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Abstract

A problem encountered in some empirical research, e.g. growth empirics, is that

the potential number of explanatory variables is large compared to the number

of observations. This makes it infeasible to condition on all variables in order to

determine whether a particular variable has an effect. We assume that the effect

is identified in a high-dimensional linear model specified by unconditional moment

restrictions. We consider properties of the following methods, which rely on low-

dimensional models to infer the effect: Extreme bounds analysis, the minimum

t-statistic over models, Sala-i-Martin’s method, BACE, BIC, AIC and general-to-

specific. We propose a new method and show that it is well behaved compared to

existing methods.
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1 Introduction

The objective of many empirical studies is to determine the effect of an explanatory

variable. When there are many other explanatory variables and only a small dataset

is available, researchers often resort to low-dimensional models, where only a subset of

the explanatory variables are included at a time, instead of a high-dimensional model

with all explanatory variables included. In particular, when the number of observations

exceeds the number of explanatory variables, it is necessary to use a dimension reduction

method. The most common dimension reduction methods applied in economics all build

on estimation of many low-dimensional models and on rules for combining the results of

the low-dimensional models to an estimate of the effect. The purpose of this paper is to

investigate the properties of these methods and, as a result of the findings, suggest an

improved method.

Many of the dimension reduction methods are applied in studies of GDP per capita

growth. One reason is that there are many potential variables that have been claimed

to have an effect on growth, see e.g. Durlauf, Johnson and Temple (2005), who list 145

variables. One of the most extensive growth datasets is the one of Sala-i-Martin (1997).

This dataset has around 60 variables, but only 36 complete country observations. Thus,

the dataset is high-dimensional, i.e. it has more variables than observations (e.g. Goeman,

Van der Geer, Houweiling, 2006; Jensen, 2010). Many of the papers in the empirical

growth literature use this dataset (e.g. Fernandez, Ley and Steel, 2001; Hoover and

Perez, 2004; Hendry and Krolzig, 2004; Sturm and De Haan, 2005; Acosta-Gonzalez and

Fernandez-Rodriguez, 2007). Therefore, standard regression techniques with all variables

included cannot be carried out, and as a consequence growth researchers have turned

to alternative (dimension reduction) methods (e.g. Sala-i-Martin, 2001; Durlauf et al.,

2005).

Our setting is as follows. There is a plethora of potentially important variables for an

outcome. The researcher has a particular variable of interest. The effect of the variable

of interest is identified as the partial effect in a model with all potential explanatory

variables included. This is denoted the high-dimensional model. The high-dimensional

model is specified by linear unconditional moment restrictions. This specification includes

a linear regression model. For various reasons, for instance an undersized sample with

more variables than observations, the researcher relies on models with fewer explanatory

variables than the high-dimensional model. These models are the low-dimensional models.

They are also specified by linear unconditional moment restrictions. The low-dimensional

models can be estimated e.g. by the ordinary least squares estimator. Based on different
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rules, the results of the low-dimensional models are combined into an (interval) estimate

of the effect.

We start our analysis by providing three different assumptions under which the effect

is identified by a low-dimensional model. As is well known from the omitted variable

bias problem, the effect of a variable in the high-dimensional model cannot, in general,

be identified in a low-dimensional model. As is also well known, there are exceptions

where a low-dimensional model can identify the effect. Three cases are 1) the variable

of interest is conditional mean independent of the excluded variables, 2) the excluded

variables do not explain the outcome, and 3) a variable can be used as an instrument for

the explanatory variable of interest. Though these three cases constitute the essence of

the three assumptions, respectively, the context here is different from the usual omitted

variable bias setting. The reason is that all variables are observed (even though they

may be perfectly correlated) and that it is not known beforehand which variables, if

any, can be excluded such that e.g. the conditional mean independence holds. Hence,

the assumptions are more realistic than simply assuming that it is known, say, which

explanatory variables do no belong in the model. It is under these assumptions that we

investigate the properties of the various methods.

The first set of methods is Bayesian in spirit and builds on Leamer (1983). His

approach is to run a set of linear regressions that include the variable of interest and

different selections of other explanatory variables. In our terminology, these are the low-

dimensional models. If the coefficient on the variable of interest is significant and has

the same sign in all the low-dimensional models, he denotes the variable as "robust".

The method is known as extreme bounds analysis (EBA) and was first implemented in

a growth context by Levine and Renelt (1992). Hansen (2003) develops a variant of

Leamer’s approach which takes the multiple testing problem into account and uses the

bootstrap method proposed by White (2000). Sala-i-Martin (1997) criticizes extreme

bounds analysis because a variable is likely to be insignificant in at least one regression if

enough regressions are run. As an alternative, Sala-i-Martin suggests a method based on

the distribution of the estimates of the effect over different low-dimensional models. Sala-

i-Martin, Doppelhofer and Miller (2004) build on the Bayesian Model Averaging technique

proposed by Raftery (1995). Their approach is known as Bayesian Averaging of Classical

Estimates (BACE). The BACE approach involves a weighted average of the estimates

over the different low-dimensional models. In the implementation of Sala-i-Martin et al.

(2004), this weighted average is used to assess robustness.

The second set of methods consists of classical model selection methods. Criteria such

as AIC and BIC can be employed to choose the subset of variables to be included in
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the "best" model, and whether a variable has an effect on the outcome is determined by

whether it is included in the best model or not. In our terminology, one low-dimensional

model is picked among the set of low-dimensional models estimated. The refined general-

to-specific procedures suggested by Hoover and Perez (2004), Bleaney and Nishiyama

(2002) and Hendry and Krolzig (2004) can be applied to various low-dimensional models

to pick a low(er)-dimensional model.

We prove that none of the methods identify the effect under the assumptions based on

conditional mean independence, 1), or instrumental variable, 3). The traditional model

selection techniques BIC and AIC, together with BACE and general-to-specific identify

the effect when a subset of the variables does not explain the outcome, 2); that is, when

there is a low-dimensional model which is identical to the high-dimensional model. None

of the methods are designed to, nor do they, reveal whether an assumption is, in fact,

satisfied. Hence, in terms of identification of the effect without imposing one of the

assumptions a priori, none of the methods provide valid inference.

We suggest a new method that provides valid inference without imposing any of the

three assumptions. It can, however, only identify the effect if the conditional mean inde-

pendence assumption is satisfied. If this assumption is not satisfied, the method returns

no answer to the effect. A key part of the method is to test whether there is a sufficiently

large number of variables that can be excluded because they are conditional mean inde-

pendent of the variable of interest. It is possible to perform these tests even when the

sample is undersized. The possibility of testing with an undersized sample has also been

applied by Breusch (1986) and Jensen (2010). Our method first uses tests to reveal if

there is a set of variables for which the conditional mean assumption is satisfied and, if

so, estimates the low-dimensional model with an appropriate set of explanatory variables.

Using Monte Carlo simulations, we investigate the finite sample properties of the meth-

ods in a setting with more variables than observations. The estimators of the effect are

substantially biased. As a result, tests of the effect being different from 0 are size-distorted

and, in particular, have poor power. Some of the methods have a higher probability of

accepting that a variable has an effect in the case where it has none. The Monte Carlo

study shows that none of the existing methods work when there are more explanatory

variables with non-zero coefficients than observations. It also demonstrates that the new

method has good level control in detecting when the conditional mean independence as-

sumption holds, and, in that case, the new method has the correct size and good power

against the null of no effect.

We finally apply the new method to Sala-i-Martin’s (1997) dataset. The results show

that the effects on economic growth of the variables cannot be inferred. While this result

4



is negative, this is not unusual in the literature, see Jensen (2010). Thus, our theoretical

and empirical results raise the question of what is actually learnt from the various studies

based on dimension reduction methods using for example Sala-i-Martin’s (1997) dataset.

The rest of the paper is organized as follows. In Section 2 we state conditions under

which the effect of a variable can be identified from a low-dimensional model. In Section

3, we derive properties of the existing methods. Section 4 describes the new method for

estimating and testing the effect of a variable, and in Section 5 the different methods

are compared in a Monte Carlo study. Section 6 contains the application and Section 7

concludes. All proofs are in the appendix.

2 Identifying an effect using a low-dimensional model

In this section, we give conditions under which the effect of a variable in a high-dimensional

model is identified in a low-dimensional model.

We start by a simple example to illustrate circumstances under which the effect in

the high-dimensional model can be identified in a low-dimensional model. These circum-

stances are well-known but worth mentioning here because they cast light on the working

of the existing methods discussed in the next section as well as the method we develop in

Section 4. Throughout the paper, we assume that the effect of a variable is identified by

unconditional moment restrictions in the high-dimensional model. In this simple example,

assume that:

Y = β1X1 + β2X2 + β3X3 + β4X4 + U, (1)

E(X1U) = E(X2U) = E(X3U) = E(X4U) = 0.

The effect of the variable X1 is defined to be the partial effect β1.

A low-dimensional model based on linear regression may identify the effect. The linear

regression1 of Y on X1 and X2 is:

Y = γ1X1 + γ2X2 + ε.

As is well known, β1 is not identified by γ1 due to an omitted variable bias. The omitted

variable bias disappears if the included explanatory variables, X1 and X2, are conditional

mean independent of the excluded variables X3 and X4. The omitted variable bias also

1In a regression context, Goldberger (1991) denotes the high-dimensional model as the long regression

and the low-dimensional model as the short regression.
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disappears if the excluded variables do not belong in the high-dimensional model, that

is, β3 = β4 = 0. This circumstance amounts to the low-dimensional model being a true

submodel.

A low-dimensional model based on instrumental variable regression may also identify

the effect. For an instrument, say X3, to be valid in a low-dimensional model with only

the explanatory variable X1:

E(X1X3) 6= 0 and E(X2X3) = E(X4X3) = 0.

If β3 = 0, then X3 is a valid instrument in the instrumental variable regression of Y on

X1. The coefficient on X1 identifies β1.

We finish by stating identifying assumptions in general. Assume that the high-

dimensional model consists of K explanatory variables and the low-dimensional model

includes at most Ks < K explanatory variables. The effect, β1, of the variable X1 is iden-

tified in the high-dimensional model by the following unconditional moment restrictions:

Y =
KX
k=1

βkXk + U (2)

E(X1U) = ..... = E(XKU) = 0.

Without loss of generality, assume that E(Xk) = 0, k = 1, ..,K. The specification of

the high-dimensional model is satisfied by a linear regression model. The specification

can also be thought of as the minimum mean square linear predictor of a (nonlinear)

regression function. Equivalently, we will also write the model as

E∗(Y | X1, ..,XK) =
KX
k=1

βkXk

where E∗(Y | X1, .., XK) is the linear projection of Y on X1, .., XK, see e.g. Wooldridge

(2002) for details. A linear projection satisfies

E (Xk [Y −E∗(Y |X1, ..,XK)]) = 0, k = 1, ..,K

A low-dimensional model based on linear regression with Ks explanatory variables is

Y = γ1X1 + γ2X2 + ..+ γKs
XKs + ε

E(X1ε) = ..... = E(XKsε) = 0.

