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Abstract

In this paper, we consider a general class of vector error correction models which

allow for asymmetric and non-linear error correction. We provide asymptotic results

for (quasi-)maximum likelihood (QML) based estimators and tests. General hypothesis

testing is considered, where testing for linearity is of particular interest as parameters

of non-linear components vanish under the null. To solve the latter type of testing,

we use the so-called sup tests, which here requires development of new (uniform) weak

convergence results. These results are potentially useful in general for analysis of non-

stationary non-linear time series models. Thus the paper provides a full asymptotic

theory for estimators as well as standard and non-standard test statistics. The derived

asymptotic results prove to be new compared to results found elsewhere in the literature

due to the impact of the estimated cointegration relations. With respect to testing,

this makes implementation of testing involved, and bootstrap versions of the tests are

proposed in order to facilitate their usage. The asymptotic results regarding the QML

estimators extend results in Kristensen and Rahbek (2010, Journal of Econometrics)

where symmetric non-linear error correction considered. A simulation study shows that

the �nite sample properties of the bootstrapped tests are satisfactory with good size and

power properties for reasonable sample sizes.
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1 Introduction

We develop estimators and test statistics for a class of nonlinear vector error correction

models with cointegration. Both estimators and test statistics are based on the Gaussian

(quasi-)likelihood, and we propose both Lagrange Multiplier (LM) and Likelihood Ratio

(LR) test statistics. Our framework allows for testing a wide range of relevant hypotheses.

Of particular interest is the hypothesis of nonlinearity, where in general nuisance parameters

entering the nonlinear component vanish under the null. We solve this problem by employing

sup-tests as advocated in Andrews and Ploberger (1994, 1995), Davies (1987), Hansen (1996)

and Hansen and Seo (2002). We derive the asymptotic distributions of both estimators and

test statistics under weak restrictions. As part of the theoretical analysis, new functional

central limit theorems are developed which are of independent interest in the analysis of

nonlinear, non-stationary models.

Allowing for unknown cointegration relations prove to complicate the analysis and the re-

sulting asymptotic distributions of both the quasi-maximum likelihood estimators (QMLE�s)

and test statistics considerably. In particular, we �nd non-standard limiting distributions of

both estimators and test statistics, when compared to the ones established in linear coin-

tegration models and for nonlinear stationary models, including cointegration models with

known long-run parameters. This is due to the fact that the limiting distributions of the es-

timators of the long-run and short-run parameters are not asymptotically independent. This

again spills over to the distribution of the test statistics which are in�uenced by both the

estimated long-run and short-run parameters. This happens even in the case when the null

hypothesis only involves restrictions on either of the parameters. If in addition parameters

vanish under the null, as is often the case in testing for linearity in the short-run dynam-

ics, the limiting distributions complicate further, and the proposed sup-tests are shown to

converge towards a supremum over a squared non-Gaussian process.

As such, our results show that one cannot ignore the estimation of the long-run para-

meters if these are unknown. This also explains why our �ndings are di¤erent from existing

results on testing in nonlinear time series models. In particular, as discussed in further detail

below, previous studies investigating sup-tests in cointegration models either assume that the

cointegrating relations are known, or that the additional estimation error due to unknown

(super consistent) relations does not a¤ect the tests.

Hansen (1996) develops an asymptotic theory for sup-tests in a stationary setting. In

this case, the limiting distributions can be written as a supremum over squared Gaussian

processes. This theory is extended to threshold and smooth transition cointegration models

with known cointegrating relations (�) in Gonzalo and Pitarakis (2006) and Kilic (2009)

respectively. Since � is assumed known, their models and results become similar to the ones

of Hansen (1996).

Our results regarding sup tests for linearity are related to the ones of Caner and Hansen

(2001) who test for linearity in univariate threshold autoregressions with unit roots. We �nd

in the multivariate case, as they do for the univariate case, that the limiting distribution of

the sup test statistic consists of two terms: A stationary component due to the short-run
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parameters and a non-stationary component due to the presence of unknown long-run para-

meters. On the other hand, our results di¤er from Hansen and Seo (2002) and Nedeljkovic

(2008), where sup-tests of linearity in threshold and smooth transition cointegration models

respectively are considered, as they (implicitly) assume that estimators of � have no impact

on the asymptotic behaviour of their test statistic. That is, they conclude that limiting

distributions can be represented as supremums over squared Gaussian processes. Finally, we

note that in a di¤erent vein some studies have proposed to test for linearity by approximating

the true model using a Taylor expansion of the non-linear component (Choi and Saikkonen,

2004; Kapetanios, Shin and Snell, 2006). This removes the problem of vanishing parameters,

but on the other hand introduces asymptotic biases of estimators and test statistics under

the alternative, since a misspeci�ed model is being employed.

A number of other studies have developed and analyzed estimators for cointegration

models with non-linear error correction. In particular, Kristensen and Rahbek (2010) derive

the properties of QMLE for class of smooth nonlinear error-correction models. However,

they restrict themselves to the case of symmetric error-correction while we also allow for

asymmetric adjustments. Thus, our �ndings regarding the QMLE generalize and improve

upon the results found in that study. Our results also complement the ones of Seo (2010) who

consider estimation of threshold error correction models using kernel smoothers to handle

discontinuities implied by the thresholds.

To establish our theoretical results, it proves necessary to develop a new functional cen-

tral limit theorems (FCLT�s) uniformly over the unidenti�ed parameters. Such results are

useful in the analysis of nonlinear models with non-stationary components, and we therefore

establish uniform FCLT�s in a general framework that includes, but is not restricted to, the

particular class of non-linear error correction models of this study. These results generalize

the ones established in Caner and Hansen (2001, Section 2) and will be useful in the analysis

of other non-linear time series models; as such, they should be of independent interest.

Due to the highly non-standard limiting distribution of estimators and test statistics, we

propose to implement the estimation and testing procedures using bootstrapping based on

the ideas developed in Cavaliere, Rahbek and Taylor (2010a,b). In particular, we propose to

use the wild bootstrap, which should make the bootstrap tests robust to heteroskedasticity.

Seo (2006,2008a) and Gonzalo and Pitarakis (2006) also consider bootstrap methods for

testing in non-stationary time series models but in di¤erent settings. A simulation study

investigates the �nite sample performance of the proposed bootstrap version of the sup-LR

test. We �nd that the proposed testing scheme has good size and power properties and so

o¤er a convenient tool for inference in nonlinear error correction models.

The remains of the paper is organized as follows: We present the model and propose

estimators and test statistics of the parameters in Section 2. The auxiliary functional central

limit theorems (FCLT) are derived in Section 3. These are then in turn used in Section 4

and 5 to derive the limiting distributions of estimators and test statistics respectively. A

bootstrap procedure for evaluating the distribution of the test statistic is proposed in Section

6, while Section 7 presents the results of a simulation study. Section 8 concludes. All proofs

and lemmas have been relegated to Appendices A-B and C-D respectively.
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Throughout, the following notation will be used: We use P! and D! to denote convergence

in probability and distribution respectively; C (A) and D (A) denote the space of continuous
and cadlag functions with domain A; df (x; dx) denotes the di¤erential of a mapping f (x)
in the direction dx; by vec (a; b), we mean

�
vec (a)0 ; vec (b)0

�0
: For any parameter �, �0 will

denote its true, data-generating value; for any matrix m � n matrix A of full column rank

n � m, we de�ne �A = A (A0A)�1, and A? as a m � (m� n) matrix such that [A;A?] has
full rank m and A0A? = 0.

2 Framework

2.1 Model

Let Xt 2 Rp, t = 1; :::; T , be observations from the following error correction model (ECM),

�Xt = g
�
�0Xt�1

�
+�1�Xt�1 + :::+�k�Xt�k + "t; (2.1)

where �Xt = Xt �Xt�1 and the error term "t satis�es

E ["tjFt�1] = 0; 
 � E
�
"t"

0
tjFt�1

�
<1; (2.2)

with Ft�1 = F (Xt�1; Xt�2; :::) denoting the information set based on past values of Xt.
The function g (�) describes the (potentially nonlinear) error correction towards the long-run
equilibrium. The equilibrium of the process is characterized by the cointegration relations;

namely, the r � 1 linear combinations �0Xt, with � 2 Rp�r.
Without loss of generality, we specify g (�) as composed by a linear and nonlinear part:

g
�
�0Xt�1

�
= ��0Xt�1 + � 

�
�0Xt�1; �

�
: (2.3)

In this general class of speci�cations, the deviation from the basic linear ECM is given by

the r�-dimensional vector function  (�0Xt�1; �) multiplied by the (p� r�)-dimensional pa-
rameter �. The parameter � in the nonlinear component may contain matrices and we let

d� = dim (vec (�)) denote the dimension of the vectorized version of �. The above speci�ca-

tion is su¢ ciently general to cover most known nonlinear error correction models found in

the literature. Note that we here suppress the dependence of g (�) on the parameters, �; �
and �.

The form of g in eq. (2.3) embeds various smooth transition error correction models. In

general, allowing for S di¤erent regimes in  (�) indexed by s = 1; :::; S; we may write,

� (z; �) =
SX
s=1

�s s (z; �) with � := (�1; :::; �S) ,  (z; �) := ( 1 (z; �) ; :::;  S (z; �))
0 : (2.4)

Depending on the functional form of the  s, this formulation allow for both symmetric and

asymmetric response functions. A key example of the �rst type is the logistic STECM in

Kristensen and Rahbek (2010), where

 s (z; �) :=
�
1 + exp

�
(z � !s)0As (z � !s)

	��1
z; (2.5)
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with As positive de�nite (r�r)-dimensional matrices, while !i are r-dimensional vectors, and
r� = Sr. The parameter � is given by � = (!;A) with ! = (!1; :::; !S) and A = (A1; :::; AS).

