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Abstract

It is well known that ifXt is a nonstationary process and Yt is a linear function
of Xt; then cointegration of Yt implies cointegration of Xt: We want to �nd an
analogous result for common trends if Xt is generated by a �nite order VAR.
We �rst show that Yt has an in�nite order VAR representation in terms of its
prediction errors, which are a linear process in the prediction error for Xt: We
then apply this result to show that the limit of the common trends for Yt are
linear functions of the common trends for Xt.
We illustrate the �ndings with a small analysis of the term structure of interest

rates.
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1 Introduction and motivation

It is well known that if Xt is a p�dimensional I(1) process and the m�dimensional
linear transformation Yt = a0Xt; m < p; is cointegrated, that is, �0yYt is stationary for
some �y 6= 0, then Xt is cointegrated with cointegration vector a�y; because �

0
ya
0Xt =

�0yYt is stationary. Thus cointegration in the small system, Yt; implies cointegration in
the large system, Xt; but not necessarily the other way.
We want to investigate if a similar result holds for common trends. We discuss this

in the context of an I(1) cointegrated vector autoregressive process Xt; generated by

�Xt = �x�
0
xXt�1 +

kX
i=1

�xi�Xt�i + "xt; (1)

where "xt is the i.i.d. (0;
x) p�dimensional prediction error: Under I(1) conditions
the solution is given by the Granger representation

Xt = Cx

tX
i=1

"xi +
1X
n=0

C�xn"xt�n + Ax; (2)

where Cx = �x?(�
0
x?�x�x?)

�1�0x?; �x = Ip�
Pk

i=1 �xi and Ax depends on initial values
so that �0xAx = 0; and the coe¢ cient matrices C�nx are exponentially decreasing, see
Johansen (1996).
The linear transformation Yt = a0Xt; therefore, has the representation

Yt = a
0Cx

tX
i=1

"xi +
1X
n=0

a0C�xn"xt�n + a
0Ax; (3)

which shows that the common trends of them�dimensional process Yt can be described
easily in terms of the p�dimensional prediction errors for Xt: If Yt is a �nite order
CVAR, with m�dimensional prediction errors "yt; we �nd the corresponding Granger
representation

Yt = Cy

tX
i=1

"yi +

1X
n=0

C�yn"yt�n + Ay; (4)

and it is tempting to conclude that the nonstationary part of the two representations
(3) and (4) must be the same

a0Cx

tX
i=1

"xi = Cy

tX
i=1

"yi: (5)

These equations can be solved for �0y?
Pt

i=1 "yi by multiplication by �
0
y?�yCy; and

therefore the common trends, �0y?
Pt

i=1 "yi; of Yt are linearly related to the common
trends; �0x?

Pt
i=1 "xi; of Xt:
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It turns out that this simple argument is almost correct, but that (5) only holds as
an approximation in the sense that the di¤erence is stationary, that is, the two random
walk components of Yt are cointegrated, see Figure 2. Only by normalizing by T�1=2

and passing to the limit do we �nd a relation between the limiting Brownian motions.
The problem with this argument is that in general Yt is not a �nite order VAR

process and therefore the eyt estimated by �tting a �nite order VAR do not estimate
prediction errors. In order to equate the two Granger representations and take the
limit we need to understand the process "yt de�ned as the m-dimensional prediction
error from the linear process Yt, and discuss how to estimate it by �tting a �nite order
VAR to Yt:
We therefore �rst apply the prediction theory of stationary processes to �nd an

in�nite order VAR representation of Yt; which de�nes the correct prediction errors "yt as
a linear process in "xt and we also get a VMA representation, or Granger representation
of Yt, in terms of these. Note, however, that "yt need not be i.i.d.
In this way we can deduce from (3) and (4) that there is a linear mapping from the

limiting common trends, �0x?Wx(u); of the large system onto those of the small system:
�0x?Wx:
We illustrate the ideas and �ndings in an empirical analysis of monthly US interest

rates 1987:1 to 2006:1.

2 The process Xt
Let Xt be given by (1) and de�ne the generating matrix polynomial of a complex
argument z :

�x(z) = (1� z)Ip � �x�0xz �
kX
i=1

�xi(1� z)zi;

and assume that �x and �x are p� rx of rank rx � p:
Under the conditions that the roots of det�x(z) = 0 satisfy either jzj > 1 or z = 1;

we de�ne
1 + � = minfjzj : det�x(z) = 0; z 6= 1g;

and �x = Ip �
Pk

i=1 �xi and assume det(�
0
x?�x�x?) 6= 0 so that Xt is I(1) and

Cx = �x?(�
0
x?�x�x?)