A relationship between the low-dimensional and the high-dimensional model can be de-

rived using linear projection. Let E∗(Xm|X1, ..,XKs) be the linear regression (projection)
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of Xm on X1, ..,XKs given by

E∗(Xm|X1, .., XKs) =
KsX
k=1

αm
k Xk

Then the linear regression of Y on X1, ..,XKs is

Y = E∗(Y |X1, .., XKs) + ε (3)

=
KsX
k=1

βkXk +
KX

m=Ks+1

βmE
∗(Xm|X1, ..,XKs) + ε

=
KsX
k=1

βkXk +
KX

m=Ks+1

βm

KsX
k=1

αm
k Xk + ε

=
KsX
k=1

Ã
βk +

KX
m=Ks+1

βmα
m
k

!
Xk + ε.

The first line defines ε ≡ Y −E∗(Y |X1, ..,XKs). Hence, by construction E(X1ε) = ..... =

E(XKsε) = 0 and the conclusion is that the coefficient on Xk in the low-dimensional

model is

γk = βk +
KX

m=Ks+1

βmα
m
k , for k = 1, .., Ks. (4)

In general, γk 6= βk and, thus, the effect β1 is not identified by γ1.

We can now state two assumptions about identification of the effect based on low-

dimensional linear regression models. The first assumption concerns conditional mean

independence between included and excluded variables. We will only assume that there

exists a set of variables, which are conditional mean independent of X1, the variable of

interest. We will not assume which of the variables belong to this set.

Assumption (O) Conditional mean independence: Let A ⊂ {X2, ..,XK} with (K−Ks)

members and Ac the complement of A. There exists a set A such that for each

Xi ∈ A, the coefficient, αi
1, on X1 is 0 in the linear regression of Xi on X’s in Ac.

The method we propose in Section 4 has a search for the two sets A and Ac as a vital

step. It turns out that assumption (O) is testable also when the sample is undersized.

The second assumption based on low-dimensional linear regression models concerns the

equivalence of the high-dimensional model and one low-dimensional model. We therefore

denote this case the true submodel assumption.

Assumption (S) True submodel: At least (K−Ks) of the coefficients (β2, .., βK) equal

0.
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Assumption (S) only says that there is a true low-dimensional model but not which

one of them. Jensen (2010) showed that this assumption is testable when the sample

size, n, is smaller than K.

As indicated above in the simple example, an instrumental variables approach may be

possible. In the following assumption, it is assumed that there exists one variable which

is correlated with X1 and uncorrelated with the other variables.2

Assumption (I) Instrumental variable: There exists a variable, Xk, k 6= 1, such that

βk = 0, E(XkX1) 6= 0 and E(XkXm) = 0 for m = 2, .., K, m 6= k.

Similar to the two other assumptions, assumption (I) does not indicate which of the

variables satisfy the restrictions in the assumption, only that such variables exist.

In the next three sections, we analyze existing methods and propose a new method

for identifying the effect β1 in view of the assumptions stated in this section.

3 Identifying the effect with existing methods

In this section we investigate existing Bayesian and classical methods that build on low-

dimensional models to infer the effect in a high-dimensional model. None of the methods

have been analyzed before under all the identifying assumptions in Section 2 and, thus,

the analysis helps fill a void, see Durlauf (2001) and Durlauf et al. (2005). Under each

of the three assumptions in Section 2, we prove whether or not a method identifies the

presence of the effect and, if so, the size of the effect.

Subsections 3.1-3.6 analyze different methods: EBA, Minimum t-statistic over models,

Sala-i-Martin’s method, BACE, BIC, AIC, general-to-specific. A preview of the results is

given in Table 1. The table shows whether or not a method correctly determines if X1

has an effect under each of the three assumptions.

2The methods applied in the empirical growth literature almost solely buid on regressions, there are

exceptions. For example, Durlauf, Kourtellos and Tan (2008) use the Bayesian Model Averaging approach

based on instrumental variables.
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Table 1: Correctly identifying the presence of an effect: β1 = 0 or β1 6= 0.
Method Assumption (O) Assumption (S) Assumption (I)

EBA Partly No No

Minimum t Almost No No

Sala-i-Martin No No No

BIC, AIC No Yes No

BACE No Yes No

GSP No Yes No
Notes: Minimum t=minimum t-statistic over models, Sala-i-Martin=Sala-i-Martin’s method,

GSP=general-to-specific.

It is notable that no method works under assumptions (O) and (I). None of the

methods include a test of the assumption being satisfied. Hence, even when some of the

methods work under assumption (S), it is necessary a priori to know that the assumption

is satisfied. In practice, it is unlikely that it is known whether one of the assumptions

holds. In contrast, the method we develop in Section 4 includes a test of the assumption

being satisfied.

In the analysis, we use asymptotic techniques to derive the identification properties

of the various methods. To preserve the defining property of the problem of using low-

dimensional models to infer the effect in the high-dimensional model, we keep Ks and K

fixed as n→∞. Hence, the main aspect of e.g. an undersized sample does not disappear
in the asymptotic analysis. In Section 5 we investigate the finite sample behavior of the

methods, and we relate the finite sample behavior to the identification results in this

section.

In the next subsections, we focus on the properties of the various methods to esti-

mate the effect β1 under the assumptions (O) and (S). We do not analyze assumption

(I) further because none of the methods considered are based on instrumental variable

estimators. For simplicity, we assume throughout a random sample of {Y ,X1, ..,XK} is
available.

3.1 EBA

The EBA of Leamer (1983), Leamer and Leonard (1983), and Levine and Renelt (1992)

defines the variableX1 as robust if the estimates of its coefficient are significantly different

from 0 and have the same sign in all the low-dimensional models. Other authors have

slightly different definitions of robustness, see the next subsections. All authors agree,

however, that the idea of robustness is to determine whether or not the variable has an
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effect, i.e. whether or not β1 = 0, see the discussions in Sala-i-Martin (2001) and Durlauf,

et al. (2005). Therefore, we treat robustness as an estimator of whether a variable has

an effect. Most of the other methods provide a point estimator of β1, whereas the EBA

provides an interval.

EBA has been criticized by various authors. Despite this criticism, the extreme bounds

analysis continues to enjoy widespread popularity.3 McAleer, Pagan and Volker (1985)

give necessary and sufficient conditions under which a variable is robust. Breusch (1990)

calculates the extreme bounds based on the high-dimensional model, and notes that the

bounds are narrow when exclusion of variables do not result in a loss of fit. Granger

and Uhlig (1990) derive the extreme bounds over the low-dimensional models that have

a reasonable fit (in terms of R2) relative to the best and worst fitting models. McAleer

(1994) criticizes Levine and Renelt (1992) for not reporting diagnostic tests. A recent

review of the different results is given by Ericsson (2008:pp. 897-898) who also derives

new results regarding the EBA. He obtains his result for the case in which there is an

omitted variable which is never included in the linear regressions used to calculate the

extreme bounds. In our analysis, all variables are included in some linear regressions.

Let γi1 be the population coefficient onX1 in the ith linear regression of Y onX1 and at

most (Ks−1) other variables, and let the set of all such linear regressions be F . The next
proposition concerns the population properties of extreme bounds under assumptions (O)

and (S) from Section 2.

Proposition 1 (EBA) The EBA selects the interval IEBA ≡
∙
min
i∈F

γi1 , max
i∈F

γi1

¸
for the

population effect of X1.

Under assumption (O), the EBA identifies an interval containing the effect: β1 ∈ IEBA.

It can determine that X1 has an effect (β1 6= 0) on Y if 0 /∈ IEBA.

Under assumption (S), the EBA does not identify an interval containing the effect β1,

nor can it determine whether X1 has an effect on Y .

The proposition shows that EBA is not a consistent procedure for determining whether

a variable has an effect for Y in the high-dimensional model. Under the conditional mean

independence assumption (O), EBA identifies an interval which contains the effect. If the

interval only has one member then β1 is identified. In any other case, the coefficient on

X1 can change sign across linear regressions such that the interval contains both positive

and negative values. This result is in line with proposition 4 in Ericsson (2008), which

3For recent applications, see e.g. Ghosh and Yamarik (2004) and Berggren, Elinder and Jordahl

(2008).
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states that a result may be non-robust when the set of models for EBA excludes the true

model. In our case, this means that β1 6= 0, but the interval includes zero. Under the

true submodel assumption (S) there is no guarantee that the extreme bounds contain 0

in cases where the true submodel has Ks explanatory variables and does not include X1.

This result is in line with proposition 2 in Ericsson (2008), which states that a result may

be robust when the set of models for EBA excludes the true model, i.e. robustness is

possible with β1 = 0.

3.2 Minimum t-statistic over models test

The minimum t-statistic over models test is carried out as follows. First, all linear regres-

sion models in F are run and the t-statistics for testing for inclusion of X1 are carried

out. Second, the minimum t-statistic (in absolute value) is found. There is an effect

if the coefficient with the smallest t-statistic is significantly different from zero. This is

equivalent to the t-statistic, ti, in linear regression, i, exceeding the appropriate critical

value since P (|ti| > c,∀i) = P
³
Min

i
|ti| > c

´
. White (2000) and Hansen (2003) have

shown that the bootstrap can be applied to approximate the distribution of the minimum

t-statistic under different regularity conditions. Just as with EBA, the approach does

not provide an estimator of the partial effect. The following proposition provides the

population properties of the minimum t-statistic over models test.

Proposition 2 (Minimum t-statistic over models test) Under assumptions (O) or

(S), the minimum t-statistic over models test does not identify whether X1 has an effect

on Y.

The method almost works under assumption (O). It works when β1 = 0, and it

works when β1 6= 0 except when an omitted variable bias exactly offsets β1. The set of
β1’s, β1 6= 0, for which the omitted variable bias cancels the effect of X1 has Lebesgue

measure 0. The minimum t-statistic does not work under assumption (S), because the

true submodel may not include X1, but X1 is always included in the low-dimensional

models, and the estimators of β1 are biased.

3.3 Sala-i-Martin’s method

Sala-i-Martin (1997) motivates his approach as an alternative to the EBA, which better

takes sampling uncertainty into account.4 He considers a setup in which all the low-

4Sala-i-Martin’s article has been very influential and has 240 citations in the Social Sciences Citation

Index. Recent applications are in e.g. Sturm and de Haan (2005), de Haan (2007), Dreher, Sturm and
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dimensional models have the same number of explanatory variables and always include

the variable of interest X1. Among the different versions of the method he presents, we

focus on the one from his general setup:

CDF (0) =
mX
i=1

wiCDFi(0),

where wi is the weight of linear regression i, CDFi (0) =Max(Φ(bγi1/bσγi1), 1−Φ(bγi1/bσγi1)),bγi1 is the OLS estimator, and bσγi1 is the standard error. The quantity CDFi(0) can be

interpreted as the largest of the two following p-values: The p-value from the one-sided

tests of the coefficient on X1 being 0 against larger than 0 and the p-value from the one-

sided test against the coefficient being below 0. A variable is robust in Sala-i-Martin’s

terminology if CDF (0) is larger than 0.95. Sala-i-Martin assumes conditional normality

of Y in all the linear regressions. The weight of model j is then defined as:

wj =
SSE

−n/2
j

mX
i=1

SSE
−n/2
i

,

where SSEj is the sum of squared errors in model j. Sala-i-Martin uses γ̂
SiM
1 =

mX
i=1

wj γ̂
i
1

as an estimator of β1 in another of his setups. We also use it for the general setup.

