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Abstract. This paper proposes a sequential procedure to de-
termine the common cointegration rank of panels of cointegrated
VARs. It shows how a panel of cointegrated VARs can be trans-
formed in a set of independent individual models. The likelihood
function of the transformed panel is the sum of the likelihood func-
tions of the individual Cointegrated VARs (CVAR) models. A
bootstrap based procedure is used to compute empirical distribu-
tions of the trace test statistics for these individual models. From
these empirical distributions two panel trace test statistics are con-
structed. The satisfying small sample properties of these tests are
documented by means of Monte Carlo. An empirical application
illustrates the usefullness of this tests.
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1. Introduction

This paper proposes a panel rank test statistic based on a bootstrap
procedure for determination of the cointegration rank in a Panel Coin-
tegrated Vector Autoregressivve (PCVAR) models. The cointegration
rank is an important element to understand the dynamics of a sys-
tem of variables. The sequential likelihood-based procedure for the
determination of the cointegration rank in a system of variables which
are at most I(1) (see Johansen (1995)) is frequently used in empirical
research.

The trace test is a likelihood ratio test for the hypothesis that the
true rank of the system (noted r0 throughout) is equal to r (hereafter
H(r)) against the hypothesis that the system has full rank: H(p) in a
system with p endogenous variables. The sequential procedure uses t
trace test to first test H(r) for r = 0. If this is rejected r is incremented
by 1 and H(1) is tested, and so on until it is not possible to reject or
that H(p− 1) is rejected, in which case the rank is set to p. The poor
small sample performances of this procedure have been documented
(see among others Reinsel and Ahn (1992) and Johansen (2002b)).
Johansen (2002b) proposes a small sample Bartlett correction based on
finding the expectation of the likelihood ratio test statistics to correct
it. However this correction doesn’t always produce sizes close to their
nominal values.

Bootstrap methods are increasingly used to compute empirical test
statistic distributions that are more accurate than the asymptotic dis-
tribution, thus yielding tests with small sample sizes closer to their
nominal values. Swensen (2006) proposes a bootstrap algorithm to es-
timate an empirical distribution of the trace test statistics. He shows
that this algorithm is valid only for a restricted class of data generat-
ing processes (DGP). Cavaliere, Rahbek, and Taylor (2010) (hereafter
CRT) proposes a different bootstrap algorithm valid for any DGP with
variables at most I(1). They obtain sizes very close to their nominal
level even for samples of only 100 observations. The main aim of this
paper is to extend the procedure of CRT to multivariate panel models.

Panels are increasingly used in empirical economics to analyze data
set composed of many countries, regions, industries or markets. One
of their advantages is that they can theoretically be used to improve
inference on the parameters of a model by exploiting the information
contained in several series representing the same quantities for different
individuals.

Two difficulties arise when working with panels.

(1) Panels where the number of N is small relative to T can be es-
timated as a single model. However the number of parameters
in such a model grows quadratically with the number of indi-
viduals. This is often referred to as the curse of dimensionality.
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In order to estimates panels with large N and T, one has to
control the number of parameters.

(2) Many economical series exhibit common patterns across indi-
viduals. When ignored in the modelling of the panel, this com-
mon patterns translate in cross section dependence of the resid-
uals, leading to biased inference.

Breitung and Pesaran (2008) review the literature on cointegration
and rank test in panels. Only a handful of procedures exist to test for
multiple cointegration (i.e. a rank potentially greater than one). Lars-
son et al. (2001) adapts the Johansen (1995) likelihood based frame-
work to panels VAR, using a standardized rank test statistics to obtain
a normally distributed panel rank test statistic. The procedure by
Larsson et al. (2001) has three major drawbacks. First, it ignores cross
section dependence and consequently is potentially biased. Second, it
requires the asymptotic distribution of the trace test statistic to be
homogeneous across individuals. Third, it requires the two first mo-
ments of the asymptotic distribution of the trace test statistic to be
simulated.

Pesaran (2006) and Kapetanios et al. (2009) propose a method to
overcome the curse of dimensionality and model cross section depen-
dence in order to obtain residuals uncorrelated through space and time.
It is applied by Dees et al. (2005) to construct the Global VAR which
has spawned a large litterature on multicountry macroeconomic and
financial models.This method is based on the use of weighted cross sec-
tion averages of the data to construct proxy for the unobserved common
factors responsible for cross section dependence.

In the next section I introduce the PCVAR model and show how
it can be transformed into set of independent individual models using
results by Dees et al. (2005). I then introduce the bootstrap algorithm
and the two panel trace test statistics, the properties of which are
investigated by means of a Monte Carlo experiment. In the last section
an empiricall application demonastrate the potential of this method.
Table 1 summarizes the notation used throughout this paper.

2. The Model

The basic model is the panel vector autoregression. Its structure
isn’t restricted, it is identified by the subscript U:

(1) Yt =
k+1∑
l=1

ΨlYt−l + εt

This can be reformulated in its error correction form:

(2) ∆Yt = ΠYt−1 +
k∑

l=1

Γl∆Yt−l + εt
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Table 1. Notation

Symbol Description Symbol Description
N Total number of indi-

vidual
i Individual index, from

1 to N
T Number of observa-

tions
t Observation index

B Total number of boot-
strap iterations

b Iteration index for the
bootstrap

p Number of variables
per individual

p∗ Number of local aver-
age variables per indi-
vidual

r,r0 Cointegration ranks ki Lag order of the model
for individual i

d−→ Convergence in distri-
bution

p−→ Convergence in proba-
bility

w.p.−−→ Weak convergence in
probability1

q.m.−−→ Convergence in qua-
dratic mean

−→
N

with N →∞ −→
T

with T →∞
−−→
N,T

with N → ∞ and
T → ∞ in no specific
order

−−−−−→
seq(T,N)

T → ∞ followed by
N →∞

.∗ Local averages .† Bootstrap variable or
statistic

.̄ Arithmetic average ||.|| quadratic norm
0p A p×p matrix of zeros .⊥ The ortogonal

complement2

Ip The p×p identity ma-
trix

1 see Hansen (1996); Giné and Zinn (1990)
2 Defined such that for a matrix A: A′⊥A = 0

The endogenous variables are stacked Yt := (Y ′1,t, . . . , Y
′
N,t)

′ in an [Np× 1]
vector. Yi,t is the p × 1 vector of endogenous variables for unit i. The
parameter matrices Γl and Π are Np × Np. εt is a Np × 1 vector of
unobserved Gaussian shocks to the system, with mean 0 and variance-
covariance matrix ΩU .