�1�0x?

is well de�ned. Under these assumptions the polynomial �x(z) can be inverted in the
sense that

(1� z)�x(z)�1 = (1� z)
adj�x(z)

det�x(z)
= Cx + (1� z)C�x(z); (6)

and C�x(z) are rational functions on fz : jzj < 1 + �g satisfying �0C�x(1)� = �Irx ;
see Johansen (2009, Theorem 3). These results can be translated into the Granger
representation (2).
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3 The process Yt = a0Xt
In general Yt = a0Xt is not a �nite order autoregressive process, but the processes

U1t = �0yYt = �
0
ya
0
1X
n=0

C�xn"xt�n; (7)

U2t = �0y?�Yt = �
0
y?a

0(Cx"xt +
1X
n=0

C�xn�"xt�n); (8)

of dimensions ry andm�ry respectively are stationary linear processes in the p�dimensional
prediction errors "xt: We de�ne the m� p matrix function

�(z) =

�
�0ya

0C�x(z)
�0y?a

0(Cx + (1� z)C�x(z))

�
; (9)

and note that
�(L)Xt = Ut = (U

0
1t; U

0
2t)

0;

so that the spectral density is

�u(�) =
1

2�
�(ei�)
x�

0(e�i�):

We �rst show that Ut is an invertible linear process in its prediction errors:

Lemma 1 The rational function �(z) is of rank m for jzj < 1 + �:
It follows that there exists an m � m function A(z) =

P1
n=0Anz

n of full rank
for jzj < 1 + � with real exponentially decreasing coe¢ cients, A0 = Im; and an m �
m positive de�nite symmetric matrix 
u; so that the spectral density for Ut has the
representation

�u(�) =
1

2�
A(ei�)
uA

0(e�i�): (10)

Moreover, we �nd the prediction error decomposition (VMA)

Ut =

1X
n=0

An"ut�n; (11)

in terms of the white noise "ut which gives the VAR representation of Ut :

"ut =

1X
n=0

BnUt�n: (12)

Here the prediction error "ut is a white noise process with V ar("ut) = 
u; A0 = Im;
and A =

P1
n=0An has full rank. The function B(z) =

P1
n=0Bnz

n = A(z)�1 is de�ned
for jzj < 1+� with exponentially decreasing coe¢ cients; B0 = Im; and B =

P1
n=0Bn =

A�1:
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Proof. To prove that rank(�(z)) = m for jzj < 1 + �; we assume we have z0 with
jz0j < 1 + �; and rank(�(z0)) < m: Then we can �nd v = (v01; v

0
2)
0 2 Rm so that

v0�(z0) = 0; or

v01�
0
ya
0C�x(z0) + v

0
2�

0
y?a

0(Cx + (1� z0)C�x(z0)) = 0: (13)

We show that v = 0:
Case 1: If z0 = 1; we multiply (13) by �x from the right and �nd v01�

0
ya
0C�x(1)�x = 0

because Cx�x = 0: Because a�y is a cointegrating relation for Xt we have a�y = �x�1
for some matrix �1; and 0 = v01�

0
ya
0C�x(1)�x = v01�

0
1�

0
xC

�
x(1)�x = �v01�01 because

�0xC
�
x(1)�x = �Irx : This implies that v01�0ya0C�x(1) = v01�

0
1�

0
xC

�
x(1) = 0; and there-

fore v02�
0
y?a

0Cx = 0: But then a�y?v2 is a cointegrating vector for Xt and �y?v2 a
cointegrating vector for Yt; which implies that v2 = 0:
Case 2: If z0 6= 1; then (1� z0) 6= 0; and because �0ya0Cx = 0 we �nd

0 = v0�(z0) = [(1� z0)�1v01�0ya0 + v02�0y?a0][Cx + (1� z0)C�x(z0)]:

Now Cx+(1�z0)C�x(z0) = (1�z0)�x(z0)�1 has full rank because �x(z) is a polynomial,
and therefore

(1� z0)�1v01�0ya0 + v02�0y?a0 = 0:
But �0ya

0 and �0y?a
0 are linearly independent which implies that v1 = 0 and v2 = 0:

This proves that v = 0; and rank(�(z)) = m for jzj < 1 + �:
It follows from (6) that the spectral density of Ut; �u(�); is a rational function of

the form Pq
n=�q Gne

in�Pq
n=�q gne

in�
;

for m �m matrices Gn = G�n and real gn = g�n; where the roots of both numerator
and denominator are greater than 1 + �: From Hannan (1970, Theorem 10�, page 66
and page 129) such a function can be written asPq

n=�q Gne
in�Pq

n=�q gne
in�

=
1

2�
(
1X
n=0

Ane
in�)
u(

1X
n=0

A0ne
�in�);

where A(z) =
P1

n=0Anz
n is regular of full rank for jzj < 1+ �; and An is exponentially

decreasing, A0 = Im; and 
u is positive de�nite.
From this result and a similar one for B(z) = A(z)�1; follow the two representations

(11) and (12).
We next apply the VMA representation (11) and the VAR representation (12) to

get similar results for Yt:

Lemma 2 The stationary process �Yt has the prediction error (VMA) decomposition

�Yt =

1X
n=0

Cyn"yt�n = Cy"yt +

1X
n=0

C�yn�"yt�n; (14)
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where "yt is m�dimensional white noise and Cy0 = Im; Cy =
P1

n=0Cyn and Cyn and
C�yn are exponentially decreasing.
Moreover �Yt has an in�nite order CVAR representation

�Yt = �y�
0
yYt�1 +

1X
n=1

�yn�Yt�n + "yt; (15)

where �yn are exponentially decreasing and for �y = Im �
P1

n=1 �yn we �nd

Cy = �y?(�
0
y?�y�y?)

�1�0y?: (16)

Finally the white noise prediction errors "yt are linear processes in the i.i.d. errors
"xt :

"yt =
1X
n=0

Kn"xt�n = K"xt +
1X
n=0

K�
n�"xt�n; (17)

where K =
P1

n=0Kn is of rank m; and Kn and K�
n are exponentially decreasing m� p

matrices.

Note that "yt is a white noise sequence but not necessarily an i.i.d. sequence.
Proof. Proof of (14): We have a representation (11) of Ut = (Y 0t �y;�Y

0
t �y?) but need a

representation for�Yt = �y�U1t+�y?U2t; where we used the notation �y = �y(�
0
y�y)

�1

and similarly for �y?; so that

Im = �y�
0
y + �y?�

0
y? = (�y; �y?)(�y; �y?)

0:

We de�ne "yt = (�y; �y?)"ut; and �nd from (11) that

�Yt = �y�U1t + �y?U2t = (�y�; �y?)
1X
n=0

An(�y; �y?)
0"yt�n =

1X
n=0

Cyn"yt�n; (18)

say, where Cy0 = (�y; �y?)A0(�y; �y?)
0 = Im and Cyn and C�yn decrease exponentially.

This proves (14).
Proof of (15): Similarly we use (12) to �nd a VAR representation for Yt:We de�ne

the L2 space
L2fUs; s � tg = L2f�0yYs; �0y?�Ys; s � tg;

and note that because �0yYt�n = �
0
yYt�1 �

Pn�1
v=1 ��

0
yYt�v; we can eliminate �

0
yYt�n for

n = 0; 2; 3; : : : and �nd

L2fUs; s � tg = L2f�0yYt�1;�Ys; s � tg;
so that a linear function of Us; s � t is a linear function of �0yYt�1 and �Yt;�Yt�1; : : :
Then from (12) we �nd

"yt = (�y; �y?)"ut = (�y; �y?)

1X
n=0

Bn

�
�0yYt�n
�y?�Yt�n

�
(19)

= (�y; �y?)

"
B0

�
�0y�Yt
�0y?�Yt

�
+

1X
n=0

Bn

�
�0y(Yt�n � Yt�1)
�y?�Yt�n

�
+

1X
n=0

Bn

�
�0yYt�1
0

�#
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Thus the coe¢ cient of �Yt is (�y; �y?)B0
�
�y; �y?

