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Abstract

We introduce a multivariate GARCH model that incorporates realized measures of

volatility and covolatility. The realized measures extract information about the current

level of volatility and covolatility from high-frequency data, which is particularly useful for

the modeling of return volatility during periods with rapid changes in volatility and co-

volatility. When applied to market returns in conjunction with returns on an individual

asset, the model yields a dynamic model of the conditional regression coefficient that is

known as the beta. We apply the model to a large set of assets and find the conditional

betas to be far more variable than is usually found with rolling-window regressions based ex-

clusively on daily returns. In the empirical part of the paper we examine the cross-sectional

as well as the time variation of the conditional beta series during the financial crises.
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1 Introduction

Relatively accurate measurements of volatility and covolatility can be computed from high

frequency data, and such statistics are commonly referred to as realized measures. Incorporating

realized measures when modeling the dynamic properties of volatility, such as done with GARCH

models, is very beneficial. The reason is that returns yield very weak signals about latent

volatility, whereas realized measures provide accurate measurements. The latter is particularly

useful during times with rapid changes in volatility and covolatility.

In this paper we propose a multivariate GARCH-type model that utilizes and models realized

measures of volatility and covolatility. The model has hierarchical structure where the “market”

return is modeled with a univariate Realized GARCH model, see Hansen and Huang (2012)

and Hansen et al. (2012). A multivariate structure is constructed by modeling “individual”

returns conditional on the past and contemporary market variables (return and volatility). The

resulting model has the structure of a conditional CAPM model that enables us to extract the

“betas” and study their dynamic properties. Moreover, the model is complete in the sense that

all observables (returns, realized volatilities and realized correlations) are modeled. The latter

enables us to infer the distribution of multi-period returns including the joint distribution of

“market” returns and “individual” returns over longer horizons.

The main contributions of our paper are the following. We propose a flexible and tractable

framework that enables the modeling of a potentially large set of assets. Unlike conventional

multivariate GARCH models, which can suffer from the curse of dimensionality and estimation

issues, we avoid such issues by incorporating realized measures and the use of measurement

equations. Measurement equations tie realized measures to the latent volatility quantities,

which induces a useful regularization of the model. This particular structure was chosen for a

number of reasons. First, the model provides good empirical fit for the wide range of assets used

in our empirical study; Second, the structure of the model is amenable to a deeper analysis of

secondary quantities such as betas; Third, the model is simple to estimate, which is particularly

important when a large set of assets are to be analyzed as is the case in our empirical analysis.

The proposed model structure has a hierarchical structure where the market return and a

corresponding realized measure forms the core of the model. The model can be extended to an

arbitrary large set of individual returns, by adding a conditional model for an individual return
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and two realized measures, one being a realized measure of return volatility, the other being a

realized measure of the correlation between the individual return and the market. This yield

a flexible model with a dynamic covariance structure that is constantly revised by using the

information contained in the realized measures.

The concept of realized betas is not new. Bollerslev and Zhang (2003) carry out a large scale

estimation of the Fama-French three-factor model using high-frequency (5-minute) data on 6,400

stocks over a period of 7 years. Their analysis showed that high-frequency data can improve the

pricing accuracy of asset pricing models. Their approach differs from ours in important ways.

For instance, they model raw realized factor loadings and use simple time series processes to

forecast these. So there is no explicit link between realized and conditional moments of returns

in their framework. Nor do they explicitly account for the measurement error (the sampling

error) in the realized quantities. Another related paper is Andersen et al. (2006) who study

the time variation in realized variances, covariances, and betas using daily returns to construct

quarterly realized measures. They find evidence of long memory in the time series for variance

and covariances, while the realized beta time series is less persistent and seemingly a short-

memory process, which is indicative of fractional cointegration between realized volatility and

realized covariance. Other related studies include: Barndorff-Nielsen and Shephard (2004a)

who established asymptotic results for realized beta and Dovonon et al. (2013) who established

the theory for bootstrap inference. MSE-optimal estimation of realized betas was analyzed in

Bandi and Russell (2005) and Patton and Verardo (2012) studied the impact of news on betas.

The importance of separating jump and continuous component of returns in relation to betas

as highlighted in Todorov and Bollerslev (2010) and Tsay and Yeh (2011) allow the dynamic

beta to vary within the day.

The use of realized volatility measures in this context yields valuable insight about the degree

of time-variation in the betas, which has been up for debate in the literature. The studies by

Ferson and Harvey (1991, 1993), and Shanken (1990) specify parametric relationships between

betas and proxies for the state of the economy and find support for time-varying betas. Gomes

et al. (2003) provide a theoretical justification for a time-varying conditional beta specification

in the context of a dynamic general equilibrium production economy. Conditional betas have

been modeled by means of conventional GARCH models by Braun et al. (1995) and Bekaert

and Wu (2000), among others. Lewellen and Nagel (2006) argue that variation in betas would

have to be “implausibly large” to explain important asset-pricing anomalies. In our empirical
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analysis we do find a substantial amount of time-variation in the conditional betas, this is

particularly the case during the global financial crises period. We find the variation in betas to

be substantial, even over short periods of time, such as a quarter. Figure 5 in this paper is a

good illustration of this point.

The research devoted to high-frequency volatility measures was spurred by Andersen and

Bollerslev (1998), who documented that the sum of squared intraday returns, known as the

realized variance, provides an accurate measurement of daily volatility. The theoretical founda-

tion of realized variance was developed in Andersen, Bollerslev, Diebold and Labys (2001) and

Barndorff-Nielsen and Shephard (2002). Currently a large number of related estimators, such as

realized bipower variation, realized kernels, multiscale estimators, preaveraging estimators and

Markov chain estimators have been proposed to deal with issues such as jumps and market mi-

crostructure frictions, see Barndorff-Nielsen and Shephard (2004b), Barndorff-Nielsen, Hansen,

Lunde and Shephard (2008), Zhang (2006), Jacod et al. (2009), Hansen and Horel (2009) and

references therein. The multivariate extensions of the concept of realized volatility is theoreti-

cally developed in Barndorff-Nielsen and Shephard (2004a). Estimators that are robust to noise

and/or asynchronous observations have been proposed by Hayashi and Yoshida (2005), Voev

and Lunde (2007), Griffin and Oomen (2011), Christensen et al. (2010), and Barndorff-Nielsen

et al. (2011). In this paper we will rely on the multivariate kernel estimator by Barndorff-

Nielsen, Hansen, Lunde and Shephard (2011) that guarantees positive semi-definite estimates

of the realized variance-covariance matrices we need.

While volatility is unobservable, the use of realized measures allows us to construct precise

ex-post volatility proxies. Currently, a growing body of research investigates the extend to which

realized measures can be used to specify better volatility models and improve the accuracy

of volatility forecasts. Hansen and Lunde (2010) categorize the existing approaches into two

broad classes: reduced-form and model-based. Reduced-form volatility forecasts are based

on a time series model for the series of realized measures, while a model-based forecast rests

on a parametric model for the return distribution. Model-based approaches effectively build

on GARCH models in which a realized measure is included as an exogenous variable in the

GARCH equation, see e.g. Engle (2002). A complete framework that jointly specifies models

for returns and realized measures of volatility was first proposed by Engle and Gallo (2006),

who refer to their model as the Multiplicative Error Model (MEM). A simplified MEM structure

was proposed in Shephard and Sheppard (2010), who estimated their referred to this model as
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the HEAVY model. The realized GARCH model by Hansen et al. (2012) involves a different

approach to the joint modeling of returns and realized volatility measures. A key component

of the Realized GARCH model is a measurement equation that links the realized measure with

the underlying conditional variance. This idea is generalized to the multivariate framework in

this paper, where we introduce measurement equations for the realized measures of correlations.