ΩU =

ΩU
11 . . . ΩU

1N
...

. . .
...

ΩU
N1 . . . ΩU

NN


The log-likelihood function for the model given in equation 2 under

the assumption that the innovations are normaly distributed reads (see
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Johansen (1995)):

(3) LLU = −T
2

ln (det (ΩU)) +K

where K is some constant term.
Even for a system with a moderate number of individuals the number

of parameters to be estimated in the model becomes quickly unman-
ageable for conventional sizes of T. This section will focus on showing
how the model can be transformed in a set of independent individual
models. Under this transformation the likelihood function of the panel
is the sum of the likelihoods of the individual models.

As in Dees et al. (2005) I assume the following data generating pro-
cess (DGP) for the variables of individual i:

Assumption 1. The DGP of Yi is given by the common factor model:

(4) Yi,t = δi0 + δi1t+ γf,ift + γ0,iY0,t + Ψi,t + υi,t

Where ft is a mf × 1 vector of common unobserved factors, with γf,i
the associated p × mf matrix of individual loadings. Y0,t is a m0 × 1
vector of observed common effects with γ0,i the associated matrix of
individual loadings. Ψi,t is the vector of unit specific effects containing
past value of Yi,t as well as unit specific deterministic components. υi,t
is a vector of idiosyncratic shocks. υi,t has a variance covariance matrix
equal to Ωii. υt, the stacked vector of individual idiosyncratic shocks,
has covariance matrix:

Ω =

Ω11 . . . 0
...

. . .
...

0 . . . ΩNN


Under assumption 1, dependence between the units in the panel is

only generated by the common factors. The shocks υi,t are by assump-
tion normaly distributed and uncorrelated across individuals. In the
model given by equation 2 the unobserved common factors are not ac-
counted for. Hence there is dependence among the residual. ΩU is in
general not block diagonal. Hence, noting LLi the log likelihood of the
individual model:

LLU = −T
2

ln (det (ΩU)) +K

6= −T
2

N∑
i=1

ln
(
det
(
ΩU

ii

))
+K

6=
N∑
i=1

LLi
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Dees et al. (2005) and Pesaran (2006) show how to construct a proxy
for the unobserved common factors. Define:

Y ∗i,t = wi,tYt =
N∑
j=1

wi,j,tYj,t

as the local average for individual i. The local average is a weighted
sum of every individual with

wi,i,t = 0

wi,j,t ∈ ]0, 1[ ∀i 6= j
N∑
j=1

wi,j,t = 1

The weights must also fulfil the atomistic condition formally defined in
Lemma A.1 in Pesaran (2006). These conditions ensure that the local
average is not dominated by a single individual. Using local averages
on equation 4, we get:

Y ∗i,t = δ∗i0 + δ∗i1t+ γ∗f,ift + γ0,iY0,t + Ψ∗i,t + υ∗i,t

Assuming that the p×mf matrix of average factor loadings coefficients
γ∗f,i has full column rank and p ≥ mf , Dees et al. (2005) shows that

(5) ft
q.m.−−→
N

(
γ′∗f,iγ

∗
f,i

)−1
γ∗f,i
(
Y ∗i,t − δ∗i0 − δ∗i1t− γ∗0,iY0,t −Ψ∗i,t

)
They also show that:

(6) Φi(L, ki) (Yi,t − δi0 − δi1t− γf,ift − γ0,iY0,t) ≈ υi,t

Where Φi(L, ki) is a lag polynomial of order ki. By inserting the result
of equation 5 in equation 6 it follows that:

(7) Φi(L, ki)
(
Yi,t − δ̃i0 − δ̃i1t− γ̃f,iY ∗i,t − γ̃0,iY0,t

)
≈ υi,t

Where the ˜ parameters are defined as combinations of the original
individual and starred (∗) parameters. Using these results, I can rewrite
the model given by equation 7 as:

∆Yi,t = α̃iβ̃
′
i

(
Yi,t−1, Y

∗
i,t−1, Y0,t−1

)
+ Λi,0∆

(
Y ∗i,t, Y0,t

)
+

k∑
l=1

Γ̃i,l∆
(
Yi,t−l, Y

∗
i,t−l, Y0,t−l

)
+ ε̃i,t(8)

Thus ˆ̃εit → υi,t. Since by assumption E[υi,tυ
′
j,t] = 0 for i 6= j, we have:

Cov(εitε
′
jt)→ 0
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Remark Using the local averages, the full panel now reads:

(9) ∆Yt = α̃β̃′(Zt−1, Y0,t) + Λ0∆
(
Y ∗i,t, Y0,t

)
+

k∑
l=1

Γ̃l∆(Zt−l, Y0,t−l) + ε̃t

Where, by construction:

α =

α1 . . . 0p
... αi

...
0p . . . αN

 β = [β1, · · · , βN ]

and

Zit =
(
Y ′i,t−1, Y

′∗
i,t−1

)′
= Wi,tYt

with

Wi,t =

[
0p . . . 0p Ip 0p . . . 0p
wi,1,t . . . wi,i−1,t 0p wi,i+1,t . . . wi,N,t

]
This formulation of the model stress the importance of the Wi,t matrix
as the link between every unit in the model.

