be significantly

inferior to the alternatives. However, the level of individual SPA-tests need to be adjusted for the number of

tests that are computed to control the FWE. For example, if the level in each of the SPA-tests isα/m, the

Bonferroni bound states that the resulting set of ‘surviving’ benchmarks is a MCS with coverage(1 − α).

Nonetheless, there is a substantial loss of power associated with the small level applied to the individual

tests. The loss of power highlights a major pitfall of sequential SPA-tests.

Another drawback of constructing a MCS from SPA-tests is that the null of a SPA-test is a composite

hypothesis. The null is defined by several inequality constraints which affects the asymptotic distribution

of the SPA-test statistic because it depends on the number ofbinding inequalities. The binding inequality

constraints create a nuisance parameter problem. This makes it difficult to control the Type I error rate

inducing an additional loss of power, see Hansen (2003a). Incomparison, the MCS procedure is based on a

sequence of hypotheses tests that only involve equalities,which avoids composite hypothesis testing.

4.2 Related Sequential Testing Procedures for Model Selection

This subsection considers some relevant aspects of out-of-sample evaluation of forecasting models, and how

the MCS procedure relates to these issues.

Several papers have studied the problem of selecting the best forecasting model from a set of competing

models. For example, Engle and Brown (1985) compare selection procedures that are based on six infor-

mation criteria and two testing procedures (‘general-to-specific’ and ‘specific-to-general’), Sin and White

6Romano and Wolf (2005) improve upon the reality check by identifying the entire set of alternatives that significantly dominate

the benchmark. This set of models is specific to the choice of benchmark and has therefore no direct relation to the MCS.
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(1996) analyze information criteria for possibly misspecified models, and Inoue and Kilian (2006) compare

selection procedures that are based on information criteria and out-of-sample evaluation. Granger, King, and

White (1995) argue that the general-to-specific selection procedure is based on an incorrect use of hypothe-

sis testing, because the model chosen to be the null hypothesis in a pairwise comparison is unfairly favored.

This is problematic when the data set under investigation does not contain much information, which makes

it difficult to distinguish between models. The MCS procedure does not assume that a particular model is

the true model, nor is the null hypothesis defined by a single model. Instead, all models are treated equally

in the comparison and only evaluated on out-of-sample predictive ability.

4.3 Aspects of Parameter Uncertainty and Forecasting

Parameter estimation can play an important role in the evaluation and comparison of forecasting models.

Specifically when the comparison of nested models relies on parameters that are estimated using certain es-

timation schemes, the limit distribution of our test statistics need not be Gaussian, see West and McCracken

(1998) and Clark and McCracken (2001). In the present context, there will be cases that do not fulfil As-

sumption 2. Some of these problems can be avoided by using a rolling window for parameter estimation,

known as therolling scheme. This is the approach taken by Giacomini and White (2006). Alternatively one

can estimate the parameters once (using data that are dated prior to the evaluation period) and then compare

the forecastsconditional on these parameter estimates. However, the MCS should be applied with caution

when forecasts are based on estimated parameters because our assumptions need not hold in this case. As a

result, modifications are needed in the case with nested models, see Chong and Hendry (1986), Harvey and

Newbold (2000), Chao, Corradi, and Swanson (2001), and Clark and McCracken (2001) among others. The

key modification that is needed to accommodate the case with nested models is to adopt a test with a proper

size. With proper choices forδM andeM the general theory for the MCS procedure remains. However, in

this paper we will not pursue this extension because it wouldobscure our main objective, which is to lay out

the key ideas of the MCS.

4.4 Bayesian Interpretation

The MCS procedure is based on frequentist principles, but resembles some aspects of Bayesian model

selection techniques. By specifying a prior over the modelsin M0, a Bayesian procedure would produce

a posterior distribution for each model, conditional on theactual data. This approach to MCS construction

includes those models with the largest posteriors which sumat least to 1− α. If the Bayesian were also to

choose models by minimizing the ‘risk’ associated with the loss attributed to each model, the MCS would

be a Bayes decision procedure with respect to the model posteriors. Note that the Bayesian and frequentist

MCSs rely on the metric under which loss is calculated and depend on sample information.

We argue our approach to the MCS and its bootstrap implementation compares favorably to Bayesian

methods of model selection. One advantage of the frequentist approach is that it avoids having to place

priors on the elements ofM0 (and their parameters). Our probability statement is associated with the

random data-dependent set of models that is the MCS. It therefore is meaningful to state that the best model

can be found in the MCS with a certain probability. The MCS also places moderate computational demands

on the researcher, unlike the synthetic data creation methods on which Bayesian Markov chain-Monte Carlo
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methods rely.

5 Simulation Results

This section reports on Monte Carlo experiments that show the MCS to be properly sized and possess good

power in various simulations designs.

5.1 Simulation Experiment I

We consider two designs that are based on them-dimensional vector,θ = (0, 1
m−1, . . . ,

m−2
m−1,1)

′λ/
√

n, that

defines the relative performances,µi j = E(di j ,t ) = θi − θ j . The experimental design ensures thatM∗

consists of a single element, unlessλ = 0, in which case we haveM∗ = M0. The stochastic nature of the

simulation is primarily driven by

Xt ∼ iid Nm(0, 6), where6i j =
{

1 for i = j ,

ρ for i 6= j , for some 0≤ ρ ≤ 1,

whereρ controls the degree of correlation between alternatives.

Design I.A (Symmetric distributed loss):Define the (vector of) loss variables to be

L t ≡ θ + at√
E(a2

t )
Xt , whereat = exp(yt), yt = −ϕ

2(1 + ϕ)
+ ϕyt−1 + √

ϕεt ,

andεt ∼ iid N(0,1). This implies that E(yt) = −ϕ/{2(1 − ϕ2)} and var(yt) = ϕ/(1 − ϕ2), such that

E(at) = exp{E(yt) + var(yt)/2} = exp{0} = 1, and var(at ) =
(
exp{ϕ/(1− ϕ2)} − 1

)
. Further E(a2

t ) =
var(at)+ 1 = exp{ϕ/(1−ϕ2)} such that var(L t) = 1. Note thatϕ = 0 corresponds to homoskedastic errors

andϕ > 0 corresponds to (GARCH-type) heteroskedastic errors.

The simulations employ 2,500 repetitions, whereλ = 0, 5, 10, 20,ρ = 0.00, 0.50, 0.75, 0.95,ϕ = 0.0,

0.5, 0.8, andm = 10, 40, 100. We use the block-bootstrap, in which blocks havelengthl = 2, and results

are based onB = 1,000 resamples. The size of a synthetic sample isn = 250. This approximates sample

sizes often available for model selection exercises in macroeconomics.

We report two statistics from our simulation experiment based onα = 10%. One is the frequency at

whichM̂∗
90% containsM∗ and the other is the average number of models in̂M∗

90%. The former shows the

‘size’ properties of the MCS procedure and the latter is informative about the ‘power’ of the procedure.

