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Abstract

The paper introduces thmodel confidence séMCS) and applies it to the selection of models. A
MCS is a set of models that is constructed such that it willtaonthebestmodel with a given level
of confidence. The MCS is in this sense analogous to a confideterval for a parameter. The MCS
acknowledges the limitations of the data, such that unmédive data yields a MCS with many models,
whereas informative data yields a MCS with only a few mod&lse MCS procedure does not assume
that a particular model is the true model, in fact the MCS pdare can be used to compare more general
objects, beyond the comparison of models. We apply the M@8euiure to two empirical problems.
First, we revisit the inflation forecasting problem poseddgck and Watson (1999), and compute the
MCS for their set of inflation forecasts. Second, we companaraber of Taylor rule regressions and
determine the MCS of the best in terms of in-sample likelthodteria.
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1 Introduction

Econometricians often face a situation where several nsanteinethods are available for a particular em-
pirical problem. A relevant question i8Vhich is the bestThis question is onerous for most data to answer,
especially when the set of competing alternatives is lakdgny applications will not yield a single model
that significantly dominates all competitors because tha anot sufficiently informative to give an un-
equivocal answer to this question. Nonetheless, it is ptestd reduce the set of models to a smaller set of
models — a model confidence set — that contains the best mdttied @iven level of confidence.

The objective of the model confidence set (MCS) procedure determine the set of modelsf*, that
consists of the best model(s) from a collection of mod&t, wherebestis defined in terms of a criterion
that is user-specified. The MCS procedure yields a modeldemdie setM*, that is a collection of models
built to contain the best models with a given level of confaenThe process of winnowing models out
of MP relies on sample information about the relative perforneanaf the models io\°. This sample
information drives the MCS to create a random data-depé reisrof modelsAM*. The setM* includes
the best model(s) with a certain probability in the same esémat a confidence interval covers a population
parameter.

An attractive feature of the MCS approach is that it ackndgéss the limitations of the data. Informa-
tive data will result in a MCS that contains only the best motess informative data makes it difficult to
distinguish between models and may result in a MCS that swn&everal (or possibly all) models. Thus,
the MCS differs from extant model selection criteria thaba$e a single model without regard to the in-
formation content of the data. Another advantage is thatMlkS procedure makes it possible to make
statements about significance that are valid in the trawitisense. A property that is not satisfied by the
commonly used approach of reportiqpgvalues from multiple pairwise comparisons. Another ative
feature of the MCS procedure is that it allows for the pofigiihat more than one model can be the best,
in which caseM* contains more than a single model.

The contributions of this paper can be summarized as follduirst, we introduce a model confidence
set procedure and establish its theoretical propertiesoriele we propose a practical bootstrap implementa-
tion of the MCS procedure for a set of problems that includeamarisons of forecasting models evaluated
out-of-sample and regression models evaluated in-sanifls.implementation is particularly useful when
the number of objects to be compared is large. Third, theefisdtmple properties of the bootstrap MCS
procedure are analyzed in simulation studies. Fourth, p&/dahe MCS procedure to two empirical appli-
cations. We revisit the out-of-sample prediction problen$tmck and Watson (1999) and construct MCSs
for their inflation forecasts. We also build a MCS for Taylaterregressions using three likelihood criteria
that include the AIC and BIC.

1.1 Theory of Model Confidence Sets

We do not treatnodelsas sacred objects, nor do we assume that a particular mquebents the true data

generating process. Models are evaluated in terms of aspseified criterion function. Consequently, the
‘best’ model is unlikely to be replicated for all criterialsh, we use the term ‘models’ loosely. It can refer to
econometric models, competing forecasts, or alternathasneed not involve any modelling of data, such
as trading rules. So the MCS procedure is not specific to cdegees of models. For example, one could
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construct a MCS for a set of different ‘treatments’ by conmm@rsample estimates of the corresponding
treatment effects, or a MCS for trading rules with the bestré ratio.

A MCS is constructed from a collection of competing objegt$?, and a criterion for evaluating these
objects empirically. The MCS procedure is based oreguivalence tests »¢; and anelimination rule
er. The equivalence test is applied to the et = MPO. If 5,4 is rejected, there is evidence that the
objects inM are not equally ‘good’ ané, is used to eliminate an object with poor sample performance
from M. This procedure is repeated uniil, is ‘accepted’, and the MCS is now defined by the set of
‘surviving’ objects. By using the same significance lewel,in all tests, the procedure guarantees that
iMoo P(M* C ﬁ/l\*l‘fa) > 1 — «, and in the case whetkt1* consists of one object we have the stronger
result that lim_, .o P(M* = Ai_a) = 1. The MCS procedure also yielgsvalues for each of the objects.
For a given object, € M°, the MCSp-value, i, is the threshold at whiche ﬂiw ifand only if f > a.
Thus, an object with a small MCB-value makes it unlikely that it is one of the ‘best’ altefnas in M°.

The idea behind the sequential testing procedure that weousanstruct the MCS may be recognized
by readers who are familiar with the trace-test procedursdéecting the rank of a matrix. This procedure
involves a sequence of trace-tests, see Anderson (198d)isasommonly used to select the number of
cointegration relations within a vector autoregressivadehosee Johansen (1988). The MCS procedure
determines the number of superior models in the same waydhe-test is used to select the number of
cointegration relations. A key difference is that the trsest procedure has a natural ordering in which
the hypotheses are to be tested, whereas the MCS proceduigegea carefully chosen elimination rule to
define the sequence of tests. We discuss this issue andirtdating procedures in Section 4.

1.2 Bootstrap Implementation and Simulation Results

We propose a bootstrap implementation of the MCS procetiatés convenient when the number of models
is large. The bootstrap implementation is simple to use atfwe and avoids the need to estimate a high-
dimensional covariance matrix. White (2000b) is the soofarany of the ideas that underlies our bootstrap
implementation.

We study the properties of our bootstrap implementationhef MCS procedure through simulation
experiments. The results are very encouraging as the beafglrdoes end up in the MCS at the appropriate
frequency, and the MCS procedure does have power to weedl thé poor models when the data contains
sufficient information.

1.3 Empirical Analysis of Inflation Forecasts and Taylor Rules

We apply the MCS to two empirical problems. First, the MCSsedito study the inflation forecasting
problem. The choice of an inflation forecasting model is greemlly important issue for central banks,
treasuries, and private sector agents. The fifty plus yaditiion of the Phillips curve suggests it remains
an effective vehicle for the task of inflation forecastingrock and Watson (1999) make the case that “a
reasonably specified Phillips curve is the best tool fordasting inflation”; also see Gordon (1997), Staiger,
Stock, and Watson (1997b), and Stock and Watson (2003).s8tkand Ohanian (2001) conclude that this
is not the case because they find it is difficult for any of thdlips curves they study to beat a simple
no-change forecast in out-of-sample point prediction.
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Our first empirical application is based on the Stock and ¥at{4999) data set. Several interesting
results come out of our analysis. We patrtition the evalmagieriod in the same two subsamples as did
Stock and Watson (1999). The earlier subsample covers adpeith persistent and volatile inflation, this
sample is expected to be relatively informative about whigidels might be the best forecasting models.
Indeed, the MCS consists of relatively few models, so the Nd@Ses to be effective at purging the inferior
forecasts. The later subsample is a period in which inflaf@alatively smooth and exhibits little volatility.
This yields a sample that contains relatively little infation about which of the models deliver the best
forecasts. However Stock and Watson (1999) report that ehaoge forecast, which uses last month’s
inflation rate as the point forecast, is inferior in eithebsamples. In spite of the relatively low degree of
information in the more recent subsample, we are able toledadhat this no-change forecast is indeed
inferior to other forecasts. We come to this conclusion bseahe Stock and Watson no-change forecast
never ends up in the MCS. Next, we add the no-change foreggdbged by Atkeson and Ohanian (2001)
to the comparison. Their forecast uses the past year'siorfflaate as the point prediction rather than
month over month inflation. This turns out to matter for theaswl subsample, because the no-change
(year) forecast has the smallest mean square prediction @ISPE) of all forecasts. This enables us to
reconcile Stock and Watson (1999) with Atkeson and Ohar#@6%) by showing their different definitions
of the benchmark forecast, no-change (month) and no-chéyege), respectively, explain the different
conclusions they reach about these forecasts.

Our second empirical example shows that the MCS approachssfal tool for in-sample evaluation of
regression models. This example applies the MCS to chodsing a set of competing (nominal) interest
rate rule regressions on a quarterly U.S. sample that rons #1979 through 2006. These regressions fall
into the class of interest rate rules promoted by Taylor 819%is Taylor rule forms the basis of a class
of monetary policy rules that gauge the success of monetaligypat keeping inflation low and the real
economy close to trend. The MCS does not reveal which Tayler negressions best describe the actual
U.S. monetary policy, nor does it identify the best policjeruRather the MCS selects the Taylor rule
regressions that have the best empirical fit of the U.S. &deands rate in this sample period, where the
‘best fit' is defined by different likelihood criteria.

The MCS procedure begins with 25 regression models. Wedectupure first-order autoregression,
AR(1), of the federal funds rate in the initial MCS. The remiagy 24 models are Taylor rule regressions
that contain different combinations of lagged inflatiomydaf various definitions of real economic activity
(i.e., the output gap, the unemployment rate gap, or reajimercost), and in some cases the lagged federal
funds rate.

It seems that there is limited information in our U.S. sanfptethe MCS procedure to narrow the set
of Taylor rule regressions. The one exception is that the MAI$ holds regressions that admit the lagged
interest rate. This includes the pure AR(1). The reasoraisttie time-series properties of the federal funds
rate is well explained by its own lag. Thus, the lagged fddarals rate appears to dominate lags of inflation
and the real activity variables for explaining the curramds rate. There is some solace for advocates of
interest rate rules because under one likelihood critetienMCS often tosses out Taylor rule regression
lacking in lags of inflation. Nonetheless, the MCS indicdles the data is consistent with either lags of the
output gap, the unemployment rate gap, or real marginalptaging the role of the real activity variables in
the Taylor rule regression. This is not a surprising reddiasurement of ‘gap’ and marginal cost variables
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remain an unresolved issue for macroeconometrics; for pkagee Orphanides and Van Norden (2002)
and Staiger, Stock, and Watson (1997a). It is also true thettetary policymakers rely on sophisticated
information sets that cannot be spanned by a few aggregaabhss, see Bernanke and Boivin (2003). The
upshot is that the sample used to calculate the MCS has liffieextracting useful information to separate
the pure AR(1) from Taylor rule regressions that includel#gged federal funds rate.

1.4 Outline of Paper

The paper is organized as follows. We present the theorétamaework of the MCS in Section 2. Section
3 outlines practical bootstrap methods to implement the M@@&tiple model comparison methods related
to the MCS are discussed in Section 4. Section 5 reports sdtsef simulation experiments. The MCS is
applied to two empirical examples in Section 6. Section thates.

2 General Theory for Model Confidence Set

In this section, we discuss the theory of model confidencefeet general set of alternatives. Our leading
example concerns the comparison of empirical models, ssiitrecasting models. Nevertheless, we do not
make specific references to ‘models’ in the first part of tkistion, in which we lay out the general theory.

We consider a setM°, that contains a finite number of objects that are indexedby4, . .., my. The
objects are evaluated in terms of a loss function and we dehetloss that is associated with objednh
periodt asL;, t =1, ..., n. For example, in the situation where a point forecﬁg@, of Y; is evaluated in
terms of a loss functiorl., we defineL;; = L(Y, \?i,t).

Define the relative performance variables

djt=Lis—Lj forall i,j e M°

This paper assumes that; = E(djj ) is finite and does not depend onfor all i, j € M°. We rank
alternatives in terms of expected loss, so that alternatis@referred to alternative if ui; < O.

Definition 1 The set of superior objects is defined by
M={ieM:wj <0 foral jeMO.

The objective of the MCS procedure is to determivié. This is done through a sequence of significance
tests, where objects that are found to be significantly iof¢o other elements aM° are eliminated. The
hypotheses that are being tested take the form:

Hon iy =0  foralli, j e M, (1)

where M c M°. We denote the alternative hypothesis, # O for somei, j € M, by Ha . Note that
Ho v+ IS true given our definition oM™, whereasHg o4 is false if M contains elements from1* and its
complementM%\ M*. Naturally, the MCS is specific to set of candidate modgtt), and therefore silent
about the relative merits of objects that are not included/4f

We define a model confidence set to be any subsgt®tthat contains all of\* with a given proba-
bility (its coverage probability). The challenge is to dgsia procedure that produces a set with the proper

5
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coverage probability. The next subsection introduced @igeMCS procedure that meets this requirement.
This MCS procedure is constructed from an equivalence tebtaa elimination rule that are assumed to
have certain properties. Next, Section 3 presents feat@bte and elimination rules that can be used for
specific problems, such as comparing out-of-sample foreeasl in-sample regression models.