The variance covariance matrix for the full panel is block diagonal:̂̃
Ω = E[ˆ̃εtˆ̃ε

′
t](10)

→

Ω̃11 . . . 0
...

. . .
...

0 . . . Ω̃NN


Hence the log likelihood of the full panel given in equation 9 is:

LL = −T
2

ln det(
ˆ̃
Ω) +K(11)

= −T
2

N∑
i=1

ln det(
ˆ̃
Ωii) +K =

N∑
i=1

LLi(12)

Remark I use the property that the determinant of a block diagonal
matrix is equal to the product of the determinants of its blocks.

The full panel can now be estimated by maximizing the log likelihood
function of each individual model instead of maximizing the likelihood
function of the full panel. The dimension of the parameter matrices of
the individual models given by equation 8 are independent of N. Hence
the transformed panel given in equation 9 is not subject to cross section
dependence of the residuals nor to the curse of dimensionality. This is
done at the price of an increase of the dimension of the the individual
model with the inclusion of the weakly exogenous local averages.
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3. Bootstrap Panel Rank Test

The cointegration rank of a VAR is an important element to under-
stand the dynamics of a system of integrated variables. The sequential
procedure by Johansen (1995) for determination of the rank of a system
of I(1) variables in the individual VAR is used extensively in applied
economic research. There are two main motivations for using a boot-
strap based procedure to construct a panel cointegration rank test:

(1) Bootstrap procedures are known to potentially yield sizeable
improvements in finite sample performances of statistical tests.
A bootstrap procedure can be used to compute critical values
of test in finite samples, thus producing tests with sizes closer
to their nominal levels. The finite sample performance of the
bootstrap sequential rank test procedure for a single individual
CVAR reported in Cavaliere, Rahbek, and Taylor (2010) show
a significant improvement over the testing procedure based on
asymptotic p-values.

(2) The trace test statistic’s asymptotic distribution depends on the
deterministic terms in the models as well as on the number of
endogenous and weakly exogenous variables. This distribution
needs to be simulated for every specific model. The bootstrap
procedure doesn’t require simulating the asymptotic distribu-
tion of the trace test statistic for the model under investigation.

Swensen (2006) proposes an algorithm for constructing a sequential
rank test using the bootstrap. As CRT shows, this procedure has a
major caveat: the model used to generate the bootstrap samples is a
mix of parameters estimated under the null and under the alternative
hypothesis. The short run parameters are estimated under the alterna-
tive hypothesis of full rankH(p) while the rest of the model is estimated
under H(r). In this case the bootstrap is in general not valid.

The procedure by CRT has one major difference with Swensen’s: the
short run parameters used to generate the pseudo-data are estimated
under the null hypothesis H(r). This ensures that the DGP used is
non explosive and that the bootstrap procedure is valid even when the
pseudo-data is generated under an invalid rank choice.

Before stating the algorithm and the panel bootstrap rank test sta-
tistics, some assumptions on the dynamics of the model have to be
made.

Assumption 2. The innovations follow an i.i.d. sequence {εit} satis-
fying:

(1) E(εit)=0
(2) E(εitε

′
it) = Ωi

(3) E||εit||4 ≤ K <∞
(4) E(εitε

′
jt) = 0p for i 6= j.
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The 3 first points of the assumption are standard and ensure well be-
haved residuals. The 4th is the block diagonal structure of the variance
covariance matrix.

Assumption 3. Some assumptions on the dynamics of the individual
model:

(1) All the characteristic roots associated with the model described
by equation 8 are on or outside the unit circle.

(2) αi and βi have full column rank r
(3) det(α′i,⊥(Ip −

∑
l Γi,l)βi,⊥) 6= 0

Assumption 4. Distinct eigenvalues: The r0 non-zero eigenvalues
that solve the eigenvalue problem (see appendix A) are distinct.

Remark To control for cross section dependence, weak exogenous vari-
ables are included in the model. To create the bootstrap sample it is
necessary to condition on these variables. Harbo et al. (1998) establish
that the sequential rank test procedure is consistent when conditioning
on weak exogenous variables and only estimating a partial system.

I can now write the panel bootstrap rank test algorithm.

Algorithm 1. Initialize with r=0.

(1) Under H(r), estimate the parameter matrices of equation 8
for each individual model by Gaussian quasi-maximum likeli-
hood estimation. Save the resulting residuals ε̂r,i,t. Compute
the individual trace test statistic Qr,i for H0 : r0 = r against
HA : r0 = p.

(2) Recenter the residuals ε̂cr,i,t = ε̂r,i,t − 1
T

∑
t ε̂r,i,t. Using the cen-

tered residuals construct a bootstrap matrix of residuals. This
can be done by resampling or wild bootstrap. It is also possi-
ble to draw residuals from a multivariate normal distribution
N (0, Ω̂i). Define the bootstrap residuals as ε̂†r,i,t

(3) Using the parameter matrices estimated under H(r) and the
bootstrap residuals, generate for each individual B bootstrap sam-
ples using the model:

∆X†i,t = α̂r
i β̂

r
i (X†i,t−1, Y

∗
i,t−1) + λ̂ri,0∆Y

∗
i,t−1

+
∑
l

Γ̂r
i,l∆(X†i,t−l, Y

∗
i,t−1) + ε̂†,ri,t

(4) For each individual bootstrap sample compute the bootstrapped

trace test statistics Q†,br,i where b denotes the realization index of
the bootstrap.

(5) For each individual compute the bootstrap p-value of the trace
test statistic:

p†i,r =
1

B

B∑
b=1

1{Qi,r<Q†,b
i,r}
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and compute the average of the standardized individual p-values:

P̄r =

N∑
i=1

(
p†i,r −

1

2

)
√
N

12
If the rank tested is the true rank (r = r0):

P̄r
d−−−−−→

seq(T,N)
N (0, 1)

For the proof, see appendix B. Let p
(
P̄r

)
be the p-value asso-

ciated to the statistic P̄r. If p
(
P̄r

)
≥ η where η is the selected

significance level, then the rank of the panel is set to r. Oth-
erwise, if r + 1 < p restart from step 1 with r = r + 1 or if
r + 1 = p, the rank of the panel is p.