Table 2 presents simulation results that show the small sample properties of the MCS procedure closely

match its theoretical predictions. The frequency that the best models are contained in the MCS is almost

always greater than(1−α), and the MCS becomes better at separating the inferior models from the superior

model, as theµi j s become more disperse (e.g., asλ increases). Note also that a larger correlation makes it

easier to separate inferior models from superior model. This is not surprising because var(di j ,t ) = var(L it )+
var(L j t ) − 2cov(L it , L j t ) = 2(1 − ρ), which is decreasing inρ. Thus, a larger correlation (holding the

individual variances fixed) is associated with more information that allows the MCS to separate good from

bad models. Finally, the effects of heteroskedasticity arerelatively small, but heteroskedasticity does appear

to add power to the MCS procedure. The average number of models inM̂∗
90% tends to fall asϕ increases.
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Table 2: Simulation Design I.a

m = 10 m = 40 m = 100

Panel A:ϕ = 0

Frequency at whichM∗ ⊂ M̂∗
90% (size)

ρ = 0 0.5 0.75 0.95 0 0.5 0.75 0.95 0 0.5 0.75 0.95
λ = 0 0.885 0.898 0.884 0.885 0.882 0.882 0.877 0.880 0.880 0.8700.877 0.875
λ = 5 0.990 0.988 0.991 1.000 0.980 0.979 0.976 0.984 0.975 0.9760.975 0.976
λ = 10 0.994 0.998 0.999 1.000 0.978 0.983 0.985 0.993 0.973 0.975 0.974 0.980
λ = 20 0.998 1.000 1.000 1.000 0.988 0.981 0.991 1.000 0.975 0.978 0.986 0.992
λ = 40 1.000 1.000 1.000 1.000 0.992 0.996 0.998 1.000 0.981 0.984 0.990 0.998

Average number of elements in̂M∗
90% (power)

λ = 0 9.614 9.658 9.646 9.632 38.68 38.78 38.91 38.82 97.02 96.8497.11 97.20
λ = 5 6.498 4.693 3.239 1.544 25.30 18.79 13.35 6.382 59.87 43.9232.51 15.04
λ = 10 3.346 2.390 1.732 1.027 13.59 9.829 7.142 3.266 32.32 23.04 16.97 7.902
λ = 20 1.702 1.307 1.062 1.000 7.060 5.010 3.617 1.674 17.03 12.40 8.785 4.049
λ = 40 1.072 1.005 1.000 1.000 3.572 2.597 1.840 1.052 8.778 6.375 4.521 2.083

Panel B:ϕ = 0.5

Frequency at whichM∗ ⊂ M̂∗
90% (size)

ρ = 0 0.5 0.75 0.95 0 0.5 0.75 0.95 0 0.5 0.75 0.95
λ = 0 0.908 0.897 0.905 0.894 0.911 0.907 0.910 0.916 0.925 0.9180.909 0.913
λ = 5 0.985 0.990 0.995 1.000 0.971 0.976 0.977 0.987 0.974 0.9740.973 0.973
λ = 10 0.992 0.999 1.000 1.000 0.978 0.985 0.982 0.995 0.975 0.969 0.983 0.984
λ = 20 0.999 1.000 1.000 1.000 0.988 0.989 0.988 1.000 0.979 0.976 0.981 0.992
λ = 40 1.000 1.000 1.000 1.000 0.996 0.996 1.000 1.000 0.980 0.982 0.991 0.999

Average number of elements in̂M∗
90% (power)

λ = 0 9.660 9.664 9.664 9.649 38.97 38.93 39.03 39.05 98.35 98.0597.94 97.73
λ = 5 6.076 4.497 3.213 1.564 24.33 17.72 13.13 6.112 57.84 41.6030.35 14.54
λ = 10 3.188 2.278 1.680 1.035 12.95 9.268 6.791 3.136 30.54 22.30 16.56 7.510
λ = 20 1.700 1.274 1.069 1.000 6.819 4.883 3.563 1.659 16.04 11.56 8.430 3.894
λ = 40 1.085 1.008 1.000 1.000 3.506 2.517 1.811 1.061 8.339 6.166 4.360 2.034

Panel C:ϕ = 0.8

Frequency at whichM∗ ⊂ M̂∗
90% (size)

ρ = 0 0.5 0.75 0.95 0 0.5 0.75 0.95 0 0.5 0.75 0.95
λ = 0 0.931 0.940 0.939 0.947 0.963 0.968 0.958 0.962 0.970 0.9750.969 0.972
λ = 5 0.990 0.997 0.998 1.000 0.977 0.980 0.989 0.993 0.970 0.9750.976 0.981
λ = 10 0.998 1.000 1.000 1.000 0.984 0.987 0.992 0.998 0.982 0.976 0.974 0.991
λ = 20 1.000 1.000 1.000 1.000 0.990 0.993 0.996 1.000 0.982 0.982 0.992 0.998
λ = 40 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.988 0.994 0.996 1.000

Average number of elements in̂M∗
90% (power)

λ = 0 9.739 9.814 9.794 9.799 39.61 39.61 39.53 39.55 99.00 99.4499.15 99.43
λ = 5 4.301 3.318 2.386 1.322 16.26 12.31 9.118 4.401 39.69 28.1320.56 10.12
λ = 10 2.424 1.864 1.419 1.062 9.133 6.643 4.727 2.349 20.72 14.77 11.26 5.470
λ = 20 1.455 1.220 1.092 1.010 4.770 3.520 2.535 1.454 11.15 8.014 5.948 2.840
λ = 40 1.098 1.037 1.011 1.003 2.645 1.967 1.490 1.081 5.932 4.356 3.248 1.645

The two statistics are the frequency at whicĥM∗
90% containsM∗ and the other is the average number of

models inM̂∗
90%. The former shows the ‘size’ properties of the MCS procedureand the latter is informative

about the ‘power’ of the procedure.

21



Model Confidence Set

Sample size

F
re

q
. 

a
t 

w
h

ic
h

 b
e

st
 is

 in
 M

C
S

95

96

97

98

98.5

99

99.5

100

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

2
0
0

3
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
5
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

ρ = 0

ρ = 0.5

ρ = 0.75

Sample size

A
ve

ra
g

e
 s

iz
e

 o
f 

M
C

S

0

1

2

3

4

5

6

7

8

9

10

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

2
0
0

3
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
5
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

ρ = 0

ρ = 0.5

ρ = 0.75

Sample size

F
re

q
. 

a
t 

w
h

ic
h

 b
e

st
 is

 in
 M

C
S

80

82

84

86

88

90

92

94

96

98

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

2
0
0

3
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
5
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

ρ = 0

ρ = 0.5

ρ = 0.75

Sample size

A
ve

ra
g

e
 s

iz
e

 o
f 

M
C

S

1

2

3

4

5

6

7

8

9

10

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

2
0
0

3
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
5
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

ρ = 0

ρ = 0.5

ρ = 0.75

Sample size

F
re

q
. 

a
t 

w
h

ic
h

 b
e

st
 is

 in
 M

C
S

80

82

84

86

88

90

92

94

96

98
2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

2
0
0

3
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
5
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

ρ = 0

ρ = 0.5

ρ = 0.75

Sample size

A
ve

ra
g

e
 s

iz
e

 o
f 

M
C

S

4

5

6

7

8

9

10

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

2
0
0

3
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
5
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

ρ = 0

ρ = 0.5

ρ = 0.75

Figure 1: Simulation design I.B with 10 alternatives and 1, 2, or 5 elements inM∗. The left panels report

the frequency at whichM∗ is contained inM̂∗
90% (size properties) and the right panels report the average

number of models in̂M∗
90% (power properties).
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Corollary 1 has a consistency result that applies whenλ > 0. The implication is that only one model

entersM∗ under this restriction. Table 2 shows thatM∗ often contains only one model givenλ > 0. The

MCS matches this theoretical prediction in Table 2 becauseM̂∗
90% = M∗ in a large number of simulations.

This equality holds especially whenλ andρ are large. These are also the simulation experiments that yield

size and power statistics equal (or nearly equal) to one. With size close to one or equal to one, observe that

M∗ ⊂ M̂∗
90% (in all the synthetic samples). On the other hand,M̂∗

90% is reduced to a single model (in all

the synthetic samples) when power is close to one or equal to one.