The next proposition shows that Sala-i-Martin’s method cannot determine if X1 has

an effect because it does not identify β1. The properties of the Sala-i-Martin’s method

depends on the best fitting low-dimensional linear regression model. The measure of fit

of a model is E(V ∗(Y | C)), where C ⊂ {X1, ..,XK} and

V ∗(Y | C) ≡ E((Y − E∗(Y | C))2 | C)

We will denote the lower the value of E(V ∗(Y | C)), as the better fit.

Proposition 3 (Sala-i-Martin’s method) Let Z be a subset of {X2, .., XK} with (Ks−
1) members. Sala-i-Martin’s method selects the coefficient of X1 from the linear regression

in F with minimum E(V ∗ (Y |X1, Z)) as the population effect of X1. In case several linear

regressions achieve the minimum E(V ∗ (Y |X1, Z)), the effect is a weighted average of the

coefficients of X1 in those linear regressions.

Under assumptions (O) or (S), Sala-i-Martin’s method does not identify the effect nor

can it determine whether X1 has an effect on Y .

Vreeland (2009).
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Sala-i-Martin’s method chooses the best fitting (in terms of minimumE(V ∗(Y |X1, Z)))

population low-dimensional linear regressionmodel withX1.As a consequence, the method

cannot determine whether X1 has an effect on Y under any of the assumptions. It fails to

work under assumption (O), because the only low-dimensional linear regression with an

unbiased estimator of β1 is the one with the conditional mean independent regressors and

that low-dimensional model may not be the best fitting. The method does not work under

the true submodel assumption (S) because the true submodel may not include X1, and

therefore the true submodel is not among the models contributing to the estimator, γ̂SiM1 ,

of β1. The true submodel with X1 added, however, is the only regression guaranteed to

provide an unbiased estimator of β1. The method would be consistent under assumption

(S) if it is modified to a search over all low-dimensional linear regression models or if, in

addition, it is assumed that at most Ks − 1 coefficients are different from 0.

3.4 Model selection criteria: BIC and AIC

Model selection criteria are usually based on a penalized likelihood value, see e.g. Burn-

ham and Anderson (2002). Whether a given variable has an effect is determined by

whether or not it is included in the selected model. If it is included, its effect is estimated

by the coefficient in the selected model. To analyze the AIC- and BIC-based procedures it

is necessary to make an assumption about the conditional distribution of Y . We assume

a normal distribution for comparability with BACE analyzed in the next subsection.

One model selection criterion is BIC (Schwarz information criterion). The BIC for

model j is:

BICj = n log
1

n
SSEj + log (n)Kj,

where σ2j is the maximum likelihood estimate of the variance of the error associated with

model j, and Kj is the number of parameters in model j. The next proposition gives the

results for BIC.5

Proposition 4 (BIC) Let Z be a subset of {X1,X2, ..,XK} with at most Ks members.

Assume conditional normality of Y . BIC selects the coefficient of X1 in the linear regres-

sion model with minimum E(V ∗ (Y |Z)) as the population effect of X1.

Under assumption (O), BIC does not identify the effect, nor whether X1 has an effect

on Y .

Under assumption (S), BIC identifies the effect and, thus, whether X1 has an effect

on Y .
5For example, BIC is the basis of an algorithm used to search for important growth regressors by

Acosta-Gonzalez and Fernandez-Rodriguez (2007) using the dataset by Sala-i-Martin (1997).
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The BIC method identifies the effect under assumption (S), because the true submodel

minimizes E(V ∗ (Y |Z)). Under assumption (O), there is no guarantee that X1 is included

in the best fitting linear regression even if it has an effect. If this is the case, the partial

effect of X1 is estimated to be 0. It may also happen that the best fitting linear regression

includes X1 when β1 = 0 due to omitted variable bias. The conclusion under assumption

(S) confirms the well-known fact that BIC is a consistent model selection criterion, see

e.g. McQuarrie and Tsai (1998:p.41).

Another model selection criterion is the Akaike information criterion, AIC, and its

corrected version, AICC. The AIC and AICC for model j are given by:

AICj = n log
1

n
SSEj + 2Kj

AICCj = AICj +
2Kj (Kj + 1)

n−Kj − 1 .

The next proposition shows that AIC and AICC have properties similar to BIC.

Proposition 5 (AIC and AICC) Let Z be a subset of {X1,X2, ..,XK} with at most
Ks members. Assume conditional normality of Y . AIC and AICC select the coefficient

of X1 in the linear regression model with minimum E(V ∗ (Y |Z)) as the population effect
of X1.

Under assumption (O), AIC and AICC do not identify the effect, nor do they deter-

mine whether X1 has an effect on Y .

Under assumption (S), AIC and AICC identify the effect and, thus, they determine

whether X1 has an effect on Y .

Both AIC and BIC identify the effect under assumption (S), but they do so by different

linear regressions. To see this, consider an example in which Ks = 2 and X2 is the only

variable with an effect (β1 = 0, β2 6= 0, β3 = .. = βK = 0). In this case, BIC selects

the regression of Y on X2 with probability 1, whereas AIC selects any linear regression

which includes X2 with positive probability. In those linear regressions, the coefficient

on the other variable equals 0. The reason is that AIC has a positive probability of

selecting models that nest the true model. This result reflects the known fact that AIC

is inconsistent for model selection, see McQuarrie and Tsai (1998:p.41) when the size of

the model is fixed as the sample size increases in the asymptotic analysis.

3.5 BACE

A simplified version of Bayesian Model Averaging is implemented by Sala-i-Martin et al.

(2004). Their version is called BACE. A closely related application of Bayesian Model
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Averaging is considered by Fernandez et al. (2001). The implementation described here

is also used by Jones and Schneider (2006) and Jensen (2010). It is necessary to assume a

distribution of Y . Following Sala-i-Martin et al. (2004) we assume conditional normality

of Y .

All linear regressions are included in the averaging, also the ones without the variable of

interest. Let C∗ be the total number of low-dimensional linear regressions. The posterior

probability of the j’th linear regression, Mj, is:

P (Mj | y) =
P (Mj)n

−Kj/2SSE
−n/2
j

C∗X
i=1

P (Mi)n−Ki/2SSE
−n/2
i

, (5)

where P (Mi) is the prior probability of model i. Sala-i-Martin et al. suggest using
_

k/K

as prior probability for each variable, where
_

k is the average model size. The BACE

estimator, bγSDM
1 , of β1 is the weighted average of the estimators from each model with

posterior model probabilities as the weights:

bγSDM
1 =

C∗X
i=1

bγi1P (Mi | y),

where bγi1 is the estimator of β1 in model i.
The next proposition states properties of BACE.

Proposition 6 (BACE) Let Z be a subset of {X1,X2, ..,XK} with at most Ks members.

Assume conditional normality of Y . BACE selects the coefficient of X1 in the linear re-

gression with minimum E(V ∗ (Y |Z)) as the population effect of X1. In case several linear

regressions achieve the minimum E(V ∗ (Y |Z)), the partial effect is a weighted average of
the coefficients on X1 in those linear regressions.

Under assumption (O), BACE does not identify the effect and fails to determine

whether X1 has an effect on Y .

Under assumption (S), BACE identifies the effect and, thus, determines whether the

variable X1 has an effect on Y .

The proposition shows that BACE is similar to BIC. In fact, it can be shown that the

posterior probability of a model in the Bayesian averaging approach by Sala-i-Martin et

al. (2004) is a function of BIC when the conditional distribution of Y is normal. In the

appendix, we show that the true model will get a posterior model probability approaching

1 as n→∞. This is similar to the consistency result for BIC.
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3.6 General-to-specific

The basic general-to-specific procedure has been refined by Hendry and Krolzig (1999,

2004) and Hoover and Perez (1999, 2004).6 In a sufficiently large sample case, the proce-

dure begins with a "general" unrestricted model (called GUM) that cannot be rejected by

a host of misspecification tests. Then the procedure searches over different paths where

the model is restricted until all variables are significant. The restricted models are also

subjected to misspecification tests and a path may be abandoned if models do not pass

the tests. In the end, a model is chosen that cannot be rejected by misspecification tests

nor by encompassing tests against candidate models from other paths. Hendry (1995)

calls this a congruent model.

When the dataset is high-dimensional a general unrestricted model cannot be esti-

mated. Therefore, we perform general-to-specific on each low-dimensional linear regres-

sion with the maximum number of regressors, Ks. Among the models selected by the

general-to-specific procedure for each of these linear regressions, we choose the best. The

procedure is similar to the one described by Hansen (1999) in a time series context. The

procedure is:

1. Select a subset of Ks regressors.

2. Delete the variable with the lowest insignificant t-statistic. Reestimate and continue

until all coefficients are significant.

3. Repeat 1 and 2 for all combinations of the regressors.

4. Among the candidate models, choose the one with the lowest standard error, E(V ∗(Y |
Z)).

Usually, there are steps involving misspecification testing. In our setup, we simplify

the setup of the general-to-specific method. We do not make assumptions on conditional

heteroskedasticity in the high-dimensional model and, therefore, we do not consider het-

eroskedasticity as misspecification. By assumption, there is no autocorrelation. The next

proposition shows the population properties of the general-to-specific procedure.

Proposition 7 (General-to-specific) Let Z be a subset of {X1,X2, ..,XK} with at
most Ks members. General-to-specific selects the coefficient of X1 in the linear regression

model with minimum E(V ∗ (Y |Z)) as the population effect of X1.

6The general-to-specific approach examined in Hoover and Perez (1999) inspired Hendry and Krolzig

(1999) to develop their PC Gets algorithm.
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Under assumption (O), general-to-specific does not identify the effect nor whether X1

has an effect on Y .

Under assumption (S), general-to-specific identifies the effect and, thus, whether X1

has an effect on Y .

The result is similar to that of BACE and the model selection criteria. The general-

to-specific procedure works under the true submodel assumption (S) because it relies on

a measure of model fit that identifies the true submodel.

4 New method based on conditional mean indepen-

dence

In general, when the data is high-dimensional the effect in a high-dimensional model

cannot be inferred from low-dimensional models without further identifying assumptions.

In Section 2 we provide three different identifying assumptions. We considered existing

methods in Section 3, and showed that only a few of them work, and only under the

true submodel (S) assumption. None of the methods test the validity of the identifying

assumptions. In practice, it is usually not known whether one of the assumptions hold.

In this section, we develop a new method that tests the validity of the conditional mean

independence assumption (O) and provides a consistent estimator of the effect when the

assumption is satisfied.

We consider assumption (O) because it does not impose restrictions on the regression

coefficients β1,..,βK unlike assumption (S). Thus, assumption (O) has the advantage in

practice that it allows the true model to contain more variables than available observa-

tions.

To build a method on assumption (O), the method must reveal if the assumption is

valid and, in case it is, estimate the effect under the assumption. According to assumption

(O) and (3) it is necessary to find a set A ⊂ {X2, ..,XK} with (K −Ks) members such

that the coefficient on X1 is 0 in the linear regression of any Xi ∈ A on the variables in

Ac; that is, for all Xi ∈ A, the coefficient αi
1 in the linear regression

Xi = αi
1X1 +

X
Xk∈Ac\X1

αi
kXk + u (6)

must be 0. A direct implementation would be to make a joint test of αi
1 = 0 over all the

regressions Xi ∈ A for all choices of A. Computational aspects lead us to reformulate the

problem.
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We propose the following method. The problem to find a valid set A is broken into

two parts. In the first part we search for a set A, which is likely to satisfy assumption

(O) and in the second part we check if A in fact satisfies assumption (O). Searching for

the set A is done by investigating which set of variables best explain the variation in X1.