The rest of the paper is structured as follows. The model and the underlying theory is

presented in Section 2, and we discuss estimation of the model in Section 3. In section 4 we

show how multistep predictions of volatilities and correlations as well as forecasts of return

densities can be obtained with our model. Section 5 contains the empirical application of the

model, and Section 6 concludes.

2 A Hierarchical Realized GARCH Framework

Broadly speaking, our objective is the same as that of existing multivariate GARCH models,

which is to model the conditional distribution of a vector of returns. But unlike conventional

GARCH models we also model the realized measures of volatility and covolatility and make

extensive use of these in the modeling of returns. The realized measures are highly informative

about local (in time) levels of volatility and covolatility which is the main reason these variables

are beneficial in this context. By tying all individual return series to the market return, we are

implicitly imposing a factor structure on the volatility, where the variation in the correlation

structure is driven by time-variation in the correlations between the market return and the in-

dividual assets. This keeps the model relatively simple and parsimonious, facilitates estimation,

and makes it easy to relate key variables in the model to (dynamic) betas.

Our model has a hierarchical structure. The core of our framework is a marginal model

for the market return and its realized measure of volatility. Individual returns, their realized

measures of volatility and covolatility (with the market) are then modeled conditionally on

market variables. The marginal model we use for the market-specific time series is the Realized

EGARCH model by Hansen and Huang (2012), see also Hansen et al. (2012, section 6.3), which

shares certain features with the EGARCH model by Nelson (1991). The conditional model we

use in this paper is new.

Initially, we present the Realized Beta GARCH model in the simplest situation with a bivari-

ate vector of returns (the market return and an individual asset return) and the corresponding

2×2 matrix realized volatility measures. Subsequently we discuss the straight forward extension
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to an arbitrary number of individual assets.

2.1 Notation and Modeling Strategy

Let r0,t and x0,t denote the market return and a corresponding realized measure of volatility,

respectively. Similarly, we use the notation r1,t and x1,t for the same variables associated

with an individual asset return, and use yi,t to denote a realized measure of correlation, where

yit ∈ (−1, 1).

In this context with two returns, two realized measures of volatility, and a realized measure

of correlation we have five observable variables to model. The natural filtration is given by

Ft = σ(Xt,Xt−1, . . .) with Xt = (r0,t, r1,t, x0,t, x1,t, y1,t)
′.

The structure of our model will take advantage of the simple decomposition of the conditional

density,

f(r0,t, x0,t, r1,t, x1,t, y1,t|Ft−1) = f(r0,t, x0,t|Ft−1)f(r1,t, x1,t, y1,t|r0,t, x0,t,Ft−1), (1)

which serves to illustrate the hierarchical structure of our model. We will adopt the Realized

EGARCH model as our specification of the first term, f(r0,t, x0,t|Ft−1). The individual asset

variables (r1t, x1t, y1t) will be modeled with a novel structure that conditions on contemporary

market variables. The specification for the second conditional density, f(r1,t, x1,t, y1,t|r0,t, x0,t,Ft−1),

defines how the time series associated with the individual asset evolves conditional on contem-

porary market variables. Our specification of this conditional density has a structure that is

similar to that of the univariate Realized GARCH model, but has some important adaptations

for the modeling of the correlation structure. This structure is very convenient because it avoids

the need for introducing realized measures of the correlation measures between the individual

assets, because it is implicitly assumed that these correlations are characterized through the

correlations between the individual returns and the market return. In our empirical analysis,

we investigate the validity of this assumption.

In practice, the estimation proceeds by first estimating the model for the market data

(r0,t, x0,t) and then estimating each conditional model for (ri,t, xi,t, yi,t) separately for i =

1, 2, . . . , n, where n is the number of assets. This can be done for a very large number of

assets. For instance, in the empirical analysis we estimated the Realized Beta GARCH model
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for about 600 assets.

2.2 Realized EGARCH Model for Market Returns

The Realized EGARCH model for market returns and realized measures of volatility is given

by the following three equations

r0,t = μ0 +
√

h0,tz0,t, (2)

log h0,t = a0 + b0 log h0,t−1 + c0 log x0,t−1 + τ0(z0,t−1) (3)

log x0,t = ξ0 + ϕ0 log h0,t + δ0(z0,t) + u0,t, (4)

where model z0,t ∼ iidN(0, 1), and u0,t ∼ iidN(0, σ2
u0
). As is the case in conventional GARCH

models, h0,t, denotes a conditional variance, h0,t = var(r0,t|Ft−1), the key difference being that

the information set, Ft, is richer than in the conventional framework. The normality of u0,t is

not critical for estimation, but can be motivated by findings in Andersen, Bollerslev, Diebold

and Labys (2001), Andersen, Bollerslev, Diebold and Ebens (2001) and Andersen et al. (2003),

who document that realized volatility is approximately log-normal. Furthermore, Andersen,

Bollerslev, Diebold and Ebens (2001) find that returns standardized by realized volatility are

approximately normally distributed.

The functions τ(z) and δ(z) are called leverage functions because they model aspects related

to the leverage effect, which refers to the dependence between returns and volatility. Hansen

et al. (2012) found that a simple second-order polynomial form provides a good empirical fit.

We will adopt this structure in our framework, and set τ(z) = τ1z + τ2(z
2 − 1) and δ(z) =

δ1z + δ2(z
2 − 1). This leads to a GARCH equation that is somewhat similar to that of an

EGARCH model. An important difference is that we also utilize the realized measure xt−1 in

this equation to model the dynamic variation in volatility.

We refer to the first two equations, (2) and (3), as the return equation and the GARCH

equation, respectively. These two equations define a GARCH-X model, similar to those that

were estimated by Engle (2002), Barndorff-Nielsen and Shephard (2007), and Visser (2011). See

also ? for additional variants of the GARCH-X model and some related models.

The third equation, (4) called the measurement equation, completes the model. Tying the

realized measure, xt, to the conditional variance, ht, is motivated by the fact that the GARCH
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equation trivially implies that

log(rt − μ)2 = log ht + log z2t .

Since the realized measure, xt, is similar to r2t in the sense of being a measurement of volatility

(just far more accurate), it is natural to expect that log xt ≈ log ht+ f(zt)+ errort. Because we

may compute realized measures of volatility over a shorter period of time than the one spanned

by the return (e.g., if we use only data from the trading session, which often excludes the

overnight period), some flexibility in the specification may be required motivating the “intercept”

ξ0 and the “slope” ϕ0. So long as x0,t is roughly proportional to h0,t, we should expect ϕ0 � 1,

and ξ0 < 0 , which is always the case empirically.

Note that we do not follow the conventional GARCH notation, because we want to reserve

the notation “β” for

β1,t = cov(r1,t, r0,t|Ft−1)/var(r0,t|Ft−1), (5)

We are particularly interested in the dynamic properties and the cross-sectional variation of βi,t,

where i = 1, . . . , N with N being the number of individual assets in our analysis.

2.3 Conditional Model for Individual Asset Returns, Volatility, and Co-

volatility

To extend the framework to a joint model for the market returns/volatility and another asset’s

return/volatility and their correlation, we shall formulate a model for the time series associated

with the individual asset, conditional on contemporaneous “market” variables, i.e., a specification

for f(r1,t, x1,t, y1,t|r0,t, x0,t,Ft−1). We utilize a further decomposition of this conditional density,

specifically

f(r1,t, x1,t, y1,t|r0,t, x0,t,Ft−1) = f(r1,t|r0,t, x0,t,Ft−1)f(x1,t, y1,t|r1,t, r0,t, x0,t,Ft−1).