With  (z; �) chosen this way, observe that  (z) = o (1) as kzk ! 1 and, hence for large

deviations as measured by Zt = �0Xt, the linear component �z of g (z; ) in eq. (2.3)

asymptotically dominates. Also note that the nonlinearity vanishes if indeed � = 0, in which

case the STECM reduces to the linear ECM with g (z; ) = �z. To allow for asymmetric

responses, Saikkonen (2008) studies alternative general speci�cations of  : An example of

Saikkonen (2008) is

 s (z; �) =
�
1 + exp

�
a0s (z � !s)

	��1
z; (2.6)

with as being an r�dimensional vector. Depending on whether (z � !i) is orthogonal to as
as kzk ! 1;  s (z; �) will also asymptotically be contributing to the linear �z part in the
error correction. The above class of models also contains threshold models where  (z; �)

contains indicator functions, see e.g. Hansen and Seo (2003) and Seo (2010). However, we

will impose smoothness restrictions on  (z; �) when analyzing our proposed estimators and

test statistics which rule out threshold models. These could potentially however be dealt with

by modifying our proposed estimators, replacing indicator functions by kernel smoothers, see

e.g. Seo (2010), but will not be considered here.

Regarding identi�cation, then as common in the cointegration literature � is identi�ed

up to a normalization and we therefore normalize � conveniently using a (p� (p� r)) di-
mensional matrix �0, such that

� � �0 = �0b; (2.7)

and b is the ((p� r)� r) dimensional parameter to be estimated. Thus, b0 = 0 corresponds
to the true parameter value �0. Using this, we can rewrite the model in eq. (2.1) as a

nonlinear regression model in terms of (Z0;t; Z1;t; Z2;t),

�Xt = g
�
Z0;t�1 + b

0Z1;t�1
�
+�Z2;t�1 + "t; (2.8)

where

Z0;t := �00Xt 2 Rr; Z1;t := X 0
t�0 2 Rp�r; Z2;t :=

�
�X 0

t; :::;�X
0
t�k+1

�0 2 Rpk:
As argued in Kristensen and Rahbek (2010), the estimator of the error covariance matrix,


, will be asymptotically independent of the estimators of the other parameters (appearing in

the conditional mean speci�cation). We therefore collect all the conditional mean parameters

in # and leave out 
 which is treated separately. Finally, note that under the null of linearity

(� = 0) the parameter � vanishes. To emphasize the role played by the vanishing parameter

�, we introduce � which contains all parameter in # except for �. Furthermore, we di¤erentiate

between short-run and long-run parameters and collect the former in �. Thus the parameters

of interest are given by:

# := (�; �) = (b; �; �) ; � := (�; �;�) = (�; �;�1;�2; :::;�k) : (2.9)

We let � and � denote the parameter spaces of � = (�; �) and � respectively.
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2.2 Estimation

Our proposed estimators are based on the Gaussian log-likelihood. In order to write the

log-likelihood function, de�ne the residuals,

"t (�; �) = �Xt � �
�
Z0;t�1 + b

0Z1;t�1
�
� � 

�
Z0;t�1 + b

0Z1;t�1; �
�
� �Z2;t�1: (2.10)

Then, given T observations, X1; X2; :::; XT , and with the initial values X0;�X0; :::;�X�k
�xed, the log-likelihood function based on Gaussian errors takes the form,

LT (�; �;
) = �
T

2
log j
j � 1

2

TX
t=1

"t (�; �)
0
�1"t (�; �) : (2.11)

We de�ne the corresponding pro�led log-likelihood L�T (�; �) = LT (�; �;

� (�; �)) where


� (�; �) =
1

T

TX
t=1

"t (�; �) "t (�; �)
0 ;

and #̂ is found as,

#̂ := (�̂; �̂) = arg max
�2�;�2�

L�T (�; �) :

As we do not impose any distributional assumptions on the errors, #̂ = (�̂; �̂) and 
̂ = 
�(�̂; �̂)

are referred to as quasi-maximum likelihood estimators (QMLE�s).

2.3 Hypothesis Testing

We are interested in developing inference regarding both short-run (� and �) and long-run

parameters (�; or b) in the non-linear error correction model. We consider in turn hypotheses

involving short- and long-run parameters.

2.3.1 Testing Short-Run Parameters

First, consider the following general hypothesis involving the short-run parameters � and �

(cf. eq. (2.9)),

H0 : R
0vec (�; �) = 0; (2.12)

where R is a known (m� d)-matrix with d = p (r + d� + pk) + d� and m � d, and we have

used the notation vec (�; �) =
�
vec (�)0 ; vec (�)0

�0
mentioned in the introduction. Some key

examples that are included in the above general formulation include:

Example 1 (Linear error correction) To see if the non-linear components are relevant
in explaining the error-correction mechanism, it is of interest to test for their signif-

icance. One can do so by testing that there are no nonlinearities in all variables,

R0vec (�; �) = vec (�) = 0. Alternatively, we may wish to test for presence of non-linear

error-correction in individual variables. For example, R0vec (�; �) = R0�vec (�) = 0 for

some matrix R�.
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Example 2 (Symmetric response) Suppose that our nonlinear component in eq. (2.3)
takes the form

� (z; �) =
2X
s=1

�s s (z; �) ;

where

 s (z; �) :=
�
1 + exp

�
(z � !s)0As (z � !s)

	��1
z; s = 1; 2;

such that we have 2 non-linear components in addition to the linear. It is then of

interest to test for symmetric responses. That is, R0vec (�; �) = vec (�1 � �2) = 0.

Example 3 (Weak exogeneity) Corresponding to notion of weak exogeneity in linear er-
ror correction models with respect to �, we may wish to test for no error correction

(neither linear, nor non-linear) in some variables. That is R0vec (�; �) = R0�;� [�; �] = 0

for some matrix R�;�.

Example 4 (# lags) To choose the number of lags included in the model, the following
hypothesis is of interest, R0vec (�; �) = vec (�j) = 0, for some j 2 f1; :::; kg.

Under H0, some (if not all) parameters in � may vanish. One has to check this on a case-

by-case basis. One particular case is given in Example 1 where the parameter � vanishes

under the null of linearity. If this is the case, we face a non-standard testing problem, which

is here solved by employing so-called sup-tests. Thus, we treat the two cases (� is identi�ed

or unidenti�ed under the null) separately:

First, suppose � is identi�ed under H0. In order to test the null, we �rst obtain the

restricted estimator of all parameters, # = (�; �), under H0 which we denote ~# = (~�; ~�):

(~�; ~�) = arg max
#

R0vec(�;�)=0

L�T (�; �) :

We then propose to test the null by either LR or LM test statistics. The LR statistic compares

the log-likelihoods evaluated under the alternative and under the null and is given by

LRT = 2
h
L�T (�̂; �̂)� L�T (~�; ~�)

i
: (2.13)

The LM statistic on the other hand, uses the score under the alternative evaluated at the

parameter estimates obtained under the null,

LMT = ST (~�; ~�)0H�1T (~�; ~�)ST (~�; ~�); (2.14)

where ST (�; �) and HT (�; �) are the score and Hessian matrices respectively. Here ST (�; �)
and HT (�; �) are identi�ed in terms of di¤erentials as introduced in Section 2.4.

Next, in the case where � is unidenti�ed under the null ofH0, �rst note that the parameter

restrictions in this case cannot involve � since we are unable to test for such. So after removing

potentially redundant restrictions involving �, the general null in eq. (2.12) can be rewritten

as

H0 : R
0
�vec (�) = 0;
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for some matrix R�. The estimator of � = (b; �) under the null is given by

~� = arg max
�2�

R0�vec(�)=0

L�T (b; �; �) :

On the other hand, under the alternative, we compute a pro�le estimator of � for any given

value of �,

�̂ (�) = argmax
�2�

L�T (�; �) :

The sup-LR test is then obtained by taking supremum of the standard LR test over �,

supLRT := sup
�2�

LRT (�) ; (2.15)

where

LRT (�) = 2
h
L�T (�̂ (�) ; �)� L�T (~�; �)

i
: (2.16)

The sup-LM test is obtained in a similar manner,

supLMT := sup
�2�

LMT (�) ; (2.17)

where

LMT (�) = ST (~� (�) ; �)0H�1T (~� (�) ; �)ST (~� (�) ; �): (2.18)

2.3.2 Testing Long-Run Parameters

Recall that � is identi�ed by eq. (2.7), so consider the following hypothesis involving the

long-run parameter b,

H0;b : R
0
bvec

�
b0
�
= 0; (2.19)

where Rb is a known (m� d)-matrix with d = (p� r) r and m � d. A key example is the

following:

Example 5 (Cointegrating vectors) Economic theory often imposes, or implies, testable
restrictions on the cointegrating relations, for example that they are known. One

speci�c example (with p = 2 and r = 1) is � = (1;�1)0 corresponding to the spread
between the two variables being stable. In terms of b 2 R, this can be expressed as
R0bvec (b

0) = b = 0.