Remark I do not describe the details of the computation of the trace
test statistics. This is done using the standard method exposed, for
example, in Johansen (1995) and briefly described in appendix A.

Remark The P̄r is a one sided test and the associated p-value should
be computed using critical values from the appropriate quantile of the
left tail of a standard normal distribution.

I propose an other test statistic based on a pulling of demeaned
individual trace test statistics. The algorithm is identical to algorithm
1 until step 5. Hence I will not repeat every step of the algorithm but
only state the alternative ending:

Algorithm 2. Initialize with r=0. Use steps 1 to 4 of algorithm 1.

(5) For each individual compute the mean of the bootstrap test sta-

tistics Q̄†i,r = 1
B

B∑
b=1

Q†,bi,r . Note:

NQr =
1√
N

(
N∑
i=1

(
Qi,r − Q̄†i,r

))

NQ†,br =
1√
N

(
N∑
i=1

(
Q†,bi,r − Q̄

†
i,r

))
NQr and NQ†,br both follow the same normal distribution with
mean zero and unknown, but identical, variance. For the proof,
see appendix B.

Let p (NQr) be the p-value associated to the statistic NQr.

p (NQr) =
1

B

B∑
b=1

1{NQr<NQ†,b
r }
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If p (NQr) ≥ η where η is the selected significance level, then
the rank of the panel is set to r. Otherwise, if r+ 1 < p restart
from step 1 with r = r+ 1 or if r+ 1 = p, the rank of the panel
is p.

Theorem 3.1. Consistency of the P̄r and NQr statistics: let r̂ be the
rank selected by algorithm 1 or 2. Then under assumptions 2, 3 and 4:

lim
T→∞

P (r̂ = r) = 0, ∀r < r0

lim
T→∞

P (r̂ = r0) =

{
1− η if r0 < p

1 if r0 = p

lim
T→∞

sup
r∈{r0+1,··· ,p}

P (r̂ = r) ≤ η for r > r0

For the proof see appendix B.
The P̄r panel test statistic proposed in this paper is based on pooled

p-values associated to the individual bootstrap trace test statistics.
When the deterministic structure is different for individual i and j,
the asymptotic distributions of the trace test statistics are different:
tr(Qr,∞,i) 6= tr(Qr,∞,j). Thus pooling the test statistics is impossi-
ble thus the NQr isn’t valid in this case. The p-values generated by
the bootstrap sequential procedure of CRT converges to the uniform
distribution when r = r0 and to 0 when r < r0 regardless of the as-
ymptotic distribution of the underlying individual trace test statistic.
Thus the p-values can be pooled to generate a panel test statistic. In
general this test statistic allows for a greater degree of heterogeneity
across individual models than the normalized test statistic discussed
previously.

4. Simulation Results

Swensen (2006) and Cavaliere, Rahbek, and Taylor (2010) use a sim-
ilar DGP to evaluate the size properties of their sequential bootstrap
rank test procedure. This DGP is also used by Johansen (2002a) to
estimate the small sample performances of the Bartlett corrected rank
test. I will use this DGP as the benchmark case for this simulation
study and progressively introduce modifications to this benchmark.
The model in VECM form is:

∆Yi,t = αiβ
′
iYi,t−1 + εi,t

where α′i = [−0.4,−0.4, 0, 0, 0] and β′i = [1, 0, 0, 0, 0]. εi,t ∼ N (0,Ωi)
where Ωi = I5. This DGP (noted DGP1 henceforth) is very simple,
with no lagged first differences, only one cointegration vector an no
correlation between the innovations. This DGP, and the following ones,
are estimated with a restricted constant. The simulation results are
reported in table 2.
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DGP2 is a small modification of the first one. The number of
endogenous variables is reduced to 3, with α′i = [−0.4,−0.4, 0] and
β′i = [1, 0, 0]. The innovations are still uncorrelated within the indi-
vidual model and across them. Local averages are constructed with
uniform weights (wijt = 1

N−1 ∀i, j, t) and are included as weak exoge-
nous variable. No common factor is included. Thus the rank of the
resulting system is still 1. The system has now 3 endogenous variables
and 3 weakly exogenous variables. Results are reported in table 3

DGP3a introduces two modification from DGP 2. A I(1) common
factor is included in the DGP. The common factor is generated by
adding the same sequence of N (0, 1) distributed innovations to every
Yit. This results in the introduction of a random walk in the DGP
common to every individual. The model becomes:

∆Yi,t = αiβ
′
iYi,t−1 + λiFt + εi,t

Where α′i = [−0.4,−0.4, 0.4] and β′i = [1, 1,−1]. The common factor
only impact the first variable: λ′i = [0.5, 0, 0]. In the estimated DGP,
local averages based on uniform weights are introduced to proxy for
this common factor. Since the endogenous variables and the local av-
erages share a common stochastic trend, the rank of this system is 2.
Simulation results are reported in table 4.

DGP3b is identical except for the loadings of the common factor
which becomes: λ′i = [1, 0, 0]. Simulation results are reported in table
5.

It appears that the individual rank test performs similarly, and quite
poorly, for DGP3a and DGP3b. The panel rank test outperforms the
individual one in both cases, getting close to the nominal size when
N and T become large. The panel rank test seems to perform better
when the loading of the common factor is stronger. The P̄r performs
very well in samples with small T but gains relatively little power from
the extension of the sample length.
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Table 2. Bootstrap1 procedure for selecting individual
and panel rank.