Design I.B (Dependent loss):This design setsL t ∼ iid N10(θ,6), where the covariance matrix has

the following structure,6i j = ρ |i− j |, for ρ = 0,0.5, and 0.75. The mean vector takes the formθ =
(0, . . . ,0, 1

5, . . . ,
1
5)

′ so that the number of zero-elements inθ defines the number of elements inM∗. We

report simulation results for the case wherem0 = 10 andM∗ consists of either one, two, or five models.

The simulation results are presented in Figure 1. The left panels display the frequency at whicĥM∗
90%

containsM∗ (‘size’) at various sample sizes. The right panels present the average number of models in

M̂∗
90% (‘power’). The two upper panels contain the results for the case whereM∗ is a single model. The

upper-left panel indicates that the best model is almost always contained in the MCS. This agrees with

Corollary 1, that states that̂M∗
1−α

p→ M∗ asn → ∞, wheneverM∗ consists of a single model. The

upper-right panel illustrates the ‘power’ of the procedurebased onTmax,M = maxi∈M ti ·. We note that it

takes about 800 observations to weed out the nine inferior models in this design. The MCS procedure is

barely affected by the correlation parameter,ρ, but we note that a largerρ results in a small loss in ‘power’.

In the lower-left panel we see that the frequency at whichM∗ is contained inM̂∗
90% is reasonably close to

90% except for the very short sample sizes. From the middle-right and lower-right panel we see that it takes

about 500 observations to remove all the poor models.

The middle-right and lower-right panels illustrate another aspect of the MCS procedure. For large

sample sizes we note that the average number of models inM̂∗
90% falls below the number of models in

M∗. The explanation is simple. After all poor models have been eliminated, as occurs with probability

approaching one asn → ∞, there is a positive probability thatH0,M∗ is rejected, which causes the MCS

procedure to eliminate a good model. Thus, the inference we draw from the simulation results are quite

encouraging for theTmax,M test.

5.2 Simulation Experiment II: Regression Models

Next we study the properties of the MCS procedure in the context of in-sample evaluation of regression mod-

els, as we laid out in Section 3.2. We consider a setup with sixpotential regressors,Xt = (X1,t, . . . , X6,t)
′,

that are distributed as follows,

Xt ∼ iid N6(0, 6), where6i j =
{

1 for i = j ,

ρ for i 6= j , for some 0≤ ρ < 1,

whereρ measures the degree of dependence between the regressors. We define the dependent variable by

Yt = µ + βX1,t +
√

1 − β2εt , whereεt ∼ iid N(0,1). In addition to the six variables inXt , we include a

constant,X0,t = 1, in all regression models. The set of regressions being estimated is given by the twelve

regression models that are listed in each of the panels in Table 3.
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Table 3: Simulation Experiment II

Q(Z j , θ̂ j ) k̂⋆ KLIC AIC ⋆ (TIC) BIC⋆

Panel A: n= 50

ρ = 0.3 0.9 0.3 0.9 0.3 0.9 0.3 0.9 0.3 0.9
X0 48.1 48.1 1.99 2.00 0.058 0.038 0.085 0.070 0.118 0.124
X0, X1 12.4 12.4 3.02 3.02 0.998 0.999 1.000 1.000 1.000 1.000
X0, . . . , X2 11.3 11.3 4.08 4.08 0.998 0.999 0.962 0.999 0.566 0.940
X0, . . . , X3 10.2 10.2 5.18 5.18 0.999 0.999 0.940 0.998 0.469 0.912
X0, . . . , X4 9.09 9.04 6.32 6.32 1.000 1.000 0.905 0.997 0.367 0.803
X0, . . . , X5 7.95 7.88 7.50 7.50 1.000 1.000 0.867 0.994 0.279 0.598
X0, . . . , X6 6.77 6.69 8.73 8.74 1.000 1.000 0.806 0.990 0.203 0.400
X0, X2 44.7 21.0 3.02 3.02 0.086 0.905 0.100 0.935 0.099 0.877
X0, X2, X3 42.3 18.1 4.08 4.08 0.106 0.948 0.107 0.949 0.077 0.806
X0, X2, . . . , X4 40.4 16.3 5.18 5.18 0.120 0.958 0.105 0.938 0.054 0.665
X0, X2, . . . , X5 38.8 14.8 6.32 6.32 0.132 0.962 0.100 0.913 0.036 0.501
X0, X2, . . . , X6 37.2 13.4 7.50 7.51 0.145 0.964 0.094 0.869 0.022 0.348

Panel B: n= 100

ρ = 0.3 0.9 0.3 0.9 0.3 0.9 0.3 0.9 0.3 0.9
X0 98.0 98.1 1.99 1.99 0.000 0.000 0.000 0.000 0.000 0.000
X0, X1 27.6 27.8 3.00 3.00 0.998 1.000 1.000 1.000 1.000 1.000
X0, . . . , X2 26.6 26.7 4.03 4.03 0.999 1.000 0.959 0.982 0.402 0.675
X0, . . . , X3 25.5 25.7 5.07 5.06 0.999 1.000 0.939 0.975 0.276 0.619
X0, . . . , X4 24.4 24.6 6.12 6.12 1.000 1.000 0.908 0.960 0.174 0.545
X0, . . . , X5 23.4 23.6 7.19 7.18 1.000 1.000 0.864 0.942 0.101 0.390
X0, . . . , X6 22.3 22.5 8.28 8.27 1.000 1.000 0.800 0.920 0.059 0.238
X0, X2 92.4 45.1 3.00 3.01 0.000 0.548 0.000 0.585 0.000 0.490
X0, X2, X3 88.8 40.4 4.03 4.03 0.000 0.691 0.000 0.666 0.000 0.443
X0, X2, . . . , X4 86.1 38.1 5.07 5.07 0.000 0.736 0.000 0.675 0.000 0.338
X0, X2, . . . , X5 83.9 36.3 6.12 6.12 0.000 0.759 0.000 0.655 0.000 0.236
X0, X2, . . . , X6 82.0 34.8 7.19 7.19 0.001 0.772 0.000 0.631 0.000 0.143

Panel C: n= 500

ρ = 0.3 0.9 0.3 0.9 0.3 0.9 0.3 0.9 0.3 0.9
X0 498 498 2.00 2.00 0.000 0.000 0.000 0.000 0.000 0.000
X0, X1 151 151 3.00 3.00 0.999 0.999 1.000 1.000 1.000 1.000
X0, . . . , X2 150 150 4.00 4.00 0.999 0.999 0.958 0.960 0.207 0.206
X0, . . . , X3 149 149 5.01 5.01 0.999 1.000 0.938 0.938 0.100 0.099
X0, . . . , X4 148 148 6.02 6.01 1.000 1.000 0.907 0.901 0.044 0.042
X0, . . . , X5 147 147 7.03 7.02 1.000 1.000 0.858 0.852 0.020 0.017
X0, . . . , X6 145 146 8.04 8.03 1.000 1.000 0.790 0.792 0.006 0.008
X0, X2 474 238 3.00 3.00 0.000 0.000 0.000 0.000 0.000 0.000
X0, X2, X3 460 219 4.00 4.00 0.000 0.002 0.000 0.002 0.000 0.002
X0, X2, . . . , X4 451 211 5.01 5.01 0.000 0.004 0.000 0.004 0.000 0.001
X0, X2, . . . , X5 444 206 6.02 6.01 0.000 0.006 0.000 0.006 0.000 0.001
X0, X2, . . . , X6 439 203 7.03 7.02 0.000 0.008 0.000 0.007 0.000 0.000

The average value of the maximized log-likelihood functionmultiplied by minus two is reported in the first
two columns. The next pair of columns has the average of the effective degrees of freedom. The last three
pairs of columns report the frequency that a particular regression model is in thêM∗

90% for each of the three
criteria, KLIC, AIC⋆ and BIC⋆.
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We report simulation results based on 10,000 repetitions, using a design with anR2 = 50% (i.e.β2 =
0.5) and eitherρ = 0.3 or ρ = 0.9.7 For the number of bootstrap resamples we useB = 1,000. Since

X0,t = 1 is included in all regression models, the relevant MCS statistics are invariant to the actual value for

µ, so we setµ = 0 in our simulations.