2.1 The MCS Algorithm and Its Properties

As stated in the introduction, the MCS procedure is basedha@gaivalence test (, and anelimination
rule, en. The equivalence test,, is used to test the hypothesig ( for any M c M°, andey, identifies
the object ofM that is to be removed from\ in the event that, u¢ is rejected. As a convention we let
5m = 0andsng = 1 correspond to the cases whéig ( are ‘accepted’ and ‘rejected’ respectively.

Definition 2 (MCS Algorithm) Step O: Initially setM = MO. Step 1: Test bir¢ usingsa, at levela.
Step 2: If H_u is ‘accepted’ we define th&f_ = M, otherwise we useyg to eliminate an object from
M and repeat the procedure from Step 1.

e~

The set,M;__, which consists of the set of ‘surviving’ objects (thosettiarvived all tests without
being eliminated) is referred to as thedel confidence seTheorem 1 that is stated below shows that the
term ‘confidence set’ is appropriate in this context, predidhat the equivalence test and the elimination
rule satisfy the following assumption.

Assumption 1 For any M c M° we assume the following abotn, erq): (@) limsup,, . PGm =
1Hom) < a; (b) limp_oo P(8A1 = LHa M) = 15 @and (C) limp_. o P(er € M*[Ha M) = 0.

The conditions that Assumption 1 states 8y are standard requirements for hypothesis teg#s.
requires the asymptotic level not to exceed(b) requires the asymptotic power to be one; whergas
requires that a superior objei¢t € M* is not eliminated (a® — oo) as long as there are inferior models
in M.

Theorem 1 (Properties of MCS) Given Assumption 1, it holds th&t) liminf,_ ., P(M* C /T/l\i_a) >
1—a, and(ii) limn_ PG € M;_) = Oforalli ¢ M*.

Proof. Leti* € M*. To prove(i) we consider the event thét is eliminated fromM. From Assumption
l.citfollows thatP(6p = 1, epm = i*|HaMm) < P(epm = 1*|Ham) — 0 asn — oo. So the probability
that a good model is eliminated whewl contains poor models vanishesras—> oco. Next, Assumption
l.a shows that limsup, .  P(6pm = 1, en = i*|Hom) = limsup,_, o P(6am = 1Hom) < @, such that
the probability that* is eliminated when all models in are good models, is asymptotically bounded by
a. To prove(ii), we first note that lim.. P(enps = i*|Ha A1) = 0 such that only poor models will be
eliminated (asymptotically) as long @&l ¢ M*. On the other hand, Assumptionblensures that models
will be eliminated as long as the null hypothesis is faise.

Consider first the situation where the data contains litifermation, such that the equivalence test
lacks power and the elimination rule may question a supeniadel prior to the elimination of all inferior
models. The lack of power causes the procedure to terminatedrly (on average), and the MCS will
contain a large number of models, including several inferiodels. We view this as a strength of the MCS



Model Confidence Set

procedure. Since lack of power is tied to the lack of infoliorain the data, the MCS should be large when
there is insufficient information to distinguish good and lpaodels.

In the situation where the data is informative, the equivedetest is powerful and will reject all false
hypotheses. Moreover, the elimination rule will not quastany superior model until all inferior models
have been eliminated. (This situation is guaranteed asytinglly). The result is that the first time a
superior model is questioned by the elimination rule is wtienequivalence test is applied Ad*. Thus,
the probability that one (or more) superior model is elinwaas bounded (asymptotically) by the size of the
test! Note that additional superior models may be elimish@esubsequent tests, but these tests will only be
performed ifHp A+ IS rejected. Thus, the asymptotic familywise error rate Ej\Wvhich is the probability
of making one or more false rejections, is bounded by thd the¢ is used in all tests.

Sequential testing is key for building a MCS. However, ecoatricians often worry about the properties
of a sequential testing procedure, because it can ‘acctenUigoe | errors with unfortunate consequences,
see e.g. Leeb and Potscher (2003). The MCS procedure doesiffer from this problem because the
sequential testing is halted when the first hypothesis isepied’.

When there is only a single model im* (one best model) we obtain a stronger result.

Corollary 1 Suppose that Assumption 1 holds and thdt is a singleton. Thetim,_. . P(M* =
i—a) = 1

Proof. WhenM* is a singleton M* = {i*}, then it follows from Theorem 1 that will be the last surviving
element with probability approaching oneras— oo. The result now follows, because the last surviving
element is never eliminates.

2.2 Coherency between Test and Elimination Rule

The previous asymptotic results do not rely on any direcinection between the hypothesis tety,
and the elimination rulegy,. Nonetheless when the MCS is implemented in finite samplesetis an
advantage to the hypothesis test and elimination rule beshgrent. The next theorem establishes a finite
sample version of the result in Theorem 1.i when there is @icecoherency between the hypothesis test
and elimination rule.

Theorem 2 Suppose that B = 1, exq € M*) < « then we have
PM*Cc M ) >1—a.

Proof. We only need to consider the first instance thgt € M* because all preceding tests will not
eliminate elements that are it*. Regardless of the null hypothesis being true or false, we Ra¥ , =
1, ey € M*) < a. So it follows thate bounds the probability that an element froi* is eliminated.
Additional elements froma\1* may be eliminated in subsequent tests, but these test Wyllbenundertaken
if all preceding tests are rejected. So we conclude Batt* C /\’7(1&) >1l—o.m

The property thatP (5, = 1, ens € M*) < « holds under both the null hypothesis and the alter-
native hypothesis is key for the result in Theorem 2. For aueth the correct size, we have(§y; =
1|Ho M) < «, which impliesP(5p = 1,epm € M*|Hoam) < «. The additional conditionP (5, =
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1, ey € M*|Ha M) < @, ensures that a rejectiodys = 1, can be taken as significant evidence tatis
not in M*,

In practice, hypothesis tests often rely on asymptoticltesbat cannot guarantee(§,y = 1, ey €
M*) < « holds in finite samples. We provide a definition of coherenepMeen a test and an elimination
rule that is useful in situations where testing is groundedsymptotic distributions. In what follows, we
use P, to denote the probability measure that arises by imposiagtiti hypothesis by the transformation
dij + — dij+ — wij. ThusP is the true probability measure, whereRsis a simple transformation d? that
satisfies the null hypothesis.

Definition 3 There is said to be coherency between test and eliminatienwvhen
Pouy=1ey e M) <Py(dpm=1).

The coherency in conjunction with an asymptotic control e Type | error, limsup, ., Po(Sp =
1) < a, translate into an asymptotic version of the assumption weenia Theorem 2. Coherency places
restrictions on the combinations of tests and eliminatidas we can employ. These restrictions go beyond
those imposed by the asymptotic conditions we formulatefissumption 1. In fact, coherency serves to
curb the reliance on asymptotic properties, in order tocaperverse outcomes in finite samples that could
result from absurd combinations of test and eliminatiore.ruCoherency prevents us from adopting the
most powerful test of the hypothesi$ ¢ in some situations. The reason is that tests do not nedgssari
identify a single element as the cause for the rejection. édganalogy is found in the standard regression
model, where & -test may reject the joint hypothesis that all regressiasffments are zero, even though
all t-statistics are insignificarit.

In our bootstrap implementations of the MCS procedure, vaptthe required coherency between the
test and the elimination rule.

2.3 MCS p-Values

In this section we introduce the notion of MQ®8values. The elimination rulesy, defines a sequence of
(random) setsM® = M; D My D -+ D Mm,, WhereM; = {eny;, .. ., €M, } andmg is the number of
elements inM°. Soey 0 = enq, Is the first element to be eliminated in the event tHaty,, . is rejected,
e, is the second element to be eliminated, etc.

Definition 4 (MCS p-values) Let By, ,, denote the p-value associated with the null hypothesisH
with the convention that 5, = 1. The MCS p-value for modelg < M?O is defined byPe,,, =
max <j PHO,Mi‘

The advantage of this definition of MG values will be evident from Theorem 3 that is stated below.
Since M, consists of a single model, the null hypothestt, r4,, . Simply states that the last surviving
model is as good as itself, making the conventiBp, Mg = 1, logical.

LAnother analogy is that it is easier to conclude that a mundsttaken place, than it is to determine who committed thelemur
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Table 1: Computation of MC9-values

Elimination Rule p-value forHo g, MCS p-value
e, Pro i, = 0.01 Pey,, = 0.01

e, Pho i, = 0.04 Py, = 0.04

ems, Pho.ri, = 0.02 Pen, = 0.04

em, Pho.ri, = 0.03 Pen,, = 0.04

eMs Phon = 0.07 Pe,, = 0.07

e, Phon = 0.04 Pe,, = 0.07

e, Pro i, = 0.11 Pey, = 0.11

Mg Phorg = 0-25 Pery, = 0.25
Mgy Pro, Mg = 1.00 f’eMmo =100

The table illustrates the computation of MQfvalues. Note that MC$-values for some models do not coincide
with the p-values for the corresponding null hypotheses. For exantipeMCS p-value fore, (the third model to
be eliminated) exceeds thevalue forHg ¢, because th@-value associated withlg r¢, — a null hypothesis tested
prior to Ho aq, — is larger.

Table 1 illustrates how MC®-values are computed and how they relatgtealues of the individual
tests,Py, ... I = 1,...,mo. The MCSp-values are convenient because they make it easy to determin
whether a particular object is 'uﬁi_a or not, for anyx. Thus, the MCSp-values are an effective way of
conveying the information in the data.

Theorem 3 Let the elements oM be indexed by i= 1,...,mg. The MCS p-valuefy;, is such that
i € M:__ ifand only ifpy > o, for any i e M.

Proof. Suppose thafi < o and determine thk for whichi = eyy,. Sincef = fe,,, = Max <« PHO’MJ_ it
follows thatHo 4., - - ., HoA, are all rejected at significance levelHence, the first accepted hypothesis
(if any) occurs after = ey, has been eliminated. §§ < « impliesi ¢ /\//TI,a. Suppose now thah > «.
Then for somg < k we havePH0ij > a, in which caseHp 4, is accepted at significance Ieve/lv!hich
terminates the MCS procedure before the elimination rute e, = i. So i > « impliesi € M;_,.
This completes the proak

The interpretation of a MC$-value is analogous to that of a classigal/alue. The analogy is to a
(1—«) confidence interval that contains the ‘true’ parameter wigiobability no less thant«a. The MCS
p-value also cannot be interpreted as the probability thatrqoular model is the best model, exactly as a
classicalp-value is not the probability that the null hypothesis istrRRather, the probability interpretation
of a MCS p-value is tied to the random nature of the MCS because the M@&ihndomsubset of models
that containsM* with a certain probability.
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3 Bootstrap Implementation

3.1 Equivalence Tests and Elimination Rules

Now we consider specific equivalence tests and an elimimatile that satisfy Assumption 1. The following
assumption is sufficiently strong to enable us to implemeatMCS procedure with bootstrap methods.

Assumption 2 For some r > 2 andy > 0 it holds thatE|d;j;|""" < oo for all i, j € M°, and that
{dij.t}i,jeao Is strictly stationary withvar(d;j 1) > 0 anda-mixing of order—r /(r — 2).

Assumption 2 places restrictions on the relative perfoearariables{d;; ;}, not directly on the loss
variables{L;.}. For example, a loss function need not be stationary as lotigedsss differentials{d;; .},
i,j e MO satisfy Assumption 2. The assumption allows for some tygestractural breaks and other
features that can create non-stationgry, }, as long as all objects in° are affected in a ‘similar’ way that
preserves the stationarity odij ¢}.

3.1.1 Quadratic-Form Test

Let M be some subset g¥1° and letm be the number of models i = {i4, ..., in}. We define the vector
of loss-variablesl. = (L, ¢, ..., Li,0), t =1,...,n, and its sample averagé,z n-1 Z[‘zl L:, and we
let: = (1,...,1) be the column vector where aii entries equal one. The orthogonal complement te
anm x (m — 1) matrix, ¢, , that has full column rank and satisfiés = O (a vector of zeros). The — 1
dimensional vectoiX; = ¢, L can be viewed am — 1 contrasts because each elemenkKpfis a linear
combination ofd; 1, i, j € M, which has mean zero under the null hypothesis.

Lemma 1 Given Assumption 2, let;X= /| L; and defined = E(X;). The null hypothesis ¢ is
equivalent to = 0 and it holds that #2(X — 0) 4 N(0, ©), where X = n71Y ", X; and =
limp_ o0 var(n/2x).

Proof. Note thatX; = ¢/, L; can be written as a linear combinationdf;, i, j € MO, because’ | = 0.
Thus Ho v is given byf = 0, and the asymptotic normality follows by the central limietnem fore-
mixing processes, see e.g. White (200@&).

Lemma 1 shows thaHy »¢ can be tested using traditional quadratic-form statistiés example is
To = n)_(/i#)_(, where is some consistent estimator Bfand ># denotes the Moore-Penrose inverse of
3.2 The rankq = rank() represents the effective numberaoitrasts(the number of linearly independent
comparisons) undelfly . Since s L (by assumption) it follows thatg 4 X(Zq) wherex(zq) denotes
the x 2-distribution withq degrees of freedom. Under the alternative hypoth@gjgjiverge to infinity with
probability one. So the test will meet the requirements of Assumption 1 when construétech To.
Although the matrix; is not fully identified by the requirements’: = 0 and det/,¢;) # O (but the
sub-space spanned by the columns,ois), there is no problem because the stati$ticis invariant to the
choice for .