DGP1, true rank is 12

Individual rank test3

N T r = 0 r = 1 r = 2 r = 3 r = 4 r = 5
5 100 0.1180 0.8140 0.0500 0.0080 0.0080 0.0020
5 200 0.0000 0.9380 0.0500 0.0040 0.0000 0.0080
5 500 0.0000 0.9440 0.0480 0.0020 0.0020 0.0040
10 100 0.1080 0.8500 0.0340 0.0040 0.0010 0.0030
10 200 0.0000 0.9460 0.0430 0.0060 0.0010 0.0040
10 500 0.0000 0.9480 0.0360 0.0100 0.0010 0.0050
20 100 0.1325 0.8085 0.0465 0.0075 0.0030 0.0020
20 200 0.0000 0.9505 0.0365 0.0085 0.0015 0.0030
20 500 0.0000 0.9385 0.0530 0.0045 0.0020 0.0020
50 100 0.1246 0.8312 0.0338 0.0066 0.0024 0.0014
50 200 0.0000 0.9444 0.0456 0.0058 0.0020 0.0022
50 500 0.0000 0.9456 0.0410 0.0082 0.0024 0.0028

Panel rank test3

N T r = 0 r = 1 r = 2 r = 3 r = 4 r = 5
5 100 0.0000 0.9100 0.0900 0.0000 0.0000 0.0000
5 200 0.0000 0.9300 0.0700 0.0000 0.0000 0.0000
5 500 0.0000 0.9500 0.0500 0.0000 0.0000 0.0000
10 100 0.0000 0.9900 0.0100 0.0000 0.0000 0.0000
10 200 0.0000 0.9500 0.0500 0.0000 0.0000 0.0000
10 500 0.0000 0.9800 0.0200 0.0000 0.0000 0.0000
20 100 0.0000 0.9600 0.0400 0.0000 0.0000 0.0000
20 200 0.0000 0.9500 0.0500 0.0000 0.0000 0.0000
20 500 0.0000 0.9100 0.0900 0.0000 0.0000 0.0000
50 100 0.0000 0.9900 0.0100 0.0000 0.0000 0.0000
50 200 0.0000 0.9700 0.0300 0.0000 0.0000 0.0000
50 500 0.0000 0.9300 0.0700 0.0000 0.0000 0.0000

P̄r panel rank test3

N T r = 0 r = 1 r = 2 r = 3 r = 4 r = 5
5 100 0.0000 0.6100 0.3300 0.0500 0.0000 0.0100
5 200 0.0000 0.6400 0.3200 0.0200 0.0100 0.0100
5 500 0.0000 0.7200 0.2600 0.0100 0.0000 0.0100
10 100 0.0000 0.7300 0.2700 0.0000 0.0000 0.0000
10 200 0.0000 0.6800 0.3100 0.0100 0.0000 0.0000
10 500 0.0000 0.6800 0.3200 0.0000 0.0000 0.0000
20 100 0.0000 0.6700 0.3300 0.0000 0.0000 0.0000
20 200 0.0000 0.6500 0.3500 0.0000 0.0000 0.0000
20 500 0.0000 0.6700 0.3300 0.0000 0.0000 0.0000
50 100 0.0000 0.7200 0.2800 0.0000 0.0000 0.0000
50 200 0.0000 0.6100 0.3900 0.0000 0.0000 0.0000
50 500 0.0000 0.7100 0.2900 0.0000 0.0000 0.0000

1 Results based on 199 bootstrap and 100 Monte Carlo replications.
2 Bootstrap residuals constructed by resampling of the centered resid-

uals.
3 Frequency of rank selection.



14 LAURENT A. F. CALLOT

Table 3. Bootstrap1 procedure for selecting individual
and panel rank.

DGP2, true rank is 12

Individual rank test3

N T r = 0 r = 1 r = 2 r = 3
5 100 0.0000 0.9440 0.0400 0.0160
5 200 0.0000 0.9580 0.0400 0.0020
5 500 0.0000 0.9260 0.0560 0.0180
10 100 0.0000 0.9370 0.0410 0.0220
10 200 0.0000 0.9350 0.0510 0.0140
10 500 0.0000 0.9330 0.0520 0.0150
20 100 0.0000 0.9510 0.0350 0.0140
20 200 0.0000 0.9430 0.0440 0.0130
20 500 0.0000 0.9440 0.0430 0.0130
50 100 0.0000 0.9486 0.0388 0.0126
50 200 0.0000 0.9510 0.0374 0.0116
50 500 0.0000 0.9464 0.0396 0.0140

Panel rank test3

N T r = 0 r = 1 r = 2 r = 3
5 100 0.0000 0.9600 0.0400 0.0000
5 200 0.0000 0.9600 0.0400 0.0000
5 500 0.0000 0.9300 0.0500 0.0200
10 100 0.0000 0.9300 0.0700 0.0000
10 200 0.0000 0.9100 0.0900 0.0000
10 500 0.0000 0.9600 0.0400 0.0000
20 100 0.0000 0.9500 0.0500 0.0000
20 200 0.0000 0.9500 0.0400 0.0100
20 500 0.0000 0.9500 0.0500 0.0000
50 100 0.0000 0.9500 0.0500 0.0000
50 200 0.0000 0.9500 0.0500 0.0000
50 500 0.0000 0.9600 0.0400 0.0000

P̄r panel rank test3

N T r = 0 r = 1 r = 2 r = 3
5 100 0.0000 0.7600 0.1200 0.1200
5 200 0.0000 0.5600 0.3000 0.1400
5 500 0.0000 0.6100 0.2700 0.1200
10 100 0.0000 0.6900 0.2000 0.1100
10 200 0.0000 0.6600 0.2100 0.1300
10 500 0.0000 0.7000 0.2200 0.0800
20 100 0.0000 0.6100 0.3500 0.0400
20 200 0.0000 0.7200 0.1900 0.0900
20 500 0.0000 0.6200 0.3300 0.0500
50 100 0.0000 0.6900 0.2700 0.0400
50 200 0.0000 0.6700 0.3100 0.0200
50 500 0.0000 0.6700 0.3000 0.0300

1 Results based on 199 bootstrap and 100 Monte Carlo replications.
2 Bootstrap residuals constructed by resampling of the centered resid-

uals.
3 Frequency of rank selection.
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Table 4. Bootstrap1 procedure for selecting individual
and panel rank.