The definition ofM∗ will depend on the criterion. With KLIC the set of best modelsis given by the set

of regression models that includesX1. The reason is that KLIC does not favor parsimonious models, unlike

the AIC⋆ and BIC⋆. With these two criteria,M∗, is defined to be the most parsimonious regression model

that includesX1. The models inM∗ are identified by the shaded regions in Table 3.

Our simulation results are reported in Table 3. The average value ofQ(Z j , θ̂ j ) is given in the first pair

of columns, followed by the average estimate of the effective degrees of freedom,k̂⋆. The Gaussian setup

is such that all models are correctly specified. So the effective degrees of freedom is simply the number of

free parameters, which is the number of regressors plus one for σ 2
j . Table 3 shows that the average value

of k̂⋆j , is very close to the number of free parameters in thej -th regression model. The last three pairs of

columns report the frequency that each of the models are inM̂∗
90%.We want large numbers inside the shaded

region and small numbers outside the shaded region. The results are intuitive. As the sample size increases,

from 50 to 100 and then to 500, the MCS procedure becomes better at eliminating the models that do not re-

side inM∗.With a sample size ofn = 500, the consistent criterion, BIC⋆, has reduced the MCS to the single

best model in the majority of simulations. This is not true for the AIC⋆ criterion. Although it tends to

settle on more parsimonious models than the KLIC, the AIC⋆ has a penalty that makes it possible for an

overparameterized model to have the best AIC⋆. The bootstrap testing procedure is conservative when the

comparisons involve nested models under KLIC, see our discussion in the last paragraph of Section 3.2.

This explains that both Type I and Type II errors are close to zero whenn = 500, an ideal outcome that is

not guaranteed whenM∗
klic includes non-nested models.8

6 Empirical Applications

6.1 US Inflation Forecasts: Stock & Watson (JME, 1999) Revisited

This section revisits the Stock and Watson (1999) study of the best out-of-sample predictors of inflation.

Their empirical application consists of pairwise comparisons of a large number of inflation forecasting

models. The set of inflation forecasting models includes several that have a Phillips curve interpretation,

along with autoregressive and a no-change (month over month) forecast. We extend their set of forecasts

by adding a second no-change (12 months over 12 months) forecast that was used in Atkeson and Ohanian

(2001).

Stock and Watson (1999) measure inflation,πt , as either the CPI-U, all items(PUNEW) or the headline

personal consumption expenditure implicit price deflator(GMDC). The relevant Phillips curve is

πt+h − πt = φ + β(L )ut + γ (L )(1− L )πt + et+h, (4)

7Simulation results forβ2 = 0.1 and 0.9 are available in a separate appendix, see Hansen, Lunde, and Nason (2010)
8In an unreported simulation study whereM∗

klic was designed to include non-nested models, we found the frequency by which

M∗
klic ⊂ M̂∗

90% converge to 90%.
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whereut is the unemployment rate,L is the lag polynomial operator, andet+h is the long-horizon inflation

forecast innovation. Note that the natural rate hypothesisis not imposed on the Phillips curve (4) and that

inflation as a regressor is in its first difference. Stock and Watson also forecast inflation with (4) where the

unemployment rateut is replaced with different macro variables.9

The entire sample runs from 1959:M1 to 1997:M9. Following Stock and Watson, we study the properties

of their forecasting models on the pre- and post-1984 subsamples of 1970:M1-1983:M12 and 1984:M1-

1996:M9.10 The former subsample contains the great inflation of the 1970s and the rapid disinflation of the

early 1980s. Inflation does not exhibit this volatile behavior in the post-1984 subsample. We follow Stock

and Watson in order to replicate their inflation forecasts. However, our MCS bootstrap implementation,

which is described in Section 3, relies on an assumption thatdi j ,t is stationary. This is not plausible when the

parameters are estimated with a recursive estimation scheme, as was used in Stock and Watson (1999). We

avoid this problem by following Giacomini and White (2006) and present empirical results that are based

on parameters estimated over a rolling window with a fixed number of observations.11 Regressions are

estimated on data that begins no earlier than 1960:M2, although lagged regressors impinge on observations

back to 1959:M1.

We compute the MCS across all of the Stock and Watson inflationforecasting models. This includes

the Phillips curve model (4), the inflation forecasting equation that runs through all of the macro variables

considered by Stock and Watson, a univariate autoregressive model, and two no-change forecasts. The first

no-change forecast is the past month’s inflation rate and thesecond no-change forecast uses the past year’s

inflation rate as its forecast. The former matches the no-change forecast in Stock and Watson (1999) and

the latter matches the no-change forecast in Atkeson and Ohanian (2001). Stock and Watson also present

results for forecast combinations and forecasts based on principal component indicator variables.12

Tables 4-5 report (the level of) the root mean square error (RMSE) and MCSp-values for each of the

inflation forecasting models. The first column of Table 4 alsolists the transformation of the macro variable

employed by the forecasting equation.

Our Table 4 matches the results reported in Stock and Watson (1999, table 2). The initial model space

M0 is filled with a total of 19 models. The results for the two no-change forecasts and the AR(p) are the first

three rows of Table 4. The RMSEs and thep-values for the Phillips curve forecasting model (4) appearin the

bottom row of our Table 4. The rest of the rows of Table 4 are the‘gap’ and ‘first difference’ specifications

of Stock and Watson’s aggregate activity variables that appear in place ofut in inflation forecasting equation

(4). The ‘gap’ variables are computed with a one-sided Hodrick and Prescott (1997) filter, see Stock and

Watson (1999, p. 301) for details.13

9The data for this applications was downloaded from Mark Watson’s webpage. We refer the interested reader to Stock and

Watson (1999) for details about the data and model specifications.
10Stock and Watson split their sample at the end of 1983 to account for structural change in inflation dynamics. This structural

break is ignored when estimating the Phillips curve model (4) and the alternative inflation forecasting equations. Thisis justified

by Stock and Watson because the impact of the 1984 structuralbreak on their estimated Phillips curve coefficients is small.
11The corresponding empirical results that are based on parameters that are estimated with the recursive scheme, as was used in

Stock and Watson (1999), are available in a separate appendix, see Hansen, Lunde, and Nason (2010). Although our assumption

do not justify the recursive estimation scheme, it producespseudo-MCS results that are very similar to those obtained under the

rolling window estimation scheme.
12See Stock and Watson (1999) for details about their modelingstrategy, forecasting procedures, and data set.
13The MCS p-values are computed using a block size ofl = 12 in the bootstrap implementation. The MCSp-values are
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Table 4: MCS for simple regression-based inflation forecasts.