2Under the additional assumption thalj t}; j< A4 is uncorrelated (acrosy, we can us&l = n=1 Y (X¢ — X)(X¢ — X)'.
Otherwise, we need a robust estimator along the lines of Mewd West (1987). In the context of comparing forecastst\Afes
Cho (1995) were first to use the test statidigg. They based their test on (asymptotic) critical values frxﬁg_l).
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A rejection of the null hypothesis based on the quadraticiftest need not identify an inferior alter-
native. The reason is that a large valueTgfcan stem from several; being slightly different from zero.
In order to achieve the required coherence between testlamidagion rule additional testing is needed.
Specifically one needs to test all sub-hypotheses of angtegjehypothesis, unless the sub-hypothesis is
nested in an accepted hypothesis, before further elinoimadi justified. The underlying principle is known
as theclosed testing procedureee Lehmann and Romano (2005, 366-367).

Whenmis large relative to the sample size,reliable estimates af are difficult to obtain. The reason
is that the number of elements Bfto be estimated are of order. It is convenient to use a test statistic
that does not require an explicit estimate3bin this case. We consider test statistics that resolve $bisei
in the next section.

3.1.2 Tests Constructed front-Statistics

This section develops two tests that are based on multtiptatistics. This approach has two advantages.
First, it bypasses the need for an explicit estimat& oSecond, the multiplé-statistic approach simplifies
the construction of an elimination rule that satisfies théomoof coherency formulated in Definition 3.
Define the relative sample loss statistidg,= n~* Y {_, d;j; andd. = m~*Y",_,,d;. Hered; mea-
sures the relative sample loss betweerni ttteand j -th models, whiled;. is the sample loss of thieth model
relative to the average across models\ih The latter can be seen from the identily= (L; — L.), where
Li=ntY,LitandL. =mY_,, Li. From these statistics we construct thetatistics

di; di.
tj = —— and t =-—— fori, j € M,

,/\ﬁl’(dij ) \% Var(dl) ,

wherevar(d;;) andvar(d;.) denote estimates of vak;) and vard,.) respectively. The first statisti, , is
used in the well known test for comparing two forecasts, sebdd and Mariano (1995) and West (1996).
Thet-statistics;; andt;., are associated with the null hypothesis tHat: uj; = 0 andH;. : ui. = 0 where
wi. = E(d..). These statistics form the basis of tests of the hypothidsis;. We take advantages of the
equivalence betweeHg v, {Hjj, for alli, j € M}, and{H;. foralli € M}. With M = {i4, ..., in} the
equivalence follows from

Wiy =+ = Wi, < wij =0foralli, j e M & uj. =0foralli e M.

Moreover, the equivalence extends{tq. < O for alli € M} as well ag{|w;;| < O for alli, j € M}, and
these two formulations of the null hypothesis map naturially the test statistics

T, = maxt;. and Trm = mMax |t |,
max M = oM M i,je/\/l| il

which are available to test the hypothesis 1.2 The asymptotic distributions of these test statistics are
non-standard because they depend on nuisance parameties tfue null and the alternative). However, the

nuisance parameters pose few obstacles as the relevaitiudishs can be estimated with bootstrap methods
that implicitly deal with the nuisance parameter problerhisTeature of the bootstrap has previously been

3An earlier version of this paper has results for the testssies, Tp = T:ltiz. andTg.
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used in this context by Kilian (1999), White (2000b), Han$2803b, 2005), and Clark and McCracken
(2005).

Characterization of the MCS procedure needs an eliminatita) ey, that meets the requirements of
Assumption 1.c and the coherency of Definition 3. For thedesistic Tyax A« the natural elimination rule
IS emax M = arg maxe ti. because a rejection of the null hypothesis identifies thethgsis,.;. = 0 as
false, forj = emnaxat- In this case the elimination rule removes the model thatrimries most to the test
statistic. This model has the largest standardized exossséelative to the average across all modelsin
With the other test statisticlr 1¢, the natural elimination rule isg A1 = arg maxeam SUp cp tij because
this model is such that, ,,; = Tr A1, for somej € M. These combinations of test and elimination rule
will satisfy the required coherency.

Proposition 1 Letdmaxa @anddg o denote the tests based on the statistigs, k¢ and Tz u¢, respectively.
Then(Smax ., €maxm) and (8r a1, €r A1) Satisfy the coherency of Definition 3.

Proof. Let T; denote eithet;. or max <4 tij, and note that the test statisti@ax 14 andTgr 4, are both of
the formT = maxca T;. Let Py be as defined in Section 2.2. From the definitions.adindt;; we have
fori € M* the first order stochastic dominance resBimaxc¢ Ti > X) > P(maxcar Ti > X) for any
M’ c M*and allx € R. The coherency now follows from

P(T > c.ep =i forsomei e M*) = P(T > ¢, T =T, for somei € M*)

=P( max Tj>c T, >T,forallje M) <P( max T, >0
ie MNM* ie MNM*

< Py( max T >c) < Py(maxT; > ¢) = Py(T > ¢).
ie MNM* ieM

This completes the proofm
Next, we establish two intermediate results that undet@rbbotstrap implementation of the MCS.

Lemma 2 Suppose that Assumption 2 holds and define (dy., ..., dyn.)". Then
NY2(Z — ) S Np(0,Q),  asn— oo, 2)
wherey = E(Z) andQ2 = lim,_., var(n*?Z), and the null hypothesis, 31, is equivalent toxyy = 0.

Proof. From the identityd,. = Lj —L. =L —m™ ), Li=mY, (Li—Lp=m1Y; . dj,
we see that the elements Bfare linear transformations of from Lemma 1. Thus for somen(— 1) x m
matrix G we haveZ = G’X, and the result now follows, wheng = G'0 andQ = G’'SG. (Them x m
covariance matrixq2, has reduced rank, as raifk) <m—1.)m

In the following, we leto denote thenx m correlation matrix that is implied by the covariance matfix
of Lemma 2. Further, given the vector of random varialgles Ny (0, o), we letF, denote the distribution
of max &;.

Theorem 4 Let Assumption 2 hold and suppose thigt = varn¥2d.) = nvard.) > 2 wherew?,

i =1,..., mare the diagonal elements@f Under H s we have Fax 4 F, and under the alternative
hypothesis, H (¢, we have that J.x A« — oo in probability. Moreover, under the alternative hypottsesi
we have faxm = tj. where j= ena v ¢ M, for n sufficiently large.
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Proof. Let D = diag@?, ..., %) andD = diag@?, ..., »%). From Lemma 2 it follows thag, =
Eim ..o Emn) = DV2n2Z L NL(0, 0), sincep = D-¥2QD-Y2 Fromt. = d./J/vang,) =
nY2d;. /& = &ng it now follows thatTraxae = max ti. = max (D~1/2n1/2Z), LY F,. Under the al-
ternative hypothesis we hadg £ wj. > 0foranyj ¢ M*, so that bott;. andTmax 04 diverge to infinity
at raten/2 in probability. Moreover, it follows thagmax 1 ¢ M*, for n sufficiently largem

Theorem 4 shows that the asymptotic distributionTgfx ¢ depends on the correlation matri,
Nonetheless, as discussed earlier, bootstrap methodsecamployed to deal with this nuisance param-
eter problem. Thus, we construct a testHpf o, by comparing the test statistiG,ax v t0 an estimate of the
95%-quantile, say, of its limit distribution under the nijipothesis. Although the quantile may depend on
o, our bootstrap implementation leads to an asymptoticalig ¥ast because the bootstrap consistently esti-
mates the desired quantile. A detailed description of ootditap implementation is available in a separate
appendix, Hansen, Lunde, and Nason (2010).

Theorem 4 formulates results for the situation where the M@&8nstructed wWitimax a1 @aNdenax v =
arg maxt;.. Similar results hold for the MCS that is constructed frdm, ander 1. The arguments are
almost identical to those used for Theorem 4.

3.2 MCS for Regression Models

This section shows how to construct the MCS for regressiodatsausing likelihood-based criteria. Infor-
mation criteria, such as the AIC and BIC, are special caseluitding a MCS of regression models. The
MCS approach departs from standard practice where the AdB#0 select a single model, but are silent
about the uncertainty associated with this selectidrhus, the MCS procedure yields valuable additional
information about the uncertainty surrounding model g&ac In Section 6.2, we apply the MCS procedure
in-sample to Taylor rule regressions that indicates theztmainty can be substantial.

Although we focus on regression models for simplicity, itlwe evident that the MCS procedure laid
out in this setting can be adapted to more complex models, asithe type of models analyzed in Sin and
White (1996).

3.2.1 Framework and Assumptions

Consider the family of regression mode¥s, = ﬂ] Xit+e,t =1 ...,n, whereX; is a subset of the
variables inX;, for j = 1, ..., mg. The set of regression model$/°, may consist of nested, nonnested,
and overlapping specifications.

Throughout we assume that the p@dy, X;) is strictly stationary and satisfies Assumption 1 in Gonesilv
and White (2005). This justifies our use of the moving-blooktstrap to implement our resampling proce-
dure. The framework of Goncalves and White (2005) permitakngerial dependence (iY;, X;), which is
important for many applications.

The population parameters for each of the models are defiyngld;b= [E(Xj,txg’t)]*lE(Xj,th) and
crozj = E(sf’t), wheregj; = Y; — ﬂéij)t, t = 1,...,n. Furthermore, the Gaussian quasi-log-likelihood

4The same point applies to the Autometrics procedure, seerldog2009) and references therein. Autometrics is conséal
from a collection of tests and decision rules but does notroba familywise error rate. Nor is the set of models thatdxoetrics
seeks to identify defined from a single criterion, such as®&LlI
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function is, apart from a constant, given by

w,-,o,?):— logo? — o} Z(Yt B Xj0%.

3.2.2 MCS by Kullback-Leibler Divergence

One way to define the best regression model is in terms of tHiaak-Leibler information criterion
(KLIC), see e.g. Sin and White (1996). This is equivalentanking the models in terms of the expected
value of the quasi-log-likelihood function, when evaluhtd their respective population parameters, i.e.
E[£(Boj, 9§))]. It is convenient to define

Y, - B)X
Q(Z,6)) = —20(B;, 0?) = nlogo? +Z“(IA

— j
whered; can be viewed as a high dimensional vector that is restrlayettie parameter spac®, C ©, that
defines thg -th regression model. The population parameters are hega byt = argmirbe@j E[Q(Z,0)],
j =1,..., mg, and the best model is defined by mE[Q(Z, 6y;)]. In the notation of the MCS framework
the KLIC leads to,

Mﬁuc = {J : E[Q(Z’ 90j)] = miinE[Q(Z’ 90i)]} s

which (as always) permits the existence of more than onenbedel® The extension to other criteria, such
as the AIC and the BIC, is straight forward. For instance seiteof best models in terms of the AIC is given
by M. = {i : EIQ(Z, 6oj) + 2k;] = mini E[Q(Z, 6ai) + 2ki]}, wherek; is the degrees of freedom in
the j-th model.

The likelihood framework enables us to construct eithdf, . or M. by drawing on the theory of
quasi-maximum likelihood estimation, see e.g. White (39%lince the family of regression models are

N -1
linear, the quasi-maximum likelihood estimators are statd3; = (Z[‘zl Xj X t) Y XY, and
A2 _ n-1 n a2 Y A
67 =n"") ;&% wheregj = Y; — B Xj . We have

Q(Z,éj)—Q(z,eoj)zn{(logaoJ log67?) (128 /0§ — )}

which is the quasi-likelihood ratio (QLR) statistic for thall hypothesisHg : 6 = 6y;.

In the event that thg-th model is correctly specified, it is well known that the iirdistribution of
Q(Z, éj) — Q(Z, 6p;) is X(ij), where the degrees of freedork, is given by the dimension ddp; =
(ﬂc’,j,aozj)/. In the present multi-model setup, it is unlikely that all reslare correctly specified. More
generally, the limit distribution of the QLR statistic hzmatform,z 1M JZIZJ, whereiqj, ..., Ay;.j are
the eigenvalues OIj‘ljj andZyj, ..., Zy.j ~ iidN(0, 1). The information matriceg; andJ; are those

associated with th¢-th model,Z; = diag (U&ZE(Xi’txg’t)’%o&4) and
— — 76 -
7, _E( lZst 1 Xjs€j, s8JtX 1(701 122,t=1xj,58J>5812’t ) .
[ ]

1 —1 n 2 2 4
TR D DR G )

5In the present situation, we have&(Zj, 0pj)] = agj. The implication is that the error varianoeozj, induces the same
ranking as KLIC, so thati¥, ¢ = (j : og; = min;/ (7021.,}.
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The effective degrees of freedok],, is defined by the mean of the QLR’s limit distribution,

k}( =1+ A =tr{I-’l\7j}

[E(XjX] )] togPn ! Z E(Xjsej.sX] (€] t)} +ntl Z E( ‘; _ ) .
sit=1 st=1 0j
The previous expression points to estimatiignith HAC-type estimators that account for the autocorre-
lation in {Xj &} and{sjzgt}, e.g. Newey and West (1987) and Andrews (1991). Below we usegles
bootstrap estimate &, which is also employed in our simulations and our empirieldr rule regression
application.