The test statistics are computed in the same way as in the previous subsection with

identi�ed �. We �rst compute the restricted estimators which for ease of notation we still

call ~� and ~�:

H0;b : (~�; ~�) = arg max
#

R0bvec(b
0)=0

L�T (�; �) :

The corresponding LR- and LM-test are then given as:

LRb;T = 2
h
L�T (�̂; �̂)� L�T (~�; ~�)

i
;

LMb;T = ST (~�; ~�)0H�1T (~�; ~�)ST (~�; ~�):
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2.4 Score and Hessian

As is standard, the analysis of likelihood-based estimators and test statistics will focus on

the score and Hessian of the log-likelihood. For ease of notation, we here choose to de�ne

them in terms of �rst and second order di¤erentials of the log-likelihood since parameters

enter in the form of matrices; see Magnus and Neudecker (1988) for an introduction to the

concept of di¤erentials and their use in econometrics. We apply standard notation and let

dL�T (�; �; d�; d�) denote the �rst-order di¤erential of L
�
T (�; �) w.r.t. (�; �) in the direction

of d� and d� respectively. The vector score ST (�; �) = @L�T (�; �) =@vec(�; �) can then be

identi�ed from the di¤erential through the following identity:

dL�T (�; �; d�; d�) = ST (�; �)0vec (d�; d�) :

Similarly, with d2L�T (�; �; d�; d�;d�
�; d��) denoting the second order di¤erential, the Hessian

HT (�; �) = @L�T (�; �) = (@vec(�; �)@vec(�; �)
0) is given through the following identity:

d2L�T (�; �; d�; d�;d�
�; d��) = vec (d��; d��)0HT (�; �)vec (d�; d�) :

To derive expressions of the �rst and second order di¤erentials of the log-likelihood, some

further notation is needed: First, we introduce the di¤erentials of  (z; �) 2 Rr� with respect
to z 2 Rr and vec (�) 2 Rd� in terms of its partial derivatives,

d (z; �; dz) = @z (z; �) dz, @z (z; �) = (@ i=@zj)i;j 2 R
r��r; (2.20)

d (z; �; d�) = @� (z; �) vec (d�) ; @� (z; �) 2 Rr��d� :

Furthermore, de�ne the processes ut (�) 2 Rp(r+r�+pk), vt (�) 2 Rr and wt (�) 2 Rr by

ut (�) :=
�
u�;t (�)

0 ; u�;t (�)
0 ; u�;t (�)

0�0 ; vt (�) := [�0@� (Z0;t�1; �)]
0
�10 "t (�0; �) ; and

(2.21)

wt (�) := [�0 + �0@z (Z0;t�1; �)]
0
�10 "t (�0; �) ;

with

u�;t (�) := vec
�

�10 "t (�0; �)Z

0
0;t�1

�
; u�;t (�) := vec

�

�10 "t (�0; �)Z

0
2;t�1

�
(2.22)

u�;t (�) := vec
�

�10 "t (�0; �) (Z0;t�1; �)

0� :
These processes prove helpful in the analysis of the score and Hessian of log-likelihood. For

example, the �rst-order di¤erential of L�T (�; �) evaluated at �0 can be expressed in terms of

these (see Appendix C for details),

dL�T (�0; �; d�; d�) = (vec (d�))
0
TX
t=1

ut (�) + (vec (d�))
0
TX
t=1

vt (�) +
TX
t=1

Z 01;t�1 (db)wt (�) :

Likewise, the second order di¤erential d2L�T (�0; �; d�; d�; d�
�; d��) ; or equivalently the Hessian

HT ; can be expressed in terms of similar processes based on Z0t, Z1t, Z2t and "t in addition
to �rst and second order derivatives of  ; we refer to Appendix C for an explicit expression.

9



We then wish to analyze the asymptotic properties of the �rst- and second order di¤er-

entials; in particular, in the case of � vanishing, weak convergence results for averages based

on ut (�), vt (�) and wt (�) need to hold uniformly in �. To this end, it proves necessary to

develop some new functional central limit theorems. The next section is dedicated to this

task.

3 FCLT Results for Nonlinear Processes

In order to obtain the asymptotic distributions of the proposed estimators and test statistics

when parameters vanish under the null, we �rst establish novel functional central limits for

double indexed random sequences. The results extend Caner and Hansen (2001) to the case of

multivariate processes and parameters, and are of general interest for the statistical analysis

of non-linear time series models involving non-stationary components. We therefore develop

these in a more general setting, not restricted to the class of non-linear error correction

models introduced in the previous section.

Consider a sequence of stochastic processes on the form (xT (s) ; �T (s; �)), where � 2 �
for some compact set � � Rd� and s 2 [0; 1]. The sequence of stochastic processes, xT (s) 2
Rdx , is given by

xT (s) = x[Ts];

for some appropriately normalized random sequence xt which is assumed to converge weakly,

see Assumption 3.3 below. The double-indexed sequence �T (s; �) is given as

�T (s; �) =
1p
T

[Ts]X
t=1

f (yt�1; �) et (3.1)

where f : Rdy�� 7! Rdx�de , and (et; yt) is a sequence of random variables with et 2 Rde . We
let Ft = F (et; xt; yt; et�1; xt�1; yt�1:::) denote the �ltration with respect to current and past
values of (et; xt; yt). We then wish to establish weak convergence results for transformations

of this double-indexed process on the space of cadlag functions D ([0; 1]��).
We impose the following conditions:

Assumption 3.1 The sequence (et; yt) with �ltration Ft satis�es:

(i) (et; yt) is strictly stationary and geometrically ergodic.

(ii) et is a martingale di¤erence w.r.t. Ft�1 such that E [etjFt�1] = 0 and E [ete0tjFt�1] = 
e.

Assumption 3.2 The sequences f (yt�1;�) and et satisfy for some m;n; � > 0:

(i) E [sup�2� kf (yt�1; �)km] <1 and E [ketkm] <1.

(ii) E kf (yt�1; �)� f (yt�1; �0)kn � C k� � �0k�n, for all �; � 2 �.
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Assumption 3.3 The process xT (s) = x[Ts] on D ([0; 1]) satis�es:

(i) As T !1, xT (s)
D! x (s), where x (�) 2 C[0; 1].

(ii) suptE [kxtkm] <1 for some m > 0.

Remark 1: In Assumptions 3.1 (ii) one may instead assume that E [ete0tjFt�1] = 
e;t, with

e;t stationary and E [k
e;tk] <1, thereby allowing for conditional heteroskedasticity.

Remark 2: A general su¢ cient condition for Assumption 3.2 (ii) to hold with � = 1 is that
f (�; �) is continuously di¤erentiable in � with

E

 
sup
�;d�

kdf (yt�1; �; d�)kn
!
<1.

Theorem 3.4 (FCLT) Under Assumptions 3.1 and 3.2 with n = 2 andm > max (4; 2d�=�),

�T (s; �) de�ned in (3.1) satis�es,

�T (�; �)
D! � (�; �) ; (3.2)

where � (s; �) is multi-parameter Gaussian process on C ([0; 1]��) � D ([0; 1]��) with
covariance kernel,

� (s1; �1; s2; �2) = (s1 ^ s2)E
�
f (yt�1;�1) 
ef (yt�1;�2)

0� > 0:
Remark 3: The condition that m > max (4; 2d�=�) may lead to high moment require-

ments on yt. This "curse of dimensionality" stems from the way we establish stochas-

tic equicontinuity, see proof of Theorem 3.4. It may suggest that when considering

nonlinear alternatives, one should aim for formulations of f (�) which depend on low-
dimensional �. This of course is also well-known from estimation of nonlinear models

in general. However, we conjecture that the high moment condition, while su¢ cient,

is not necessary. Caner and Hansen (2001) avoid this type of moment conditions as

they focus on the case of a univariate nuisance and so their � is of dimension one by

de�nition.

In the next section, we apply Theorem 3.4 on our model in eq. (2.1) where (in the

case of no lagged di¤erences, or k = 0), � = �; yt = �0Xt; f (yt�1;�) =  (�0Xt�1; �), and

xt = K�1
T �00Xt for some appropriately chosen weighting matrix KT . In particular for the

STECM examples in eq. (2.5) and (2.6), Assumption 3.2 (i) and (ii) hold if E[k�0Xtkm] <1
and E[k�0Xtkn] < 1 with � = 1. Assumption 3.3 holds for the class of nonlinear error

correction models introduced in Section 2 under suitable regularity conditions as shown in

Kristensen and Rahbek (2010) and Saikkonen (2005).

In addition to the weak convergence in Theorem 3.4, we also need a convergence result

for stochastic integrals in terms of the limiting Gaussian process:
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Theorem 3.5 (Convergence to Stochastic Integral) Under Assumptions 3.1-3.3, with
n = 4, m > max (6; 2d�=�), and with (xT (�) ; �T (�; �))

D! (x (�) ; � (�; �)) for any �, then

1p
T

TX
t=1

x0t�1f (yt�1; �) et
D!
Z 1

0
x (s)0 d� (s; �) ;

on C (�).

Note that the equivalent Theorem 2 in Caner and Hansen (2001) does not include the

condition of joint pointwise convergence of (xT (�) ; �T (�; �)). However, we establish the above
result by verifying the conditions of Theorem 2.2 of Kurtz and Protter (1991), or equivalently

Theorem 2.1 of Hansen (1992), which require joint convergence of the two processes. The

additional requirement is of little concern in our applications though as we have xt and yt
de�ned in terms of the same underlying et, and the past of this, and so the joint convergence

condition will automatically be satis�ed.