The relationship to (6) follows because αi
1 = 0 for all i in (6) is equivalent to λ

1
i = 0 in

the reverse linear regression (see Appendix)

X1 = λ1iXi +
X

Xk∈Ac\X1

λikXk + v (7)

for all Xi ∈ A. If a variable explains some of the variation in X1, it cannot be conditional

mean independent of X1. Hence, to find the set A, we search for the X’s which maximize

the fit in the linear regression (7) of X1 on all Xk ∈ Ac\X1. Since the fit is maximized

by including as many variables in Ac\X1 as possible, we will always include (Ks − 1)
variables in Ac. Therefore, since the dependent variable is X1 in all the linear regressions,

and all linear regressions have (Ks − 1) explanatory variables, we can compare the fit of
the various choices of Ac\X1 using R2. The choice of A is the one for which the variables

in Ac\X1 give the highest R2.7

After finding a candidate set for A, we next test whether X1 is conditional mean

independent of the variables in A conditional on the variables in Ac\X1. We do this

by testing for joint significance of the λ1i in (7) over all the (K −Ks) linear regressions

with Xi ∈ A as dependent variable. In each regression, calculate the t-statistic for the

hypothesis λ1i = 0 against λ1i 6= 0. The maximal absolute t-statistic over the (K −
Ks) regressions is then computed. The hypothesis of conditional mean independence is

then tested using the maximal absolute t-statistics and a significance level based on the

Bonferroni correction.

In case the validity of A cannot be rejected, we proceed to estimate the effect by

linearly regressing Y on the variables in Ac. The effect is the estimate of the coefficient

on X1. The next theorem summarizes the main steps in the method, which we denote the

CMI method due to its foundation on conditional mean independence. The proposition

shows that the method provides a consistent estimator of the effect if assumption (O) is

satisfied.

7With a fixed number of explanatory variables in all the regressions, maximizing R2 is the same as e.g.

maximizing the F -test statistics of joint significance or maximizing BIC assuming conditional normality

of X1.
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Theorem 8 (CMI method) The CMI method is

1. Let A ⊂ {X2, .., XK} with (K −Ks) members. Find the set bA that maximizes R2

over all linear regressions of X1 on Ac\X1 for all possible choices of A.

2. Let ti be the t-test statistic for testing whether λ
1
i = 0. λ

1
i is the coefficient on Xi ∈bA in the linear regression of X1 on Xi and the variables in bAc\X1. Test whether

λ1i = 0 for all i using the maximal absolute t-statistic

tmax = max
i
{ti}.

3. If 2 leads to non-rejection, estimate the effect of X1 in (2) as the coefficient on X1

in the linear low-dimensional regression of Y on the variables in bAc.

Assume a random sample of {Y,X1, ..,XK}. If assumption (O) holds, then the CMI
method provides a consistent estimator of the effect of X1 in the high-dimensional model

(2).

Steps 1) and 2) provide a consistent test of assumption (O).

The CMI method consistently rejects assumption (O) when it is false. When either

assumption (S) or (I) is true, but not assumption (O), the CMI method consistently

indicates that inference cannot be based on assumption (O). Hence, one is not misled by

getting an estimate of the effect when, in fact, the assumption for obtaining the estimate

is not satisfied. This is a clear contrast to existing methods considered in Section 3. The

ones that are consistent under one of the assumptions are only reliable if the assumption

is imposed a priori. The CMI method has a built-in test for reliability due to step 2.

The application of the maximal absolute t-statistics in step 2 can be viewed as solving

a multiple testing problem. Rejecting the hypothesis if the maximum of the absolute value

of all the t-statistics is larger than a critical value is the same as rejecting the hypothesis

if one of the individual t-statistics is larger than the same critical value. In choosing a

critical value for the maximal absolute t-statistics, conservative or liberal critical values

can be used. A conservative critical value can be selected by ignoring the multiple testing

problem and using the overall nominal level for each test of zero correlation. A liberal

critical value can be based on the Bonferroni correction. Usually, applications of the

Bonferroni correction lead to conservative tests, but here the Bonferroni correction is

used in a two-step procedure. This implies that the smaller the critical value, the more

likely conditional mean independent regressors are rejected. Step 1 can be considered a

pretest. Based on Monte Carlo results (see Section 5 below), we have found that using
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the desired overall nominal level as the nominal level in each of the steps together with

the Bonferroni correction in step 2 works satisfactorily.

There exist other tests applicable for step 2 in the CMI method. Instead of using the

Bonferroni correction, it is possible to apply the bootstrap to find the critical value for

the maximal absolute t-statistics. This is a more computer intensive task. In principle, it

is also possible to apply the bootstrap to steps 1 and 2 simultaneously. Our Monte Carlo

simulations in Section 5 suggest that the implementation with the Bonferroni correction

works well.

The number of variables, Ks, to include in the linear regression must be chosen such

that there are at least (K−N+1) regressors which are conditionally mean independent of
X1. In practice, steps 1 and 2 can be repeated for different values of Ks to find a feasible

value of Ks. When a feasible Ks is found, it does not influence the identification of β1
to include extra regressors but it changes the variance of the estimator of β1. Whether

or not including extra regressors increases or decreases this variance depends both on the

distribution of the regressors and on the unknown values of the corresponding β’s in the

high-dimensional model.

The CMI method has similarities with the recent method by Crainiceanu, Dominici

and Parmigiani (2008). They develop a method for n > K with the goal of finding the

effect of X1 on Y . They suggest a two-stage method in which a first step finds the best

set of predictors for the variable of interest X1. This step resembles our step 1. Their

step 2 is different from ours, as they find good predictors for Y . In the final model they

include good predictors for both X1 and Y . They describe the situation as "adjustment

uncertainty in effect estimation" with the idea being that the variables that are correlated

with X1 should be included in order to obtain a good estimator of β1.

Another recent approach is the Weighted Average Least Squares (WALS) approach

by Magnus, Powell and Prüfer (2010). WALS is conceptually close to Bayesian Model

Averaging, but builds on different model priors. Its implementation requires n > K, as

parameter calculation requires the estimated variance of the error term from the high-

dimensional linear regression (Magnus et al., 2010:p.145). Thus, it is designed for a

different situation than the CMI method which can be carried out when n < K.

5 Finite sample properties of the methods

In this section we investigate the finite sample properties of the CMI method presented

in Section 4 and compare it with some of the methods considered in Section 3. We

report Monte Carlo results on the estimation of the effect and power properties for testing
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significance of the variable. The designs focus on the conditional mean independence

assumption (O) since the new method is based on this assumption.8 We limit ourselves

to report three Monte Carlo designs which illustrate the main effects of facing a high-

dimensional dataset.

The Monte Carlo designs haveK = 30 variables. We consider two sample sizes, n = 25

and n = 50. The sample with n = 25 is undersized. We assume that the low-dimensional

linear regressions include Ks = 3 variables and an intercept. With the undersized sample,

this implies 21 degrees of freedom or about 7 degrees of freedom per parameter in the

linear low-dimensional regressions. There is a total of 4,525 combinations of choosing 3

out of 30 variables. The variable of interest is X1. It is correlated with X2 and X3. These

three variables are independent of the other 27 variables. This implies that assumption

(O) is satisfied with A = {X4, ..,X30}. Assumptions (S) and (I) are not satisfied. All the
variables have zero mean and unit variance. The realizations of {X1,X2, X3} are drawn
from a multivariate normal distribution with Corr(X1,X2) = Corr(X1, X3) = 0.5 and

Corr(X2,X3) = −0.25. The other variables are independent and identically standard
normally distributed. The regressand, Y , is generated by

Y = β1X1 + β2X2 + β3X3 + β4X4 + 5X5 + 4.5X6 + 1X7 + ..+ 1X30 + 5 + U , (8)

where U ∼ N(0, 0.25) and U is independent of X1, .., X30. The number of Monte Carlo

replications is 1,000.

The three Monte Carlo designs reported below only differ in their values of β2, β3, and

β4 in (8). Table 2 shows the values of β2, β3, and β4 that define the designs denoted A,

B, and C. To facilitate the interpretation of the Monte Carlo results, Table 2 also reports

properties of the designs. The table shows that the best fitting linear regression in terms

of minimum mean square linear prediction error, E(V ∗(Y | Xi, Xj,Xk)), depends on the

value of β1, where

V ∗(Y | Xi, Xj,Xk) ≡ E((Y −E∗(Y | Xi,Xj,Xk)) | Xi,Xj,Xk)
2

If there were no sampling uncertainty, the best fitting low-dimensional linear regression

determines the properties of many of the methods discussed in Section 3. In particular,

the bias of the estimator of β1 in the best fitting low-dimensional linear regression is

important. The biases in the linear regressions are reported in the bottom part of Table

2.

8For Monte Carlo studies in which assumption (S) holds, see Jensen (2006, 2010).
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Table 2: Properties of the three Monte Carlo designs based on (8).

Design

A B C

{β2, β3, β4} {−4,−4, 3} {−2,−2, 4} {10, 12, 3}
Best fit linear reg.

β1 ∈ (−∞, 1) ∪ (7,∞) (−2, 6) (−8.7, 8.7)
Regressors X1,X5, X6 X4,X5, X6 X2, X3, X5

β1 ∈ (1, 7) (−∞,−2) ∪ (6,∞) (−∞,−8.7) ∪ (8.7,∞)
Regressors X4,X5, X6 X1,X5, X6 X1, X2, X3

Bias(β1) with reg.

X1, X2, X3

X1, X2, Xk≥4
X1, X3, Xk≥4
X1, Xk≥4, Xj≥4
Xk≥2,Xj≥2,Xi≥2

0

−31
3

−31
3

−4
−β1

0

−12
3

−12
3

−2
−β1

0

10

81
3

11

−β1
Note: Best fit. linear reg. is the linear regression (Ks = 3) with the lowest

E(V ∗(Y | Xk,Xi,Xj)). Bias(β1) with reg. is the bias of the estimator of β1
in the linear regression. If X1 is not included in the linear regression, then the

estimator of β1 is 0. All linear regressions include an intercept.

In design A, X1 is included in the best fitting low-dimensional linear regression along

with X5 and X6 when X1 has no effect (β1 = 0). The variables X5 and X6 are included

because they have relatively large coefficients. The reason why X1 is included despite

β1 = 0 is that X1 is correlated with X2 and X3 in such a way that it provides a better fit

than including either X2 or X3.

In design B the best fitting linear regression does not include X1 when β1 = 0. When

β1 is sufficiently large, X1 is included in the best fitting linear regression of Y on X1, X5,

and X6. The main difference from design A is that X1 is not included in the best fitting

linear regression when X1 has no effect.

Design C has the property that the best fitting linear regression is X1,X2, X3 for β1
sufficiently large. This is the only linear regression that provides an unbiased estimator

of β1.