The effective degrees of freedom in the context of missptifhodels was first derived by Takeuchi
(1976). He proposed a modified AIC, sometimes referred the$C, which computes the penalty with the
effective degrees of freedom, rather than the number ofhpeters as is used by the AIC, see also Sin and
White (1996) and Hong and Preston (2008). We use the notAlion and BIC to denote the information
criteria that are defined by substituting the effective degrof freedomk?, for k;, in the AIC and BIC,
respectively. In this case, our A1@ identical to the TIC by Takeuchi (1976).

3.2.3 The MCS Procedure

The MCS procedure can be implemented by the moving-blocksbrap applied to the paity;, X), see
Goncalves and White (2005). We compute resamgfes= (Y, Xp )i, forb=1,..., B, which equates
the original point estimat@,j, to the population parameter in thieth model under the bootstrap scheme.

The literature has proposed several bootstrap estimafatiseceffective degrees of freedork; =
E[Q(Z, 6phj) — Q(Z,0))], see e.g. Efron (1983, 1986) and Cavanaugh and Shumway (198&pe and
additional estimators are analyzed and compared in Sh{t@8v). We adopt the estimator fiJ that is
labelledBgz in Shibata (1997). In the regression context this estimates the form

Zt 1(&p, i, t)2 n} ,

B
ki =B Q(Z.6) - Q(Z.65) =B~ 12 nIogA L —
b=1 b=1 bJ ]
whereef | = Y& — B X5 0 80 = Yoo — By Xg 1 and6p? = nmt Y (8 )2 This is an estimate
of the expected overfit that results from maximization ofltkelihood function. For a correctly specified
model we have] = k;, so we would expedij* ~ K; when thej-th model is correctly specified. This is
indeed what we find in our simulations, see Section 5.2.
Given an estimate of the effective degrees of freedlEijfmpompute the AIC statisticQ(Z, éj) + R-*,
which is centered abolE{Q(Z, 6pj)}. The null hypothesidig o States that ED(Z, 6p1) — Q(Z, 6pj)] =0
foralli, j € M. This motivates the range statistic:

Trat = Max |[Q(Z, o) +k1-[Q(Z.6) +k1|.
and the elimination rule; = argmax\[Q(Z. §j) + ki]. This elimination rule removes the model with
the largest bias adjusted residual variance. Our tessttalir r, IS a range-statistic over recentered QLR

statistics computed for all pairs of model.M. In the special case with iid data and just two modeld-in
we could simply adopt the QLR test of Vuong (1989) as our egjaiwce test.
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Next, we estimate the distribution @k n¢ under the null hypothesis. The estimate is calculated with
methods similar to those used in White (2000b) and Hansddb[2d he joint distribution of

(Q(Z.01) + ki —E[Q(Z. fon)]. - ... Q(Z. Omy) + K&y, — EIQ(Z. fom,)]).

is estimated by the empirical distribution of

(QZE. 6 ) + K — Q2,00 ..., QZL B ) + Koy — Q(Z, b)), (3)

forb =1,..., B, becauseQ(Z, éj) play the role of EQ(Z, 6p;)] under the resampling scheme. These
bootstrap statistics are relatively easy to compute bectugsstructure of the likelihood function is

6_*2

b.j
A2 9
gj

Q(Z5.6; ) — Q(Z,6)) = n(log6y3 + 1) — n(logé? + 1) = nlog

wheres;2 = n~t 31 (Y, — BY; X5 1)2 For each of the bootstrap resamples, we compute the testistat
Tiaa = max [{Q(Z. 5 + K - Qz.6)] — [z 6 ) + Kk - @cz.dy) |.

The p-value for the hypothesis test with which we are concernedisputed by

B
Pm = B-1 Z l{TﬁR,MZTR,M } .
b=1

The empirical distribution oh~/2T;* . , vields a conservative estimate of the distributiomot/?Tg .
asn, B — oo. The conservative nature of this estimate refers toghalue, pr¢, being conservative in
situations where the comparisons involve nested modelsdig¥éeiss this issue at some length in the next
subsection.

It is also straightforward to construct the MCS using eittier AIC, the BIC, the AIC, or the BIC.
The relevant test statistic has the form

Tt = Max |[Q(Z, 6)+cl—[Q(2.6) +¢l,

wherec; = 2k; for the AIC, ¢; = log(n)k; for the BIC,c; = 2I2]* for the AIC*, andc; = Iog(n)RJ* for the
BIC*. The computation of the resampled test statisfigs, ,,. is identical for the three criteria. The reason
is that the location shift¢;, has no effect on the bootstrap statistics, once the null thgses is imposed.
Under the null hypothesis we recenter the bootstrap statiabout zero and this offsets the location shift
G —Cj.

3.2.4 Issues Related to the Comparison of Nested Models

When two models are nested, the null hypothesis used wittCKB[Q(Z, 60))] = E[Q(Z, 6oj)], has
the strong implication thaQ(Z, 6p) = Q(Z, 6p;) a.e. (almost everywhere), and this causes the limit
distribution of the quasi likelihood ratio statistiQ(Z, 6) — Q(Z, éj), to differ for nested or non-nested
comparisons, see Vuong (1989). This property of nested adsgms can be imposed on the bootstrap
resamples, by replacinQ(Z, éj) with Q(Z*, éj), because the latter is the bootstrap varianQoE, 6g;).
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The MCS procedure can be adapted, so that different boptstfeemes are used for nested and non-nested
comparisons, and imposing the stronger null hypotheisZ, 65) = Q(Z, 6p;) a.e., may improve the
power of the procedure. The key difference is that the nugbitiyesis with KLIC ha®)(Z, 6)— Q(Z, éj) =
Op(1) for nested comparisons ar@(Z, 6) — Q(Z, éj) = Op(nl/z) for non-nested comparisons. Our
bootstrap implementations is such tr{@(zg, o) +k — Q(z2, éi)} — {Q(Zg‘, 0 +k—Qz, éj)}
is Op(n*/?), whether the comparison involves nested or non-nested Isjoathich causes the bootstrap
critical values to be conservative. Under the alternaéMe, 4,) — Q(Z, éj) diverges at rate for nested
and non-nested comparisons, so the bootstrap testingdun@ces consistent in both cases.

Since nested and non-nested comparisons results in diffeses of convergence and different limit
distributions, there are better ways to construct an agaptiocedure than through the test statistig,4.
For instance by combining thp-values for the individual subhypotheses. We shall not yeisuch an
adaptive bootstrap implementation in this paper. It is, éxmy, important to note that the issue with nested
models is only relevant for KLIC because the underlying ihwyibotheses of other criteria, including AIC
and BIC, do not implyQ(Z, 60) = Q(Z, 6p;) a.e. for nested models.

4 Relation to Existing Multiple Comparisons Methods

The introduction discusses the relation between the MC $tenlace-test used to select the number of coin-
tegration relations, see Johansen (1988). The MCS andabe-test share an underlying testing principle
known asintersection-union testinUT). Berger (1982) is responsible for formalizing the IWihile Pan-
tula (1989) applies the IUT to the problem of selecting tlelength and order of integration in univariate
autoregressive processes.

Another way to cast the MCS problem is as a multiple compasiswoblem. The multiple comparisons
problem has a long history in the statistics literature, Gepta and Panchapakesan (1979), Hsu (1996),
Dudoit, Shaffer, and Boldrick (2003) and Lehmann and Rom@005, chapter 9) and references therein.
Results from this literature have recently been adoptetieretonometrics literature. One problem is that
of multiple comparisons with beswhere objects are compared to that with the ‘best’ sampt@peance.
Statistical procedures fanultiple comparisons with besre discussed and applied to economic problems
in Horrace and Schmidt (2000). Shimodaira (1998) uses anaaf Gupta’s subset selection, see Gupta
and Panchapakesan (1979), to construct a set of modelsetkaths a model confidence set. His procedure
is specific to a ranking of models in terms ofC;), and his framework is different from ours in a number
of ways. For instance, his preferred set of models does matalche FWE. He also invokes a Gaussian
approximation that rules out comparisons of nested models.

Our MCS employs a sequential testing procedure that mintégsdown procedures for multiple hy-
pothesis testing, see e.g. Dudoit, Shaffer, and Boldri€082, Lehmann and Romano (2005, chapter
9) or Romano, Shaikh, and Wolf (2008). Our definition of M@Ssalues implies the monotonicity,
Peri, < Pepy, < -0 = ﬁeMmO, that is key for the result of Theorem 3. This monotonicity lisoaa
feature of the so-callestep-down Holm adjusted p-values
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4.1 Relation to Tests for Superior Predictive Ability

Another related problem is the case where the benchmarkhichvall objects are compared, is selected
independent of the data used for the comparison. This proideknown asmultiple comparisons with
control. In the context of forecast comparisons, this is the probileat arises when testing fauperior
predictive ability(SPA), see White (2000b), Hansen (2005), and Romano and(2@905).

The MCS has several advantages over tests for superiorciivedability. Thereality check for data
snoopingof White (2000b) and the SPA test of Hansen (2005) are dedignaddress whether a particular
benchmark is significantly outperformed by any of the aliiues used in the comparison. Unlike these
tests the MCS procedure does not require a benchmark to béisgewnhich is very useful in applications
without an obvious benchmark. In the situation where theeenatural benchmark, the MCS procedure can
still address the same objective as that of the SPA tests. iFldione by observing whether the designated
benchmark is in the MCS or not, where the latter correspoodsrejection of the null hypothesis that is
relevant for a SPA test.

The MCS procedure has the advantage that it can be employetbftel selection, whereas a SPA-test
is ill-suited for this problem. A rejection of the SPA-testipidentifies one or more models as significantly
better than the benchmafkThus, the SPA-test offers little guidance about which medeside inM*. We
are also faced with a similar problem in the event that thehygdothesis is not rejected by the SPA-test. In
this case the benchmark may be the best model, but this labyehtso be applied to other models. This issue
can be resolved if all models serve as the benchmark in assefrieomparisons. The result is a sequence
of SPA-tests that define the MCS to be the set of ‘benchmarkieisathat are found not to be significantly
inferior to the alternatives. However, the level of indivad SPA-tests need to be adjusted for the number of
tests that are computed to control the FWE. For examplegifdtel in each of the SPA-testsagm, the
Bonferroni bound states that the resulting set of ‘sungvimenchmarks is a MCS with coverageé — «).
Nonetheless, there is a substantial loss of power assdaoidgtke the small level applied to the individual
tests. The loss of power highlights a major pitfall of sediaisPA-tests.

Another drawback of constructing a MCS from SPA-tests i tha null of a SPA-test is a composite
hypothesis. The null is defined by several inequality camsts which affects the asymptotic distribution
of the SPA-test statistic because it depends on the numbgndihg inequalities. The binding inequality
constraints create a nuisance parameter problem. Thissnia&éficult to control the Type | error rate
inducing an additional loss of power, see Hansen (2003aoimparison, the MCS procedure is based on a
sequence of hypotheses tests that only involve equalitieish avoids composite hypothesis testing.

4.2 Related Sequential Testing Procedures for Model Selech

This subsection considers some relevant aspects of aarofle evaluation of forecasting models, and how
the MCS procedure relates to these issues.

Several papers have studied the problem of selecting thdédsesasting model from a set of competing
models. For example, Engle and Brown (1985) compare seteptiocedures that are based on six infor-
mation criteria and two testing procedures (‘generalgeesfic’ and ‘specific-to-general’), Sin and White

6Romano and Wolf (2005) improve upon the reality check byfifigng the entire set of alternatives that significantlyndoate
the benchmark. This set of models is specific to the choicenthmark and has therefore no direct relation to the MCS.
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(1996) analyze information criteria for possibly missfied models, and Inoue and Kilian (2006) compare
selection procedures that are based on information eigeril out-of-sample evaluation. Granger, King, and
White (1995) argue that the general-to-specific selectiongmiure is based on an incorrect use of hypothe-
sis testing, because the model chosen to be the null hyp®ihes pairwise comparison is unfairly favored.
This is problematic when the data set under investigatiars et contain much information, which makes
it difficult to distinguish between models. The MCS proceddpes not assume that a particular model is
the true model, nor is the null hypothesis defined by a singideh Instead, all models are treated equally
in the comparison and only evaluated on out-of-sample ptigdiability.