�0
= Im and the coe¢ cient of

�0yYt�1 is (�y; �y?)
P1

n=0Bn
�
Iry ; 0

�0
= ��y; say. Then we can write (19) as

"yt = ��y�0yYt�1 +�Yt �
1X
n=1

�yn�Yt�n;

for suitable exponentially decreasing coe¢ cients �yn; n = 1; : : : . This proves (15).
Proof of (16): We �nd from (18) that

Cy =
1X
n=0

Cyn = (0; �y?)A(�y; �y?)
0 (20)

which has rank m � ry and satis�es �0yCy = 0; so that Cy = �y?� where � has rank
m� ry: We next �nd �:
From (15) we �nd

�0y?�Yt =
1X
n=1

�0y?�yn�Yt�n + �
0
y?"yt; (21)

and inserting Identifying (14) we can identify coe¢ cients to "yt in an expansion in
terms of "yt;�"yt;�"yt�1; : : : We �nd the identity

�0y?Cy =
1X
n=1

�0y?�ynCy + �
0
y? or �

0
y?�yCy = �

0
y?; (22)

where �y = Im �
P1

n=1 �yn: Now insert Cy = �y?� and we �nd �
0
y?�y�y?� = �0y?

which shows that � has rank m� ry and equals (�0y?�y�y?)�1�0y?: This proves (16).
Proof of (17): Finally we see from (7) and (8) that Ut is a linear process in "xt;

and from (12) that "yt is a linear process in Ut; both with exponentially decreasing
coe¢ cients. It therefore also holds that the white noise "yt is a linear process in "xt with
exponentially decreasing coe¢ cients, which we write as (17) for suitable coe¢ cients Kn

with K = A�(1) of rank m:
Now we can apply the functional limit theorem to the two predictions errors and

prove the main result. We use =) to denote convergence in distribution on D[0; 1] or
D2[0; 1]:

Theorem 3 For the prediction errors it holds that

T�1=2(

[Tu]X
t=1

"xt;

[Tu]X
t=1

"yt) =) (Wx(u);Wy(u)); (23)

where Wy and Wx are Brownian motions and Wy(u) = KWx; see (17).



Invariance of common trends 8

The relations between cointegration and common trends for Yt and Xt are then given
by

a�y = �x�1; (24)

�0y?Wy = �2�
0
x?Wx; (25)

for some matrices �1 and �2:

Proof. We have seen in (17) that "yt is a linear process in the i.i.d. process "xt: Hence
we can apply the functional limit theorem which proves (23). The proof of (24) is
trivial.
Finally we �nd from (3) and (4) the two di¤erent representations of Yt in terms of

common trends,

Yt = Cy

tX
i=1

"yi +
1X
n=0

C�n"yt�n +Gy

= a0Cx

tX
i=1

"xi +
1X
n=0

a0C�xn"xt�n + a
0Gx:

It is not so easy to disentangle the random walk part from the stationary part of these
expressions, but if we divide by T�1=2 and pass to the limit for t = [Tu]; and use (23),
we �nd a simpler expression

CyWy(u) = a
0CxWx(u);

and multiplying by �0y?�y we �nd

�0y?Wy = �
0
y?�ya

0�x?(�
0
x?�x�x?)

�1�0x?Wx = �2�
0
x?Wx:

4 Estimation of the in�nite order CVAR for Yt
The representation of Yt as the solution of an in�nite order CVAR, see (15),

�Yt = �y�
0
yYt�1 +

1X
n=1

�yn�Yt�n + "yt; (26)

suggests �tting a kth order CVAR, and analyse the properties of the estimators �̂(k)y ; �̂
(k)

y ;

and �̂(k)yn ; n = 1; : : : ; k for k !1 with T .
Saikkonen (1992) analysed this problem for the triangular form of the VAR with

the added assumption that the prediction errors "yt were in fact independent. In order
to apply his results we therefore assume, in the asymptotic analysis below, that "xt is
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i.i.d. N(0;
x); so that also "yt are i.i.d. Nm(0;
y). The triangular form requires for
a given rank, that a matrix c is known for which we can assume c0�y has full rank, so
that c0?Yt is not cointegrated. If we de�ne � = ��c0?�y so that �y = �c� c?�0; then the
processes Y1t = �c0Yt and Y2t = c0?Yt are cointegrated because �

0
yYt = Y1t � �Y2t; and

the equations (26) can be written in triangular representation

Y1t = �Y2t + v1t

�Y2t = v2t

where the stationary process vt is given by

vt =

�
�0yYt
c0?�Yt

�
:

It is seen in the same way as in Lemma 1, where c = �y; that the error process vt has
an in�nite VAR representation with a nonsingular long-run impact matrix.
If we apply the usual reduced rank (QMLE) for estimation of the parameters in a