The EBA, Sala-i-Martin’s method and general-to-specific are calculated as described

in Section 3 with the exception that the final model selection step in the general-to-specific

procedure is done using BIC. For the Bayesian test, we apply a t-test of bγSDM
1 using the
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standard error suggested by Sala-i-Martin et al. (2004).9 In the implementation of the

CMI method, step 2 is not used as a stopping rule. Instead we choose the linear regression

that minimizes the partial correlation between X1 and the excluded variables.

We have also investigated how the maximal absolute t-statistic in Step 2 of the CMI

method performs in terms of type I error. When the null of conditional mean independence

is true, the maximal absolute t-statistic has a rejection probability of 0.043 when the

Bonferroni correction is used to bound the size of the test to 0.05. Thus, the Bonferroni

correction leads to a rejection probability close to the nominal level. The test also has

power for n = 25 when there is one regressor extra correlated with X1. For example,

when the correlation coefficient is 0.40, the rejection probability is 0.725 and almost

one when the correlation coefficient is above 0.50. Relatively low power is seen when

the correlation coefficient is 0.25 with a rejection probability of 0.157. The power is,

as expected, increasing in sample size. The maximal absolute t-statistic has also been

shown to perform well when many more variables are partially correlated with X1. The

simulations reported in Jensen (2010) show that it has good power in many of these cases.

5.1 Estimating the effect

We first investigate the properties of the methods in estimating the effect, β1, of X1. The

comparisons between methods are made in terms of bias and standard deviation of the

estimators of β1. The bias for each linear regression is known beforehand, see Table 2.

In different samples, however, the methods either select different linear regressions or a

combination of linear regressions, and the estimators are therefore pretest estimators.

The biases for various estimators of the effect, β1, in design A with n = 25 are shown

in Table 3. The biases are shown as a function of β1. The CMI method has a low

bias compared to the other methods. The bias in Sala-i-Martin’s method is constant for

different values of β1. The reason is that Sala-i-Martin’s method includes X1 in all the

linear regressions and only β1 varies. The bias in the BACE method varies with the value

of β1. The bias is large and negative, and substantially larger (in absolute terms) at e.g.

β1 = 6 than at β1 = 2. In the absence of sampling uncertainty, the bias of the estimator

is −β1 for β1 ∈ (1, 7), see Table 2. General-to-specific, AIC and BIC have properties
similar to BACE when there is no sampling uncertainty, see Section 3. With sampling

uncertainty, however, there are differences due to the fact that BACE combines all linear

9In our simulation study, we include all models when calculating bγSDM
1 . Thus, we abstain from making

any approximations. In practice, we note that models with low weights are given zero weights by some

researchers, e.g. Raftery et al. (1997).
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regressions whereas the other three methods select only one linear regression.

Table 3: Bias and standard deviation of estimator of β1 in design A with n = 25.

β1

0 2 4 6 8 10

Sala-i-Martin Bias -3.78 -3.78 -3.78 -3.78 -3.78 -3.78

Std 1.70 1.70 1.70 1.70 1.70 1.70

BACE Bias -1.39 -2.25 -3.97 -5.56 -5.93 -5.10

Std 1.78 0.71 0.36 1.07 2.24 2.70

BIC Bias -1.65 -2.33 -3.95 -5.40 -5.38 -4.45

Std 2.42 1.11 0.69 1.63 2.82 2.82

AIC Bias -1.65 -2.33 -3.95 -5.40 -5.38 -4.45

Std 2.42 1.11 0.69 1.63 2.82 2.82

GSP Bias -1.64 -2.32 -3.95 -5.40 -5.39 -4.45

Std 2.43 1.11 0.69 1.63 2.82 2.82

CMI method Bias 0.07 0.07 0.07 0.07 0.07 0.07

Std 3.52 3.52 3.52 3.52 3.52 3.52

Benchmark Bias 0.13 0.13 0.13 0.13 0.13 0.13

Std 3.47 3.47 3.47 3.47 3.47 3.47
Notes: Sala-i-Martin = Sala-i-Martin’s method; AIC=Akaike Information Criterion, GSP=general-

to-specific; Std=standard deviation; Other abbreviations are self-explanatory.

The properties of all the methods can be compared to the only linear regression which

provides an unbiased estimator of β1. This is the linear regression of Y on X1, X2, and

X3. This regression is denoted the benchmark regression. In practice, it is not known if a

regression providing an unbiased estimator exists. The CMI method selects this regression

if it exists. The CMI method and the benchmark regression have about the same bias.

The bias in the benchmark regression is solely due to Monte Carlo sampling error. The

reason for the similarity of the benchmark regression and the CMI method is that the

CMI method selects the benchmark model with probability around 0.95.10

The effect of increasing the sample size from n = 25 to n = 50 is seen by comparing

10While our main focus is on reducing bias, it is of interest to note that the estimator of β1 in the

CMI-method has a higher standard deviation than some of the other estimators. This is mainly a result

of the other methods often selecting low-dmensional linear regressions where X1 is not included. This

lowers the variation of the estimator of β1. It is worth noting that if one adopts a mean square error

loss criterion, then BACE, BIC, AIC and general-to-specific have a lower mean square error loss than the

CMI-method (and the benchmark regression). This result is reversed as the sample size grows since the

mean square error loss of the CMI-method approaches 0, whereas for the other methods the mean square

error loss converges to the bias squared.
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Table 3 with Table 4. Table 4 shows the results for design A with n = 50. The standard

deviation decreases with the larger sample size for all methods. For the CMI method, the

bias also decreases. Not all of the biases of the other methods, however, decrease. For

example, for BACE and β1 = 0 the bias changes from −1.39 to −2.19. This is consistent
with the results in Section 3 and Table 1, which show that the bias eventually (for n→∞)
approaches -4. The larger sampling uncertainty for n = 25 compared to n = 50 reduces

the bias because BACE puts lower probability on linear regressions with X1 and they

induce bias when β1 = 0.

Table 4: Bias and standard deviation of estimator of β1 in design A with n = 50.

β1

0 2 4 6 8 10

Sala-i-Martin Bias -3.97 -3.97 -3.97 -3.97 -3.97 -3.97

Std 0.99 0.99 0.99 0.99 0.99 0.99

BACE Bias -2.19 -2.24 -4.00 -5.68 -5.04 -4.10

Std 1.89 0.67 0.05 0.74 1.84 1.26

BIC Bias -2.41 -2.25 -4.00 -5.63 -4.77 -4.05

Std 2.28 0.93 0.10 1.04 2.00 1.22

AIC Bias -2.41 -2.25 -4.00 -5.63 -4.77 -4.05

Std 2.28 0.93 0.10 1.04 2.00 1.22

GSP Bias -2.41 -2.25 -4.00 -5.63 -4.77 -4.05

Std 2.28 0.93 0.10 1.04 2.00 1.22

CMI method Bias 0.08 0.08 0.08 0.08 0.08 0.08

Std 2.25 2.25 2.25 2.25 2.25 2.25

Benchmark Bias 0.08 0.08 0.08 0.08 0.08 0.08

Std 2.25 2.25 2.25 2.25 2.25 2.25

Notes: See notes to Table 3.

With a sample size of n = 50, the high-dimensional linear regression is possible. This

linear regression identifies β1. The variance of the estimator of β1 in the high-dimensional

linear regression cannot be uniformly ranked against the variance of the estimator of

β1 in the benchmark regression. There are two extremes which do not depend on the

distribution of the regressors. If the β’s of the excluded variables in the Benchmark

regression are 0, then the variance is lower in the Benchmark regression. Conversely, if

the β’s of the excluded variables are sufficiently large, then the variance is lower in the

high-dimensional linear regression. The Benchmark regression is not known in practice,

but the properties of the CMI method are similar. This means that it is not possible to say
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whether it is better to run the high-dimensional linear regression compared to the CMI

method when the sample is not high-dimensional. Asymptotically, they are equivalent.

Table 5 presents the results for design B. The bias with the CMI method is low and

about the same as for the benchmark regression. When β1 = 0, Sala-i-Martin’s method

has the highest bias. This is because Sala-i-Martin’s method assigns most weight to the

best fitting linear regression with X1, which results in a bias equal to −2. According to
Table 1, if there were no sampling uncertainty, then BACE, general-to-specific, AIC, and

BIC would not choose a linear regression with X1 when β1 = 0. In finite samples, this is

reflected in a lower bias of the latter methods compared to Sala-i-Martin’s method when

β1 = 0.

Table 5: Bias and standard deviation of estimator of β1 in design B with n = 25.

β1

0 2 4 6 8 10

Sala-i-Martin Bias -1.91 -1.91 -1.91 -1.91 -1.91 -1.91

Std 1.60 1.60 1.60 1.60 1.60 1.60

BACE Bias -0.27 -1.99 -3.65 -4.12 -3.30 -2.44

Std 0.74 0.22 0.90 2.14 2.65 2.31

AIC Bias -0.33 -2.00 -3.60 -3.68 -2.75 -2.12

Std 1.15 0.31 1.31 2.68 2.82 2.20

BIC Bias -0.33 -2.00 -3.60 -3.68 -2.75 -2.12

Std 1.15 0.31 1.31 2.68 2.82 2.20

GSP Bias -0.33 -2.00 -3.60 -3.68 -2.75 -2.11

Std 1.15 0.31 1.31 2.69 2.82 2.21

CMI method Bias 0.15 0.15 0.15 0.15 0.15 0.15

Std 3.64 3.64 3.64 3.64 3.64 3.64

Benchmark Bias 0.15 0.15 0.15 0.15 0.15 0.15

Std 3.62 3.62 3.62 3.62 3.62 3.62

Notes: See notes to Table 3.

Results for design C are reported in Table 6. In this design the benchmark regression is

the best fitting linear regression if there is no sampling uncertainty and β1 is sufficiently

large. This, however, is not obvious for sample size n = 25. The reason is that the

benchmark regression is rarely selected by the methods based on model fit. For example,

general-to-specific selects the benchmark regression in just 16.5% of the samples generated

when β1 = 10. In contrast, the bias of the CMI method is low compared to the other

methods.
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Table 6: Bias and standard deviation of estimator of β1 in design C with n = 25.

β1

0 2 4 6 8 10

Sala-i-Martin Bias 7.05 7.05 7.05 7.05 7.05 7.05

Std 4.99 4.99 4.99 4.99 4.99 4.99

BACE Bias 1.64 0.50 -0.09 0.02 0.92 2.36

Std 3.13 4.16 5.41 6.66 7.65 8.06

BIC Bias 0.95 -0.44 -1.28 -1.55 -0.63 1.13

Std 3.23 4.32 5.74 7.29 8.65 9.34

AIC Bias 0.95 -0.44 -1.28 -1.55 -0.63 1.13

Std 3.23 4.32 5.74 7.29 8.65 9.34

GSP Bias 0.94 -0.43 -1.26 -1.54 -0.61 1.15

Std 3.22 4.33 5.76 7.30 8.66 9.35

CMI method Bias 0.52 0.52 0.52 0.52 0.52 0.52

Std 3.86 3.86 3.86 3.86 3.86 3.86

Benchmark Bias 0.14 0.14 0.14 0.14 0.14 0.14

Std 3.47 3.47 3.47 3.47 3.47 3.47

Notes: See notes to Table 3.