Finally, we need convergence of product moment matrices:

Theorem 3.6 Under Assumptions 3.1-3.3, with m;n > 1,

(i)

1

T

TX
t=1

x0t�1f (yt�1;�)
D!
Z 1

0
x (s)0 dsE [f (yt�1;�)] :

(ii)

1

T

TX
t=1

x0t�1f (yt�1;�)xt�1
D!
Z 1

0
x (s)0E [f (yt�1;�)]x (s) ds:

With s �xed, the convergence in eq. (3.2) to a Gaussian process, holds under much less

strict conditions. Likewise if � is �xed when the result reduces to an ordinary FCLT result:

Corollary 3.7 (FCLT) Under Assumption 3.1 and 3.2 with m > 1; n � 2, then, if either
s or � are �xed,

�T (s; �)
D! � (s; �) ; or �T (�; �)

D! � (�; �) ;

1p
T

TX
t=1

x0t�1f (yt�1; �) et
D!
Z 1

0
x (s)0 d� (s; �) ;

1

T

TX
t=1

x0t�1f (yt�1;�)
D!
Z 1

0
x (s)0 dsE [f (yt�1;�)] :

1

T

TX
t=1

x0t�1f (yt�1;�)xt�1
D!
Z 1

0
x (s)0E [f (yt�1;�)]x (s) ds

on C (�) � D (�) and C[0; 1] � D[0; 1], respectively.
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4 Asymptotics of Estimators and Test Statistics

Given the results of the previous section we are now in position to derive the asymptotic

distribution of the QMLE of #; both under the null hypothesis of interest and the alternative.

The results are used when studying the asymptotics of both the likelihood ratio test statistic

and Lagrange multiplier test for general null hypotheses, including the hypothesis of linearity,

�0 = 0. Furthermore, the results generalize the distributional results of Kristensen and

Rahbek (2010) to include the case of asymmetric adjustments in nonlinear error correction

models.

4.1 Asymptotics of the QMLE

We start by a list of assumptions on the processes in the score and Hessian:

Assumption 4.1 The function  (z; �) is four times di¤erentiable in z and �. The function
itself and its derivatives are polynomially bounded in z of order � � 1 uniformly over �,

k (z; �)k � C (1 + jzj�) for some C > 0.

Assumption 4.2 The processes (Z 00t; Z
0
2t)

0 are stationary and geometrically ergodic with

E [kZ0;t�1kq0 ] <1 and E [kZ2;t�1kq2 ] <1 for some q0; q2 � 1.

Assumption 4.3 With �0 the (p� (p� r)) dimensional normalization matrix in (2.7), the
(p� r) dimensional non-stationary process �00Xt satis�es

K�1
T �00X[Ts] = K�1

T Z1;[Ts]
D! F (s) ;

on s 2 [0; 1], where the process F (s) is a.s. continuous and KT is a ((p� r)� (p� r))
dimensional diagonal matrix for which K�1

T ! 0 as T !1.

Assumption 4.4 The parameter space � for � is compact.

Assumption 4.1 rules out threshold models, but these can be approximated up to any

degree of precision by a smooth transition model, see also Seo (2010). Otherwise, all proposed

speci�cations of nonlinear error correction satisfy this assumption.

Su¢ cient conditions for Assumptions 4.2-4.3 for particular speci�cations of  can be

found in Bec and Rahbek (2004), Kristensen and Rahbek (2010) and Saikkonen (2005, 2008)

amongst others. In particular, they give conditions for the already mentioned STECM, see

eqs. (2.5) and (2.6). Note in this respect that Assumptions 4.2 can be replaced by the

assumption that,�
Z 00t; :::; Z

0
0t�k; Z

0
2t�0?

�
=
�
X 0
t�0; :::; X

0
t�k�0;�X

0
t�0?; :::; ;�X

0
t�k�0?

�
is a geometrically ergodic Markov chain with drift function V (y) = 1 + kyk2q, q > 2.

This way, one is not required to have the initial values of the observations drawn from the

invariant distribution, as for example the law of large numbers, and hence the central limit

theorem, hold irrespectively of the choice of initial values, see Jensen and Rahbek (2007).
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In Assumption 4.3, �0 can be used to decompose Xt into trends of di¤erent orders. In
particular, as demonstrated in Kristensen and Rahbek (2010), when  is symmetric the

nonlinear error-correction process with Xt 2 Rp has p � r � 1 common stochastic trends,
while there is at most one linear trend. Thus, within their class of models, Assumption

3.3 holds with F (s) being a (p� r � 1)-dimensional Brownian motion, and a linear trend
component. In the general case where symmetry is not imposed, there are at most p � r

stochastic trends but the exact number depends on the speci�c form of  ; see Saikkonen
(2008, p. 308).

As a �rst step towards establishing the properties of the QMLE�s under the null and

alternative, we analyze the behaviour of (ut (�) ; vt (�) ; wt (�)) and Xt where ut (�), vt (�) and

wt (�), as de�ned in (2.21)-(2.22), are the sequences that make up the score and Hessian of

the log-likelihood. By applying the general results of Theorem 3.4, we obtain the following

uniform FCLT over (s; �) 2 [0; 1]� �:

Lemma 4.5 Under Assumptions 4.1-4.4 with q2 = max (4; 2d�) and q0 > q2max (1; �) given

in Assumption 4.2, it holds, as T !1,0@ 1p
T

[Ts]X
t=1

ut (�)
0 ;

1p
T

[Ts]X
t=1

vt (�)
0 ;

1p
T

[Ts]X
t=1

wt (�)
0 ;
�
KT�

0
0X[Ts]

�01A (4.1)

D!
�
B0u (s; �) ; B

0
v (s; �) ; B

0
w (s; �) ; F

0 (s)
�

on the function space [0; 1]��. Here F is de�ned in Assumption 4.3, while Bu; Bv and Bw
are Gaussian processes with covariance kernel, (s1 ^ s2) � (�1; �2) where

� (�1; �2) := Cov

0B@
0B@ ut (�1)

vt (�1)

wt (�1)

1CA ;

0B@ ut (�2)

vt (�2)

wt (�2)

1CA
1CA :=

 
�(u;v);(u;v) (�1; �2) �(u;v);w (�1; �2)

�w;(u;v) (�1; �2) �w;w (�1; �2)

!
:

(4.2)

The above result will be used to establish (uniform) weak convergence of the score and

Hessian of the log-likelihood. The above result is stated uniformly over �, which is needed for

the asymptotics of the sup statistics when � vanishes under the null. In all other situations,

we only need the above convergence to hold pointwise at � = �0. In particular, in the

maintained model and under nulls where � does not vanish, we can �x � at �0 and then

apply Corollary 3.7 instead of Theorem 3.4. This in turn allows us to weaken the moment

conditions in Lemma 4.5 to q0 > 2max f�; 1g and q2 > 2 when establishing weak convergence
of the QMLE and test statistics.

In order to state the asymptotic distribution of the QMLE, de�ne the matrix of conver-

gence rates,

V
1=2
T = diag

�
V
1=2
�;T ; V

1=2
�;T

�
; where V 1=2�;T = diag

�
Ir 
KT Ip(r+r�+pk)

�
and V 1=2�;T = Id� .

(4.3)

Here, V�;T and V�;T contain the rates for the QMLE of � and � respectively. Again, we single

out � to be able to handle the case of this parameter vanishing.
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We now state two separate results for the QMLE: First, we consider the situation where

�0 6= 0, and then when �0 = 0.

Theorem 4.6 Suppose that Assumptions 4.1-4.4 hold with q0 > 2max f1; �g and q2 > 2

and �0 6= 0, and that � (�0; �0) > 0 as given in eq. (4.2). Then the following holds: With

probability tending to one, there exists a unique minimum point #̂ = (�̂; �̂) = (b̂0; �̂; �̂) of

L�T (#) in the neighbourhood f# : jj� � �0jj < �; jj� � �0jj < � and jjKT bjj < �g for some
� > 0. Moreover, with VT de�ned in eq. (4.3),

T 1=2V
1=2
T vec

�
#̂� #0

�
D! H�1S; (4.4)

for a random matrix H and vector S, given by

H �
 R 1

0 F (s)F (s)
0 ds
 �w;w (�0; �0)

R 1
0 F (s) ds
 �w;(u;v) (�0; �0)R 1

0 F (s)
0 ds
 �(u;v);w (�0; �0) �(u;v);(u;v) (�0; �0)

!
; (4.5)

and

S �
 
vec

�Z 1

0
F (s) dB0w (s; �0)

�0
; B0u (1; �0) ; B

0
v (1; �0)

!0
: (4.6)

Finally, note that 
̂ P! 
0.

The above result, where �0 6= 0, is an extension of results in Kristensen and Rahbek

(2010) as we allow for asymmetry in the error correction as given by the  (�) function.
Rather than establishing the conditions of Kristensen and Rahbek (2010, Lemmas 11 and

12), we use the more general formulation of Lemmas D.1 and D.2 in Appendix D which allow

us also to consider convergence uniformly in �. The asymptotic distribution is akin to ones
derived in de Jong (2001, 2002) and Kristensen and Rahbek (2010) in the sense that the

short- and long-run parameter estimators are not asymptotically independent (as is the case

in linear error-correction models). The results in Theorem 4.6 complement the ones of Seo

(2010) who derive the asymptotics of estimators based on smoothed likelihood-functions in

discontinuous threshold error correction models.

The assumption that � (�0; �0) > 0 is an identi�cation condition that ensures that the

limiting distributions of the QMLE is non-degenerate. It proves di¢ cult to give primitive

conditions for this to hold. This is a general problem in nonlinear models, where identi�cation

has to be veri�ed on a case by case basis, see e.g. Kristensen and Rahbek (2009) and Meitz

and Saikkonen (2009).