4.3 Aspects of Parameter Uncertainty and Forecasting

Parameter estimation can play an important role in the atialu and comparison of forecasting models.
Specifically when the comparison of nested models reliesaoarpeters that are estimated using certain es-
timation schemes, the limit distribution of our test stixtsneed not be Gaussian, see West and McCracken
(1998) and Clark and McCracken (2001). In the present contiestre will be cases that do not fulfil As-
sumption 2. Some of these problems can be avoided by usinjreyreindow for parameter estimation,
known as theolling scheme This is the approach taken by Giacomini and White (2006)erfAhtively one
can estimate the parameters once (using data that are datetbfghe evaluation period) and then compare
the forecastgonditional on these parameter estimatéwever, the MCS should be applied with caution
when forecasts are based on estimated parameters beca@sswumptions need not hold in this case. As a
result, modifications are needed in the case with nestedIm@#® Chong and Hendry (1986), Harvey and
Newbold (2000), Chao, Corradi, and Swanson (2001), ank@lzat McCracken (2001) among others. The
key modification that is needed to accommodate the case edied models is to adopt a test with a proper
size. With proper choices f@n andey, the general theory for the MCS procedure remains. Howewer, i
this paper we will not pursue this extension because it wobhkture our main objective, which is to lay out
the key ideas of the MCS.

4.4 Bayesian Interpretation

The MCS procedure is based on frequentist principles, aémbles some aspects of Bayesian model
selection techniques. By specifying a prior over the model$1°, a Bayesian procedure would produce
a posterior distribution for each model, conditional on &lctual data. This approach to MCS construction
includes those models with the largest posteriors which aul®ast to 1— «. If the Bayesian were also to
choose models by minimizing the ‘risk’ associated with thesl attributed to each model, the MCS would
be a Bayes decision procedure with respect to the modelrpmsteNote that the Bayesian and frequentist
MCSs rely on the metric under which loss is calculated an@démn sample information.

We argue our approach to the MCS and its bootstrap impletiemteompares favorably to Bayesian
methods of model selection. One advantage of the frequepqj®oach is that it avoids having to place
priors on the elements of1° (and their parameters). Our probability statement is aatamt with the
random data-dependent set of models that is the MCS. Itfdreris meaningful to state that the best model
can be found in the MCS with a certain probability. The MC®glces moderate computational demands
on the researcher, unlike the synthetic data creation rdsttw which Bayesian Markov chain-Monte Carlo
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methods rely.

5 Simulation Results

This section reports on Monte Carlo experiments that shewt@@ S to be properly sized and possess good
power in various simulations designs.

5.1 Simulation Experiment |

We consider two designs that are based omtrdimensional vecto) = (0, 1, ..., I=2 1y} /./n, that
defines the relative performances; = E(dij:) = 6 — 0;. The experimental design ensures thdt
consists of a single element, unless= 0, in which case we havé1* = MO. The stochastic nature of the
simulation is primarily driven by

1 fori = j,

Xi ~ iid N (0, 2, whereXj = for i i
0 ori # j, forsome 0< p < 1,

wherep controls the degree of correlation between alternatives.
Design I.A (Symmetric distributed loss): Define the (vector of) loss variables to be

Li=0+ th, wherea; = exp(yy), Yt =

VE(@)
ande; ~ iid N(0, 1). This implies that Ey;) = —¢/{2(1 — ¢?)} and vary;) = ¢/(1 — ¢?), such that
E(a) = exp(E(y)) + var(y))/2} = exp(0} = 1, and vara) = (exple/(1— ¢?)} — 1). Further Ea?) =
var(a,) + 1 = exp{¢/(1— ¢?)} such that vagl;) = 1. Note thaty = 0 corresponds to homoskedastic errors
andg > 0 corresponds to (GARCH-type) heteroskedastic errors.

The simulations employ 2,500 repetitions, where: 0, 5, 10, 20,0 = 0.00, 0.50, 0.75, 0.9% = 0.0,

0.5, 0.8, andn = 10, 40, 100. We use the block-bootstrap, in which blocks hewgthl = 2, and results
are based oB = 1, 000 resamples. The size of a synthetic samptess 250. This approximates sample
sizes often available for model selection exercises in og@nomics.

We report two statistics from our simulation experimentdshena = 10%. One is the frequency at
which M3, containsM* and the other is the average number of model8y,, The former shows the
‘size’ properties of the MCS procedure and the latter isrimfative about the ‘power’ of the procedure.

Table 2 presents simulation results that show the small kapnpperties of the MCS procedure closely
match its theoretical predictions. The frequency that th&t Imodels are contained in the MCS is almost
always greater thafl — «), and the MCS becomes better at separating the inferior mdmbeh the superior
model, as theu;; s become more disperse (e.g. ascreases). Note also that a larger correlation makes it
easier to separate inferior models from superior models iBmot surprising because vaf ;) = var(Li;)+
var(L ;) — 2covL, Lji1) = 2(1 — p), which is decreasing im. Thus, a larger correlation (holding the
individual variances fixed) is associated with more infaiiorathat allows the MCS to separate good from
bad models. Finally, the effects of heteroskedasticityrelagively small, but heteroskedasticity does appear
to add power to the MCS procedure. The average number of mim&l\;o% tends to fall ag increases.

2<1+ )+¢Yt 1+ s,
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Table 2: Simulation Design |.a

m = 10 m = 40 m = 100
Panel A:p =0
Frequency at whichv* c A1, (Size)
0= 0 05 075 095 0 Q5 075 095 0 Q5 075 095

A=0 0.885 0.898 0.884 0.885 0.882 0.882 0.877 0.880 0.880 0(B8D7 0.875
A=5 0.990 0.988 0.991 1.000 0.980 0.979 0.976 0.984 0.975 0M98B5 0.976
A =10 0.994 0.998 0.999 1.000 0.978 0.983 0.985 0.993 0.973500974 0.980
A =20 0.998 1.000 1.000 1.000 0.988 0.981 0.991 1.000 0.97580M986 0.992
A =40 1.000 1.000 1.000 1.000 0.992 0.996 0.998 1.000 0.98140M@890 0.998

Average number of elements W, (power)

A=0 9.614 9.658 9.646 9.632 38.68 38.78 38.91 38.82 97.02 98841 97.20
A=5 6.498 4.693 3.239 1.544 25.30 18.79 13.35 6.382 59.87 432031 15.04
A =10 3.346 2.390 1.732 1.027 13.59 9.829 7.142 3.266 32.324236097 7.902
A =20 1.702 1.307 1.062 1.000 7.060 5.010 3.617 1.674 17.03018.485 4.049
A =40 1.072 1.005 1.000 1.000 3.572 2.597 1.840 1.052 8.7785643321 2.083

Panel B:¢ = 0.5
Frequency at whichv* c A1, (Size)
p = 0 05 075 095 0 Q5 075 095 0 Q5 075 095

A=0 0.908 0.897 0.905 0.894 0.911 0.907 0.910 0.916 0.925 00289 0.913
A=5 0.985 0.990 0.995 1.000 0.971 0.976 0.977 0.987 0.974 0@943 0.973
A =10 0.992 0.999 1.000 1.000 0.978 0.985 0.982 0.995 0.975900883 0.984
A =20 0.999 1.000 1.000 1.000 0.988 0.989 0.988 1.000 0.97960M981 0.992
A =40 1.000 1.000 1.000 1.000 0.996 0.996 1.000 1.000 0.98020M0891 0.999

PP
*

Average number of elements W, (power)

A=0 9.660 9.664 9.664 9.649 38.97 38.93 39.03 39.05 98.35 98094 97.73
A=5 6.076 4.497 3.213 1.564 2433 17.72 13.13 6.112 57.84 43®B5 14.54
A =10 3.188 2.278 1.680 1.035 12.95 9.268 6.791 3.136 30.540226356 7.510
A =20 1.700 1.274 1.069 1.000 6.819 4.883 3.563 1.659 16.04618.830 3.894
A =40 1.085 1.008 1.000 1.000 3.506 2.517 1.811 1.061 8.3396 641860 2.034

Panel C:¢ = 0.8
Frequency at whichv* c 14, (size)
p= 0 05 075 095 0 a5 075 095 0 a5 075 095

A=0 0.931 0.940 0.939 0.947 0.963 0.968 0.958 0.962 0.970 0MI69 0.972
A=5 0.990 0.997 0.998 1.000 0.977 0.980 0.989 0.993 0.970 0@936 0.981
A =10 0.998 1.000 1.000 1.000 0.984 0.987 0.992 0.998 0.982600974 0.991
A =20 1.000 1.000 1.000 1.000 0.990 0.993 0.996 1.000 0.9822010892 0.998
A =40 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.9884 00996 1.000

Average number of elements Wy, (power)

A=0 9.739 9.814 9.794 9.799 39.61 39.61 39.53 39.55 99.00 999125 99.43
A=5 4.301 3.318 2.386 1.322 16.26 12.31 9.118 4.401 39.69 280186 10.12
A =10 2424 1.864 1.419 1.062 9.133 6.643 4.727 2.349 20.727141726 5.470
A=20 1.455 1.220 1.092 1.010 4.770 3.520 2.535 1.454 11.1548%%48 2.840
A =40 1.098 1.037 1.011 1.003 2.645 1.967 1.490 1.081 5.932643248 1.645

The two statistics are the frequency at whiel,,, containsAt* and the other is the average number of

models inM,,, The former shows the ‘size’ properties of the MCS procedune the latter is informative
about the ‘power’ of the procedure.
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Figure 1: Simulation design 1.B with 10 alternatives and 10125 elements ilM*. The left panels report

e~

the frequency at whictM* is contained inM3,, (size properties) and the right panels report the average

—

number of models io\1g,,

(power properties).
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Corollary 1 has a consistency result that applies when 0. The implication is that only one model
entersM* under this restriction. Table 2 shows thet* often contains only one model given> 0. The
MCS matches this theoretical prediction in Table 2 beca‘ﬁ\g@% = M*in a large number of simulations.
This equality holds especially whenandp are large. These are also the simulation experiments tolat yi
size and power statistics equal (or nearly equal) to oneh ¥¥fte close to one or equal to one, observe that
M* C My, (in all the synthetic samples). On the other hafd,, is reduced to a single model (in all
the synthetic samples) when power is close to one or equaldo o

Design 1.B (Dependent loss): This design setd; ~ iid Nio(@, ), where the covariance matrix has
the following structure,X;; = p=il for p = 0,0.5, and 075. The mean vector takes the foAn=
,...,0, % e, %)’ so that the number of zero-elementinefines the number of elementsit*. We
report simulation results for the case wharg= 10 andM* consists of either one, two, or five models.

The simulation results are presented in Figure 1. The lefelsadisplay the frequency at Whi(zﬁgo%
containsM* (‘size’) at various sample sizes. The right panels predemtaiverage number of models in
/\730% (‘power’). The two upper panels contain the results for tasecwhereM* is a single model. The
upper-left panel indicates that the best model is almosaydwcontained in the MCS. This agrees with
Corollary 1, that states thaf/l\jfa B M* asn — oo, wheneverM* consists of a single model. The
upper-right panel illustrates the ‘power’ of the procedbesed orlnax v = Maxea ti.. We note that it
takes about 800 observations to weed out the nine inferiatetsdn this design. The MCS procedure is
barely affected by the correlation paramegerput we note that a larger results in a small loss in ‘power’.
In the lower-left panel we see that the frequency at whidh is contained in/\’/\lgo% is reasonably close to
90% except for the very short sample sizes. From the midghg-and lower-right panel we see that it takes
about 500 observations to remove all the poor models.

The middle-right and lower-right panels illustrate anothspect of the MCS procedure. For large
sample sizes we note that the average number of modeldjp, falls below the number of models in
M*. The explanation is simple. After all poor models have be@miehted, as occurs with probability
approaching one as — oo, there is a positive probability thady 1 is rejected, which causes the MCS
procedure to eliminate a good model. Thus, the inference raw from the simulation results are quite

encouraging for th& . 1 test.