PUNEW GMDC

1970-1983 1984-1996 1970-1983 1984-1996
Variable Trans RMSE pMCS RMSE pMCS RMSE pMCS RMSE pMCS

No change (month) 3.290 .001 2.140 .122∗ 2.208 .042 1.751 .113∗

No change (year) - 2.798 .006 1.207 1.00∗∗ 2.100 .109∗ 0.888 1.00∗∗

uniar - 2.802 .004 1.330 .736∗∗ 2.026 .145∗ 1.070 .411∗∗

’Gaps’ specifications
dtip DT 2.597 .059 1.475 .651∗∗ 2.103 .095 1.050 .411∗∗

dtgmpyq DT 2.751 .020 1.691 .299∗∗ 2.090 .157∗ 1.125 .317∗∗

dtmsmtq DT 2.202 .872∗∗ 1.704 .477∗∗ 1.806 .464∗∗ 1.046 .411∗∗

dtlpnag DT 2.591 .068 1.433 .694∗∗ 2.132 .075 1.026 .411∗∗

ipxmca LV 2.609 .034 1.318 .736∗∗ 2.040 .261∗∗ 1.034 .411∗∗

hsbp LN 2.114 1.00∗∗ 1.582 .579∗∗ 1.967 .364∗∗ 1.034 .411∗∗

lhmu25 LV 2.968 .006 1.439 .651∗∗ 2.231 .061 1.040 .411∗∗

First difference specifications
ip DLN 2.344 .306∗∗ 1.393 .736∗∗ 1.946 .298∗∗ 1.058 .411∗∗

gmpyq DLN 2.306 .842∗∗ 1.524 .421∗∗ 1.709 1.00∗∗ 1.158 .317∗∗

msmtq DLN 2.158 .872∗∗ 1.391 .736∗∗ 1.857 .464∗∗ 1.066 .411∗∗

lpnag DLN 2.408 .430∗∗ 1.341 .736∗∗ 1.940 .298∗∗ 1.027 .411∗∗

dipxmca DLV 2.379 .139∗ 1.353 .736∗∗ 1.903 .446∗∗ 1.041 .411∗∗

dhsbp DLN 2.850 .003 1.456 .665∗∗ 2.076 .075 1.070 .411∗∗

dlhmu25 DLV 2.383 .169∗ 1.440 .579∗∗ 2.035 .102∗ 1.065 .411∗∗

dlhur DLV 2.296 .631∗∗ 1.429 .691∗∗ 1.904 .330∗∗ 1.067 .411∗∗

Phillips curve
LHUR 2.637 .034 1.388 .736∗∗ 2.076 .098 1.162 .325∗∗

RMSEs and MCSp-values for the different forecasts. The forecasts in̂M∗
90% andM̂∗

75% are identified by one and
two asterisks, respectively.

A glance at Table 4 reveals that the MCS of subsamples 1970:M1-1983:M12 and 1984:M1-1996:M9 are

strikingly different for both inflation series,PUNEWandGMDC. The MCS of the pre-1984 subsample

places seven forecasting models inPUNEW-M̂∗
75% and nine models inGMDC-M̂∗

75%. For the post-1984

subsample, all but one model ends up in̂M∗
75% for both PUNEW and GMDC. The only model that is

consistently kicked out of these MCSs is the ‘monthly’ no-change forecast, which uses last month’s inflation

rate as its forecast.

Another intriguing feature of Table 4 is the inflation forecasting models that reside in the MCS when

faced with the 1970:M1-1983:M12 subsample. The seven models that are inPUNEW-M̂∗
75% are driven by

macro variables related either to real economic activity (e.g., manufacturing and trade, and building permits)

or to the labor market. The labor market variables arelpnag (employees on nonagricultural payrolls) and

dlhur (first difference of the unemployment rate, all workers 16 years and older). Thus, there is labor market

information that is important for predicting inflation during the pre-1984 subsample. This result is consistent

qualitatively similar when computed withl = 6, andl = 9. These are reported in a separate appendix, see Hansen, Lunde, and

Nason (2010).
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with traditional Keynesian measures of aggregate demand.

Table 4 also shows that there are two levels and five first difference specifications of the forecasting

equation that consistently appear in̂M∗
75% using the 1970:M1-1983:M12 subsample. On this subsample,

only msmtq(total real manufacturing and trade) is consistently embraced byPUNEW- andGMDC-M̂∗
75%

whether in levels or first differences. In summary, we interpret these variables as signals about the antic-

ipated path either of real aggregate demand or real aggregate supply that help to predict inflation out-of-

sample in the pre-1984 subsample.

There are several more inferences to draw from Table 4. Theseconcern the two types of no change

forecasts whose predictive accuracy is strikingly different. The no-change (month) forecast fails to appear

in M̂∗
75% either on the pre-1984 or on the post-1984 subsamples, whereas the no-change (year) forecast

finds its way intoM̂∗
75% for the post-1984 subsample, but not the 1970:M1-1983:M12 subsample. These

results are especially of interest because the no-change (year) forecast yields the best inflation forecasts on

the 1984:M1-1996:M9 subsample for bothPUNEWandGMDC. These empirical results for the no-change

inflation forecasts are interesting because they reconcilethe results of Stock and Watson (1999) with those

of Atkeson and Ohanian (2001). Stock and Watson (1999, p. 327) find that: “The conventionally speci-

fied Phillips curve, based on the unemployment rate, was found to perform reasonably well. Its forecasts

are better than univariate forecasting models (both autoregressions and random walk models)”. In contrast,

Atkeson and Ohanian (2001, p. 10) conclude that: “economists have not produced a version of the Phillips

curve that makes more accurate inflation forecasts than those from a naive model that presumes inflation

over the next four quarters will be equal to inflation over thelast four quarters.” The source of the disagree-

ment is that Stock and Watson and Atkeson and Ohanian study different no-change inflation forecasts. The

no-change forecast Stock and Watson (1999) deploy is last month’s inflation rate, whereas the no-change

forecasts in Atkeson and Ohanian (2001) is the past year’s inflation rate.

We agree with Stock and Watson that the Phillips curve is a device that yields better forecast of inflation

in the pre-1984 period. The relevant̂M∗
75% do not include either of the no-change forecasts forPUNEW

andGMDC. However for the post-1984 sample we observe that no-change(year) forecast has the smallest

sample loss of all forecasts which supports the conclusion of Atkeson and Ohanian (2001).

Table 5 generates MCSs using factor models and forecast combination methods that replicates the set

of forecasts in Stock and Watson (1999, table 4). They combine a large set of inflation forecasts from

an array of 168 models using sample means, sample medians, and ridge estimation to produce forecast

weighting schemes. The other forecasting approach dependson principal components of the 168 macro-

predictors. The idea is that there exists an underlying factor or factors (e.g., real aggregate demand, financial

conditions) that summarize the information of a large set ofpredictors. For example, Solow (1976) argues

that a motivation for the Phillips curves of the 1960s and 1970s was that unemployment captured, albeit

imperfectly, the true unobserved state of real aggregate demand.

The factor models and forecast combination methods produceinflation forecasts that are in general better

than those in Table 4. The forecasts constructed from ‘All indicators’ and ‘Real activity indicators’ in Panels

A and B do particularly well across the board. Interestingly, the best forecast during the 1970:M1-1983:M12

subsample is the one-factor ‘All indicators’ model, while the second best is the one-factor ‘Real activity

indicators’ model. Most of the forecasts constructed from the ‘Money’ variables do not find their way into

the MCSs.
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Despite the better predictive accuracy produced by factor models and forecast combinations, during the

post-1984 period the best forecast is the no-change (year) forecast.

Table 5: MCS results for shrinkage-type inflation forecasts.