DGP3a, λ′i = [0.5, 0, 0], true rank is 22

Individual rank test3

N T r = 0 r = 1 r = 2 r = 3
5 100 0.0000 0.9360 0.0460 0.0180
5 200 0.0000 0.9160 0.0640 0.0200
5 500 0.0000 0.7980 0.1600 0.0420
10 100 0.0000 0.9150 0.0680 0.0170
10 200 0.0000 0.8900 0.0850 0.0250
10 500 0.0000 0.8050 0.1700 0.0250
20 100 0.0000 0.9340 0.0470 0.0190
20 200 0.0000 0.9070 0.0675 0.0255
20 500 0.0000 0.8285 0.1460 0.0255
50 100 0.0000 0.9342 0.0500 0.0158
50 200 0.0000 0.9282 0.0512 0.0206
50 500 0.0000 0.8862 0.0904 0.0234

Panel rank test3

N T r = 0 r = 1 r = 2 r = 3
5 100 0.0000 0.9300 0.0700 0.0000
5 200 0.0000 0.8900 0.1100 0.0000
5 500 0.0000 0.5000 0.5000 0.0000
10 100 0.0000 0.8900 0.1100 0.0000
10 200 0.0000 0.8100 0.1900 0.0000
10 500 0.0000 0.2900 0.7000 0.0100
20 100 0.0000 0.8800 0.1200 0.0000
20 200 0.0000 0.7000 0.3000 0.0000
20 500 0.0000 0.1600 0.8400 0.0000
50 100 0.0000 0.9300 0.0700 0.0000
50 200 0.0000 0.8000 0.2000 0.0000
50 500 0.0000 0.2400 0.7600 0.0000

P̄r panel rank test3

N T r = 0 r = 1 r = 2 r = 3
5 100 0.0000 0.5400 0.3700 0.0900
5 200 0.0000 0.4000 0.5100 0.0900
5 500 0.0000 0.1100 0.7000 0.1900
10 100 0.0000 0.5900 0.3400 0.0700
10 200 0.0000 0.3400 0.5700 0.0900
10 500 0.0000 0.0900 0.7400 0.1700
20 100 0.0000 0.6500 0.3200 0.0300
20 200 0.0000 0.3100 0.6400 0.0500
20 500 0.0000 0.0000 0.9400 0.0600
50 100 0.0000 0.5100 0.4900 0.0000
50 200 0.0000 0.3400 0.6600 0.0000
50 500 0.0000 0.0100 0.9700 0.0200

1 Results based on 199 bootstrap and 100 Monte Carlo replications.
2 Bootstrap residuals constructed by resampling of the centered resid-

uals.
3 Frequency of rank selection.



16 LAURENT A. F. CALLOT

Table 5. Bootstrap1 procedure for selecting individual
and panel rank.

DGP3b, λ′i = [1, 0, 0], true rank is 22

Individual rank test3

N T r = 0 r = 1 r = 2 r = 3
5 100 0.0000 0.85600 0.10800 0.036000
5 200 0.0000 0.75400 0.21600 0.030000
5 500 0.0000 0.39400 0.56000 0.046000
10 100 0.0000 0.89900 0.080000 0.021000
10 200 0.0000 0.84000 0.13200 0.028000
10 500 0.0000 0.55600 0.40500 0.039000
20 100 0.0000 0.92500 0.056500 0.018500
20 200 0.0000 0.88800 0.091000 0.021000
20 500 0.0000 0.74100 0.21900 0.040000
50 100 0.0000 0.93780 0.046600 0.015600
50 200 0.0000 0.92140 0.059200 0.019400
50 500 0.0000 0.87140 0.10060 0.028000

Panel rank test3

N T r = 0 r = 1 r = 2 r = 3
5 100 0.0000 0.72000 0.26000 0.020000
5 200 0.0000 0.39000 0.59000 0.020000
5 500 0.0000 0.0000 0.99000 0.010000
10 100 0.0000 0.75000 0.25000 0.0000
10 200 0.0000 0.42000 0.57000 0.010000
10 500 0.0000 0.0000 0.98000 0.020000
20 100 0.0000 0.86000 0.14000 0.0000
20 200 0.0000 0.47000 0.53000 0.0000
20 500 0.0000 0.010000 0.99000 0.0000
50 100 0.0000 0.89000 0.11000 0.0000
50 200 0.0000 0.77000 0.23000 0.0000
50 500 0.0000 0.080000 0.92000 0.0000

P̄r panel rank test3

N T r = 0 r = 1 r = 2 r = 3
5 100 0.0000 0.24000 0.62000 0.14000
5 200 0.0000 0.11000 0.81000 0.080000
5 500 0.0000 0.0000 0.85000 0.15000
10 100 0.0000 0.35000 0.59000 0.060000
10 200 0.0000 0.10000 0.82000 0.080000
10 500 0.0000 0.0000 0.89000 0.11000
20 100 0.0000 0.40000 0.58000 0.020000
20 200 0.0000 0.11000 0.85000 0.040000
20 500 0.0000 0.0000 0.95000 0.050000
50 100 0.0000 0.46000 0.54000 0.0000
50 200 0.0000 0.30000 0.70000 0.0000
50 500 0.0000 0.010000 0.98000 0.010000

1 Results based on 199 bootstrap and 100 Monte Carlo replications.
2 Bootstrap residuals constructed by resampling of the centered resid-

uals.
3 Frequency of rank selection.
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5. Application

To illustrate a possible use of this test, I propose a small empirical
application. I test the cointegration rank between the log US Dol-
lar nominal exchange rate (XRi,t) and log prices (CPIi,t) for a set of
9 currencies. I start by constructing local averages of the variables
using weights based on ppp GDP. The resultsing variables are noted
XR∗i,t and CPI∗i,t. XR