The first part, f(r1,t|r0,t, x0,t,Ft−1), is modeled with three equations. The first two have the

Realized EGARCH structure as above,

r1,t = μ1 +
√
h1,tz1,t, (6)

log h1,t = a1 + b1 log h1,t−1 + c1 log x1,t−1 + d1 log h0,t + τ1(z1,t−1). (7)
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The difference between the two GARCH equations, (3) for the market return and (7) for the

asset return, is the presence of the term, d1 log h0,t. This term relates the market conditional

variance to the conditional variance of the individual asset under consideration. Note that h0,t

is Ft−1-measurable, so that h1,t can be interpreted as the conditional variance of r1,t w.r.t.

Ft−1. The parameter d1 can be interpreted as a spillover effect that measures the extend to

which the market’s volatility affects the volatility of the individual asset while accounting for

the asset-specific volatility dynamics.

To capture the dependence between market returns and individual returns, we introduce the

conditional covariance

ρ1,t = cov(z0,t, z1,t|Ft−1).

It follows directly that ρ1,t is the conditional correlation between r0,t and r1,t, so that the beta

for asset 1 is given by

β1,t =
ρ1,t

√
h0,th1,t

h0,t
= ρ1,t

√
h0,t/h1,t.

For the dynamic modeling of ρt we shall use of the Fisher transformation (also known as the

inverse hyperbolic tangent, arctanh), ρ �→ �(ρ) ≡ 1
2 log

1+ρ
1−ρ , which is a one-to-one mapping

from (−1, 1) into R. The GARCH equation for the transformed correlations is given by

�(ρ1,t) = a10 + b10�(ρ1,t−1) + c10�(y1,t−1).

The measurement equations for the two realized measures in the conditional model are:

log x1,t = ξ1 + ϕ1 log h1,t + δ1(z1,t) + u1,t, (8)

and

�(y1,t) = ξ10 + ϕ10�(ρ1,t) + v1,t, (9)

and the covariance structure for the error terms in the three measurement equations is denoted

by

Σ = var

⎛
⎜⎜⎜⎝

u0,t

u1,t

v1,t

⎞
⎟⎟⎟⎠ =

⎡
⎢⎢⎢⎣

σ2
u0

σu0,u1 σu0,v1

• σ2
u1

σu1,v1

• • σ2
v1

⎤
⎥⎥⎥⎦ .

Hence, we allow the error terms to be correlated across measurement equations, which we find
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to be empirically important.

2.4 The Extensions to Multiple Individual Assets

We have specified the model structure for a market return and a single individual assets (along

with their corresponding realized volatility variables). Next we discuss the extension to multiple

individual assets. Fortunately, the existing structure is amendable to this extension, albeit

some additional assumptions are needed before certain interpretations carry over to the general

context. First we need to redefine the natural filtration, Ft = σ(Xt,Xt−1, . . .), to be defined by

the full set of variables,

Xt = (r0,t, r1,t, . . . , rN,t, x0,t, x1,t, . . . , xN,ty1,t . . . , yN,t)
′.

The conditional model for the individual asset is assumed to be invariant to this enhancement of

the information set. This implicitly assumes that the dynamic variation in correlations between

individual assets is fully explained by the individual assets correlation with the market return.

Put differently: The variation in the N + 1 × N + 1 conditional covariance matrix is fully

described by the N +1 conditional variances and the N conditional correlations. This structure

has testable implications that we return to in our empirical section.

2.4.1 Variables for Model Diagnostics

For model diagnostics, in particular the validity of the single-factor structure, we define condi-

tional studentized residuals

ŵi,t =
ẑi,t−ρ̂i,tẑ0,t√

1−ρ̂2i,t
, i = 1, . . . , N.

So far the model structure has been silent about the dependence structure across the population

equivalents of these residuals,

wi,t =
zi,t−ρi,tz0,t√

1−ρ2i,t
, i = 1, . . . , N,

and the same is true for the conditional error terms, (ui,t, vi,t|u0,t), across individual assets. We

cast light on this dependence structure in our empirical section.
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3 Estimation

In this section, we define the quasi log-likelihood function and exploit its structure to sim-

plify the estimation problem. We have five observed variables, (r0,t, x0,t, r1,t, x1,t, y1,t), and we

consider their joint density conditional on past information, Ft−1. Without loss of generality

we can decompose this “joint” density as stated in (1), and, for the purpose of estimation, we

adopt Gaussian specifications for the “marginal” and “conditional” densities, f(r0,t, x0,t|Ft−1)

and f(ri,t, xi,t, yi,t|r0,t, x0,t,Ft−1), i = 1, . . . , N . Moreover, we assume that the studentized

returns, (z0,t, z1,t), are independent of the error terms in the three measurement equations,

(u0,t, u1,t, v1,t). This enables us to decompose the quasi log likelihood function into four terms

as we discuss below.

3.1 The Marginal Model for Market Variables

The marginal model is essentially that of Hansen et al. (2012), which implicitly entails a further

decomposition of the conditional density,

f(r0,t, x0,t|Ft−1) = fr0(r0,t|Ft−1)fx0|r0(x0,t|r0,t,Ft−1).

The two densities are given from r0,t ∼ N(μ0, h0,t) and log x0,t ∼ N(ξ0+ϕ0 log h0,t+τ0(z0,t), σ
2
u0
),

which leads to the following two contribution to (minus two times) the log-likelihood function,

	z0 =

T∑
t=1

log h0,t +
(r0,t − μ0)

2

h0,t
=

T∑
t=1

log h0,t + z20,t.

	u0 =

T∑
t=1

log σ2
u0

+
(log x0,t − ξ0 − ϕ0 log h0,t − τ0(z0,t))

2

σ2
u0

=

T∑
t=1

log σ2
u0

+
u20,t
σ2
u0

.

3.2 The Conditional Model for Individual Assets

Next we consider the likelihood contributions from the conditional model. The conditional

model also permits a further decomposition of the conditional density,

f(r1,t, x1,t, y1,t|r0,t, x0,t,Ft−1) = fr1|r0,x0
(r1,t|r0,t, x0,t,Ft−1)

×fx1,y1|r1,r0,x0
(x1,t, y1,t|r1,t, r0,t, x0,t,Ft−1).
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The first term is the density of the individual asset return conditional on the contemporaneous

market variables (and the past). Due to the Gaussian specification we only need to derive the

conditional mean and variance of r1,t in order to compute the appropriate likelihood term. The

assumed independence between (z0,t, z1,t) and u0,t and the iid assumptions imply that

E[g(r1,t)|r0,t, x0,t,Ft−1) = E[g(r1,t)|z0,t, u0,t,Ft−1) = E[g(r1,t)|r0,t,Ft−1),

for any function g for which the conditional mean is well defined. Hence,

var(r1,t|r0,t, x0,t,Ft−1) = var(r1,t|r0,t,Ft−1) = h1,t − (ρ1,t
√
h0,th1,t)

2/h0,t = (1− ρ21,t)h1,t,

since cov(r1,t, r0,t|Ft−1) = ρ1,t
√

h0,th1,t. Next the conditional mean of r1,t is

E(r1,t|r0,t, x0,t,Ft−1) = μ1 + β1,t(r0,t − μ0) = μ1 +
ρ1,t

√
h0,th1,t

h0,t
(r0,t − μ0)

= μ1 + ρ1,t
√

h1,tz0,t,

So that the contribution to (minus two times) the log-likelihood function from this conditional

density is,

	z1|z0 =
T∑
t=1

log[(1− ρ21,t)h1,t] +
(r1,t−μ1−ρ1,t

√
h1,tz0,t)

2

(1−ρ21,t)h1,t
.