CVAR of order k for Yt; it follows from Saikkonen (1992) that provided k3=T ! 0 and

Ej"ytj4 <1; we have (�̂(k)y ; �̂
(k)

y )
P! (�y; �y) and that the limit distribution of the test

for rank ry has the usual limit distribution.
In Saikkonen and Lütkepohl (1996) the short-run dynamics is investigated and if

we write (26) in the form

�2Yt = �y�
0
yYt�1 � �y�Xt�1 +

1X
n=1

��yn�
2Yt�n + "yt; (27)

their results show that the matrix �y is estimated consistently estimating a �nite order
CVAR to (27). This shows that usual asymptotic inference is possible both for the
cointegrating rank of Yt and for the long-run matrix Cy, and that

Lemma 4 Fitting a CVAR(k) to data generated by (27), where "yt is i.i.d. Nm(0;
y);
we �nd for k3=T ! 0 that

T�1=2Ĉ(k)y

[Tu]X
i=1

"̂
(k)
yi =) CyWy(u):

Proof. Because Ĉ(k)y �̂(k)y �
0 = 0 we get Ĉ(k)y "̂

(k)
yi = Ĉ

(k)
y (�2Yi �[�2Y

(k)

i ) which becomes

Ĉ(k)y ((�y��̂(k)y )�0yYi�1+(�̂y��y)�Yi�1�
kX
n=1

(�̂�(k)yn ���yn)�2Yi�n+
1X

n=k+1

��yn�
2Yi�n+"yi):

Summing to [Tu] and normalizing with T�1=2; the last term converges to CyWy(u) and
the remaining terms tend to zero. The result of Saikkonen and Lütkepohl (1996) is
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that jj�y � �̂(k)y jj; jj�̂
�(k)
yn � ��ynjj and jj�̂

�(k)
y � ��yjj are OP ((k=T )1=2): We therefore �nd

that

Ĉ(k)y (�y � �̂(k)y )[T�1=2
[Tu]X
i=1

�0yYi�1] = OP ((k=T )
1=2)

P! 0

T�1=2(�̂y � �y)(Y[Tu]�1 � Y�1) = T�1=2OP ((k=T )
1=2)

P! 0

and

Ĉ(k)y

kX
n=1

(��(k)yn � ��yn)T�1=2(�Y[Tu]�n ��Y�n) = kOP ((k=T )1=2)T�1=2OP (1)! 0:

Finally, because jj�2Yt�njj2 � c we have, because the matrices ��yn are exponentially
decreasing, that there is a � < 1; so that

jjĈ(k)y
1X

n=k+1

��ynT
�1=2

[Tu]X
t=1

�Yt�njj2 � cT 1=2
1X

n=k+1

jj��ynjj2 � cT 1=2
1X

n=k+1

�n � cT 1=2�k ! 0:

5 An illustration using US interest rates

We consider US monthly interest rates in the period 1987:1 to 2006:1 which de�nes the
period when Greenspan was the chairperson of the Federal Reserve System. The data
is taken from IMF�s �nancial database and consists of four interest rates of di¤erent
maturities; the federal funds rate iff , and the treasury bills rates for maturity 6 months,
3 years and 10 years, denoted i6m; i3y; i10y respectively. To obtain more straightforward
results on weak exogeneity the analysis is based on an equivalent transformation into
two spreads in the short end of the term structure and two long interest rates.
The baseline VAR model is with two lags and a constant term restricted to the

cointegration space.

�Xt = �(�
0Xt�1 + �

0) + �1�Xt�1 + "t; (28)

where Xt = [sff6m; s6m3y; i3y; i10y]; sff6m = iff � i6m; and s6m3y = i6m � i3y:
Empirical applications often start with an analysis of a smaller system, which is

then is augmented with some new variables potentially considered important. This is
also the procedure here.
In the small system Xt = [sff6m; s6m3y; i3y]; i.e. the 10 year rate is left out. The

same model speci�cation can be used to describe the variation of the data. The trace
test and the roots of the characteristic polynomial suggest one cointegration relation
and, hence, two stochastic trends. The estimates of �1 and �1 are reported in Table 1.



Invariance of common trends 11

The small system results
sff6m s6m3y i3y constant

�01 1 �0:15
[�3:40]

0:04
[2:66]

0:00
[0:77]

�01 �0:29
[�5:80]

0:01
[0:24]

0:04
[0:48]

Table 1: The cointegration estimates in the small model.