The results in Tables 3-6 also point to the relevance of propositions 3-7 and Theorem

8. The bias is substantial for Sala-i-Martin’s method, BACE, BIC, AIC, and general-

to-specific. This is in line with the result in the propositions that the methods do not

identify β1 under assumption (O). It should also be noted that Crainiceanu et al. (2008)

show that when the goal is to estimate an effect of a variable, Bayesian Model Averaging

may be biased. Our Monte Carlo study shows that this may also happen for the BACE

version of Bayesian Model Averaging when assumption (O) holds.

5.2 Test of no effect (β1 = 0)

In this subsection, we investigate the ability of the different methods to determine whether

β1 = 0. As noted earlier, this is similar in spirit to the question addressed in the literature

on sensitivity analysis and robustness of a variable, namely whether a variable is robust or

not. We do not show the results for AIC and BIC because they are similar to the results for

general-to-specific, and we do not show the results for the benchmark regression because

they are similar to those for the CMI method.

The control of the Type I error for determining if X1 has an effect is shown in Figure

27



1 for design A with n = 25. The figure shows the true value of β1 on the first axis and

the rejection probabilities of testing H0 : β1 = 0 against H1 : β1 6= 0 on the second

axis. The nominal significance level is 0.05 (marked with a horizontal line). The CMI

method has a probability of a Type I error close to the nominal level. The EBA has a low

probability of a Type I error whereas the probability for the other methods is substantially

above the nominal level. For example, general-to-specific and Sala-i-Martin’s method have

probabilities of Type I errors of about 0.34 and 0.66, respectively. In the terminology of

sensitivity analysis, these methods accept well above the nominal significance level that

X1 is "robust" when, in fact, it is not.

Figure 1 also shows the power functions. The power of the CMI method is monotoni-

cally rising for β1 values further away from 0. The powers of the other methods, however,

decrease as β1 moves from 0 to 4. That is, as the effect of X1 becomes larger, the less

likely is is that the other methods will accept that X1 has an effect. For β1 close to 4,

EBA, BACE and general-to-specific have powers close to 0. A reason may be found in

Table 1, which shows that the best fitting linear regression is Y on X4, X5, and X6 for

β1 ∈ (1, 7). Hence, it is likely that these methods often select the linear regression without
X1 and consequently conclude that X1 has no effect.

Figure 1. Power of testing β1 = 0 against β1 6= 0 using a 0.05 nominal significance level
in design A with n = 25.
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Notes: SALA =Sala-i-Martin’s method, GSP = General-to-Specific., CMI=CMI method

Figure 2 shows the powers for design A with n = 50. Compared to Figure 1 it is seen

that the control of the type I error worsens for many of the methods. The reason is that

it becomes more likely that the methods based on best fit select the linear regression Y on

X1, X5, and X6 when X1 has no effect. The estimator of β1 in this linear regression has a

bias equal to −4 and thus the test indicates that X1 has an effect. The power of the CMI

method increases with the sample size. Since the sample is not high-dimensional when

n = 50, a two-sided t-test in the high-dimensional linear regression is feasible. In this

regression, this test is an invariant uniformly most powerful test. This does not imply,

however, that the test is more powerful than the two-sided t-test performed on the linear

regression found using the CMI method. The reason is similar to the one discussed in

subsection 5.1 regarding the ranking of the efficiency of the estimators of β1 in the bench-

mark regression versus the high-dimensional linear regression. The ranking depends on

the distribution of the regressors and the values of those β’s in the high-dimensional linear

regression that are excluded from the benchmark regression.

Figure 2. Power of testing β1 = 0 against β1 6= 0 using a 0.05 nominal significance level
in design A with n = 50.

Notes: SALA =Sala-i-Martin’s method, GSP = General-to-Specific.
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Figure 3 shows the power functions for design B. Contrary to design A, when X1 has

no effect, the best fitting linear regression does not include X1, see Table 1. This explains

why AIC, BIC, general-to-specific and BACE methods control the Type I error much

better than in design A. Their powers, however, still decrease as β1 increases. The powers

only increase for β1 > 2. As can be seen in Table 2, the reason is that X1 is only included

in the best fitting population linear regression when β1 ≥ 6. The CMI method controls
the Type I error and has monotonically rising power in β1.

Figure 3. Power of testing β1 = 0 against β1 6= 0 using a 0.05 nominal significance level
in design B with n = 25.

Notes: SALA =Sala-i-Martin’s method, GSP = General-to-Specific.

The power results for design C are shown in Figure 4. Contrary to designs A and B,

all methods have monotonically increasing powers in β1. An explanation can be found in

the fact that the best fitting population linear regression only includes X1 when β1 6= 0
and this linear regression provides an unbiased estimator of β1. The power of general-

to-specific (and AIC and BIC) and BACE is below the power of the CMI method. Only

EBA has a power as high as the CMI method. A reason why EBA is performing well

in this particular case is that the bias is positive in all linear regressions which include

X1 and this lowers the probability of getting both positive and negative estimates of β in

these linear regressions. The power for negative values of β1, which we calculated but do
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not show, is low.

Figure 4. Power of testing β1 = 0 against β1 6= 0 using a 0.05 nominal significance level
in design C with n = 25.

Notes: SALA =Sala-i-Martin’s method, GSP = General-to-Specific.

Figures 1-4 also point to both the relevance and limitations of the results in Section

2. For example, Sala-i-Martin’s method always has a high type I error. We noted that

a variable may be chosen even if it has no effect under assumption (O). The asymptotic

results shows that this will happen with probability 1, but in the finite samples it varies

from around 0.3 to almost 1. For the BACE method the asymptotic results say that X1

will always be selected when it is in the best fitting model even with β1 = 0. In design

A, this only happens with a probability equal to 0.10 with n = 25 and increases to about

0.30 with n = 50. The asymptotic result therefore overstates the selection probability, but

is still right in suggesting that X1 will be chosen often, even when it is irrelevant.

It should be noted that some of the methods have also been investigated by Hoover

and Perez (2004). They consider EBA, Sala-i-Martin’s method, and general-to-specific.

They perform a Monte Carlo study for the case in which the true model can be estimated

with KS < K < n. First, they find that the EBA has low power. This is also the case

in our simulations, especially for low values of β1. Further, they find that Sala-i-Martin’s

method often selects variables that are excluded from the true model. This result is in
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line with Proposition 3 which shows that Sala-i-Martin’s method could label a variable

robust even when β1 = 0 and assumption (S) is true. Our simulations show that this

is also true for assumption (O). Finally, they show that general-to-specific works well in

their setup. This is in line with proposition 7, which shows that when assumption (S) is

true, general-to-specific should work well. Under assumption (O), this is no longer the

case.

6 Application

In this section, we apply the CMI method described in Section 4 to the Sala-i-Martin

(1997) dataset mentioned in the introduction. In addition to the growth rate of GDP per

capita for the period 1960-92, the dataset contains 61 potential growth determinants, but

the data are complete for only 36 countries. Thus the high-dimensional linear regression

cannot be carried out. Sala-i-Martin (1997) applied the method described in subsection

3.3 to these 61 variables,11 and found that 22 were "robust" by his criterion. As shown

in this paper, Sala-i-Martin’s method cannot determine whether a variable has an effect

correctly under any of the assumptions (O) or (S).

Fernandez et al. (2001) also used Sala-i-Martin’s dataset, but restricted the dataset

such that the number of observations was 72 and that only 41 out 61 regressors were

included in the analysis. This is the approach often taken in the literature. Restricting the

set of regressor implies that the authors assume that the true model includes 41 variables

at most. The advantage of this approach is that the regression with these variables can

be carried out. The disadvantage is that 20 variables are excluded from the analysis and

assumed to have zero coefficients at the outset due to limited data. Excluding variables

is a problem as it potentially leads to bias. We note that if variables nevertheless are

dropped a priori, this suggests that one believes that they are unimportant and that the

true model contains a set of variables from the included ones.

Hoover and Perez (2004) make the assumption that all variables can be transformed

into variables following a normal distribution and draw from these distributions to assign

values for missing observations to get a dataset that is no longer high-dimensional. Thus,

multiple imputation allows the high-dimensional linear regression to be carried out. While

this approach is intuitively appealing, it is problematic. The reason is that the imputation

procedure induces measurement error in the regressors and bias in regression coefficients

(Hendry and Krolzig, 2004:p.806). The exact bias for the coefficient on a regressor in a

11Panel data would seem a possible solution, but the difficulty is that time series data are not available

for all 61 variables, leaving us with the cross section only.
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bivariate linear regression is calculated by Little and Rubin (2002:p.65-66). Their calcu-

lation also affects the correlation between imputed variables. Jensen (2010) shows that

F-tests of exclusion restrictions on the imputed data have size distortions in a Monte

Carlo study. If data is imputed and the measurement error ignored, it becomes plausible

to assume that the true model is in the set.

While a respectable case can be made for the two previous options, we have decided on

a more ’puritanical’ approach and only use the data available. Yet we acknowledge that

losing many countries is not unproblematic, as data absences in a context like economic

growth will rarely be random. Nevertheless, we notice that dropping countries is not

unusual in the literature, as the Fernandez et al. (2001) application illustrates. In the

original Sala-i-Martin dataset, there are growth rates for 120 countries, meaning that 48

countries are dropped.

We carried out the CMI method for all 61 regressors. We carried out the search for

regressors in three different ways. First, we used Ks = 7 and searched for six variables in

the first step. Second, following Sala-i-Martin (1997) we included three fixed regressors12

and searched for three additional regressors in the first step. The regressors found in the

first step are candidate sets for the set AC in assumption (O). The search strategy implies

that we have run more than 50 million regressions for each of the 61 regressors.

For each of the 61 regressors, we carry out step 2 of the CMI method based on the

absolute maximal t-statistic. Both relatively conservative and liberal critical values are

investigated. The conservative critical value is selected by ignoring the multiple testing

problem, and using a 5% nominal level for each test of zero correlation. With this critical

value there are not sufficiently many regressors that are conditional mean independent of

the variable of interest.13 The liberal critical value is based on the Bonferroni bound.14

Given the model withKs = 7, the null is rejected whenever the p-value associated with the

test is less than 0.05/54 corresponding to a critical value of about 3.67 in absolute value.15

The result is that based on the Bonferroni bound based critical value, assumption (O) is

not satisfied. We therefore conclude that inference cannot be made on the coefficients on

the 61 regressors using the CMI method.

12These three regressors are the log of GDP per capita in 1960, the primary school enrollment rate in

1960 and the life expectancy in 1960.
13Using the regular 5% cut-off corresponding to a critical value of 1.97.
14Note, usually the Bonferroni bound is conservative, but here the Bonferroni bound is used in a two-

step procedure; the smaller the critical value, the less likely that conditional mean independence is found

to be satisfied.
15Under the null there are 54 possible tests in which rejection could happen erroneously. Using a critical

value of 0.05/54 puts a bound on the type I error.
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Though it is difficult to make inference on individual coefficients, Jensen (2010) shows

that the hypothesis that all 61 variables have zero coefficients is rejected by the maximal

absolute t-statistic test. Thus, at least one of the regressors has an effect on growth.