The last likelihood term, 	u1,v1|u0
, which relates to the two measurement equations is associ-

ated with the conditional density, fx1,y1|r1,r0,x0
(x1,t, y1,t|r1,t, r0,t, x0,t,Ft−1). First we note that

the conditional distribution of (u1,t, v1,t) given (u0,t, z0,t, z1,t) is Gaussian with mean

⎛
⎝ σu1,u0/σ

2
u0

σv1,u0/σ
2
u0

⎞
⎠u0,t,

and variance

Ω =

⎡
⎣ σ2

u1
σu1,v1

• σ2
v1

⎤
⎦−

⎡
⎣ σu1,u0

σv1,u0

⎤
⎦ 1

σ2
u0

[
σu0,u1 σu0,v1

]
.

So it does not depend on (z0,t, z1,t) due to the assumed independence. The implication is that

f,x1,y1|r1,r0,x0
(x1,t, y1,t|r1,t, r0,t, x0,t,Ft−1) = f,x1,y1|r1,r0,x0

(x1,t, y1,t|u0,t,Ft−1),
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and that the last term in (minus two times) the log-likelihood is given by

	u1,v1|u0
=

T∑
t=1

log detΩ + U ′
1,tΩ

−1U1,t,

where we have defined

U1,t =

⎛
⎝ u1,t

v1,t

⎞
⎠−

⎛
⎝ σu1,u0/σ

2
u0

σv1,u0/σ
2
u0

⎞
⎠u0,t.

3.3 Simplification in Estimation

To simplify the estimation we can concentrate the likelihood function with respect to the covari-

ance matrix of (u0,t,u1,t, v1,t). Let û0,t, û1,t and v̂1,t be the residuals of the three measurement

equations. The Gaussian likelihood implies that the maximum likelihood estimators of the

variance-covariance parameters are given by

σ̂2
u0

=
1

T

T∑
t=1

û20,t, σ̂u1,u0 =
1

T

T∑
t=1

û1,tû0,t, σ̂v1,u0 =
1

T

T∑
t=1

v̂1,tû0,t,

and

Ω̂ =
1

T

T∑
t=1

Û1,tÛ
′
1,t, where Û1,t =

⎛
⎝ û1,t

v̂1,t

⎞
⎠−

⎛
⎝ σ̂u1,u0/σ̂

2
u0

σ̂v1,u0/σ̂
2
u0

⎞
⎠ û0,t.

The reduces the number of free parameters that the likelihood has to be maximized over, to

θ = (θ′0, θ′1)′, where

θ0 = (μ0, ω0, a0, b0, c0, τ01, τ02, ξ0, ϕ0, δ01, δ02, h0,1)
′,

is the vector of (remaining) parameters in the market model, and

θ1 = (μ1, ω1, a1, b1, c1, d1, τ11, τ12, ξ1, ϕ1, δ11, δ12, a10, b10, c10, ξ10, ϕ10, h1,1, ρ1,1)
′,

is the vector of (remaining) parameters in the conditional model. Here we follow the convention

and threat the initial values for the latent variables, h0,1, h1,1, and ρ1,1, as were they unknown

parameters.

These parameters are now estimated by maximizing

	(θ) = −1

2

(
	z0(θ0) + 	u0(θ0) + 	z1|z0(θ1) + 	u1,v1|u0

(θ1)
)
,

13



where 	z0(θ0) =
∑T

t=1[log h0,t(θ0)+z20,t(θ0)], 	u0(θ0) = T [log σ̂2
u0
(θ0)+1], 	u1,v1|u0

(θ) = T [log det Ω̂(θ)+

2], and

	z1|z0(θ) =

(
T∑
t=1

log{[1− ρ21,t]h1,t(θ)}+
(z1,t(θ)− ρ1,t(θ)z0,t(θ))

2

1− ρ21,t(θ)

)
.

In practice this amounts to the following procedure:

1. Given initial values for θ0, the time series for z0,t and h0,t are computed iteratively. First,

z0,1 = (r0,1 − μ0)/
√
h0,1, then for t = 2, . . . , T we compute

h0,t(θ0) = exp {a0 + b0 log h0,t−1 + c0 log x0,t−1 + τ0(z0,t−1)} ,

and z0,t(θ0) =
r0,t−μ0√
h0,t(θ0)

. This produces the first term of the log-likelihood function,

	z0(θ0) =
∑T

t=1 log h0,t(θ0) + z20,t(θ0).

2. Next, we compute u0,t(θ0) = log x0,t − ξ0 − ϕ0 log h0,t − τ0(z0,t) for t = 1, . . . , T , which

yields the second term of the log-likelihood function, 	u0(θ0) = T
[
log σ2

u0
(θ0) + 1

]
, where

σ2
u0
(θ0) =

1
T

∑T
t=1 u

2
0,t(θ0).

3. Now we turn to the conditional model. We compute z1,1(θ1) = (r1,1−μ1)/
√

h1,1 and then

for t = 2, . . . , T , we proceed with

h1,t(θ1) = exp {a1 + b1 log h1,t−1 + c1 log x1,t−1 + d1 log h0,t + τ1(z1,t−1)} ,

and z1,t(θ1) =
r1,t−μ1√

h1,t
. The notation above suppress that h1,t, and hence z1,t, depend on

the market parameters, θ0 (unless d1 = 0). This is implicit since h0,t = h0,t(θ0) depends

on θ0, and a similar dependence on θ0 arises below through z0,t and u0,t. To make this

dependence explicit we shall add the argument, mθ0 , to the likelihood terms below, which

is short for the market variables, {z0,t(θ0), h0,t(θ0), u0,t(θ0)}.
Independently of h1,t and z1,t, we can compute:

ρ1,t(θ1) = �
−1 {a10 + b10�(ρ1,t−1) + c10�(y1,t−1)}

recursively, for t = 2, . . . , T . So the third likelihood term is given by

	z1|z0(θ1; mθ0}) =
T∑
t=1

log{(1− ρ21,t(θ1))h1,t(θ1)}+
(z1,t(θ1)− ρ1,t(θ1)z0,t)

2

1− ρ21,t(θ1)
.

14



4. The last step involves the two measurement equations in the conditional model, whose

residuals are computed by

u1,t(θ1) = log x1,t − ξ1 − ϕ1 log h1,t − δ1(z1,t),

v1,t(θ1) = �(y1,t)− ξ1,0 − ϕ1,0�(ρ1,t).

Next we get σu1,u0(θ1) = T−1
∑T

t=1 u1,t(θ1)u0,t and σv1,u0(θ1) = T−1
∑T

t=1 v1,t(θ1)u0,t,

that is the sample covariances of the measurement errors (that also depend on θ0 through

u0,t = u0,t(θ0)). This leads to the last likelihood term,

	u1,v1|u0
(θ1; mθ0) = T (log detΩ(θ1; mθ0) + 2),

where

Ω(θ1; mθ0) =
1

T

T∑
t=1

U1,tU
′
1,t,

with

U1,t = U1,t(θ1; mθ0) =

⎛
⎝ u1,t(θ1)

v1,t(θ1)

⎞
⎠−

⎛
⎝ σu1,u0(θ1)/σ

2
u0

σv1,u0(θ1)/σ
2
u0

⎞
⎠u0,t.