Next, we examine the behaviour of the QMLE under the null where �0 = 0 such that � is

not identi�ed, or "vanishes". Thus, we state a result that holds uniformly over � which we

need for the asymptotic analysis of the supLR-test.
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Theorem 4.7 Suppose that Assumptions 4.1-4.4 hold with q2 = max (4; 2d�) and q0 >

q2max (1; �) and �0 = 0, and that � (�1; �1) > 0 for all �1; �2 2 �, where � (�1; �1) is given
in eq. (4.2). Then the following hold uniformly over �: With probability tending to one,

there exists a unique minimum point �̂ (�) = (b̂ (�)0 ; �̂ (�)) of L�T (�; �) in the neighbourhood

f� : jj� � �0jj < � and jjKT bjj < �g for some � > 0. Moreover, with V�;T de�ned in eq. (4.3),

T 1=2V
1=2
�;T vec

�
�̂ (�)� �0

�
D! H�1�� (�)S� (�) ; (4.7)

for a random matrix H�� (�) and vector S� (�), given by

H�� (�) �
 R 1

0 F (s)F (s)
0 ds
 �w;w

R 1
0 F (s) ds
 �w;u (�; �)R 1

0 F (s)
0 ds
 �u;w (�; �) �u;u (�; �)

!
; (4.8)

and

S� (�) �
 
vec

�Z 1

0
F (s) dB0w (s)

�0
; Bu (1; �)

0
!0
: (4.9)

We note that under the null, the DGP is a standard linear error correction model such

that, under the usual I(1) conditions of Johansen (1996), Assumptions 4.2 and 4.3 hold with

F (s) being a Brownian motion with covariance matrix �F;F = ��00;?C0
0C
0 ��0;?, where C0 :=

�0;?
�
�00;?

�
I �

Pk
i=1�0;i

�
�0;?

��1
�00;?, whileBu (s; �) =

�
B� (s)

0 ; B� (s)
0 ; B� (s; �)

0�0. Also,
again due to the model collapsing to a standard I(1) model, the expressions of the vari-

ables and parameters entering S� (�) and H�� (�) above simplify: The process Bu (s; �) be-
comes Bu (s; �) =

�
B� (s)

0 ; B� (s)
0 ; B� (s; �)

0�0 and Bw (s; �) = Bw (s) where B� (s), B� (s)

and B� (s; �) are the Brownian motions corresponding to the variables u�;t, u�;t and u�;t

in eq. (2.21). Here, only B� (s; �) depends on � since u�;t = vec
�

�10 "tZ

0
0;t�1

�
; u�;t =

vec
�

�10 "tZ

0
2;t�1

�
and wt = �00


�1
0 "t under the null. Thus, F (s) is independent of the

processes (B� (s) ; B� (s)) and Bw (s), but is still dependent of B� (s; �) and hence of Bu (s; �).

Finally, the remaining covariances are: �w;w = �00

�1
0 �0 and

�w;u� = E
h�
�0


�1
0 "t

� �
vec

�

�10 "tZ

0
0;t�1

��0i
= E [Z0;t�1 
 I] 
�10 �0 = 0;

�w;u� = E
��
�0


�1
0 "t

�
vec

�

�10 "tZ

0
2;t�1

��
= E [Z2;t�1 
 I] 
�10 �0 = 0:

4.2 Asymptotics of test statistics

In this section we derive the asymptotic distributions of the tests proposed in Section 2.3.

We treat separately the case where � is identi�ed and vanishes under the null. We discuss

speci�c examples below.

First, consider the case where � is unidenti�ed in which case we employ the sup-Lagrange

Multiplier (LM) test and sup-Likelihood Ratio (LR) tests introduced in eqs. (2.15)-(2.16) and

(2.17)-(2.18). As noted in Section 2, the null in this case can be written asH0 : R0�vec (�) = 0.

We then show in the appendix that the restricted estimator satis�es

p
TV

1=2
�;T vec(

~� � �0)
D!M�

~H�1�� ~S�; (4.10)
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where
~H�� : =M 0

�H�� (�)M�

��
R0�vec(�)=0

; ~S� : =M 0
�S� (�)

��
R0�vec(�)=0

; (4.11)

with M� = diag
�
I(p�r)r; (R�)?

�
, while S� (�) and H�� (�) are de�ned in Theorem 4.7. Note

here, that ~H�� and ~S� are independent of � as the restriction R0�vec (�0) = 0 through M�

removes the components of S� (�) and H�� (�) that depend on �.
The asymptotic distribution of the restricted estimators when � is identi�ed is shown to

be p
TV

1=2
�;T vec(#̂� #0)

D!M ~H�1~S; (4.12)

where
~H : =M 0HM

��
R0vec(�;�)=0

; ~S : =M 0S
��
R0vec(�;�)=0

; (4.13)

and M = diag
�
I(p�r)r; R?

�
, while S and H de�ned in Theorem 4.6. The following result is

then shown in the Appendix:

Theorem 4.8 Suppose Assumptions 4.1-4.4 and H0 : R0vec (�; �) = 0 hold.

1. If �0 is identi�ed under the null, then with q0 > 2max f1; �g and q2 > 2,

LMT
D! V0V; LRT

D! V0V;

where

V :=
�
M 0H�1M

��1=2
M 0H�1S;

with S and H given in Theorem 4.6.

2. If � is not identi�ed under the null, then with q2 = max (4; 2d�) and q0 > q2max (1; �),

sup
�2�

LMT (�)
D! sup

�2�
V� (�)0V� (�) ; sup

�2�
LRT (�)

D! sup
�2�

V� (�)0V� (�) ;

where

V (�) :=
�
M 0H�1�� (�)M

��1=2
M 0H�1�� (�)S�(�):

with S�(�) and H��(�) given in Theorem 4.7.

Now consider the special case when E [ (Z0;t�1; �)] = 0 which, for example, is satis�ed

if  (Z0;t�1; �) is symmetric around zero. In this case, �w;u (�; �) = 0, such that

H�1�� (�) =

0@ hR 1
0 F (s)F (s)

0 ds
 �w;w
i�1

0

0 ��1u;u (�; �)

1A :

In this case, � 7! V (�) is a Gaussian process and the limiting distributions of sup�2� LMT (�)

and sup�2� LRT (�) are as in the stationary case reported in Hansen (1996). In particular,

the asymptotic distributions correspond to eq. (C�n) in Hansen and Seo (2001, p. 317)

who assume E [ (Z0:t; �)] = 0, and hence avoid the contribution from the non-stationary

component. Observe however that E [ (Z0:t; �)] = 0 does not necessarily hold, even when

the DGP is indeed a linear process. Thus, E [ (Z0:t; �)] 6= 0 in general, and so the limiting
distribution reported here is di¤erent from the one of Hansen and Seo (2001).
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The general result with E [ (Z0:t; �)] 6= 0 is similar to the results for the sup-Wald test for
linearity in threshold unit root models derived in Caner and Hansen (2001) (see also Pitarakis,

2008, Proposition 2). There, the limiting distribution also has two components: One is

due to the stationary components of the process (in our case (Z0;t�1; Z2;t�1;  (Z0;t�1; �))

with corresponding score vector (S�(�);S�(�);S�(�))) and one due to the non-stationary
component (in our case Z1;t�1 with corresponding score vector Sb(�)) The presence of the
non-stationary component is due to the fact that b is unknown, and so has to be estimated.

Thus, our result demonstrates that in general one cannot ignore the fact that b is esti-

mated as opposed to known. This is in contrast to, for example, Kilic (2009) who assumes

that b is known, and thereby avoid the non-stationary component in the limiting distribution

of his sup-Wald test for linearity in error-correction models. Similarly, Nedeljkovic (2008)

derives the limiting distribution for a sup-LM test for linearity under the implicit assumption

that the estimation error arising from ~b can be ignored. In both papers, the limiting distri-

bution becomes a supremum over a squared Gaussian process as when E [ (Z0:t; �)] = 0.

The problem of vanishing parameters under the null also appears when the non-linear

component takes the form � (z; �) =
PS
s=1 �s s (z; �s) and one wishes to test the hypothesis

�H0 : �s0 = 0 for some s0 2 f1; :::; Sg. Here, the parameter �s0 vanishes under the null. One
can easily apply the same arguments as used above to derive the asymptotics of sup-test

statistics corresponding to this hypothesis where the supremum is now taken over �s0 .

Example 2 (continued) Under the null hypothesis of H0 : � = �0 = 0, our model collapses

to a standard linear cointegrating error-correction model with implications discussed

after Theorem 4.7. In particular, the restricted estimator, ~� = (~b0; ~�; ~�; ~�), where
~� = 0, is the standard Johansen Gaussian MLE. From Theorem 4.7 with �0 = 0 (or

alternatively, Johansen, 1996), we obtain that

p
TV

1=2
�;T vec(

~� � �0)
D! R? ~H�1�� ~S�; (4.14)

where

~H�� �
 R 1

0 F (s)F (s)
0 ds
 �w;w 0

0 ��;�

!
; (4.15)

and

~S� (�) �
 
vec

�Z 1

0
F (s) dB0w (s)

�0
; B�;� (1)

0
!0
: (4.16)

where B�;� (s) =
�
B� (s)

0 ; B� (s)
0�0 contain the components of Bu (s) corresponding

to u�;t and u�;t de�ned in eq. (2.22). The covariance structure of F (s), B�;� (s) and

Bw (s) is as discussed after Theorem 4.7.