PUNEW GMDC

1970-1983 1984-1996 1970-1983 1984-1996
Variable RMSE pMCS RMSE pMCS RMSE pMCS RMSE pMCS

No change (month) 3.290 .006 2.140 .000 2.208 .006 1.751 .000
No change (year) 2.798 .020 1.207 1.00∗∗ 2.100 .120∗ 0.888 1.00∗∗

Univariate 2.802 .012 1.330 .718∗∗ 2.026 .046 1.070 .378∗∗

Panel A. All indicators
Mul. factors 2.367 .266∗∗ 1.407 .069 2.105 .088 1.013 .570∗∗

1 factor 2.106 1.00∗∗ 1.351 .186∗ 1.746 1.00∗∗ 1.038 .570∗∗

Comb. mean 2.423 .093 1.269 .869∗∗ 1.880 .585∗∗ 1.030 .570∗∗

Comb. median 2.585 .030 1.294 .869∗∗ 1.939 .323∗∗ 1.055 .530∗∗

Comb. ridge reg. 2.121 .975∗∗ 1.318 .869∗∗ 1.918 .518∗∗ 1.013 .570∗∗

Panel B. Real activity indicators
Mul. factors 2.245 .768∗∗ 1.416 .022 1.959 .323∗∗ 0.990 .570∗∗

1 factor 2.115 .975∗∗ 1.347 .358∗∗ 1.774 .720∗∗ 1.041 .570∗∗

Comb. mean 2.284 .615∗∗ 1.263 .869∗∗ 1.827 .698∗∗ 1.012 .570∗∗

Comb. median 2.329 .495∗∗ 1.284 .869∗∗ 1.854 .647∗∗ 1.038 .553∗∗

Comb. ridge reg. 2.160 .953∗∗ 1.326 .855∗∗ 1.888 .518∗∗ 1.013 .570∗∗

Panel C. Interest rates
Mul. factors 2.828 .019 1.512 .005 2.215 .008 1.294 .008
1 factor 2.776 .030 1.463 .003 2.111 .007 1.102 .161∗

Comb. mean 2.474 .092 1.349 .123∗ 1.935 .323∗∗ 1.060 .522∗∗

Comb. median 2.567 .077 1.377 .034 1.974 .290∗∗ 1.066 .418∗∗

Comb. ridge reg. 2.436 .164∗ 1.372 .069 1.962 .216∗ 1.052 .530∗∗

Panel D. Money
Mul. factors 2.801 .015 1.340 .597∗∗ 2.028 .020 1.075 .057
1 factor 2.805 .013 1.352 .186∗ 2.027 .031 1.104 .026
Comb. mean 2.742 .019 1.390 .022 2.033 .012 1.088 .015
Comb. median 2.752 .019 1.340 .386∗∗ 2.032 .008 1.077 .095
Comb. ridge reg. 2.721 .019 1.446 .007 2.013 .088 1.088 .010

Phillips curve
LHUR 2.637 .030 1.388 .022 2.076 .031 1.162 .423∗∗

RMSEs and MCSp-values for the different forecasts. The forecasts in̂M∗
90% andM̂∗

75% are identified by one and
two asterisks, respectively.

6.2 Likelihood-Based Comparison of Taylor-Rule Models

Monetary policy is often evaluated with the Taylor (1993) rule. A Taylor rule summarizes the objectives and

constraints that defines monetary policy by mapping (implicitly) from this decision problem to the path of

the short-term nominal interest rate. A canonical monetarypolicy loss function penalizes the decision maker

for volatility in inflation against its target and output volatility around its trend. The mapping generates a
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Taylor rule that has the interest rate respond to inflation and output deviations from trend. Thus, Taylor

rules measure ex post the success monetary policy has had at meeting the goals of keeping inflation close

to target and output at trend. Taylor (1999), Clarida, Gaĺı, and Gertler (2000), and Orphanides (2003) are

leading examples of using Taylor rules to evaluate actual monetary policy, while McCallum (1999) provides

an introduction for consumers of monetary policy rules.

This section shows how the MCS can be used to evaluate which Taylor rule regression best approximates

the underlying data generating process. We posit the general Taylor rule regression

Rt = (1 − ρ)


γ0 +

pπ∑

j =1

γπ, jπt− j +
py∑

j =1

γy, j yt− j


+ ρRt−1 + vt , (5)

whereRt denotes the short-term nominal interest rate,πt is inflation, yt equals deviations of output from

trend (i.e., the output gap), and the error term,vt , is assumed to be a martingale difference process. The

Taylor principle is satisfied if
∑pπ

j =1 γπ, j exceeds one because a one percent rise in the sum ofpπ lags of

inflation indicates thatRt should rise by more than 100 basis points. The monetary policy response to real

side fluctuations is given by
∑py

j =1 γy, j on thepy lags of the output gap. The interceptγ0 is the equilibrium

steady state real rate plus the target inflation rate (weighted by 1−
∑pπ

j =1 γπ, j ). The Taylor rule regression

(5) includes lagged interest,Rt−1, which may be interpreted as interest rate smoothing by the central bank.

Alternatively, the lagged interest rate could be interpreted as a proxy for other determinants of the interest

rate that are not captured by the regression (5). Note also that the Taylor rule regression (5) avoids issues

that arise in the estimation of simultaneous equation systems because contemporaneous inflation,πt , and

the output gap,yt , are not regressors, only lags of these variables are. In this case, structural interpretations

have to be applied to the Taylor rule regression (5) with care.

The Taylor rule regression (5) is estimated by ordinary least squares on a U.S. sample that runs from

1979:Q1 to 2006:Q4. Table 6 provides details about the data used to estimate the Taylor rule regression.14

The (effective) federal funds rate defines the Taylor rule policy rate,Rt . The growth rate of the implicit GDP

deflator is our measure of inflation,πt . The cyclical component of the Hodrick and Prescott (1997) filter is

applied to real GDP to obtain estimates of the output gap,yt . We also employ two real activity variables

to fill out the model space and to act as alternatives to the output gap. These real activity variables are the

Baxter and King (1999) filtered unemployment rate gap,urt , and the Nason and Smith (2008) measure of

real unit labor costs,rulct . We compute the Baxter-Kingurt using the maximum likelihood-Kalman filter

methods of Harvey and Trimbur (2003).

The model space consists of 25 specifications. The model space is built by settingρ to zero or esti-

mating it, pπ = 1 or 2, py = 1 or 2, and equatingyt with the output gap, or replacing it with either the

unemployment rate gap or real unit labor costs. We add to these 24 (= 2 × 2 × 3 × 2) regressions a pure

AR(1) model of the effective federal funds rate.

14We have generated results on a shorter post-1984 sample. Omitting the volatile 1979-1983 period from the analysis does not

substantially change our results, beyond the loss of information that one would expect with a shorter sample. These results available

in a separate appendix found in Hansen, Lunde, and Nason (2010).
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Table 6: Taylor Rule Regression Data Set.

Observable Construction

Dependent Variable

Rt : Interest rate Effective Fed Funds Rate (EFFR), Temporallyaggregate daily
Rfed funds,t return (annual rate) to quarterly,

Rt = 100× ln[1 + Rfed funds,t

100 ]

Independent Variables

πt : Inflation, Implicit GDP Deflator,Pt , πt = 400× ln[ Pt/Pt−1]
Seasonally Adjusted (SA)

yt : Output gap lnQt − trendQt , i.e. Transitory Apply Hodrick-Prescott filter
Component of Output. WhereQt to ln Qt

is Real GDP in Billions of Chained
2000 $, SA at Annual Rates.

urt : Unemployment rate gap URt − trendURt , i.e. transitory Temporally aggregate monthly
component ofURt . WhereURt is the to quarterly frequency to getURt .
is the civilian unemployment rate, SA. Apply Baxter-King Filter to URt

rulct : Real unit labor costs The cointegrating residual of Nominal rulct = LSt − LPt

ULCt(= LSt − LSt ) and lnPt . LSt is −â0 − â1t − â2 ln Pt

Labor Share, i.e. log of compensation
per hour in the non-farm business
sector.LPt is Labor Productivity, i.e.
log of output per hour of all persons
non-farm business sector

The effective federal funds rate is obtained from H.15 Selected Interest Rates in Federal Reserve Statistical Releases.
The implicit price deflator, real GDP, the unemployment rate, compensation per hour, and output per hour of all
persons are constructed by the Bureau of Economic Analysis and is available at the FRED Data Bank at the Federal
Reserve Bank of St. Louis. The sample period is 1979:Q1–2006:Q4. The data is drawn from data available online
from the Board of Governors and FRED at the Federal Reserve Bank of St. Louis.