3.4 Hierarchical Approach to Estimation of Large Systems

When estimating a large system, it is advantageous to use a two-step procedure that the hier-

archical structure is well suited for. First we estimate the market model by maximizing

−1

2

{
T∑
t=1

[
log h0,t(θ0) + z20,t(θ0)

]
+ T

[
log

(
T−1

T∑
t=1

u20,t(θ0)

)
+ 1

]}
.

Then in a second step, where we take {(h0,t, z0,t, u0,t)} as given, which amount to dropping the

argument mθ0 in the expressions of the previous section (steps 3 and 4). So with the two-step

procedure, we estimate θi by maximizing

−1

2

T∑
t=1

log{(1− ρ2i,t(θi))hi,t(θi)}+
(zi,t(θi)− ρi,t(θi)z0,t)

2

1− ρ2i,t(θi)
+ T (log detΩ(θi) + 2),

for each of the individual assets, i = 1, . . . , N .
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4 Forecasting

In this section we discuss how multistep predictions of volatilities and correlations as well as

return density forecasts can be obtained with our model. Denote h̃0,t ≡ log h0,t, h̃i,t ≡ log hi,t

and ρ̃i,t ≡ �(ρi,t). Point forecasts turn out to be very easy to obtain owing to the fact that

the vector (h̃0,t, h̃i,t, ρ̃i,t) can be represented as a VARMA(1,1) system. Substituting each of the

measurement equations (4), (8) and (9) into the equations for the corresponding conditional

moments one obtains

h̃0,t+1 = a0 + c0ξ0 + (b0 + c0ϕ0)h̃0,t + c0δ0(z0,t) + τ0(z0,t) + c0u0,t

h̃i,t+1 = ai + ciξi + (bi + ciϕi)h̃i,t + dih̃0,t+1 + ciδi(zi,t) + τi(zi,t) + ciui,t.

ρ̃i,t+1 = ai0 + ci0ξi0 + (bi0 + ci0ϕi0)ρ̃i,t + ci0vi,t (10)

Let Vt = (h̃0,t, h̃i,t, ρ̃i,t)
′, then by substituting the equation for h̃0,t+1 into that for h̃i,t+1, one

can show that

Vt+1 = C +AVt +Bεt,

where εt = (δ0(z0,t), τ0(z0,t), δi(zi,t), τi(zi,t), u0,t, ui,t, vi,t)
′ and

C =

⎡
⎢⎢⎢⎣

a0 + c0ξ0

a1 + ciξi + di(a0 + c0ξ0)

ai0 + ci0ξi0

⎤
⎥⎥⎥⎦ , A =

⎡
⎢⎢⎢⎣

b0 + c0ϕ0 0 0

di(b0 + c0) bi + ciϕi 0

0 0 bi0 + ci0ϕi0

⎤
⎥⎥⎥⎦ ,

B =

⎡
⎢⎢⎢⎣

c0 1 0 0 c0 0 0

dic0 di ci 1 dic0 c1 0

0 0 0 0 0 0 ci0

⎤
⎥⎥⎥⎦ .

The innovation process, εt, is a martingale difference sequence but is slightly heterogeneous.

Time-variation in the distribution of εt arises from (and is fully described by) ρi,t = corr(z0,t, zi,t|Ft−1).

It follows that E(Vt+k|Vt) = AkVt +
∑k−1

j=0A
jC which can be used to produce a k-step ahead

forecast of Vt+k. Forecast of the conditional distribution of Vt+k|Ft, which can be used to deduce

unbiased forecasts of the non-transformed variables, e.g., h0,t = exp(h̃0,t), can be obtained by
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simulation or bootstrap methods. In the simulation approach, we first generate

ηt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z0,t

z̃i,t

u0,t

ui,t

vi,t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∼ N5

⎛
⎝0,

⎡
⎣ I2 0

0 Σ

⎤
⎦
⎞
⎠ , t = 1, . . . , n.

Given an initialization for ρi,0, one can produce the entire time series {ρ̃i,t} from {vi,t} using

(10). Next one can define zi,t = ρi,tz0,t +
√

1− ρ2i,twi,t, which has the proper correlation with

z0,t, and thus finally εt can be computed.

Alternatively, a bootstrap approach can be used if the Gaussian assumption concerning

the distribution of ηt is questionable. From the estimated model we can obtain residuals,

(η̂1, . . . , η̂n), from which we can draw resamples instead of sampling from the Gaussian distri-

bution. Time series for Vt can now be generated from the bootstrapped residuals {η̂∗t } in the

same manner as with simulated {ηt}.
To simulate the time series for larger systems is straight forward using the bootstrap of the

residuals from the estimated structure. Simulations would require one to take an explicit stand

about the correlation structure of wi,t-variables and the correlation structure of the errors in

the various measurement equations.

5 Empirical Analysis

5.1 Data Description

The model is estimated for a large cross section of assets. We included any asset that was a

constituent of the S&P 500 index at some point between January 19, 2006 and June 25, 2010,

albeit excluding assets for which we had less than 1000 daily observations during our sample

period from January 3, 2002 to the end of 2009. This results in a total of 594 time series with

distinct PERMNO (see below). Thus our sample period spans a total of 2,008 trading days and

the sample size for each of the individual stocks ranges from 1,000 to 2,008 observations.

Our data were constructed by merging information from the TAQ dataset and the CRSP

daily stock files that were accessed through the WRDS research service. The former provides the

high-frequency data used for our construction of realized measures of volatility, and the latter
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has the opening and closing prices that are properly adjusted for stock splits and dividends. The

TAQ database uses ticker symbols as stock identifiers which can be problematic for a compre-

hensive analysis such as this one. The reason is that about 10% of the companies in our sample

have traded under different ticker symbols during the sample period and, more importantly,

some ticker symbols represent very different companies at different point in time. Relying on

tickers as identifiers can result in data for two or more companies being mixed up. The CRSP

data identifies companies using the CRSP Permanent Company Numbers (PERMNOs) and

we can use these to track changes in companies ticker symbol, thus ensuring that the proper

high-frequency data are extracted from TAQ. This is achieved as follows: First, we match the

ticker symbols of the S&P 500 constituents to the CRSP dataset and obtain their PERMNOs.

Second, we extract the ticker symbols that were associated with each PERMNO over the sam-

ple period. This information is then used to extract high-frequency data from the TAQ, from

which our realized measures of volatility are constructed, and the the daily data from the CRSP

are appended to the time series of realized measures. The high-frequency transaction data are

cleaned according to the filtering algorithm described in Barndorff-Nielsen et al. (2009), and the

multivariate realized kernel by Barndorff-Nielsen et al. (2011) is used as our realized measures

of volatility and co-volatility. We use the exchange traded fund, SPY, as a proxy for the market

index in our empirical analysis, making the total number of assets in our analysis 595.

5.2 Empirical Results

A summary of the estimation results is presented in in Table 1 and Figure 1.1 The first row

in Table 1 contains the estimates for the marginal model for the market return, as defined by

equations (2-4), and the rest of the table presents a summary of the estimation results for the

594 conditional models, each defined by equations: (6-9). To conserve space the cross-sectional

statistics for the estimates of Σ are omitted, but some selected estimates of Σ will be presented

in Table 2.
1The results reported are the estimates when imposing the restrictions ϕi = 1, i = 0, 1, . . . , N , which did not

result a significant reduction of the log-likelihood function, see Hansen and Huang (2012) for a discussion on
this. The initial values for the latent variables, h0,t, hi,t and ρi,t, are treated as parameters, and their estimated
values are reported as h0,1, hi,1 and ρi,1, respectively.
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Figure 1: Histograms of the 594 parameter estimates for some selected parameters.