Next, we derive tests for the hypothesis H0;b involving the cointegration relations, H0;b :

R0bvec (b
0) = 0 or, equivalently, H0;b : vec (b0) = (Rb)? � for some free parameter � . The proof

strategy is identical to the one employed in Theorem 4.8 and so we state the result without

proof:
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Theorem 4.9 Suppose Assumptions 4.1-4.4 with q0 > 2max f1; �g and q2 > 2, and H0;b :

R0bvec (b
0) = 0 hold. Then the LR and LM test of this hypothesis satis�es

LMb;T
D! V0bVb; LRb;T

D! V0bVb;

where

Vb :=
�
M 0
bH

�1Mb

��1=2
M 0
bH

�1S;

with S and H given in Theorem 4.6 and Mb = diag
�
I(p�r)r; (Rb)?

�
Note that the we here avoid any of the complications normally found in the literature on

tests involving cointegration relations such as Johansen (1992, Theorem C.1) and Rahbek,

Kongsted and Jørgensen (1999, Appendix B). In these and other studies, one formulates

the hypotheses in terms of �; this has as consequence that one has to rotate the coordinate

system of the free parameter � in such a way that (Rb)
0
? Z1;t has a well-behaved asymptotic

distribution. In contrast, since we write the hypothesis H0;b in terms of the normalized

parameter b, we avoid this problem here.

5 Bootstrap Procedure

In order to draw inference for the parameters, we need to be able to evaluate the limiting

distributions in Theorems 4.6-4.9. These are highly non-standard and so we here propose to

use bootstrapping in their implementation.

We here consider a bootstrap procedure similar to the one analyzed in Cavaliere, Rahbek

and Taylor (2010a,b). First, consider bootstrapping the distributions of the sup-LR and

sup-LM tests. We bootstrap under the null of �0 = 0 in which case the model is a standard

linear error-correction model. With ~� denoting the restricted estimator, we �rst compute

�X�
t = ~�~�0X�

t�1 + ~�
�
�X�0

t�1; :::;�X
�0
t�k
�0
+ "�t ; t = 1; :::; T; (5.1)

where, as in Cavaliere et al (2010a,b), the resampled errors "�t are generated using the so-

called Wild bootstrap. That is, "�t := "̂t!t, where !t is i.i.d. N (0; 1) and "̂t; t = 1; :::; T , are

the residuals obtained under the alternative,

"̂t := �Xt � �̂�̂0Xt�1 � �̂ 
�
�̂0Xt�1; �̂

�
� �̂

�
�X 0

t�1; :::;�X
0
t�k
�0
; t = 1; :::; T: (5.2)

If �̂ = 0, we �x �̂ at an arbitrary �xed value, say ��, chosen by the econometrician. Instead

of using the residuals obtained under the alternative, one could use the ones obtained under

the null. However, these would not be consistent under the alternative, in which case the

bootstrap procedure would therefore not yield a consistent estimate of the distribution of

interest.

Given the bootstrap sampleX�
t , t = 1; :::; T , we then compute the sup-LR and the sup-LM

test statistics with the bootstrap sample replacing the original one; let sup�2� LM
�
T (�) and

sup�2� LR
�
T (�) denote the resulting statistics. Computing, say, N , bootstrap samples, we

obtainN realizations of the test statistics, and we use their empirical distributions to compute

critical values.
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In order to show that the above procedure is consistent under the null, we need to

establish that Lemma 4.5 holds for the bootstrap sample. As a �rst step towards showing

this, we note that Cavaliere et al (2010a, Lemma A.4) can be employed to show that X�
t has

the representation,

X�
t = ~C

tX
i=0

"�t�i +
p
TR�t ; (5.3)

where ~C = ~�?
�
~�0?

�
I �

Pk
i=1

~�i

�
~�?
��1

~�0?, sup1�t�T R
�
t = oP � (1) and P � denotes the

bootstrap probability measure conditional on data fXtg. Moreover,
Pt
i=0 "

�
t�i satis�es an

FCLT under P �, cf. Cavaliere et al (2010a, Lemma A.5). What remains to be shown is

that the remaining terms in Lemma 4.5 also satis�es a FCLT under P �, which in turn then

could be utilized to verify that Lemmas C.1-C.3 remain valid weakly in probability for the

bootstrap sample. We leave the theoretical proof of this last part for future research, and

instead verify the validity of the bootstrap procedure through simulations.

6 A Simulation Study

We here investigate some �nite-sample properties of the proposed LR-based tests in a speci�c

example of the smooth transition error correction model (STECM) as given by,

�Xt = g
�
�0Xt�1

�
+��Xt�1 + "t; g

�
�0Xt�1

�
= ��0Xt�1 + � 

�
�0Xt�1; �

�
: (6.1)

We consider the bivariate case, p = 2, with r = 1 cointegrating relations, and with S = 1

symmetric nonlinear component on the form given in eq. (2.5),

 (z; �) =
�
1 + exp

�
(z � !)0A (z � !)

	��1
z; � = (A;!) :

We are interested in the following two hypotheses: The �rst hypothesis of interest is the one

of linearity in both components, H(1)
R : � = (�1; �2)

0 = (0; 0)0; in this case, � vanishes under

the null, and we have to employ the sup-LR test. The second hypothesis examines whether

the spread is stable, H(2)
R : � = (1; b)0 = (1;�1)0, such that in this case the parameter � does

not vanish under the null.

We wish to analyze the performance of the bootstrapped tests under the null (empirical

size) as well as under the alternative (empirical power, or rejection probabilities). Under the

respective nulls (H(k)
R for k = 1; 2) and the corresponding alternatives, the data-generating

parameters were chosen to match estimates obtained by �tting the corresponding linear and

non-linear models to the bivariate term structure data considered in Bec and Rahbek (2004)1.

All parameter values used to simulate under the nulls and alternative are given in Appendix

E, and we choose the errors to be i.i.d. normally distributed. Note that Assumption 4.2 and

4.3 hold for the parameters chosen under the nulls and alternative employed.

For the implementation of the (sup) LR tests, we compute the QMLE�s under the null

and alternative as described below. For the bootstrap we use the set-up in eq. (5.1). In terms

1Note that, for this particular data set, Bec and Rahbek (2004), treating � as known, used conventional

LR-tests to conclude that H(2)
R was accepted
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of notation, as previously de�ned in eq. (2.9), set # = (�; �) = (�; �; �) ; with � := (b; �),

� := (�; �;�) 2 R2�(2+2), � = (A;!) 2 R2 and � = (1; b)0.
We �rst discuss the practical implementation of the supLRT test statistic for linearity

as given in eqs. (2.17)-(2.16): Under the null of H(1)
R the QMLE�s ~� = (~�; ~�) are standard,

see Johansen (1996), and L�T (~�) = �T
2 log j
̂

�(~�)j; with


̂�(~�) =
1

T

TX
t=1

"t(~�)"t(~�)
0:

Under the alternative H(1)
A , that is with (6.1) unrestricted, write the model on compact form

as,

�Xt = �0Wt�1 (�; �) + "t; Wt (�; �) =
�
X 0
t�1�;  

�
�0Xt�1; �

�
; Z 02;t�1

�0 2 R2r+pk:
Observe that pro�le estimators of � and 
 are given by standard OLS estimation,

�̂ (�; �) =
�PT

t=1Wt (�; �)Wt (�; �)
0
��1 �PT

t=1Wt (�; �)�X
0
t

�
; and (6.2)


̂� (�; �) =
1

T

PT
t=1"̂t (�; �) "̂t (�; �)

0 ; "̂t (�; �) = �Xt � �̂ (�; �)0Wt�1 (�; �) : (6.3)

Given these estimators, we can in turn estimate � for �xed �;

�̂(�) = argmin
b2R

log(j
̂� (�; �) j);

and �nally supLRT is computed as,

supLRT := T sup
�2�
(log j
̂�(~�)j � log j
̂�(�̂(�))j):

For the particular parameterization, we here choose � = f(A; b) : 0 � A � 1 and � 1 � b � 1g,
and then computed the sup test in practice by evaluating log j
�(~�)j� log j
�(�̂(�)) on a dis-
crete uniform grid of size 50 � 50 over �, and then simply choosing the maximum value as

an approximation of supLRT .

Next, consider the LRT statistic for testing H
(2)
R or stability of the spread: Under both

null and alternative, we proceed as before and �rst use OLS to obtain pro�le estimates �̂ (�; �)

and 
̂� (�; �). Next, under the null H(2)
A ; ~� = (1;�1)0 and ~� := argmin� log(j
̂�( ~�; �)j), while

under the alternative, cf. (6.2)-(6.3),

(�̂; �̂) := argmin
(�;�)

log(j
̂� (�; �) j);

and the LRT statistic readily follows, LRT := T (log j
̂�( ~�; ~�)j� log j
̂�(�̂; �̂)j); see eq. (2.13).
Three di¤erent sample sizes, T = 250; 500 and 1000; are considered. For each sample size,

1000 sample paths are simulated for the set of given parameter values (see Appendix E). Next,

parameters are estimated as described above using the MLE both under the alternative, and

under the null. For the bootstrap, we use N = 399 repetitions (see Andrews and Buchinsky,

2001; Cavaliere et al, 2010a,b).
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The estimators, test statistics and the bootstrap procedure were implemented in Mat-

lab. In the implementation of the bootstrap procedure, the Matlab numerical maximization

routine used to compute the QMLE�s under the alternative did not converge for a few of

the bootstrap samples; this might be caused by non-identi�cation in the population of the

parameters. Moreover, Matlab in those samples reported a negative value of supLRT . For

these samples, we simply set supLRT = 0. Since supLRT > 0 this �x means that the esti-

mated distribution of supLRT is pushed to the left and so we will tend to overreject. It�s

not entirely clear to us how to adjust the bootstrap distribution for this e¤ect. One could

potentially leave out the bootstrap samples where non-convergence occurs.