5.2 Simulation Experiment II: Regression Models

Next we study the properties of the MCS procedure in the gbofén-sample evaluation of regression mod-

els, as we laid out in Section 3.2. We consider a setup witpaigntial regressors§; = (Xit, ..., Xe.t)',

that are distributed as follows,

. 1 fori = j,

X¢ ~ iid Ng(0, X), whereX; = ) J
0 fori # j, forsome 0< p < 1,

wherep measures the degree of dependence between the regressodefié the dependent variable by

Yi = u + BXet ++/1— B2, whereg; ~ iid N(0, 1). In addition to the six variables iX;, we include a

constant,Xo = 1, in all regression models. The set of regressions being astums given by the twelve

regression models that are listed in each of the panels ile Bab
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Table 3: Simulation Experiment Il

Q(Z;.0) k* KLIC AIC* (TIC) BIC*
Panel A: n=50
o= 03 09 03 09 03 09 03 09 03 09
Xo 481 48.1 199 2.00 0.058 0.038 0.085 0.070 0.118 0.124
Xo, X1 12.4 12.4  3.02 3.02/ 0.99¢ 0.999 1.00C 1.000 1.00C 1.000
Xos -y X2 11.3 11.3  4.08 4.08 0.99¢ 0.999 0.962 0.999 0566 0.940
Xo, ..., X3 10.2 10.2 5.18 518 0.99¢ 0.999 0940 0.998 0.469 0.912
Xoy ..., Xa 9.09 9.04 6.32 6.32 1.00C 1.000 0.905 0.997 0.367 0.803
Xos .., Xsg 7.95 7.88 750 7.50 1.00C 1.000 0.867 0.994  0.279 0.598
Xos .., Xg 6.77 6.69 8.73 874 1.00C 1.000 0.806 0.990  0.203 0.400
Xo, X2 447 21.0 3.02 3.02 0.086 0.905 0.100 0.935 0.099 0.877
Xo, X2, X3 423 18.1 4.08 408 0.106 0.948 0.107 0.949  0.077 0.806

Xo, X2, ..oy, Xg 40.4 16.3 5.18 5.18 0.120 0.958 0.105 0.938 0.054 0.665
Xo, X2, ..., X5 38.8 14.8 6.32 6.32 0.132 0.962 0.100 0.913 0.036 0.501
Xo, X2, ..., Xg 37.2 134 7.50 7.51 0.145 0.964 0.094 0.869 0.022 0.348

Panel B: n= 100

o= 03 09 03 09 0.3 09 0.3 09 0.3 0.9

Xo 98.0 98.1 1.99 1.99 0.000 0.000 0.000 0.000 0.000 0.000
Xo, X1 276 27.8 3.00 3.00 0.99¢ 1.000 1.00C 1.000 1.00C 1.000

Xos ooy X2 26.6 26.7 4.03 4.03 0.99¢ 1.000 0.959 0.982 0.402 0.675
Xos ooy X3 255 25.7 5.07 5.06 0.99¢ 1.000 0.939 0.975 0.276 0.619
Xoy ooy Xg 24.4 24.6 6.12 6.12° 1.00C 1.000 0.908 0.960 0.174 0.545
Xoy .5 X5 23.4 23.6 7.19 7.18 1.00C 1.000 0.864 0.942 0.101 0.390
Xo, ..., X 22.3 22.5 8.28 8.27 1.00C 1.000 0.800 0.920 0.059 0.238
Xo, X2 924 45.1 3.00 3.01 0.000 0.548 0.000 0.585 0.000 0.490
Xo, X2, X3 88.8 40.4 4.03 4.03 0.000 0.691 0.000 0.666 0.000 0.443

Xo, X2, ..oy, Xy 86.1 38.1 5.07 5.07 0.000 0.736 0.000 0.675 0.000 0.338
Xo, X2, ..., X5 83.9 36.3 6.12 6.12 0.000 0.759 0.000 0.655 0.000 0.236
Xo, X2, ..., Xg 82.0 34.8 7.19 7.19 0.001 0.772 0.000 0.631 0.000 0.143

Panel C: n= 500

o= 03 09 03 09 0.3 09 0.3 09 0.3 09

Xo 498 498 2.00 2.00 0.000 0.000 0.000 0.000 0.000 0.000
Xo, X1 151 151 3.00 3.00 0.99¢ 0.999 1.00C 1.000 1.00C 1.000

Xoy o vy X2 150 150 4.00 4.00 0.99¢ 0.999 0.958 0.960 0.207 0.206
Xos .oy X3 149 149 5.01 5.01 0.99¢ 1.000 0.938 0.938 0.100 0.099
Xos ooy X 148 148 6.02 6.01 1.00C 1.000 0.907 0.901 0.044 0.042
Xo,.-.s X5 147 147 7.03 7.02 1.00C 1.000 0.858 0.852 0.020 0.017
Xo, . -+s Xe 145 146 8.04 8.03 1.00C 1.000 0.790 0.792 0.006 0.008
Xo, X2 474 238 3.00 3.00 0.000 0.000 0.000 0.000 0.000 0.000
Xo, X2, X3 460 219 4.00 4.00 0.000 0.002 0.000 0.002 0.000 0.002

Xo, X2, ...y Xa 451 211 5.01 5.01 0.000 0.004 0.000 0.004 0.000 0.001
Xo, X2, ..., X5 444 206 6.02 6.01 0.000 0.006 0.000 0.006 0.000 0.001
Xo, X2, ..., Xg 439 203 7.03 7.02 0.000 0.008 0.000 0.007 0.000 0.000

The average value of the maximized log-likelihood functioultiplied by minus two is reported in the first
two columns. The next pair of columns has the average of fieetefe degrees of freedom. The last three
pairs of columns report the frequency that a particulareggjon model is in th&go% for each of the three
criteria, KLIC, AIC* and BIC..
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We report simulation results based on 10,000 repetitiosiagua design with afiR?> = 50% (i.e. 82 =
0.5) and eitherp = 0.3 or p = 0.9.” For the number of bootstrap resamples we Bse- 1,000. Since
Xo.t = lisincluded in all regression models, the relevant MCSssies are invariant to the actual value for
u, SO we sejr = 0 in our simulations.

The definition of M* will depend on the criterion. With KLIC the set of best modislgiven by the set
of regression models that includ&s. The reason is that KLIC does not favor parsimonious modeale
the AIC* and BIC'. With these two criteriaM*, is defined to be the most parsimonious regression model
that includesX;. The models inM* are identified by the shaded regions in Table 3.

Our simulation results are reported in Table 3. The averaggevofQ(Z;, éj) is given in the first pair
of columns, followed by the average estimate of the effectiegrees of freedonk?. The Gaussian setup
is such that all models are correctly specified. So the @ffeclegrees of freedom is simply the number of
free parameters, which is the number of regressors plusaqufTabIe 3 shows that the average value
of ki, is very close to the number of free parameters injtith regression model. The last three pairs of
columns report the frequency that each of the models akdjg,,. We want large numbers inside the shaded
region and small numbers outside the shaded region. Thiksrase intuitive. As the sample size increases,
from 50 to 100 and then to 500, the MCS procedure becomes betBminating the models that do not re-
side inM*. With a sample size af = 500, the consistent criterion, BfChas reduced the MCS to the single

best model in the majority of simulationhis is not true for the AI€ criterion. Although it tends to
settle on more parsimonious models than the KLIC, the*Ai&s a penalty that makes it possible for an
overparameterized model to have the best*Allhe bootstrap testing procedure is conservative when the
comparisons involve nested models under KLIC, see our siison in the last paragraph of Section 3.2.
This explains that both Type | and Type Il errors are closesto Zvhenn = 500, an ideal outcome that is
not guaranteed whet;,,. includes non-nested modéls.

6 Empirical Applications

6.1 US Inflation Forecasts: Stock & Watson (JME, 1999) Revised

This section revisits the Stock and Watson (1999) study efuist out-of-sample predictors of inflation.
Their empirical application consists of pairwise compamis of a large number of inflation forecasting
models. The set of inflation forecasting models include®sd\that have a Phillips curve interpretation,
along with autoregressive and a no-change (month over mtmtkcast. We extend their set of forecasts
by adding a second no-change (12 months over 12 monthskg&ird@at was used in Atkeson and Ohanian
(2001).

Stock and Watson (1999) measure inflation,as either the CPI-U, all item®UNEW) or the headline
personal consumption expenditure implicit price defla@MDC). The relevant Phillips curve is

Ty — e = ¢+ BLOHU + y(L)A - L)m + €yn, (4)

Simulation results fop2 = 0.1 and 09 are available in a separate appendix, see Hansen, Lurdidleson (2010)
8|n an unreported simulation study wheke}; . was designed to include non-nested models, we found theerey by which
M C /\730% converge to 90%
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whereu, is the unemployment raté, is the lag polynomial operator, amg,, is the long-horizon inflation
forecast innovation. Note that the natural rate hypothissiemt imposed on the Phillips curve (4) and that
inflation as a regressor is in its first difference. Stock arats6h also forecast inflation with (4) where the
unemployment rate; is replaced with different macro variabl®s.

The entire sample runs from 1956t to 1997m9. Following Stock and Watson, we study the properties
of their forecasting models on the pre- and post-1984 supkesnof 1970m1-1983m12 and 1984ul-
1996Mm9.1° The former subsample contains the great inflation of the 4970 the rapid disinflation of the
early 1980s. Inflation does not exhibit this volatile beloavh the post-1984 subsample. We follow Stock
and Watson in order to replicate their inflation forecastowever, our MCS bootstrap implementation,
which is described in Section 3, relies on an assumptiordthais stationary. This is not plausible when the
parameters are estimated with a recursive estimation ssh&smwas used in Stock and Watson (1999). We
avoid this problem by following Giacomini and White (2006)dapresent empirical results that are based
on parameters estimated over a rolling window with a fixed leinof observations: Regressions are
estimated on data that begins no earlier than 1880although lagged regressors impinge on observations
back to 1959u1.

We compute the MCS across all of the Stock and Watson infldticetasting models. This includes
the Phillips curve model (4), the inflation forecasting d@rathat runs through all of the macro variables
considered by Stock and Watson, a univariate autoregeessidel, and two no-change forecasts. The first
no-change forecast is the past month’s inflation rate anddghend no-change forecast uses the past year’s
inflation rate as its forecast. The former matches the nogdhdorecast in Stock and Watson (1999) and
the latter matches the no-change forecast in Atkeson andi@hé2001). Stock and Watson also present
results for forecast combinations and forecasts basediocipal component indicator variablés.

Tables 4-5 report (the level of) the root mean square errbt§R) and MCSp-values for each of the
inflation forecasting models. The first column of Table 4 dists the transformation of the macro variable
employed by the forecasting equation.

Our Table 4 matches the results reported in Stock and Wai€99( table 2). The initial model space
MU is filled with a total of 19 models. The results for the two rmnge forecasts and the AR are the first
three rows of Table 4. The RMSEs and thealues for the Phillips curve forecasting model (4) apjete
bottom row of our Table 4. The rest of the rows of Table 4 arédghp’ and ‘first difference’ specifications
of Stock and Watson'’s aggregate activity variables thagapjm place oty in inflation forecasting equation
(4). The ‘gap’ variables are computed with a one-sided Hédaind Prescott (1997) filter, see Stock and
Watson (1999, p. 301) for detaitd.

9The data for this applications was downloaded from Mark Waitswebpage. We refer the interested reader to Stock and

Watson (1999) for details about the data and model spedificat

10stock and Watson split their sample at the end of 1983 to axttdou structural change in inflation dynamics. This struatu
break is ignored when estimating the Phillips curve modeh@# the alternative inflation forecasting equations. Thjsstified
by Stock and Watson because the impact of the 1984 struttigak on their estimated Phillips curve coefficients is $mal

11The corresponding empirical results that are based on deasthat are estimated with the recursive scheme, as wesrus
Stock and Watson (1999), are available in a separate appesedi Hansen, Lunde, and Nason (2010). Although our asgampt
do not justify the recursive estimation scheme, it prodyzs=udo-MCS results that are very similar to those obtaimelbiuthe
rolling window estimation scheme.

125ee Stock and Watson (1999) for details about their modstiragegy, forecasting procedures, and data set.

13The MCS p-values are computed using a block sizel o 12 in the bootstrap implementation. The M@Bvalues are
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Table 4: MCS for simple regression-based inflation forecast

PUNEW GMDC

1970-1983 1984-1996 1970-1983 1984-1996
Variable Trans RMSE puycs RMSE  pucs RMSE pumcs RMSE  pucs
No change (month) 3.290 .001 2.140 122 2.208 .042 1.751 113
No change (year) - 2.798 .006 1.207 00 2100 .109 0.888 1.00*
uniar - 2.802 .004 1.330 .736 2.026 .145 1.070 .41%1*
'Gaps’ specifications
dtip DT 2.597 .059 1.475 .651 2.103 .095 1.050 .41
dtgmpyq DT 2.751 .020 1.691 .299 2.090 .157 1.125 317
dtmsmtq DT 22202 .872 1704 ATT 1.806 .464* 1.046 .41%1*
dtlpnag DT 2.591 .068 1433 .694 2.132 .075 1.026 411
ipxmca Lv 2.609 .034 1.318 .736 2.040 .261* 1.034 411"
hsbp LN 2114 106 1582 579 1.967 .364 1.034 .41%1*
lhmu25 Lv 2.968 .006 1.439 .651 2.231 .061 1.040 411
First difference specifications
ip DLN 2.344 306 1.393 .736* 1.946 .298 1.058 411
gmpyq DLN 2306 .842 1524 .421* 1.709 1.06© 1.158 .317*
msmtq DLN 2158 .872 1.391 .736" 1.857 464 1.066 .411*
lpnag DLN 2408 430 1.341 .736* 1.940 .298 1.027 .41%
dipxmca DLV 2379 .139 1.353 .736" 1.903 .446* 1.041 .41%1*
dhsbp DLN 2.850 .003 1.456 .685 2.076 .075 1.070 411
dlhmu25 DLV 2383 .169 1.440 579 2035 .102 1.065 411"
dihur DLV 2296 .631* 1.429 .69%" 1.904 .330* 1.067 .41%1*
Phillips curve
LHUR 2.637 .034 1.388 .736 2.076 .098 1.162 .325

RMSEs and MCSp-values for the different forecasts. The forecast%o% and /T/T#S% are identified by one and
two asterisks, respectively.