The parameter ci, which captures the effect of the lagged realized measure on the conditional

variance, is large and significant while the GARCH parameter, bi, is much smaller than is usually

the case for conventional GARCH models. This reason for this is that the realized measure is

far more informative about volatility than the squared return, which makes the model far more

adaptive to abrupt changes in volatility, which in turn, leads to a better empirical fit and

more accurate forecast. The negative estimates of τi1 and positive estimates of τi2 indicate the

presence of a leverage effect, see Hansen et al. (2012) for the relation of these leverage functions

to the news impact curve. Examining the parameters of the measurement equation, we find

that ξi is negative. This is to be expected because the realized measures is computed over

the open-to-close period, which only capture a fraction of daily (close-to-close) volatility. The

conditional model for the individual stocks has the additional parameter, di, in the GARCH

equation. This parameter measures the spillover effect from market volatility to individual stock

volatility. The mean and the median of this coefficient is positive, and so is the vast majority
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of the individual estimates. Altogether this shows that market volatility tend to have a positive

contemporaneous effect on individual asset volatility.2

The cross sectional variation of parameter estimates are presented in the histogram plots in

Figure 1. Both Table 1 and Figure 1 show that the parameter estimates are quite stable in our

cross-section of stocks. Only φ̂i0 is estimated to have an extreme value some cases, but even

in these cases, we have verified that the estimated conditional variances and correlations are in

agreement with their corresponding realized measures.

Table 2 presents the estimates of Σ for six selected assets. The upper left element in these

matrices is the estimated variance of u0,t in the measurement equation for the realized measures

associated with the market return. This point estimate varies slightly across the six matrices due

to variation in the sample period for the six assets. Note that the measurement error variance

for the individual assets to be larger than that of the market. This is to be expected because

the realized measure for the market return is based on a larger number of high-frequency data.

Also note that there is substantial correlation across the measurements error, in particular for

the realized measures of volatility.

Table 2: Selected Point Estimates of the Measurement Error Variance.

CVX⎡
⎢⎣ 0.112

0.071 0.121

0.016 0.011 0.015

⎤
⎥⎦

UTX⎡
⎢⎣ 0.113

0.060 0.161

0.016 0.003 0.017

⎤
⎥⎦

WMB⎡
⎢⎣ 0.112

0.055 0.197

0.015 0.000 0.017

⎤
⎥⎦

EK⎡
⎢⎣ 0.112

0.051 0.224

0.015 0.001 0.018

⎤
⎥⎦

SNV⎡
⎢⎣ 0.114

0.078 0.217

0.018 0.010 0.025

⎤
⎥⎦

MSFT⎡
⎢⎣ 0.112

0.076 0.138

0.017 0.010 0.014

⎤
⎥⎦

The estimated measurement error variance matrix, Σ = var(u0,t, ui,t, vi,t), for six selected assets.

In Figure 2 we present the realized variance of CVX and SPY against the model-implied

conditional variance.3 Clearly, the conditional variance tracks the realized series closely but has

less high-frequency variation. Naturally, this relation is largely imposed by the models struc-

ture, because the measurement equation implies a (noisy) relationship between the conditional

variance and realized measure. The apparent downward bias of the realized measure is due to
2Note that a row in Table 1 does not present the estimates for a particular stock. For example, the 1%

quantile of b0 and c0 may not be estimates for the same asset.
3The plots for all stocks are available from the authors upon request.
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the fact that it is computed over a fraction of the day (the about 6.5 hours where assets are

actively traded). This aspect of the realized measures explains that the coefficients ξ0 and ξ1

are negative.

RK CVX hCVX ,t 
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Figure 2: Realized kernel (RK) variance and conditional variance of CVX (upper panel) and
SPY (lower panel) over the period 2007 – 2009.

We turn next to the model-implied betas, given by

β̂t = ρ̂t

√
ĥ1,t/ĥ0,t, (11)

where ρ̂t = ρt(θ̂) and ĥi,t = hi,t(θ̂), i = 0, 1, denote the estimated quantities. The time series

can be contrasted to the realized betas

β̃t = y1,t

√
x1,t/x0,t, (12)

that are computed exclusively from high-frequency data on day t.

The model-implied betas take into account the presence of measurement error in the realized

quantities as well as the dynamic linkages between realized measures and conditional moments.

To get an idea of the time variation of β̂t in our model compared to its raw realized counterpart,

we continue with our previous example, and present graphic results for the realized and the
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Figure 3: Realized and conditional correlation (upper panel) and beta (lower panel) of CVX
(perm number 14,541) for the period 2002 – 2010.

conditional beta and correlation of CVX in Figure 3. The correlation changes rapidly during

the sample period, which carries over to the the systematic risk of CVX, as defined by its beta.

In fact the beta for CVX ranges from about 0 to more than 1.5 over this period.

In Figure 4 we present quantile time series plots of the cross sectional variation in the condi-

tional correlation and beta during the financial crisis, where the time of the collapse of Lehman

Brothers is clearly identified. It is, perhaps, the period leading up to the collapse of Lehman

Brothers that stands out the most. On July 15th the SEC temporarily prohibited naked short

selling in the securities of Fannie Mae and Freddie Mac. The time of this announcement co-

incides with some major changes in the cross sectional distribution of correlations and betas,

although we do not claim any causal relation in this matter. In the subsequent period correla-

tions decreased (on average) and the cross sectional distribution became increasingly left-skewed

correlations. This might suggest that assets became somewhat more susceptible to idiosyncratic

shocks and less to market-wide shocks. So it is perhaps surprising that the distribution of con-

ditional betas became more right-skewed and increased. The explanation is that individual

asset volatility increased relatively more than market volatility, to an extend that the relative

increase more than offset the reduction in average correlation. The mechanics of this is easily
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understood from the definition of the conditional beta, βt = ρi,t
√

hi,t/h0,t . After this initial

chaotic period correlations started to increase and the variation in betas decreased. Eventually,

correlations peaked around mid-November with a median value of over 70% well above the 55%

value at the beginning of June.
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Figure 4: Quantile time series plot of conditional realized GARCH correlations for the period
06.2008 – 12.2008.

It is important to understand that the high degree of variation that we find in the betas

cannot simply be attributed to variation in the realized quantities. In fact, the main source

of this variation is driven by daily returns. The reason is simply that it is time variation in

the dependence structure in daily returns that causes the realized measures to be found to

be useful predictors in the GARCH equations. Variation of this magnitude would be close to

impossible to obtain with standard approaches using rolling window OLS techniques based on

daily returns. Based on rolling window estimated betas of this kind, Lewellen and Nagel (2006)
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concluded that time variation in beta is insufficient to explain certain asset pricing “anomalies”.

Given the large variation we observed in the systematic risk of individual companies, it could

be interesting to revisit this question.
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Figure 5: Quantile time series plot of conditional realized GARCH betas for the period 06.2008
– 12.2008.