Tables 1 reports the size (i.e. the rejection frequencies under the null) of the bootstrap

versions of the LRT test when we test for H
(1)
R . From these results, we see that for moderate

and large sample sizes (T = 500 and 1000) the bootstrap test have very good size properties

for both null hypohteses. In smaller sample sizes (T = 250), the size begin to deteriorate

but is still acceptable.

1% nominal level 5% nominal level 10% nominal level

T = 250 0.4% 4.3% 9.9%

T = 500 1.3% 4.8% 10.1%

T = 1000 0.9% 5.4% 11.1%

Table 1: Size of bootstrap version of supLRT test for H
(1)
R : � = 0.

The corresponding size performance for the LRT test of H
(2)
R are reported in Table 2.

Qualitatively the same picture as for the test of H(1)
R appears: For moderate and large

samples, the size is good while in smaller samples it is less precise.

1% nominal level 5% nominal level 10% nominal level

T = 250 0.4% 4.7% 11.8%

T = 500 1.0% 5.3% 11.7%

T = 1000 1.3% 6.3% 11.7%

Table 2: Size of bootstrap version of LRT test for H
(2)
R : � = (1;�1).

Next, we examine the power of the LRT test for the two hypotheses. The results for H
(1)
R

are reported in Table 3 The test tends to have low power in small samples, and for example

only rejects the incorrect hypothesis of � = 0 with 16% probability for T = 250. However,

as the sample size grows, the power quickly improvves and with T = 500 observations the

bootstrap test exhibit acceptable power properties; for example, it rejects the incorrect null

of � = 0 with 67.6% probability at a 5% level. In large samples (T = 1000), the power is

very good for the sup-test with rejection probabilities close to 100%.
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1% nominal level 5% nominal level 10% nominal level

T = 250 2.7% 16.0% 29.2%

T = 500 37.5% 67.6% 78.1%

T = 1000 93.5% 97.0% 97.8%

Table 3: Power of bootstrap version of supLR test for H(1)
0 : � = 0.

The power of the test of H(2)
R is not quite as impressive as can be seen in Table 4.

For example, it rejects at a 5% level with probability 49.5% and 76.4% for sample sizes

of T = 500 and T = 1000 which is signi�cantly lower than the corresponding rejection

probabilities reported in Table 3. This is to some extent probably a consequence of the

DGP, which under the alternative of H(2)
R is not too far away from the null with �0 having

been chosen as �0 = (1;�0:9282)0, cf. Appendix E. Hence it is more di¢ cult to detect the
departure from the null in �nite samples.

1% nominal level 5% nominal level 10% nominal level

T = 250 3.8% 17.0% 29.7%

T = 500 23.2% 49.5% 63.2%

T = 1000 63.5% 76.4% 81.4%

Table 4: Power of bootstrap version of LRT test for H
(2)
0 : � = (1;�1).

7 Conclusion

We have here proposed and analyzed likelihood-based estimators and tests in a class of

nonlinear vector error correction models. The properties of estimators and tests prove to

be non-standard in two distinct ways: First, due to the dependence between short- and

long-run parameter estimators, their asymptotic distributions are not comparable to the

standard Dickey-Fuller type asymptotics found in linear models. This in term a¤ects the

test statistics. For example, tests only involving short-run parameters will in general not

follow �2 in contrast to the situation in the linear cointegration model. The distribution

of the test statistics get even more involved in the case of testing for linearity of the error

correction mechanism due to vanishing parameters under the null.

Due to the complicated nature of the distributions, we proposed to implement the tests

using a wild bootstrap procedure, and through simulations we demonstrated that the result-

ing class of tests perform well both in terms of size and power. It would be of interest to

show theoretically that the bootstrap procedure is consistent.
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A Proofs of Section 3

Proof of Theorem 3.4. Note initially that �nite dimensional convergence follows by stan-
dard Martingale CLT results, see e.g. Brown (1971). In particular, (�T (s; �) ; �T (~s; ~�))

D!
(� (s; �) ; � (~s; ~�)) for any (s; �) and (~s; ~�) in [0; 1] � �. Next, we show stochastic equicon-
tinuity (tightness) by verifying the conditions of Theorem 3 in Bickel and Wichura (1971).

Some further notation is needed for this: With s 2 [0; 1] and � 2 � � Rd� ; let  = (s; �) =
(s; �1; :::; �d�) and ~ = (~s; ~�) =

�
~s; ~�1; :::; ~�d�

�
be two arbitrary points in [0; 1] � �. With

~ > , de�ne �yT on (; ~), see Bickel and Wichura (1971),

��T (; ~) :=X
�0=0;1

X
�1=0;1

� � �
X

�d�=0;1

(�1)d�+1��
d�
j=0�j �T (s� �0ds; �1 � �1d�1; :::; �d� � �d�d�d�) ;

where ds = (s� ~s) and d�i = (�i � ~�i) : Direct insertion gives that ��T (; ~) can be written
as,

��T (; ~) =
1p
T

[T ~s]X
t=[Ts]

�ft (�; ~�) et; (A.1)

where

�ft (�; ~�) =
X
�1=0;1

� � �
X

�d�=0;1

(�1)d���
d�
j=1�j f (yt�1;�1 � �1d�1; :::; �d� � �d�d�d�) : (A.2)

Since (s; �) 7! � (s; �) is almost surely continuous, then by Straf (1972, Theorem 5.6) in

combination with Bickel and Wichura (1971, Theorem 1) it su¢ ces to establish that, for

some q > 0; � > 1,

E k��T (�; ~�]k2q � C j~s� sj� �i=1;2;::;d� j~�i � �ij
� : (A.3)

Under Assumptions 3.1-3.2, and using Rosenthal�s inequality (see Hall and Heyde, 1980,

p.23), Cauchy-Schwarz, and eq. (A.1), it follows that for q > 1,

E k��T (�; ~�)k2q �
C

T q

0@ [T ~s]X
t=[Ts]

E
h
E
�
ketk2 k�ft(�; ~�)k2 jFt�1

�i1Aq

+
C

T q

[T ~s]X
t=[Ts]

E
h
ketk2q k�ft(�; ~�)k2q

i
� C

�
[T ~s]�[Ts]

T

�q
k
ekq

�
E k�ft(�; ~�)k2

�q
+ C

�
[T ~s]�[Ts]

T q

� h
E ketk4q

�
E k�ft(�; ~�)k4q

�i1=2
� C

�
[T ~s]�[Ts]

T

�q
E k�ft(�; ~�)k2q + o (1) ; (A.4)

as T !1. Observe that for each i 2 D� = f1; :::; d�g, one may write �ft(�; ~�] as,

�ft(�; ~�) =
X

j2D� ; ;j 6=i; "j=0;1
(�1)d���j 6=i"j @ift(�; ~�); (A.5)
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where @ift(�; ~�] denotes the increments of f (�) over the ith coordinate of �,

@ift(�; ~�) = ft (�1 � �1d�1; :::; �i�1 � �i�1d�i�1; ~�i; �i+1 � �i+1d�i+1; :::; �q � �qd�d�)
� ft (�1 � �1d�1; :::; �i�1 � �i�1d�i�1; �i; �i+1 � �i+1d�i+1; :::; �q � �qd�d�) ;

with d�i = ~�i � �i: Using eq. (A.5), and by Assumption 3.2,

E k�ft(�; ~�)k2 � C2d��1E k@ift(�; ~�]k2 � C j~�i � �ij2�

As this holds for each i, one gets that for T large enough, eq. (A.4) is bounded by,

E k��T (�; ~�)k2q � C j~s� sjq
�
E k�ft(�; ~�)k2

�q
� C j~s� sjq �i2D� j~�i � �ij

2�q=d� ;

and the desired holds.

Proof of Corollary 3.7. For �xed s the result holds by Doukhan et al (1995), see also
Hansen (1996), while for �xed � the result holds by Brown (1971).