A glance at Table 4 reveals that the MCS of subsamples 1£7Q2983M12 and 1984u1-1996M9 are
strikingly different for both inflation serie)UNEWand GMDC. The MCS of the pre-1984 subsample
places seven forecasting modeIsFibJNEW/\//T%% and nine models i|GMDC—/\7$5%. For the post-1984
subsample, all but one model ends up/s,, for both PUNEW and GMDC. The only model that is
consistently kicked out of these MCSs is the ‘monthly’ n@wbe forecast, which uses last month’s inflation
rate as its forecast.

Another intriguing feature of Table 4 is the inflation forsttag models that reside in the MCS when
faced with the 197011-1983M12 subsample. The seven models that a@LikNEW/\//T%% are driven by
macro variables related either to real economic activity.(enanufacturing and trade, and building permits)
or to the labor market. The labor market variableslprag (employees on nonagricultural payrolls) and
dihur (first difference of the unemployment rate, all workers 1&rgeand older). Thus, there is labor market

information that is important for predicting inflation dag the pre-1984 subsample. This result is consistent

qualitatively similar when computed with= 6, andl = 9. These are reported in a separate appendix, see Hansen,, lamde
Nason (2010).
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with traditional Keynesian measures of aggregate demand.

Table 4 also shows that there are two levels and five firstrdifilee specifications of the forecasting
equation that consistently appear/ﬁ%% using the 1970u1-1983m12 subsample. On this subsample,
only msmtq(total real manufacturing and trade) is consistently erdgaicoyPUNEW andGMDC—ﬂ;S%
whether in levels or first differences. In summary, we interghese variables as signals about the antic-
ipated path either of real aggregate demand or real aggregaply that help to predict inflation out-of-
sample in the pre-1984 subsample.

There are several more inferences to draw from Table 4. Toeseern the two types of no change
forecasts whose predictive accuracy is strikingly différelThe no-change (month) forecast fails to appear
in A’/\lis% either on the pre-1984 or on the post-1984 subsamples, aféne no-change (year) forecast
finds its way intoﬂ;S% for the post-1984 subsample, but not the 18731983m12 subsample. These
results are especially of interest because the no-chamge) (forecast yields the best inflation forecasts on
the 1984m1-1996M9 subsample for botRUNEWandGMDC. These empirical results for the no-change
inflation forecasts are interesting because they recoti@leesults of Stock and Watson (1999) with those
of Atkeson and Ohanian (2001). Stock and Watson (1999, p) & that: “The conventionally speci-
fied Phillips curve, based on the unemployment rate, wasdf@arperform reasonably well. Its forecasts
are better than univariate forecasting models (both agitessions and random walk models)”. In contrast,
Atkeson and Ohanian (2001, p. 10) conclude that: “econgrhiate not produced a version of the Phillips
curve that makes more accurate inflation forecasts thare thiom a naive model that presumes inflation
over the next four quarters will be equal to inflation over i four quarters.” The source of the disagree-
ment is that Stock and Watson and Atkeson and Ohanian stifdyedit no-change inflation forecasts. The
no-change forecast Stock and Watson (1999) deploy is lasthisanflation rate, whereas the no-change
forecasts in Atkeson and Ohanian (2001) is the past yedl&ion rate.

We agree with Stock and Watson that the Phillips curve is &ddlat yields better forecast of inflation
in the pre-1984 period. The relevaM/ES% do not include either of the no-change forecastsHOINEW
andGMDC. However for the post-1984 sample we observe that no-ch@mge) forecast has the smallest
sample loss of all forecasts which supports the conclusigtl@son and Ohanian (2001).

Table 5 generates MCSs using factor models and forecasticatidm methods that replicates the set
of forecasts in Stock and Watson (1999, table 4). They coehitarge set of inflation forecasts from
an array of 168 models using sample means, sample mediahsjdge estimation to produce forecast
weighting schemes. The other forecasting approach depmangsincipal components of the 168 macro-
predictors. The idea is that there exists an underlyingpfamtfactors (e.g., real aggregate demand, financial
conditions) that summarize the information of a large sedreflictors. For example, Solow (1976) argues
that a motivation for the Phillips curves of the 1960s and0Ewas that unemployment captured, albeit
imperfectly, the true unobserved state of real aggregateadd.

The factor models and forecast combination methods pradélegion forecasts that are in general better
than those in Table 4. The forecasts constructed from ‘Alidators’ and ‘Real activity indicators’ in Panels
A and B do particularly well across the board. Interestintiig best forecast during the 19v:-1983m12
subsample is the one-factor ‘All indicators’ model, whiteetsecond best is the one-factor ‘Real activity
indicators’ model. Most of the forecasts constructed from ‘Money’ variables do not find their way into

the MCSs.
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Despite the better predictive accuracy produced by factmats and forecast combinations, during the
post-1984 period the best forecast is the no-change (ye@gdst.

Table 5: MCS results for shrinkage-type inflation forecasts

PUNEW GMDC

1970-1983 1984-1996 1970-1983 1984-1996
Variable RMSE Pmcs RMSE Pmcs RMSE Pmcs RMSE Pmcs
No change (month)  3.290 .006 2.140  .000 2.208 .006 1.751  .000
No change (year) 2.798  .020 1.207 100 2.100 .120 0.888  1.00*
Univariate 2.802 .012 1.330 .718 2.026  .046 1.070  .378
Panel A. All indicators
Mul. factors 2.367 .2668 1.407 .069 2.105 .088 1.013 .570
1 factor 2106 1.06 1.351 .186 1.746  1.00* 1.038  .5706*
Comb. mean 2.423  .093 1.269  .869 1.880  .585¢ 1.030 .570*
Comb. median 2.585 .030 1.294  .869 1.939  .323 1.055  .530*
Comb. ridge reg. 2121 975 1.318 .869" 1.918 518 1.013  .570*
Panel B. Real activity indicators
Mul. factors 2.245 .768 1.416 .022 1.959 3283 0.990 570
1 factor 2.115 975 1.347 .358* 1.774 720 1.041 570
Comb. mean 2284 615 1.263  .869" 1.827  .698* 1.012 570
Comb. median 2329 495 1284  .869" 1.854  .647* 1.038  .553¢
Comb. ridge reg. 2160 953 1.326  .855* 1.888  .518* 1.013  .5706*
Panel C. Interest rates
Mul. factors 2.828  .019 1512  .005 2.215  .008 1.294  .008
1 factor 2776  .030 1.463 .003 2111  .007 1.102 *161
Comb. mean 2474  .092 1.349  .123 1.935  .323¢ 1.060 .522*
Comb. median 2.567 .077 1.377 .034 1.974 290 1.066  .418"
Comb. ridge reg. 2436  .164 1.372 .069 1962 .26 1.052 .530*
Panel D. Money
Mul. factors 2.801 .015 1.340 .597 2.028 .020 1.075  .057
1 factor 2.805 .013 1.352 .186 2.027 .031 1.104 .026
Comb. mean 2742  .019 1.390 .022 2.033 .012 1.088 .015
Comb. median 2.752  .019 1.340 .386 2.032  .008 1.077  .095
Comb. ridge reg. 2721  .019 1.446  .007 2.013 .088 1.088 .010
Phillips curve
LHUR 2.637  .030 1.388 .022 2.076  .031 1.162  #423

RMSEs and MC-values for the different forecasts. The forecastgxi’go% and /T/l\%% are identified by one and
two asterisks, respectively.

6.2 Likelihood-Based Comparison of Taylor-Rule Models

Monetary policy is often evaluated with the Taylor (1993krtA Taylor rule summarizes the objectives and
constraints that defines monetary policy by mapping (inithticfrom this decision problem to the path of

the short-term nominal interest rate. A canonical monggalicy loss function penalizes the decision maker
for volatility in inflation against its target and output atility around its trend. The mapping generates a
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Taylor rule that has the interest rate respond to inflatioth @utput deviations from trend. Thus, Taylor
rules measure ex post the success monetary policy has hagetingnthe goals of keeping inflation close
to target and output at trend. Taylor (1999), Clarida, Gaid Gertler (2000), and Orphanides (2003) are
leading examples of using Taylor rules to evaluate actualatasy policy, while McCallum (1999) provides
an introduction for consumers of monetary policy rules.

This section shows how the MCS can be used to evaluate whidbrTale regression best approximates
the underlying data generating process. We posit the gefeybor rule regression

Pr Py
Ri=@=p) | v0+ ) vajm—j+ Y WiYej | +pRos+u, ()
j=1 j=1
where R, denotes the short-term nominal interest rateis inflation, y; equals deviations of output from
trend {.e., the output gap), and the error term, is assumed to be a martingale difference process. The
Taylor principle is satisfied igjp;l Yx,j €xceeds one because a one percent rise in the sypp laigs of
inflation indicates thaR should rise by more than 100 basis points. The monetaryypmigponse to real
side fluctuations is given bEJPil Yy.j on thepy lags of the output gap. The interceptis the equilibrium
steady state real rate plus the target inflation rate (wetghy 1— Zf;l Y=.,j)- The Taylor rule regression
(5) includes lagged interes®; _;, which may be interpreted as interest rate smoothing by thizaleébank.
Alternatively, the lagged interest rate could be intergules a proxy for other determinants of the interest
rate that are not captured by the regression (5). Note a#dhbk Taylor rule regression (5) avoids issues
that arise in the estimation of simultaneous equation systeecause contemporaneous inflatien,and
the output gapy;, are not regressors, only lags of these variables are.drc#isie, structural interpretations
have to be applied to the Taylor rule regression (5) with.care

The Taylor rule regression (5) is estimated by ordinarytlesgsares on a U.S. sample that runs from
19791 to 2006Q4. Table 6 provides details about the data used to estimat&ayior rule regressioff.
The (effective) federal funds rate defines the Taylor rulecpoate, R;. The growth rate of the implicit GDP
deflator is our measure of inflation;. The cyclical component of the Hodrick and Prescott (199@rfis
applied to real GDP to obtain estimates of the output gapWe also employ two real activity variables
to fill out the model space and to act as alternatives to theubgfap. These real activity variables are the
Baxter and King (1999) filtered unemployment rate gap, and the Nason and Smith (2008) measure of
real unit labor costsiulc;. We compute the Baxter-Kingr; using the maximum likelihood-Kalman filter
methods of Harvey and Trimbur (2003).

The model space consists of 25 specifications. The modekspduuilt by settingo to zero or esti-
mating it, p, = 1 or 2 py, = 1 or 2 and equatingy; with the output gap, or replacing it with either the
unemployment rate gap or real unit labor costs. We add t@tBég= 2 x 2 x 3 x 2) regressions a pure
AR(1) model of the effective federal funds rate.

14ne have generated results on a shorter post-1984 sampletif@ntine volatile 1979-1983 period from the analysis doess n
substantially change our results, beyond the loss of irdition that one would expect with a shorter sample. Thesétsestailable
in a separate appendix found in Hansen, Lunde, and Nasof).201
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Table 6: Taylor Rule Regression Data Set.

Observable Construction
Dependent Variable
R:: Interest rate Effective Fed Funds Rate (EFFR), Tempoegltyregate daily
Rred fundst return (annual rate) to quarterly,
_ Rfed fundst
R =100x In[1 + T]
Independent Variables
m¢: Inflation, Implicit GDP DeflatorP;, e = 400 x In[P; /P _1]
Seasonally Adjusted (SA)
yi: Output gap IQ; — trend Qy, i.e. Transitory Apply Hodrick-Prescott filter
Component of Output. Wher®, to In Qq
is Real GDP in Billions of Chained
2000 $, SA at Annual Rates.
ury: Unemployment rate gap UR, — trendUR,, i.e. transitory Temporally aggregate monthly

component ofJR;. WhereUR; isthe  to quarterly frequency to gegR.
is the civilian unemployment rate, SA.  Apply Baxter-Kindtéi to UR

rulc:: Real unit labor costs The cointegrating residual of Nominaulc, = LS — LP;
ULCi((=LS —LS)andInR. LS is -8 —at—&Ink
Labor Share, i.e. log of compensation
per hour in the non-farm business
sector.LP; is Labor Productivity, i.e.
log of output per hour of all persons
non-farm business sector

The effective federal funds rate is obtained from H.15 Sekkinterest Rates in Federal Reserve Statistical Releases
The implicit price deflator, real GDP, the unemployment ratempensation per hour, and output per hour of all
persons are constructed by the Bureau of Economic Analysissaavailable at the FRED Data Bank at the Federal
Reserve Bank of St. Louis. The sample period is 18192006Q4. The data is drawn from data available online
from the Board of Governors and FRED at the Federal Resermk 8&St. Louis.