In Figure 5 we have replaced the median line of Figure 4 with the time series of conditional

betas for four selected stocks, and the four panels covers the second half of. Our objective is

to demonstrate the substantial variation that some betas display. An interesting example is

Williams Companies (WMB) that moved from the lower 10% to the upper 10% in the fall of

2008. The example of SNV shows how some financial companies got relatively more risky as

the financial crises approached in the early fall of 2008. Finally, we included UTX and EK to

show that the betas of some companies are relatively stable.
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5.3 Residual Correlations and Test for Constant Correlations

The Realized Beta GARCH model implies that the correlation between the individual studen-

tized returns, zit and zjt, is time varying. Recall the decomposition

zi,t = ρi,tz0,t + zi,t − ρi,tz0,t = ρi,tz0,t +
√
1− ρ2i,twi,t,

where wi,t and z0,t are uncorrelated, both have mean zero and unit variance, and in the likelihood

analysis we modeled both as standard Gaussian random variables. It follows that

corr(zi,t, zj,t) = ρi,tρj,t +
√
(1− ρ2i,t)(1− ρ2j,t)E(wi,twj,t),

which is time varying unless E(wi,twj,t) behaves in a rather unlikely way that offsets the variation

in ρi,t and ρj,t. We have not stated explicit assumptions about the correlation, E(wi,twj,t), which

induces additional dependence between zi,t and zj,t, beyond that inherited from their correlations

with the market return. This additional channel for dependence is ignored in our estimation (in

order to make the estimation of large systems feasible). A non-zero correlation between wi,t and

wj,t is evidence that the Realized Beta GARCH model does not fully characterize the complete

system, so that the estimated model will need to be enhanced to capture such effects. It would

also suggest that the estimation is inefficient to some extent, albeit this is to be expected with

a relatively simple estimation procedure in a highly complex model.

In this section we study the magnitude of E(wi,twj,t) and the potential evidence of time-

variation in this correlations. Since our model implies time variation in the correlation between

zi,t and zj,t we shall evaluate the empirical evidence of this.

First we consider a test for constant correlation that is based on the general theory by

Nyblom (1989). This is the underlying framework of several test for parameter constancy

including that of Hansen (1992) (linear regression models) and that of Hansen and Johansen

(1999) (cointegration VAR).

Consider a bivariate process (xt, yt) of studentized variables, E(xt) = E(yt) = 0 and E(x2t ) =

E(y2t ) = 1; So that the correlation is given by

ρt = E(xtyt).

We are to construct tests for constant correlation and zero correlation. The maintained hypoth-
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esis is that the partial sum

WT (u) ≡ T− 1
2

�uT �∑
s=1

(xsys − ρs), u ∈ [0, 1],

satisfies a functional central limit theorem, so that WT (u) ⇒ σWB(u) where B(u) is a standard

Brownian motion, and σ2
W is the long-run variance of xtyt − ρt.

Under the null hypothesis, H0 : ρt = ρ (constant correlation) it follows that

NBc =
T−1

∑T
t=1

(
T−1/2

∑t
s=1(xsys − ρ̄)

)2
σ̂2
W

d→
ˆ 1

0
Bb(u)

2du,

where Bb(u) = B(u) − uB(1) is a standard Brownian bridge, ρ̄ = T−1
∑T

t=1 xtyt and σ̂2
W is

some consistent estimator of σ2
W . Under the null hypothesis H0 : ρt = 0 (zero correlation) we

have

NB0 =
T−1

∑T
t=1

(
T−1/2

∑t
s=1 xsys

)2
σ̂2
W

d→
ˆ 1

0
B(u)2du,

where σ̂2
W

p→ σ2
W . In the absence of serial dependence we can use the estimator σ̂2

W =

T−1
∑T

t=1(xtyt − ρ̄)2, which is consistent for σ2
W under both null hypotheses. The 5% criti-

cal values of these limit distributions are 0.462 and 1.656, respectively, see Nyblom (1989).

In our application we shall apply the test for constant correlation to zi,tzj,t and wi,twj,t, and

we apply the test for zero correlation to wi,twj,t.

5.3.1 Empirical Results Concerning Residual Correlation Structure

With 594 stock in our cross section there are 176,121 distinct correlation series to look at. To

handle this we aggregate the correlation estimation and test results by industrial segmentation.

We employ the sector definition given by the Global Industry Classification Standard (GICS)

that is the industry taxonomy developed by Morgan Stanley Capital International (MSCI) and

Standard & Poor’s. The GICS structure consists of 10 sectors, 24 industry groups, 68 industries

and 154 sub-industries and it is used as a basis for S&P and MSCI financial market indexes.

To make our analysis as clear as possible we aggregate to sector level.

To match our stocks to the ten GICS sector we pair TAQ with Standard & Poor’s CapitalIQ

database that contains continuously updated GICS classifications for a large set of publicly

listed companies assigned by S&P’s analysts. These GICS classifications reflect those used

by many wealth and investment managers and financial institutions. To match CUSIP and
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Ticker identifiers from TAQ to the GICS identifiers, TAQ stock identifiers are first matched by

CUSIP, and then double checked for a matched with company names from CapitalIQ. In cases

without a match from this procedure, Ticker’s are used. If this procedure does not provide a

match, CapitalIQ Equity Listings report is used to check for inactive listings and these are again

matched according to exchange tickers. If none of the above procedures achieve a positive match,

CapitalIQ’s business description is used to identify company name changes and a final match is

attempted. The above series of matching procedures match all considered TAQ identifiers with

available GICS classifications. The 10 sectors are listed in Table 3 along with the number of

companies and summery statistics for their betas within each of the sectors.

Table 3: Sector Statistics.

Sector Company Counts Min beta Median Max Beta

Energy 46 0.299 (0.174) 1.009 (0.145) 2.396 (0.510)
Materials 37 0.382 (0.104) 0.873 (0.117) 2.347 (0.836)
Industrials 63 0.264 (0.133) 0.931 (0.144) 2.293 (0.427)
Consumer Discretionary 103 0.163 (0.156) 0.912 (0.136) 2.395 (0.664)
Consumer Staples 46 0.336 (0.127) 0.970 (0.135) 2.188 (0.422)
Healthcare 64 0.358 (0.147) 1.072 (0.158) 2.586 (0.632)
Financials 101 0.309 (0.127) 1.037 (0.141) 2.633 (0.665)
Information Technology 86 0.335 (0.156) 0.944 (0.145) 2.496 (0.734)
Telecommunication Services 9 0.727 (0.166) 1.082 (0.186) 1.620 (0.307)
Utilities 40 0.284 (0.140) 0.988 (0.175) 2.332 (0.579)

The table gives summary statistics of the sectoral aggregation. The third to fifth columns give the time
series average of the minimum, median and maximum beta for each sector. Standard deviations are
given in parenthesis.

Next we turn to the constancy of correlations within and and across sectors. These results

are presented in Tables 4-6. Table 4 gives the sample average of the unconditional correlations

for residuals sorted by industry classification (GICS). The upper panel is for the studentized

returns, ẑi,t and ẑj,t, and serve as a benchmark measure. It is interesting to compare these

to the numbers in the lower panel that are based on ŵi,t and ŵj,t. The difference between

these numbers show us how much of the correlations between individual stocks that could be

attributed to our market factor. The immediate impression that one gets is that the market

in most cases account for most of the co-variation between the stocks we consider. That is

certainly the case for all the cross sector combinations (the off diagonals of the lower panel are

close to zero). However, for stocks in the same sector we see from the numbers on the diagonal

that a substantial amount of correlation is left unexplained by the market (the diagonal entries
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of the lower panel). The implication is that we need to look for more factors when modeling

the co-variation between stocks in the same sector. For now we will simply investigate some

statistical properties of the residual co-variation and leave the modeling for future work.