We present results of applying the MCS and likelihood-basedcriteria to the choice of the best Taylor

rule regression (5) and AR(1) regressions in Tables 7 and 8. Table 7 reportsQ(Z j , θ̂ j ) (the log-likelihood

function multiplied by minus two); the bootstrap estimate of the effective degrees of freedom,k̂⋆; and the

realizations of the three empirical criteria, KLIC, AIC⋆, and BIC⋆. The numbers surrounded by parentheses

in columns headed by KLIC, AIC⋆, and BIC⋆, are the MCSp-values, and an asterisk identifies the spec-

ifications that enter̂M∗
90%. Table 8 lists estimates of the regressions models that are in M̂∗

90% along with

their correspondingt-statistics in parentheses. Thet-statistics are based on robust standard errors following

Newey and West (1987).
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Table 7: MCS for Taylor Rules: 1979:Q1 to 2006:Q4

Model Specification Q(Z j , θ̂ j ) k̂⋆ KLIC AIC ⋆ BIC⋆

Rt−1 93.15 13.74 106.89 (0.30)∗∗ 120.63 (0.47)∗∗ 157.99 (0.63)∗∗

πt−1 yt−1 284.82 11.44 296.25 (0.00) 307.69 (0.00) 338.79 (0.00)
πt− j , j =1,2 yt− j , j =1,2 258.95 14.66 273.61 (0.00) 288.28 (0.01) 328.14 (0.01)
πt−1 urt−1 289.65 10.20 299.84 (0.00) 310.04 (0.00) 337.75 (0.00)
πt− j , j =1,2 urt− j , j =1,2 268.90 12.82 281.72 (0.00) 294.53 (0.00) 329.37 (0.01)
πt−1 rulct−1 289.99 9.89 299.88 (0.00) 309.77 (0.00) 336.67 (0.01)
πt− j , j =1,2 rulct− j , j =1,2 266.07 12.12 278.19 (0.00) 290.31 (0.01) 323.26 (0.01)
yt−1 urt−1 387.45 17.04 404.49 (0.00) 421.54 (0.00) 467.86 (0.00)
yt− j , j =1,2 urt− j , j =1,2 385.86 23.42 409.28 (0.00) 432.69 (0.00) 496.35 (0.00)
yt−1 rulct−1 386.47 14.92 401.39 (0.00) 416.32 (0.00) 456.89 (0.00)
yt− j , j =1,2 rulct− j , j =1,2 385.43 19.44 404.87 (0.00) 424.31 (0.00) 477.16 (0.00)
urt−1 rulct−1 386.21 15.41 401.62 (0.00) 417.02 (0.00) 458.90 (0.00)
urt− j , j =1,2 rulct− j , j =1,2 384.82 19.86 404.68 (0.00) 424.54 (0.00) 478.52 (0.00)

Rt−1 πt−1 yt−1 68.57 17.71 86.28 (0.86)∗∗ 103.98 (1.00)∗∗ 152.12 (0.64)∗∗

Rt−1 πt− j , j =1,2 yt− j , j =1,2 62.11 22.11 84.22 (1.00)∗∗ 106.32 (0.93)∗∗ 166.43 (0.41)∗∗

Rt−1 πt−1 urt−1 77.57 16.32 93.89 (0.72)∗∗ 110.22 (0.89)∗∗ 154.60 (0.64)∗∗

Rt−1 πt− j , j =1,2 urt− j , j =1,2 73.27 18.79 92.07 (0.80)∗∗ 110.86 (0.89)∗∗ 161.95 (0.57)∗∗

Rt−1 πt−1 rulct−1 72.80 16.06 88.86 (0.86)∗∗ 104.92 (0.93)∗∗ 148.58 (1.00)∗∗

Rt−1 πt− j , j =1,2 rulct− j , j =1,2 69.21 19.26 88.47 (0.86)∗∗ 107.73 (0.92)∗∗ 160.09 (0.58)∗∗

Rt−1 yt−1 urt−1 86.16 19.16 105.33 (0.33)∗∗ 124.49 (0.38)∗∗ 176.59 (0.16)∗

Rt−1 yt− j , j =1,2 urt− j , j =1,2 85.51 24.32 109.83 (0.28)∗∗ 134.16 (0.18)∗ 200.28 (0.02)
Rt−1 yt−1 rulct−1 89.42 18.92 108.35 (0.29)∗∗ 127.27 (0.31)∗∗ 178.72 (0.15)∗

Rt−1 yt− j , j =1,2 rulct− j , j =1,2 88.11 22.42 110.53 (0.28)∗∗ 132.94 (0.20)∗ 193.88 (0.03)
Rt−1 urt−1 rulct−1 87.42 18.07 105.49 (0.33)∗∗ 123.55 (0.38)∗∗ 172.66 (0.21)∗

Rt−1 urt− j , j =1,2 rulct− j , j =1,2 85.93 21.32 107.25 (0.30)∗∗ 128.56 (0.28)∗∗ 186.51 (0.06)

We report the maximized log-likelihood function (multiplied by minus two), the effective degress of freedom, and the three criteria, KLIC, AIC⋆ and
BIC⋆, along with the corresponding MCSp-values. The regression models in̂M∗

90% andM̂∗
75% are identified by one and two asterisks, respectively.

See the text and Table 6 for variable mnemonics and definitions.
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Table 7 shows that the MCS procedure selects 10 to 13 of the 25 possible regressions depending on

the information criteria. The lagged nominal rateRt−1 is the one regressor common to the regressions

that enterM̂∗
90% for the KLIC, AIC⋆, and BIC⋆. Besides the AR(1),̂M∗

90% consists of the six Taylor rule

specifications that nest the AR(1). Under the KLIC and AIC⋆, the Taylor rule regressions include all one or

two lag combinations ofπt , yt , urt , andrulct . The BIC produces a smaller̂M∗
90% because it ejects the two

lag Taylor rule specifications that exclude laggedπt . Thus, the Taylor rule regression-MCS example finds

the BIC tends to settle on more parsimonious models. This is to be expected, given its larger penalty on

model complexity.

The AR(1) falls intoM̂∗
90% under the KLIC, AIC⋆, and BIC⋆. Although the first line of Table 7 shows

that the AR(1) has the largestQ(Z j , θ̂ j ) of the regressions covered bŷM∗
90%, the MCS recruits the AR(1)

because it has a relatively small estimate of the effective degrees of freedom,̂k⋆. It is important to keep

in mind that estimates of the effective degrees of freedom are larger than the number of free parameters

in each of the models. This reflects the fact that the Gaussianmodel is misspecified. For example, the

conventional AIC penalty (that doubles the number of free parameters) is misleading in the context of

misspecified models, see Takeuchi (1976), Sin and White (1996), and Hong and Preston (2008).