We present results of applying the MCS and likelihood-bas@dria to the choice of the best Taylor
rule regression (5) and AR(1) regressions in Tables 7 anchBleT7 reportQ(Z;, éj) (the log-likelihood
function multiplied by minus two); the bootstrap estimafat® effective degrees of freedork;; and the
realizations of the three empirical criteria, KLIC, AlGand BIC. The numbers surrounded by parentheses
in columns headed by KLIC, AIC and BIC, are the MCSp-values, and an asterisk identifies the spec-
ifications that entevﬁgo%. Table 8 lists estimates of the regressions models thahaﬁg’o% along with
their corresponding-statistics in parentheses. Thstatistics are based on robust standard errors following
Newey and West (1987).
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Table 7: MCS for Taylor Rules: 19781 to 2006Q4

A

Model Specification Q(Z;,6)) k* KLIC AlC* BIC*
Ri_1 93.15 13.74 106.89 (0.30) 120.63 (0.47y 157.99 (0.63)
M1 Vi1 284.82 11.44 296.25 (0.00) 307.69 (0.00) 338.79 (0.00)
T i, j=1.2 Ve i, j=12 258.95 14.66 273.61 (0.00) 288.28 (0.01) 328.14 (0.01)
M1 Ure_q 289.65 10.20 299.84 (0.00) 310.04 (0.00) 337.75 (0.00)
T i, j=1.2 Ure_j, j—1.2 268.90 12.82 281.72 (0.00) 294.53 (0.00) 329.37 (0.01)
M1 rulc;_s 289.99 9.89 299.88 (0.00) 309.77 (0.00) 336.67 (0.01)
T i, j=1.2 rulc_j, j—1.2 266.07 12.12 278.19 (0.00) 290.31 (0.01) 323.26 (0.01)
Vi1 ure_1 387.45 17.04 404.49 (0.00) 421.54 (0.00) 467.86 (0.00)
Ve i, j=12 ure_j, j=1.2 385.86 23.42 409.28 (0.00) 432.69 (0.00) 496.35 (0.00)
Vi1 rulc;_; 386.47 14.92 401.39 (0.00) 416.32 (0.00) 456.89 (0.00)
Ve jsj=12 rulcy_;, j-1.2 385.43 19.44 404.87 (0.00) 424.31 (0.00) 477.16 (0.00)
ure_s rulc_s 386.21 15.41 401.62 (0.00) 417.02 (0.00) 458.90 (0.00)
urej, j—12 rulcy_;, j-1.2 384.82 19.86 404.68 (0.00) 424.54 (0.00) 478.52 (0.00)
R_1 Tt Vi1 68.57 17.71 86.28 (0.86) 103.98 (1.00y 152.12 (0.64y
R_1 Ty j=1.2 Ve i jo1.2 62.11 22.11 84.22 (1.00) 106.32 (0.93) 166.43 (0.41)
R_1 M1 ure_1 77.57 16.32 93.89 (0.72) 110.22 (0.89y 154.60 (0.64)
R_1 Ty j=1.2 Ure i, j—12 73.27 18.79 92.07 (0.80) 110.86 (0.89) 161.95 (0.57¥
R_1 M1 rulc_s 72.80 16.06 88.86 (0.86) 104.92 (0.93y 148.58 (1.00y
R_1 Ty j=1.2 rulcy_;, j-1.2 69.21 19.26 88.47 (0.86) 107.73 (0.92y 160.09 (0.58)*
R_1 Vio1 ure_1 86.16 19.16 105.33 (0.33) 124.49 (0.38y 176.59 (0.16)
R_1 Ve i, j=12 Ure_j, j=1.2 85.51 24.32 109.83 (0.28) 134.16 (0.18) 200.28 (0.02)
R_1 Vio1 rulc;_s 89.42 18.92 108.35 (0.29) 127.27 (0.31¥ 178.72 (0.15)
R_1 Ve i, j=12 rulc_j, j—1.2 88.11 22.42 110.53 (0.28) 132.94 (0.20) 193.88 (0.03)
R_1 ure_s rulc_s 87.42 18.07 105.49 (0.33) 123.55 (0.38) 172.66 (0.21)
R_1 Urej, j=1.2 rulc_j, j—1.2 85.93 21.32 107.25 (0.30) 128.56 (0.28Y 186.51 (0.06)

19S 90UBPYUOD [OPOIN

We report the maximized log-likelihood function (multiedi by minus two), the effective degress of freedom, and treetbriteria, KLIC, AIC and
BIC*, along with the corresponding MC@values. The regression modelsArg,,, and M3, are identified by one and two asterisks, respectively.
See the text and Table 6 for variable mnemonics and defisition
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Table 7 shows that the MCS procedure selects 10 to 13 of theo&&ilppe regressions depending on
the information criteria. The lagged nominal ra®e ; is the one regressor common to the regressions
that enterﬂgo% for the KLIC, AIC*, and BIC. Besides the AR(l)A//TgO% consists of the six Taylor rule
specifications that nest the AR(1). Under the KLIC and AltBe Taylor rule regressions include all one or
two lag combinations oft, V;, ury, andrulc;. The BIC produces a smalléﬂgo% because it ejects the two
lag Taylor rule specifications that exclude lagged Thus, the Taylor rule regression-MCS example finds
the BIC tends to settle on more parsimonious models. This iEetexpected, given its larger penalty on
model complexity.

The AR(1) falls intoM3,,, under the KLIC, AIC, and BIC. Although the first line of Table 7 shows
that the AR(1) has the largeQ(Z;, éj) of the regressions covered @;O%, the MCS recruits the AR(1)
because it has a relatively small estimate of the effectegrebs of freedork*. It is important to keep
in mind that estimates of the effective degrees of freedoenlanger than the number of free parameters
in each of the models. This reflects the fact that the Gaussiaatel is misspecified. For example, the
conventional AIC penalty (that doubles the number of freeapeeters) is misleading in the context of
misspecified models, see Takeuchi (1976), Sin and Whiteg)19®d Hong and Preston (2008).

It is somewhat disappointing that the MCS procedure yiekdsiany as 13 models m?go%. The reason
is that the data lacks the information to resolve precisetyctv Taylor rule specification is best in terms
of Kullback-Leibler discrepancy. The large set of modelal& an outcome of the strict requirements that
characterize the MCS. The MCS procedure is designed toataht familywise error rate (FWE), which
is the probability of making one or more false rejections. Wilkbe able to trimM* further if we relax the
control of the FWE, but that will affect the interpretatiofvﬁl\*lga. For instance, if we control the probability
of makingk or more false rejection&-FWE, see e.g. Romano, Shaikh, and Wolf (2008), additioralats
can be eliminated. The drawback loF=WE and other alternative controls is that the MCS loose&et
property, which is to contain the best models with probgbili— «.

Table 8 provides information about the regressionﬁ@o%-KLIC. The shaded area identifies the mod-
els in ﬂ;s%-BIC*. First, note that the estimated Taylor rules always satikfy Taylor principle ice.,
vz=1 > 1l ory.1+ y.2 > 1). The coefficients associated with real activity variabhave insignificant
t-statistics in most cases. Only the first lag of the output g@guces a positive coefficient withtaatio
above two in the first Taylor rule regression listed in Tahld/®reover, the statistically insignificant coef-
ficients for the unemployment rate gap and real unit labotsczariables often have counter intuitive signs.
Finally, the estimates qf are between 0.83 and 0.87 in the Taylor rule regressionsrtiatie a lag ofr,
which suggests interest rate smoothtAg.

The fact that the MCS cannot settle on a single specificatioi a surprising result. Monetary policy-
makers almost surely rely on a more complex informationtsmt tan be summarized by a simple model.
Furthermore, any real activity variable is an imperfect suga of the underlying state of the economy, and
there are important and unresolved issues regarding theureaent of ‘gap’ and marginal cost variables,
which translate into uncertainty about the proper defingiof the real activity variables.

15Ve have also estimated Taylor rule regressions with mowegaae errors, as an alternative to usig 1 as aregressor. The
empirical fit of models with MA errors is, in all cases, infarto the Taylor rule regressions that incluge_q.
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—

Table 8: Regression models.ivil§,,-KLIC.

(4]

Yo 1% VYr,1 Vr,2 Yy.1 Yy.2 Yur,1 Yur,2 Yrule,1 Yrulc,2
5.29 0.96
(2.50) (30.1)
0.12 0.84 1.87 1.20
(0.13) (17.0) (7.01) (2.17)
0.00 0.80 0.77 1.14 1.50 -0.39
(0.00) 12.1) (2.58) (4.76) (1.25) (0.33)
0.82 0.86 1.60 1.58
(0.67) (16.8) (4.85) (0.25)
0.64 0.83 0.68 0.97 5.90 -6.56
(0.56) (12.9) L.77) (2.85) (0.68) (1.16)
0.37 0.87 1.76 -0.81
(0.30) (17.0) (5.38) (1.56)
0.39 0.84 0.76 0.99 -0.18 -0.55
(0.35) (12.9) (2.12) (3.55) (0.23) (0.68)
5.63 0.97 4.89 45.9
(2.20) (37.3) (1.05) (0.79)
5.56 0.97 6.42 -1.71 60.7 -22.9
(2.12) (32.3) (0.58) (0.19) (0.66) (0.42)
5.33 0.97 1.04 -2.47
(2.22) (35.5) (0.32) (0.79)
5.42 0.97 8.37 -8.05 2.52 -5.43
(2.22) (32.6) (0.64) (0.56) (0.75) (0.96)
5.35 0.97 30.9 -3.62
(2.02) (37.8) (0.63) (1.04)
5.43 0.97 52.5 -25.6 -1.18 -2.74
(2.10) (34.2) (0.64) (0.54) (0.30) (0.85)

Parameter estimates withstatistics (in absolute values) in parentheses. The shade identifies the models in

o~

Mo BIC.

7 Summary and Concluding Remarks

This paper introduces the model confidence set (MCS) proeedelates it to other approaches of model
selection and multiple comparisons, and establishes §ramstic theory of the MCS. The MCS is con-
structed from a hypothesis test,(, and an elimination ruleg,,. We defined coherency between test and
elimination rule, and stressed the importance of this coinfoe the finite sample properties of the MCS. We
also outline simple and convenient bootstrap methods mirtplementation of the MCS procedure. The
paper employs Monte Carlo experiments to study the MCS pigeethat reveal it has good small sample
properties.

Itis important to understand the principle of the MCS pragedn applications. The MCS is constructed
such that inference about the ‘best’ follows the convermianeaning of the word ‘significance’. Although
the MCS will contain only the best model(s) asymptoticailynay contain several poor models in finite
samples. A key feature of the MCS procedure is that a modé&ésudied only if it is found to be significantly
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inferior to another model. Models remain in the MCS untily@o inferior, which has the implication that
not all models in the MCS may be judged good models.

An important advantage of the MCS, compared to other selegtiocedures, is that the MCS acknowl-
edges the limits to the informational content of the datathBathan selecting a single model without
regard to degree of information, the MCS procedure yieldstaos models that summarizes key sample
information.

We applied the MCS procedure to the inflation forecastindgplero of Stock and Watson (1999). Results
show that the MCS procedure provides a powerful tool forwaiithg competing inflation forecasts. We
emphasize that the information content of the data matterthé inferences that can be drawn. The great
inflation-disinflation subsample of 19701 - 1983m12 has movements in inflation and macro variables
that allows the MCS procedure to make relatively sharp @wécross the relevant models. The information
content of the less persistent, less volatile 1884: 1996M9 subsample is limited in comparison because
the MCS procedure lets in almost any model that Stock and avatensider. A key exception is the
no-change (month) forecasts that uses last month’s inflatitce as a predictor of future inflation. This
no-change forecast never resides in the MCS in either tHierear the later periods. A likely explanation
is that month-to-month inflation is a noisy measure of cof@tion. This view is supported by the fact
that a second no-change (year) forecast, which employs raoyeayear inflation rate as the forecast, is
a better forecast. This result enables us to reconcile thariead results in Stock and Watson (1999)
with those of Atkeson and Ohanian (2001). Nonetheless, tlestipn of what constitutes the best inflation
forecasting model for the last 35 years of U.S. data remaiasswered because the data provide insufficient
information to distinguish between good and bad models.

This paper also constructs a MCS for Taylor rule regressi@ms®d on three likelihood criteria. Such
interest rate rules are often used to evaluate the successratary policy, but this is not our intent for the
MCS. Instead, we study the MCS that selects the best fittipdpiTaule regressions under either a quasi-
likelihood criterion, the AIC, or the BIC using the effedidegrees of freedom. The competing Taylor rule
regressions consist of different combinations of lags ftdiion, lags of three different real activity variables,
and the lagged federal funds rate. Besides these Tayloragtessions, the MCS must also contend with
a first-order autoregression of the federal funds rate. €geessions are estimated on a 1929200604
sample of U.S. data. Under the three likelihood criteri@, MCS settles on Taylor rule regressions that
satisfy the Taylor principle, include all three competimglractivity variables, and add the lagged federal
funds rate. Further we find that the first-order autoregoesaiso enters the MCS. Thus, the U.S. data lack
the information to resolve precisely which Taylor rule dfieation best describes the data.

Given the large number of forecasting problems economégts &t central banks and other parts of
government, in financial markets, and other settings, th&M@cedure faces a rich set of problems to study.
Furthermore, the MCS has a wide variety of potential usegorm forecast comparisons and regression
models. We leave this work for future research.

16The proportion of models imT/l\*l‘ia that are members o¥4* can be related to thialse discovery ratand theg-value theory
of Storey (2002). See McCracken and Sapp (2005) for an atjglicthat compares forecasting models. See also RomaaikhSh
and Wolf (2008).
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