Table 4: Unconditional Correlations (Sorted by GICS)
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Energy 0.598 0.324 0.276 0.203 0.158 0.180 0.231 0.217 0.196 0.298

Materials 0.417 0.376 0.308 0.240 0.242 0.341 0.297 0.273 0.285

Industrials 0.400 0.330 0.258 0.262 0.356 0.320 0.287 0.286

Consumer Discretionary 0.322 0.234 0.232 0.326 0.281 0.251 0.238

Consumer Staples 0.260 0.207 0.260 0.203 0.213 0.232

Healthcare 0.260 0.258 0.227 0.215 0.221

Financials 0.429 0.301 0.289 0.300

Information Technology 0.356 0.267 0.229

Telecommun. Services 0.369 0.251

Utilities 0.487
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Energy 0.483 0.091 0.015 -0.035 -0.044 -0.018 -0.056 -0.022 -0.026 0.099

Materials 0.160 0.082 0.042 0.008 0.004 0.023 0.018 0.006 0.021

Industrials 0.104 0.058 0.021 0.020 0.026 0.036 0.012 0.013

Consumer Discretionary 0.098 0.032 0.020 0.049 0.033 0.010 -0.005

Consumer Staples 0.105 0.036 0.021 -0.015 0.016 0.040

Healthcare 0.096 0.012 0.009 0.010 0.022

Financials 0.145 0.002 0.011 0.024

Information Technology 0.130 0.023 -0.023

Telecommun. Services 0.187 0.029

Utilities 0.341

Average sample correlations for residuals sorted by industry classification (GICS). Upper panel is for
ẑi,t and ẑj,t and the numbers in the lower panel are based on ŵi,t and ŵj,t.
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Table 5: Testing for Constant Correlations (Sorted by GICS)
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Energy 0.649 0.781 0.854 0.636 0.589 0.423 0.718 0.794 0.679 0.570

Materials 0.619 0.676 0.619 0.470 0.341 0.612 0.609 0.616 0.588

Industrials 0.767 0.665 0.616 0.415 0.623 0.628 0.626 0.683

Consumer Discretionary 0.645 0.470 0.387 0.647 0.575 0.595 0.536

Consumer Staples 0.507 0.453 0.516 0.552 0.577 0.674

Healthcare 0.367 0.409 0.369 0.410 0.475

Financials 0.738 0.575 0.570 0.439

Information Technology 0.682 0.562 0.513

Telecommun. Services 0.778 0.597

Utilities 0.474
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Energy 0.722 0.435 0.200 0.373 0.248 0.286 0.608 0.090 0.244 0.354

Materials 0.386 0.221 0.207 0.150 0.125 0.260 0.135 0.072 0.125

Industrials 0.147 0.159 0.110 0.094 0.168 0.132 0.063 0.142

Consumer Discretionary 0.182 0.107 0.079 0.130 0.128 0.137 0.142

Consumer Staples 0.173 0.153 0.141 0.204 0.143 0.183

Healthcare 0.166 0.107 0.093 0.113 0.130

Financials 0.382 0.131 0.086 0.411

Information Technology 0.260 0.087 0.094

Telecommun. Services 0.444 0.097

Utilities 0.268

Rejection frequencies for the NBc test for constant correlation using a 5% significance level. The upper
table are the results for ẑi,tẑj,t and the lower table are those for ŵi,tŵj,t.

In Table 5 we apply the NBc test for constant correlation to our residual series. We report the

rejection frequencies for a 5% significance level. In the upper panel we present the frequencies

for the product of the studentized returns, ẑi,tẑj,t. For example, in the case of the 46 energy

companies there are 1,035 tests and the null hypothesis of constant correlation is rejected for

almost 65% of these test. In fact the constant correlation of across studentized returns is
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frequently rejected across the board. Once we account for the market factor, and test the

hypothesis of constant correlation for the idiosyncratic studentized returns, wit, we observe that

the rejection frequencies are much smaller, these frequencies are presented in the lower panel of

Table 5. One exception of the energy sector, where non-constant correlation is quite prevalent.

Both for the correlation with other energy stocks and with assets from other sectors. That is

the what we get from the rejection frequencies for the NBc applied to the ŵi,tŵj,t series reported

in the lower panel. Especially, for the cross-sector combinations we have that the market factor

in many cases could fully account for the time-varying correlation between individual stocks.

Still, it seems that within some sectors (such as Energy, Materials, Financials, and Telecom)

there is a need for a sector factor that is allowed to correlate in a time-varying fashion with the

individuals stocks.

One key message to take away from Table 5 is that the evidence of time-varying correlations

across sectors is greatly reduced by accounting their associations with market returns. Within

sectors there is substantial residual time-variation and, evidently, there is a need for additional

factors, such as sector specific factors if a larger fraction of the time-variation is to be accounted

for.

Table 6: Testing for Zero Correlations (Sorted by GICS)
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Energy 1.000 0.605 0.304 0.343 0.389 0.153 0.484 0.277 0.326 0.868

Materials 0.943 0.746 0.454 0.223 0.183 0.344 0.176 0.186 0.226

Industrials 0.744 0.545 0.236 0.210 0.298 0.335 0.145 0.142

Consumer Discretionary 0.692 0.299 0.189 0.427 0.259 0.149 0.170

Consumer Staples 0.736 0.283 0.259 0.298 0.130 0.435

Healthcare 0.706 0.157 0.270 0.123 0.162

Financials 0.816 0.238 0.111 0.443

Information Technology 0.853 0.265 0.281

Telecommun. Services 0.889 0.267

Utilities 1.000

Rejection frequencies for the NB0 test for zero correlation applied to ŵi,tŵj,t.

Table 6 presents the tests for zero correlation. The table reports the rejection frequencies for
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the NB0 test applied to the ŵi,tŵj,t series. Given the results in Table 5 it is not surprising that

the test is frequently rejected for assets belonging in the same sector. Across sectors the zero-

correlation is also frequently rejected. By introducing sector specific factors it may be possible

to explain the correlation structure of stocks within the same sector. Since additional factors

would change the definition of the residual studentized returns, it is also plausible that sector

specific factors could mitigate the residual correlation we find for assets in different sectors. We

shall pursue this issue in future research.

6 Conclusion

In this paper we propose a multivariate GARCH model that utilizes realized measures of volatil-

ity and correlation, and entails a complete modeling of their dynamic properties. The model

builds on a self-contained system of equations that link realized measures to the appropriate

population quantities of volatility and covolatility. The structure implies a dynamic model of

the conditional betas, that are popular measures of risk in finance. The proposed framework

permits for leverage effects and spillover effects between the assets and the market volatility.

In this respect the model combines the flexibility of the GARCH modeling framework with the

statistical precision in volatility measurement resulting from the use of high-frequency data.

Importantly, the Realized Beta GARCH model has a hierarchical structure that makes it

easy to apply to vast number of assets. The model has a structure where the entire correlation

structure is driven by time-varying volatilities and time-varying correlation between each of the

assets and the market return.

Our empirical study revealed some interesting features of the cross-sectional variation of

the conditional betas, as well as their time-series variation. In particular, we find that the

betas exhibit far more variation at a daily frequency – variation that is largely concealed in the

rolling-window estimates of β that one can obtain with regression methods using daily returns.

We have proposed Nyblom-type test for constant and zero correlation. In our empirical

analysis we found that the Realized Beta GARCH model explains a great deal of the time

variation in the correlation structure, but the Nyblom tests revealed significant residual variation

in the correlation structure, in particular between assets within the same sector. For this reason,

it will be interesting to consider a generalize structure where additional sector specific correlation

factors used. We shall pursue this generalization in future research.
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