Applying the BACE method, he finds that a candidate for the true submodel contains

"fraction with Confucian religion". However, a test rejects that this is the only regressor

with a non-zero coefficient. Thus, our findings complement those of Jensen (2010) who

finds that making inference on the coefficients on individual regressors in the long growth

regression is difficult using assumption (S). Our results are negative in the sense that they

suggest that drawing a sound conclusion about the effect of a particular growth regressor

is very difficult with a dataset with more variables than observations.

Our theoretical and empirical results, complemented by those of Jensen (2010), cast

some doubts on the validity of the results obtained in the other papers using the Sala-i-

Martin dataset, even though many authors make strong claims about which variables are

determinants of growth, see e.g. section 5.1 in Durlauf et al. (2005) for a summary of

findings across studies.

7 Discussion and conclusion

In this paper we have examined methods known from the empirical growth literature. We

have analyzed them under two assumptions that make it possible to identify the effect of

a variable from a linear regression. If any one of the conditions holds, there will be no

omitted variable bias in the coefficient on the variable of interest when the right linear

regression is performed. The majority of these methods are based on a measure of model

fit and many of the methods work only under assumption (S).16 Importantly, Sala-i-

Martin’s method and the EBA do not work under any of the assumptions considered,

when the task is to determine whether a variable has any effect.

We have derived population properties of the methods. Our results are comparable

with those of Ericsson (2008) who discusses the relevance of the encompassing principle for

robustness analysis. For example, EBA focuses on how coefficient estimates change as the

conditioning set alters. Our proposition 2 and Ericsson’s result show that this approach

may lead to the wrong results. The basic problem is that information may wrongly be

excluded. Ericsson points to encompassing tests as the basic remedy. They test whether

16It is worth emphasizing that our results also hold when there are more observations than variables.

Whether the fit based methods, such as BACE and general-to-specific, work is determined by the number

of regressors included in the low-dimensional regressions. If this number is less than the number of

variables in the high-dimensional regression, the same properties regarding biases and powers result.
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information is validly excluded. In this sense, they are tests of robustness. When the high-

dimensional model can be estimated, the usual encompassing test is the F-test applied in

general-to-specific modeling (Ericsson, 2008:p.906). This test is not available with n < K.

In this case, tests like those described in Section 4 and in the companion paper by Jensen

(2010) are available to test whether variables are validly excluded.

Our CMI method includes step 2 which tests whether variables can be excluded when

the goal of the analysis is to learn about β1. Step 2 implies that the CMI method has

some affinity to the encompassing principle. The CMI method, however, searches for

valid restrictions on the linear regression with X1 as the dependent variable, and not

for restrictions on (2). Model averaging may be viewed as an alternative approach to

account for excluded information. Like Ericsson (2008), we prefer an approach that tests

assumptions.

The paper also points to assumption (O) as an alternative to assumption (S) in the

linear regression context. The basic CMI method tells us to search for variables that make

X1 conditional mean independent of the remaining. Future research should improve the

CMI method by incorporating more advanced methods for selecting variables in high-

dimensional regression models, see e.g. Huang, Horowitz and Wei (2010).17

Finally, our theoretical and empirical results suggest being cautious in drawing con-

clusions about the effect of a variable when the dataset is high-dimensional.

8 Appendix

Proof of Proposition 1 (EBA). Let F be the set of all linear regressions with X1

and at most (Ks − 1) other variables. In the sample, X1 is robust if the estimates of the

coefficient, γi1, to X1 in all the linear regressions, i, are significant and have the same sign.

In the population without sampling uncertainty, the extreme bounds for the partial effect

of X1 are
∙
min
i∈F

γi1 , max
i∈F

γi1

¸
.18

To prove when an assumption (in this and the following proofs) is not sufficient for

identification, it suffices to consider the following example with four regressors. Let the

17Their approach also allows for non-linear effects of individual variables which could be important in

a growth context. Our focus on linear models has been dictated by the methods analyzed.
18In terms of the t-statistics and asymptotics, the decision rule can be determined the following way.

The t-statistics used for testing γ
[1k]
1 = 0 is given by bt[1k]1 = bγ[1k]1 /

q
V (bγ[1k]1 ), where ^indicates the

estimator, for instance the OLS estimator. The probability limit of the t-statistics is degenerate at

+∞ or -∞ when γ
[1k]
1 is positive or negative, respectively (consistency of t-test). For γ[1k]1 = 0 the

distribution of the t-statistics is N(0, 1) under regularity conditions. When the sample size approaches

∞, the significance probability should approach 0 and, thus, the probability of accepting approaches 1.

35



high-dimensional linear regression be Y = β1X1 + β2X2 + β3X3 + β4X4 + U as defined

by (1) and suppose Ks = 2. Let γ
[1k]
1 be the coefficient on X1 in the linear regression of

Y on X1 and Xk, and γ
[10]
1 the coefficient on X1 in the regression of Y on X1. Then

γ
[12]
1 = β1 +

ρ13 − ρ12ρ23
1− ρ212

β3 +
ρ14 − ρ12ρ24
1− ρ212

β4,

γ
[13]
1 = β1 +

ρ12 − ρ13ρ23
1− ρ213

β2 +
ρ14 − ρ13ρ34
1− ρ213

β4, (9)

γ
[14]
1 = β1 +

ρ12 − ρ14ρ24
1− ρ214

β2 +
ρ13 − ρ14ρ34
1− ρ214

β3,

γ
[10]
1 = β1 + ρ12β2 + ρ13β3 + ρ14β4.

where it is assumed that E(Xk) = 0, V (Xk) = 1 and Corr(Xk,Xm) = ρkm, m 6= k.

Under assumption (O), the linear regression with the conditionally mean indepen-

dent regressors excluded provides an unbiased estimator of β1. This implies that β1 ∈∙
min
i∈F

γi1 , max
i∈F

γi1

¸
. Whether X1 has an effect, however, cannot be determined correctly.

This can be seen from the example (9). Suppose ρ13 = ρ14 = ρ23 = ρ24 = 0. Then

assumption (O) is satisfied. The extreme bounds are:

[min (β1, β1 + ρ12β2) ,max (β1, β1 + ρ12β2)]

If β1 > 0 (and, thus, has an effect) and β1 < −ρ12β2, then the extreme bounds contain 0
and the lower boundary is negative and the upper bound positive. Then X1 is not robust

and, thus, X1 is incorrectly labeled as not having an effect on Y .

Under assumption (S), the extreme bounds may not contain β1. This can be seen

using the example with four regressors from above. Suppose β1 = β2 = 0 (and, thus, X1

has no effect) and ρ12 = ρ13 = 0. If ρ14 > 0, ρ34 < 0, β3, β4 > 0, then the lower bound of

the extreme bounds is positive. Hence, β1 is not in the interval, and X1 is denoted robust

when it has no effect on Y .

Proof: Proposition 2 (Minimum t-statistic over models test).

The test will accept that X1 has an effect if none of the coefficients γi1 to X1 in

the linear regressions equal 0. The test accepts that X1 is unimportant if at least one

coefficient on X1 in a linear regression equals 0.

Under assumption (O), the linear regression, j, with all the conditionally mean in-

dependent regressors excluded gives γj1 = β1. Therefore, the test is correct when X1 is

unimportant because γj1 = 0. If β1 6= 0, then γi1 6= 0 except when an omitted variable

bias exactly cancels the effect of β1. Hence, the test cannot correctly determine when X1

has an effect. This can also be seen in the four regressor example, (9), in the proof of
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proposition 1 with β1 6= 0, ρ13 = ρ14 = ρ23 = ρ24 = 0 and the other parameters being

non-zero. If β1 = −ρ12β2, then γ1 = 0 in the regression of Y on X1.

Under assumption (S), the four regressor example (9) can be used to show that the

test is not consistent. Suppose the true submodel is Y on X2 and X3. Since the test

always includes X1 as a regressor, the regression of Y on X1, X2 and X3 is not performed.

Hence, the coefficient on X1 in the linear regressions may be biased. Note, if the true

model has fewer than Ks variables, then the test is correct when X1 has no effect on Y .

When X1 has an effect, the test may imply that X1 is denoted not robust if an omitted

variable bias cancels the effect of β1 in the same manner as under assumption (O).

Proof of Proposition 3 (Sala-i-Martin’s method). The robustness of X1 is deter-

mined by CDF (0) =
mX
i=1

wiCDFi(0) being above or below 1 − α, where α resembles a

significance level. Sala-i-Martin’s method does not have an obvious analogue in the pop-

ulation, and therefore the population version is derived as a probability limit for n→∞
keeping Ks and K fixed.

Consider first CDFi (0) =Max
³
Φ(bγi1/bσγi1), 1− Φ(bγi1/bσγi1)´. In the population, bγi1 is

replaced by γi1 and there is no uncertainty. If γ
i
1 6= 0, then CDFi(0) = 1. If γi1 = 0, then

both the numerator and the denominator equal 0. Under suitable regularity conditionsbγi1/bσγi1 →p Z, Z ∼ N(0, 1). Since Φ(Z) ∼ U , U ∼ Uniform[0, 1],

P (CDFi(0) < a | γi1 = 0) = P (Max(U, 1− U) < a) = 2a− 1, 0.5 ≤ a ≤ 1. (10)

Therefore, if γi1 = 0, then the test accepts that γ
i
1 = 0.

Secondly, the weight can be rewritten as

wj =
SSE

−n/2
j

mX
i=1

SSE
−n/2
i

=
1

mX
i=1

³
1
n
SSEi

1
n
SSEj

´−n
2

, (11)

where SSEj is the sum of squared residuals in regression j. Let Z be a subset of

{X2, .., XK} with at most (Ks − 1) members and γiZ the corresponding parameter vector

in linear regression i. Then

1

n
SSEi →p Ex1,Z(V

∗(Y | X1, Z)) ≡ σ2i

under suitable regularity conditions, where V ∗(Y | X1, Z) = V ((Y − E∗(Y | X1, Z)) |
X1, Z)

The convergence of the terms
¡
1
n
SSEj/

1
n
SSEi

¢n
2 depends on the probability limits of
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the numerator and denominator:

µ 1
n
SSEj

1
n
SSEi

¶n
2

→p

⎧⎪⎪⎨⎪⎪⎩
∞ if σj > σi

0 if σj < σi

W if σj = σi

,

where W is a random variable with support on the unit interval.

The weight in the population for regression j is

wj = plim
N→∞

1

1 +
X
i6=j

³
1
N
SSEj

1
N
SSEi

´N
2

.

If σ2j < σ2i for all i 6= j, then the weight on regression j equals 1 and γsim1 = γj1. If two

(or more) linear regressions achieve the lowest σ, then the weight is between 0 and 1 with

probability 1.

The lack of identification of β1 under the assumptions (O) and (S) can be demonstrated

in the four regressor example (9) used in the proof of proposition 1.

Under assumption (O), suppose β1 = 0 (and, thus, X1 has no effect) and ρ13 = ρ14 =

ρ23 = ρ24 = 0. Suppose the regression of Y on X1 and X3 has the lowest expected

conditional variance, σ2[13]. Then γSiM1 = ρ12β2 and CDF (0) = 1 if ρ12, β2 6= 0. Hence,
X1 is denoted robust when it has no effect.

Under assumption (S), suppose β1 = 0 (and, thus, has no effect), β2 = 0 and ρ13 =

ρ34 = 0. Suppose the regression of Y on X1 and X3 has the lowest expected conditional

variance, σ2[13]. Then γ
SiM
1 = ρ14β4 and CDF (0) = 1 if ρ14, β4 6= 0. Hence, X1 is denoted

robust when it has no effect on Y.