It is somewhat disappointing that the MCS procedure yields as many as 13 models in̂M∗
90%. The reason

is that the data lacks the information to resolve precisely which Taylor rule specification is best in terms

of Kullback-Leibler discrepancy. The large set of models isalso an outcome of the strict requirements that

characterize the MCS. The MCS procedure is designed to control the familywise error rate (FWE), which

is the probability of making one or more false rejections. Wewill be able to trimM̂∗ further if we relax the

control of the FWE, but that will affect the interpretation of M̂∗
1−α. For instance, if we control the probability

of makingk or more false rejections,k-FWE, see e.g. Romano, Shaikh, and Wolf (2008), additional models

can be eliminated. The drawback ofk-FWE and other alternative controls is that the MCS looses its key

property, which is to contain the best models with probability 1 − α.

Table 8 provides information about the regressions in̂M∗
90%-KLIC. The shaded area identifies the mod-

els in M̂∗
75%-BIC⋆. First, note that the estimated Taylor rules always satisfy the Taylor principle (i.e.,

γ̂π,1 > 1 or γ̂π,1 + γ̂π,2 > 1). The coefficients associated with real activity variables have insignificant

t-statistics in most cases. Only the first lag of the output gapproduces a positive coefficient with at-ratio

above two in the first Taylor rule regression listed in Table 8. Moreover, the statistically insignificant coef-

ficients for the unemployment rate gap and real unit labor costs variables often have counter intuitive signs.

Finally, the estimates ofρ are between 0.83 and 0.87 in the Taylor rule regressions thatinclude a lag ofπt ,

which suggests interest rate smoothing.15

The fact that the MCS cannot settle on a single specification is not a surprising result. Monetary policy-

makers almost surely rely on a more complex information set than can be summarized by a simple model.

Furthermore, any real activity variable is an imperfect measure of the underlying state of the economy, and

there are important and unresolved issues regarding the measurement of ‘gap’ and marginal cost variables,

which translate into uncertainty about the proper definitions of the real activity variables.

15We have also estimated Taylor rule regressions with moving average errors, as an alternative to usingRt−1 as a regressor. The

empirical fit of models with MA errors is, in all cases, inferior to the Taylor rule regressions that includeRt−1.
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Table 8: Regression models in̂M∗
90%-KLIC.

γ0 ρ γπ,1 γπ,2 γy,1 γy,2 γur,1 γur,2 γrulc,1 γrulc,2

5.29 0.96
(2.50) (30.1)

0.12 0.84 1.87 1.20
(0.13) (17.0) (7.01) (2.17)

0.00 0.80 0.77 1.14 1.50 -0.39
(0.00) (12.1) (2.58) (4.76) (1.25) (0.33)

0.82 0.86 1.60 1.58
(0.67) (16.8) (4.85) (0.25)

0.64 0.83 0.68 0.97 5.90 -6.56
(0.56) (12.9) (1.77) (2.85) (0.68) (1.16)

0.37 0.87 1.76 -0.81
(0.30) (17.0) (5.38) (1.56)

0.39 0.84 0.76 0.99 -0.18 -0.55
(0.35) (12.9) (2.12) (3.55) (0.23) (0.68)

5.63 0.97 4.89 45.9
(2.20) (37.3) (1.05) (0.79)

5.56 0.97 6.42 -1.71 60.7 -22.9
(2.12) (32.3) (0.58) (0.19) (0.66) (0.42)

5.33 0.97 1.04 -2.47
(2.22) (35.5) (0.32) (0.79)

5.42 0.97 8.37 -8.05 2.52 -5.43
(2.22) (32.6) (0.64) (0.56) (0.75) (0.96)

5.35 0.97 30.9 -3.62
(2.02) (37.8) (0.63) (1.04)

5.43 0.97 52.5 -25.6 -1.18 -2.74
(2.10) (34.2) (0.64) (0.54) (0.30) (0.85)

Parameter estimates witht-statistics (in absolute values) in parentheses. The shaded area identifies the models in
M̂∗

75%-BIC⋆.

7 Summary and Concluding Remarks

This paper introduces the model confidence set (MCS) procedure, relates it to other approaches of model

selection and multiple comparisons, and establishes the asymptotic theory of the MCS. The MCS is con-

structed from a hypothesis test,δM, and an elimination rule,eM. We defined coherency between test and

elimination rule, and stressed the importance of this concept for the finite sample properties of the MCS. We

also outline simple and convenient bootstrap methods for the implementation of the MCS procedure. The

paper employs Monte Carlo experiments to study the MCS procedure that reveal it has good small sample

properties.

It is important to understand the principle of the MCS procedure in applications. The MCS is constructed

such that inference about the ‘best’ follows the conventional meaning of the word ‘significance’. Although

the MCS will contain only the best model(s) asymptotically,it may contain several poor models in finite

samples. A key feature of the MCS procedure is that a model is discarded only if it is found to be significantly
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inferior to another model. Models remain in the MCS until proven inferior, which has the implication that

not all models in the MCS may be judged good models.16

An important advantage of the MCS, compared to other selection procedures, is that the MCS acknowl-

edges the limits to the informational content of the data. Rather than selecting a single model without

regard to degree of information, the MCS procedure yields a set of models that summarizes key sample

information.

We applied the MCS procedure to the inflation forecasting problem of Stock and Watson (1999). Results

show that the MCS procedure provides a powerful tool for evaluating competing inflation forecasts. We

emphasize that the information content of the data matters for the inferences that can be drawn. The great

inflation-disinflation subsample of 1970:M1 - 1983:M12 has movements in inflation and macro variables

that allows the MCS procedure to make relatively sharp choices across the relevant models. The information

content of the less persistent, less volatile 1984:M1 - 1996:M9 subsample is limited in comparison because

the MCS procedure lets in almost any model that Stock and Watson consider. A key exception is the

no-change (month) forecasts that uses last month’s inflation rate as a predictor of future inflation. This

no-change forecast never resides in the MCS in either the earlier or the later periods. A likely explanation

is that month-to-month inflation is a noisy measure of core inflation. This view is supported by the fact

that a second no-change (year) forecast, which employs a year-over-year inflation rate as the forecast, is

a better forecast. This result enables us to reconcile the empirical results in Stock and Watson (1999)

with those of Atkeson and Ohanian (2001). Nonetheless, the question of what constitutes the best inflation

forecasting model for the last 35 years of U.S. data remains unanswered because the data provide insufficient

information to distinguish between good and bad models.

This paper also constructs a MCS for Taylor rule regressionsbased on three likelihood criteria. Such

interest rate rules are often used to evaluate the success ofmonetary policy, but this is not our intent for the

MCS. Instead, we study the MCS that selects the best fitting Taylor rule regressions under either a quasi-

likelihood criterion, the AIC, or the BIC using the effective degrees of freedom. The competing Taylor rule

regressions consist of different combinations of lags of inflation, lags of three different real activity variables,

and the lagged federal funds rate. Besides these Taylor ruleregressions, the MCS must also contend with

a first-order autoregression of the federal funds rate. The regressions are estimated on a 1979:Q1-2006:Q4

sample of U.S. data. Under the three likelihood criteria, the MCS settles on Taylor rule regressions that

satisfy the Taylor principle, include all three competing real activity variables, and add the lagged federal

funds rate. Further we find that the first-order autoregression also enters the MCS. Thus, the U.S. data lack

the information to resolve precisely which Taylor rule specification best describes the data.

Given the large number of forecasting problems economists face at central banks and other parts of

government, in financial markets, and other settings, the MCS procedure faces a rich set of problems to study.

Furthermore, the MCS has a wide variety of potential uses, beyond forecast comparisons and regression

models. We leave this work for future research.

16The proportion of models in̂M∗
1−α that are members ofM∗ can be related to thefalse discovery rateand theq-value theory

of Storey (2002). See McCracken and Sapp (2005) for an application that compares forecasting models. See also Romano, Shaikh,

and Wolf (2008).
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