The cointegration relation is a combination of the two spreads and a small level e¤ect
from the 3 year rate.

The � coe¢ cients suggest that only the shortest spread is signi�cantly adjusting.
This is con�rmed by the joint test of weak exogeneity of s6m3y and i3y (p-value 0.79)
which shows that s6m3y and i3y can be considered weakly exogenous. Thus, the two
stochastic trends can be associated with shocks to the level of the longest interest rate
and the spread between the 6 month and the 3 year rate, i.e. the term structure of
interest rates seems to be driven by the shocks to a level and a slope component, similar
to what is reported in Giese (2008).
The system is now enlarged with the 10 year bond rate. The trace test and the

roots of the characteristic polynomials suggest that the rank is two and, hence, that
two stochastic trends are also driving the large system. Table 2 reports the � and
� estimates of the two just identi�ed cointegration relations. The �rst cointegration
relation is identi�ed by the zero restriction on the 10 year bond rate and thus corre-
sponds to the relation in the small system. It is notable that the estimated coe¢ cients
are identical for both relations, illustrating the point that cointegration in the small
system implies cointegration in the large system. The second cointegration relation is
identi�ed by the zero restriction on the spread between the federal funds rate and the
6 months rate. It is notable that the second relation suggests that the �curvature�of
the term structure is stationary, i.e. f(i3m � i3y)� (i3y � i10y)g � I(0):

The large system results
sff6m s6m3y i3y i10y constant

�01 1 �0:16
[�3:64]

0:05
[3:14]

0:00 0:00
[0:43]

�02 0:00 1:00 �0:99
[�8:82]

1:00
[7:49]

�0:00
[�1:23]

�01 �0:29
[�5:47]

0:08
[1:58]

0:00
[0:02]

0:07
[0:92]

�02 �0:00
[�0:13]

�0:13
[�4:32]

0:06
[1:31]

0:03
[0:71]

Table 2: The cointegration estimates in the large system.

The joint test of weak exogeneity of i3y and i10y (p-value 0.15) shows that the two
long rates can be considered weakly exogenous, implying that their cumulated shocks
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de�ne the two common trends. This is consistent with the estimated � coe¢ cients that
are insigni�cant for the two longest rates. Thus, the results support an interpretation
of the term structure as being described by a nonstationary level and slope e¤ect and
a stationary curvature; see, Giese (2008).
In the small model, we concluded that it was the shocks to i3y and s6m3y that

drive the system, whereas by adding the 10 year long-term rate to the small system
we now conclude that it is the shocks to the two long rates, i3y and i10y; that drive the
system. Thus, the 10 year bond rate has now taken over the role as a weakly exogenous
variable from the spread s6m3y. As the realized random walk component of a variable
is asymptotically the same, independently of the dimension of the system, the two
stochastic trends estimated from the small and the large model, respectively, have to be
able to replicate this realized random walk component. Thus, what is (asymptotically)
invariant is (the space spanned by) the random walks, but not an interpretation in
terms of a structural shock with a given label. Only when the information set is
su¢ ciently large so that adding more variables does not change the de�nition of an
exogenous shock, is it possible to discuss invariance of labels. Thus, the common trends
are invariant, but their interpretation depends on the information set.
To illustrate how closely the two stochastic trends replicate the realized random

walk components of each variable, the left panel of Figure 1, plots each of the four
variables against their random walk component as determined in the large system. As
expected, the exogenous long-term interest rates, i3y and i10y; are very close to their
random walk component, whereas this is less so for the 3 month - 3 year spread, s3m3y;
and the shortest spread, sff3m; appears to be dominated by short run variation. In all
cases the random walk captures the long swings of the variables.
Next, the right hand panel in Figure 1 does the same for the small model. The

estimated random walk component of each variable looks similar to the one obtained
from the large system. To get a more precise picture of how close they are, Figure 2
compares the random walk component estimated by the small and the large model,
respectively, for each of the �rst three variables. While not identical, they capture
much the same pattern in the series.
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Figure 1: The plots shows the variables iff6m; i6m3y; i3y; i10y compared to the their
random walk component. In the left panel the random walk is constructed from the
large system and in the right hand panel from the small system.

Comparison of random walks
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Figure 2: The plots compare the random walk component of each of the variables
iff6m; i6m3y; i3y estimated from from the large and the small system. The �nding
that the random walk components are roughly the same in the two systems, which
illustrates the invariance shown in the paper.
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