∗
i,t is the weighted average of the exchanges rates

between every country but i and the US Dollar. By a simple transfor-
mation of the data, I define:

(13) EXRi,t = XRi,t −XR∗i,t
which is the effective exchange rate (the weighted average of bilateral
exchange rate) for individual i. Thus the model estimated is:

∆

[
EXRi,t

CPIi,t

]
= Πi


EXRi,t−1
CPIi,t−1
CPI∗i,t−1
Dt−1

+ λ0,iCPI
∗
i,t + Γi,1∆

EXRi,t−1
CPIi,t−1
CPI∗i,t−1


The VAR order is 2. The model is estimated with a restricted con-
stant noted Dt. All the results below are obtained with 499 bootstrap
replications.

Table 6. Individual bootstrap rank test statistics

rank trace 0 trace 1 share 0 share 1
Canada 0 12.37 1.40 0.27 0.49
Denmark 0 9.17 0.78 0.63 0.93
Japan 1 24.78 0.48 0.02 0.86
Mexico 1 38.67 2.47 0.00 0.47
Sweden 0 9.51 1.58 0.69 0.68
Switzerland 1 37.03 9.22 0.01 0.17
United Kingdom 2 36.97 9.32 0.00 0.02
United States 1 25.92 4.20 0.01 0.05
Euro Zone 0 11.48 0.67 0.24 0.76

Table 6 reports the results of the individual bootstrap rank test.
In four cases the individual test cannot reject the hypothesis of no
cointegration (i.e. the rank is 0). In four cases the selected rank
is 1, and in one case the selected rank is 2. The panel bootstrap test
statistics reported in table 7 both select a rank of 1 at any conventional
significance level, in accordance with the economic theory predicting a
stationary relation between nominal exchange rates and prices (ppp).

I then extend the sample with a measure of interest rates, IR. The
system has now three endogenous variables and 2 weakly exogenous
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Table 7. Panel bootstrap
rank test statistics

r = 0 r = 1
NQr 297.54 -5.96
p(NQr) 0.00 0.562
P̄r -10.504 -0.224
p
(
P̄r

)
0.000 0.411

ones, the vector of variables Zt,i becomes:

Zi,t =
[
EXRi,t, CPIi,t, IRi,t, CPI

∗
i,t, IR

∗
i,t, Dt

]
Table 8. Individual bootstrap rank test statistics

rank trace 0 trace 1 trace 2 share 0 share 1 share 2
Canada 0 33.68 13.35 0.83 0.17 0.23 0.83
Denmark 0 45.67 17.02 1.31 0.07 0.31 0.89
Japan 0 34.26 8.42 0.27 0.19 0.70 0.98
Mexico 1 49.12 12.57 1.41 0.02 0.59 0.84
Sweden 0 39.51 17.99 5.65 0.24 0.51 0.27
Switzerland 1 67.93 23.31 5.67 0.01 0.13 0.25
United Kingdom 1 50.97 19.08 2.82 0.05 0.12 0.38
United States 2 57.08 27.72 3.84 0.00 0.01 0.07
Euro Zone 0 32.23 14.99 1.77 0.14 0.12 0.64

Table 9. Panel bootstrap rank test statistics

r = 0 r = 1 r = 2
NQr 409.95 67.552 3.576
p(NQr) 0.000 0.092 0.368
P̄r -14.448 -6.688 2.720
p
(
P̄r

)
0.000 0.000 0.996

For the larger system, the results of the individual bootstrap test
are reported in table 8. The panel bootstrap test statistics results are
reported in table 9. The P̄r test selects a rank of 2, consistent with the
theory predicting a stationary relation between nominal exchange rate
and prices (ppp), and another one between the exchange rate and the
interest rate (Interest rate parity). The NQr returns a rank of 1 at a
5% significance level and a rank of 2 at 10%.

The results are robust to different measures of the interest rate (3-
month, 10-years), of the prices level (CPI, CPI minus food and energy),
the use of different weighting matrices (ppp-GDP, equal weights) and
changes in the selected sample.
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6. Conclusion

The aim of this paper was to adapt the bootstrap sequential rank
test procedure by Cavaliere, Rahbek, and Taylor (2010) to panels of
cointegrated VARs. The major difficulties when working with panels
are to control the cross section dependence and overcome the curse
of dimenstionality. Using results from Dees et al. (2005) I have shown
that these two difficulties can be circumvented by transforming the PC-
VAR in a set of independent individual models. I then introduce two
bootstrap test statistics, the NQr and P̄r statistics. The P̄r statistics
allows a greater amount of heterogeneity across models as it does not
impose homogeneity of the individual asympotic trace test distribu-
tion. Their finite sample performances are assessed using Monte Carlo
experiments. Both tests show satisfactory finite sample performances
which decreases when the complexity of the models increase for a given
T and N.
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Appendix A. Likelihood-based inference in CVAR

The purpose of this appendix is to recall the main elements of the
likelihood framework for inference in the single unit cointegrated VAR.
It is also used to define some notations used throughout the body of
this paper. It draws heavily on Juselius (2006)

Note the VAR model in its error correction form:

(14) ∆Xt = ΠXt−1 +
k∑

l=1

Γ∆Xt−l + ΦDt + εt

Where Xt is a p×1 vector of I(1) or I(0) endogenous variables. Π is the
so-called level matrix and Dt is a vector of deterministic components.
Π = αβ′ where α and β are p× r matrices.
Estimation. Define:

Z0t = ∆Xt

Z1t = Xt−1

Z2t = [∆Xt−1, · · · ,∆Xt−k, Dt]

Model 14 can be written in a more compact form as:

Z0t = αβ′Z1t + ΨZ2t + εt

Using the Frisch-Waugh theorem we define the two auxiliary regres-
sions:

Z0t = B̂0Z2t +R0t

Z1t = B̂1Z2t +R1t

and get:

R0t = αβ′R1t + εt

with ε ∼ N (0,Ω). It can be shown that the log likelihood function of
a VAR is:

lnLmax = −T
2

ln |Ω|+ constant terms

Define Sij = T−1
∑

tRitR
′
jt It can be shown that

|Ω̂(β̂)| = |S00|
p∏

i=1

(1− λi)

where λi are the p eigenvalues, ordered such that λ̂1, · · · , λ̂p ≥ 0, solu-
tion of the eigenvalue problem:

|(1− ρ)S11 − S10S
−1
00 S01| = 0

The p normalized eigenvectors corresponding to the eigenvalues will be
noted βi.
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Deterministics. Deterministics in the cointegration space and its or-
thogonal space:

Table 10. Deterministics

Case Name ΦDt
1 R1,t Z2,t

1 No deterministics 0 - -
2 Restricted Constant αβ0 1 -
3 Restricted Trend αβ1t t 1

1 β0 and β1 Are the loadings on the restricted con-

stant and trend.

Rank testing. The rank r of a cointergated VAR gives the number of
stationary linear combination between the variables (cointegration re-
lations). p-r is then the number of unit roots in the system. Note Hp

the hypothesis that rank=p, i.e. there are no unit roots in the system;
xt is stationary. Note Hr the hypothesis rank=r.

The trace test is found as:

− 2 lnQ(Hr/Hp) = T ln

(
p∏

j=r+1

(1− λ̂j)

)
Which is a test for rank=r against rank=p. Therefore if Hr cannot
be rejected we conclude that there are at least p-r unit roots in the
model. It follows that the rank can be consistently estimated by using
a sequential testing procedure. First, testH0 againstHp. If this cannot
be rejected than the rank is set to zero. Otherwise test H1 against Hp.
Again if this cannot be rejected the rank is set to 1, otherwise continue
with H2. If Hp−1 is rejected the rank is then set ot p.
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Appendix B. Proofs

Before proving theorem 3.1, some results have to be recalled.

Lemma B.1. Consistency if the asymptotic trace test. Johansen (1995)
proves some results on the convergence of the trace test distribution:{

Qr,i −→
T
∞ for r < r0

Qr0,i
w−→
T
tr (Qr0,i,∞)

Where tr (Qr0,i,∞) is the asymptotic distribution of the trace test statis-
tic for r = r0. This implies for the p-values associated to the trace test
statistics:

pr,i
p−→
T

0 for r < r0

pr0,i
w−→
T
U [0, 1]

Lemma B.2. Consistency of the bootstrap sequential algorithm for the
individual CVAR: Let r̂ be the estimated rank selected by the bootstrap
algorithm in CRT. Then

Q†,br,i

w.p.−−→
T

tr(Qr,i,∞) for r ≤ r0

p†r,i
p−→
T

0 for r < r0

p†r0,i
w−→
T

U [0, 1]

Where p†r,i is the p-value associated with the bootstrap rank test of H(r)
against H(p). It implies:

lim
T→∞

P (r̂ = r) = 0, ∀r < r0

lim
T→∞

P (r̂ = r0) =

{
1− η if r0 < p

1 if r0 = p

lim
T→∞

sup
r∈{r0+1,··· ,p}

P (r̂ = r) ≤ η

Remark This result requires assumption 2, 3 and 4 to hold and relies
on lemma B.1. The proof can be found in CRT.

I can now prove theorem 3.1:

Consistency of the P̄r procedure: Note Qi,r the trace test statistic of

unit i under H(r) and Q†,bi,r the bth iteration of the corresponding boot-
strap trace statistic and tr(Qr,i,∞) the asymptotic distribution of the
trace test statistic. Let

p†i,r =
1

B

B∑
b=1

1{Qi,r<Q†,b
i,r}
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and

lim
T→∞

p†i,r = p†i,r,∞

From lemma B.2 if r = r0:

p†i,r,∞ ∼ U [0, 1]

p†i,r,∞ are independent draws from a uniform distribution, thus:

P̄r
d−−−−−→

seq(T,N)
lim

N→∞

 lim
T→∞

N∑
i=1

(
p†i,r −

1

2

)
√
N

12



d−−−−−→
seq(T,N)

lim
N→∞


N∑
i=1

(
p†i,r,∞ −

1

2

)
√
N

12

 ∼ N (0, 1)

P̄r tends sequentially with T and N (in that order) in distribution
to a standard normal distribution when r = r0. Since when r < r0,

p†r,i
p−→
T

0 the statistic P̄r should be compared critical values from the

left tail of the standard normal distribution.
�

Assumption 5. tr(Qr,i,∞) = tr(Qr,j,∞)∀i, j: The asymptotic distribu-
tion of the trace test statistic tr(Qr,i,∞) is the same for every individual.
This requires that the models used for each individuals are the same.
The deterministics, dummies and number of weak exogenous variables
must be the same for every individual for the asymptotic distribution
to be uniform across individuals (Johansen (1995)).

Consistency of the NQr procedure: By lemma B.2:

1

B

∑
Q†,br,i −→

B
E [Qr,i]

Define:

NQr =
1√
N

(
N∑
i=1

(
Qr,i −

1

B

∑
Q†,br,i

))
(15)

NQ†,br =
1√
N

(
N∑
i=1

(
Q†,br,i −

1

B

∑
Q†,br,i

))
(16)
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Then, using lemma B.1:

NQr −→
N
∞

NQr
d−→
N
N (0, ω)

NQ†,br
d−→
N
N (0, ω)

Define:

p(NQr) =
1

B
1{NQr<NQ†b

r }
it follows from the results above that:

p(NQr)
p−→
T

0 for r < r0

p(NQr)
d−→
T
U [0, 1] for r = r0

�

Theorem 3.1 is proven.
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