Proof: Proposition 4 (BIC). The choice of model can be determined by the differences

in BIC. A model i is chosen over a model j if and only if

n(log
1

n
SSEi − log 1

n
SSEj) + log (n) (Ki −Kj) < 0

for all j 6= i. The population equivalent or probability limit of 1
n
SSEj is σ2j . The first

term diverges to infinity unless σi = σj. If σi = σj, then

n(log
1

n
SSEj − log 1

n
SSEi)→d eW ,

where W has a non-degenerate distribution. Then

BICj −BICi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∞ if σj > σi

−∞ if σj < σi

∞ if σj = σi and Kj > Kj

−∞ if σj = σi and Kj < Ki

eW if σj = σi and Kj = Ki

.
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Hence, BIC selects the model with the lowest σ with the fewest parameters. In case

several models with the same number of variables achieve the lowest σ, a tie-breaker is

necessary.

Under assumption (S), the lowest σ is achieved by the true model. This is seen by a

generalization of e.g. Wooldridge (2002), p. 31, property CV.3. Let B ⊂ {X1, .., XK} be
the explanatory variables of the true submodel:

E∗B(Y | B) = E∗(Y | X1, ..,XK)

For any set C ⊂ {X1, .., XK},

E (V ∗(Y | X1, .., XK)) = EC (V
∗
C(Y | C))−E (E∗(Y | X1, ..,XK)−EC(Y

∗ | C))2 . (12)

where V ∗C(Y | C) = VC((Y −E∗(Y | C)) | C). It follows that if C + B, then

E (V ∗B(Y | B)) < EC (V
∗(Y | C))

because E(Y | X1, ..,XK) = E∗B(Y | B) 6= E∗C(Y | C) for some values of x1, ., xK .
Under assumption (O), the linear regression with the lowest σ may not include X1.

This can be seen using the same example as in the proof of BACE stated below. Hence,

BIC denotes X1 as having no effect on Y when it does.

Proof: Proposition 5 (AIC and AICC). The choice of model can be determined by

the differences in AIC. A model i is chosen over a model j if and only if

n(log
1

n
SSEi − log 1

n
SSEj) + 2(Ki −Kj) < 0

for all j 6= i. The population equivalent or probability limit of 1
n
SSEj is σ2j . The first

term diverges to infinity unless σi = σj. If σi = σj, then

n(log
1

n
SSEj − log 1

n
SSEi)→d eW ,

where W has a non-degenerate distribution. Then

AICj −AICi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∞ if σj > σi

−∞ if σj < σi

eW + 2(Kj −Ki) if σj = σi and Kj > Ki

eW + 2(Kj −Ki) if σj = σi and Kj < Ki

eW if σj = σi and Kj = Ki

.

The corrected AIC is the same as AIC in the population since the correction term is 0

in the population. AIC selects the model with the lowest σ. In case several models with

the same number of variables achieve the lowest σ, a tie-breaker is necessary.
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Under assumption (S), the lowest σ is achieved by the true model according to (12).

The coefficient on X1 in that model equals β1.

Under assumption (O), the linear regression with the lowest σ may not include X1.

This can be seen using the same example as in the proof of BACE stated below. Hence,

AIC denotes X1 as having no effect when it does.

Proof of Proposition 6 (BACE). The BACE estimator of the partial effect, β1, of

X1 is bγSDM
1 =

X
i
bγi1P (Mi | y). The posterior model probability, (5), can be rewritten as

P (Mj | y) = 1

1 +
X
i6=j

P (Mi)
P (Mj)

n(Kj−Ki)/2
¡
1
n
SSEi/

1
n
SSEj

¢−n
2

.

The population analog of bγi1 is the regression coefficient, γi1, on X1 in linear regression

i. The population analog of the posterior probability can be derived as the probability

limit for n→∞. Assume that regression j has at mostKs regressors, Z. Then 1
n
SSEj →p

EZ(V (y | Z)) ≡ σ2j , see the proof of proposition 4. Therefore,µ 1
n
SSEj

1
n
SSEi

¶n
2

→p

(
0 if σi > σj

∞ if σj < σi
,

and

n(Kj−Ki)/2

µ
σ2j
σ2i

¶n
2

→p

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∞ if σi > σj

0 if σi < σj

∞ if σi = σj and Ki < Kj

0 if σi = σj and Ki > Kj

W if σi = σj and Ki = Kj

,

whereW is a random variable with support on the unit interval. Let S be the set of indexes
of the linear regressions with the minimum expected conditional variance: S =argmin

i
σi.

Then the probability limit of the posterior probability is:

P (Mj | y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if σj > min
i
σi

1 if σj < min
i6=j

σi

0 if σj = min
i6=j

σi and Kj > min
i∈S

Ki

1 if σj = min
i6=j

σi and Kj < min
i∈S,i6=j

Ki

W1 if σj = min
i6=j

σi and Kj = min
i∈S,i6=j

Ki

, (13)

where W1 is a random variable with support on the unit interval. Hence, the value of

γSDM
1 is determined by γi1 in the linear regression with the smallest σ.
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Under assumption (S), the true model is among the linear regressions. Since the

expected conditional variance is smallest for the true model according to (12), this model

is chosen by BACE with probability 1 according to (13). For the true model, γ1 = β1

and, thus, γSDM
1 = β1.

Under assumption (O), the four regressor example (9) is used to show that BACE

does not identify β1. Suppose β1 6= 0 and ρ13 = ρ14 = ρ23 = ρ24 = 0. Suppose that the

linear regression of Y on X2 and X3 has the lowest expected conditional variance, σ. This

is possible if β2 and β3 are sufficiently large. Then γSDM
1 = 0 because X1 is not in the

model with the posterior probability equal to 1. Hence, X1 is denoted non-robust when

it does have an effect.

Proof of Proposition 7 (General-to-specific). The general-to-specific procedure

selects the models with the smallest expected conditional variance, E(V ∗(Y | Z)), among
the linear regressions with all γik 6= 0, where γik is the coefficient on a regressor Xk in

regression i. The reason is that the procedure first eliminates all the linear regressions

with γik = 0. Hence, if only one linear regression achieves the lowest E(V
∗(Y | Z)), say

in regression j, then the procedure selects γj1 as the partial effect of X1. In case several

linear regressions achieve the lowest E(V ∗(Y | Z)), it is necessary with a tie-breaker.
Under assumption (S), the true submodel has the lowest E(V ∗(Y | Z)), see the proof

of proposition 4, and γj1 = β1 in that model.

Under assumption (O), the procedure does not identify β1. This can be proved by

using the same example as used in the proof for the BACE procedure.

Proof of Theorem 8 (CMI method). Regarding step 1). Consider the two linear

regressions (projections) in (6) and (7):

Xi = αi
1X1 +

X
Xk∈Ac\X1

αi
kXk + u, E(Xku) = 0

and

X1 = λ1iXi +
X

Xk∈Ac\X1

λikXk + v, E(Xkv) = 0

Then αi
1 = 0 if and only if λ

1
i = 0. This can be seen from the following projection. Let

XAc ≡ {Xk ∈ Ac\X1}, and αAc and λAc the corresponding parameter vectors. Then"
E(X2

i ) E(XiXAc)0

E(XiXAc) E(XAcX 0
Ac)

#Ã
λ1i

λAc

!
=

Ã
E(XiX1)

E(XAcX1)

!
Insert for Xi and use that αi

1 = 0 by assumption, and E(XAcu) = 0 and E(X1u) = 0 by

construction:"
α0AcE(XAcX

0
Ac)αAc + σ2u α0AcE(XAcX 0

Ac)

E(XAcX 0
Ac)αAc E(XAcX

0
Ac)

#Ã
λ1i

λAc

!
=

Ã
α0AcE(XAcX1)

E(XAcX1)

!
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Multiply the last rows with α0Ac and subtract from first row to get:

λ1iσ
2
u = 0

Hence, λ1i = 0. The opposite direction can be established by similar arguments.

The best linear projection of X1 on (X2, ..,XK) involves only a subset of (Ks − 1)
variables. Suppose the set A∗ satisfies assumption (O). Then the explained variance of

X1 is the largest when projected on (A∗)c than on any other set of variables not containing

(A∗)c. Hence, the set A∗ can be found by maximizing R2 over all linear projections of X1

on sets of variables with (Ks− 1) members. In practice, let bAn be the set for which R2 is

maximized in the linear regression of X1 on variables in bAc
n. For any δ > 0, ∃n1 s.t.

Pr( bAn = A∗) > 1− δ, ∀n ≥ n1

In step 2, a test for the validity of assumption (O) is performed using A∗ from step 1

in (7). For the ith variabel in A∗, the estimate of λ1i in (7) should be 0 apart from natural

variation due to sampling uncertainty. Hence, for all the corresponding t-test statistics

ti, the hypothesis of conditional mean independence is not rejected if

ti /∈ Ri, i = 1, .., (K −Ks)

where Ri is the rejection region of the ith t-test statistics. Suppose κi is the level of the

ith t-test statistics. Then the probability of non-rejection is

Pr(non-reject | bAn = A∗) ≥ 1−
K−KsX
i=1

κi

Let κ∗i be the nominal significance level. Each t-test is a consistent test. This implies

that for any ε > 0, there exists an n2 s.t. κi < κ∗i + ε/(K −Ks) for all i and ∀n ≥ n2.

Let κ∗i = κ∗/(K − Ks), where κ∗ can be the desired nominal significance level. This is

the Bonferroni corrected significance level when testing multiple hypotheses. This implies

that

Pr(non-reject | bAn = A∗) ≥ 1− (κ∗ + ε)

For any δ > 0, let κ∗ = δ − ε. Then

Pr(non-reject | bAn = A∗) ≥ 1− δ, ∀n ≥ n2

This result translate directly to using the maximal absolute t-test with nominal signifi-

cance level κ∗/(K−Ks) and the same rejection region as for the individual t-test statistics.

The correct level rejection region is no larger than this rejection region.
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Step 3 is performed if step 2 leads to a non-rejection. Consistency of the estimator is

the case when considered the correct selection of variables. For any δ > 0 and ε > 0, ∃n3
s.t.

Pr(|bβ1 − β1| < ε | non-reject, bAn = A∗) > 1− δ, ∀n ≥ n3

All together, let n∗ = max(n1, n2, n3). Then for any ε > 0 and δ > 0,

Pr(|bβ1 − β1| < ε)

≥ Pr(|bβ1 − β1| < ε, non-reject, bAn = A∗)

= Pr(|bβ1 − β1| < ε | non-reject, bAn = A∗) · Pr(non-reject| bAn = A∗) · Pr( bAn = A∗)

> (1− δ)(1− δ)(1− δ) = (1− δ)3, ∀n ≥ n∗

Hence, under assumption (O), the CMI method provides a consistent estimator of β1.

If assumption (O) is not satisfied, then the CMI method consistently rejects the possi-

bility of infering β1 based on assumption (O). This can be seen from step 2. If assumption

(O) is not satisfied, then at least one t-test statistics asymptotically will reject the hy-

pothesis since the t-test is a consistent test, and, thus, so will the maximal absolute t-test.
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