Proof of Theorem 3.5. It follows by standard results that the convergence holds for any
given � 2 �, see e.g. Kurtz and Protter (1991, Theorem 2.2). Proceeding as in the proof of

Theorem 3.4, de�ne

VT (�) =
1p
T

TX
t=1

x0t�1f (yt�1;�) et; �VT (�; ~�) =
1p
T

TX
t=1

x0t�1�ft (�; ~�) et;

where �ft is de�ned in eq. (A.2). Again by Rosenthal�s inequality (Hall and Heyde, 1980,

p.23) and Cauchy-Schwarz inequalities, for n > 1,

E
h
k�VT (�; ~�)k2q

i
� C

T q

 
TX
t=1

E
h
E
�
kxt�1k2 ketk2 k�ft (�; ~�)k2 jFt�1

�i!q

+
C

T q

TX
t=1

E
�
kxt�1k2q ketk2q k�ft (�; ~�)k2q

�
� C k
ekq

��
sup
t
E kxt�1k4

�
E k�ft (�; ~�)k4

�q=2
+ CT 1�qE

�
sup
t

�
kxt�1k2q ketk2q k�ft (�; ~�)k2q

��
� C k
ekq

�
sup
t
E kxt�1k4E k�ft (�; ~�)k4

�q=2
+ CT 1�q

�
E sup

t
kxt�1k6q E ketk6q E sup

�2�
kf (yt�1;�)k6q

�1=3
� C�i2D� j~�i � �ij

2�q=d� + o (1) :

By the same arguments as employed in the proof of Theorem 3.4, the desired result now

follows.
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Proof of Theorem 3.6. De�ne the mean-zero sequence ut (�) = f (yt�1;�)�E [f (yt�1;�)]
and write

1

T

PT
t=1x

0
t�1f (yt�1;�) =

1

T

PT
t=1x

0
t�1E [f (yt�1;�)] +

1

T

PT
t=1x

0
t�1ut (�) :

By Assumption 3.3 and the Continuous Mapping Theorem, the �rst term converges towards

the claimed limit. We then need to show that the second term goes to zero in probability

uniformly in �. We follow the same arguments as in Caner and Hansen (2001, Proof of

Theorem 3): For any given � > 0, de�ne N = [1=�], tk = [k�T ] + 1 and t�k = tk+1 � 1, and
write

1

T

TX
t=1

x0t�1ut (�) =
1

T

N�1X
k=0

t�kX
t=tk

xt�10ut (�)

=
1

T

N�1X
k=0

t�kX
t=tk

(xt�1 � xtk�1)
0 ut (�) +

1

T

N�1X
k=0

x0tk�1

t�kX
t=tk

ut (�) :

The �rst term is bounded by,

1

T

N�1X
k=0

t�kX
t=tk

kxt�1 � xtk�1k sup
�2�

kut (�)k �
(

sup
jt�t0j�T�

kxt � xt0k
)
� 1

T

N�1X
k=0

t�kX
t=tk

sup
�2�

kut (�)k ;

where, by the law of large numbers,

1

T

N�1X
k=0

t�kX
t=tk

sup
�2�

kut (�)k =
1

T

TX
t=1

sup
�2�

kut (�)k
P! E

�
sup
�2�

kut (�)k
�
<1;

and, by Assumption 3.3,

sup
jt�t0j�T�

kxt � xt0k
D! sup

js�s0j��

x (s)� x �s0� :
The limit can be made arbitrarily small due to a.s. continuity of x (s). The second term is

bounded by

1

T

N�1X
k=0

kxtk�1k


t�kX
t=tk

ut (�)

 �
(
sup
1�t�T

kxtk
)
� 1

T

N�1X
k=0


t�kX
t=tk

ut (�)

 ;
where sup1�t�T kxtk = OP (1). Next, sup�2� jj

PN
t=1 ut (�) =N jj

P! 0 by Kristensen and

Rahbek (2005, Proposition 1) as N ! 1, and hence the arguments following (A.10) in
Caner and Hansen (2001, proof of Theorem 3) imply that

sup
�2�

1

T

N�1X
k=0


t�kX
t=tk

ut (�)

 P! 0; as T� !1:

The proof of the second assertion follows by the same arguments.
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B Proofs of Section 4

Proof of Lemma 4.5. Choose any d�, d� and d� and de�ne � = vec (d�; d�; d�). We

consider the sequence

�T (s; �) :=
1p
T

[Ts]X
t=1

�
�0uut (�) + �

0
vvt (�) + �

0
wwt (�)

	
=

1p
T

[Ts]X
t=1

f (yt�1; �) et;

with et := 
�10 "t, yt�1 =
�
Z 00;t�1; Z

0
2;t�1

�0, and
f (yt�1; �) := [d�Z0;t�1 + d� (Z0;t�1; �) + d�Z2;t�1]

0 :

Also note that � = �. Here, by Assumption 4.1

kf (yt�1; �)k � c (kZ0;t�1k+ k (Z0;t�1; �)k+ kZ2;t�1k) � c (kZ0;t�1k+ kZ0;t�1k� + kZ2;t�1k)

Thus,

kf (yt�1; �)km � c (kZ0;t�1km + kZ0;t�1km� + kZ2;t�1km) :

Furthermore, by the di¤erentiability of  ,

E
�f (yt�1; �)� f �yt�1; �0�n� = E

� (Z0;t�1; �)�  �Z0;t�1; �0�n�
� E

"@ 
�
Z0;t�1; ��

�
@�


n#� � �0n

� E [kZ0;t�1k�n]
� � �0n ;

such that � = 1. Thus, the requirement n > 2 translates into E
h
kZ0;t�1k(2+�)�

i
< 1 for

some � > 0, and the requirement m > �m := max (4; 2d�) translates into E
�
kZ0;t�1k �m��

�
<1

with �� = max (1; �), and E
�
kZ2;t�1k �m

�
<1.

This veri�es that Assumptions 4.2-4.4 imply that the Assumptions 3.1-3.3 of Theo-

rem 3.4 hold, and hence the result follows for (u0t (�) ; v0t (�) ; w0t (�)). The joint convergence
holds by the marginal convergence in Assumption 4.3, in conjunction with the fact that

(u0t (�) ; v0t (�) ; w0t (�)) and Xt are de�ned in terms of ("s)s�t.

Proof of Theorems 4.6. For ease of notation, we treat 
 = 
0 as known such that

L�T = LT . The extension to unknown 
 is straigthforward and follows along the lines of

Kristensen and Rahbek (2010).

To establish the result, we apply a general formulation in Lemmas D.1 and D.2 in Appen-

dix D below which will allow us to consider convergence uniformly in �. To use the results in

Section D, set  = vec (#), � = �0; QT (; �) = QT (#) = � 1
T LT (#), with LT (#) de�ned in

eq. (2.11), vT = T and UT = VT , where VT is de�ned in eq. (4.3). To prove consistency, we

verify the conditions of Lemma D.1: We have that condition (i) holds by Assumption 4.1,

while (ii)-(iii) follow by Lemmas C.1, C.2 and C.3:

dQT (#0; �0;U
�1=2
T d) = � 1

T
dLT (#0;V

�1=2
T d) = oP (1) ;
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d2QT (#0;U
�1=2
T d; U

�1=2
T d�) = � 1

T
d2LT (#0;V

�1=2
T d; V

�1=2
T d�)

D! H1 (d; d�) ;

d3QT (#;U
�1=2
T d; U

�1=2
T d�; U

�1=2
T d�) = � 1

T
d3LT (#;V

�1=2
T d; V

�1=2
T d�; V

�1=2
T d�)

= OP (jjdjjjjd�jjjjd�jj);

with H1 (d; d�) given in C.2. The asymptotic distribution will follow from Lemma D.2

by verifying the additional condition (iv) in Lemma D.2. But this follows from Lemma C.1

since,

dQT (#0; �
1=2
T U

�1=2
T vec (d#)) = �T�1=2dLT (#0;V �1=2T vec (d#))

D! S1 (d#) ;

where S1 (d#) is given in Lemma C.1. We conclude that V 1=2T (vec(#̂T ) � vec(#0))
D!

vec(d#1); where #1 satis�es S1 (d#) = H1 (d#; d#1) for all directions d#. This together

with eq. (D.1) imply the results stated in Theorem 4.6.

Proof of Theorems 4.7. We proceed as in the proof of Theorem 4.6: Set  = vec (�),

� = vec (�) ; QT (; �) = �L�T (�; �) =T , vT = T and UT = V�T , where V�T is de�ned in (4.3).

We can now apply Lemmas D.1 and D.2. The conditions stated there hold by Lemmas C.1,

C.2 and C.3.

Proof of Theorem 4.8. We give a proof of the most complicated case where � is not
identi�ed under the null; the proof of the other case is analogous. We rewrite the restriction

on � as vec (�) = (R�)? � where � is an unrestricted parameter vector. We �rst analyze

the restricted estimator ~�: Under the null � vanishes so the restricted log-likelihood does

not depend on this parameter. Thus, L�T (b; �) = ~L�T (b; �) and ~L
�
T (b; �) := L�T

�
b; (R�)? �

�
.

Taking di¤erentials w.r.t. (b; �),

d~L�T (b; �) = Sb;T (�)vec
�
db0
�
+ S�;T (�)0 (R�)? d�;

d2 ~L�T (b; �) = vec
�
db0
�0Hbb;T (�)vec �db0�+ d� 0 (R�)0?H��;T (�) (R�)? d�

+ 2vec
�
db0
�0Hb�;T (�) (R�)? d�;

where we suppress dependence on db and d� in the di¤erentials. Here, Sb;T (�) and Hbb;T (�)
are the score vector and Hessian matrix w.r.t. b de�ned as the solutions to dL�T (�; db) =

Sb;T (�)0vec (db0) and d2L�T (�; db; db) = vec (db0)0Hbb;T (�)vec (db0); similarly with S�;T (b; �),
H��;T (�) and Hb�;T (�). By the same arguments as used in the proof of Theorem 4.7, we now

obtain that (~b; ~�) satis�es

0 = d~L�T (b0; �0; d�) + d
2 ~L�T (b0; �0; d�; ~� � �0)

= Sb;T (�0)0vec
�
db0
�
+ S�;T (�0)0 (R�)? d�

+ vec(~b0)0Hbb;T (�0)vec
�
db0
�
+ (~� � �0)0 (R�)0?H��;T (�0) (R�)? d�

+ vec(~b0)0Hb�;T (�0) (R�)? d� + (~� � �0)
0 (R�)

0
?H�b;T (�0)vec

�
db0
�
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for any directions (db; d�), where we ignore the higher-order remainder term. With vec (db0) =

K�1
T d�h and d� = 1=

p
Td�� , Lemmas C.1-C.2 yield

Sb;T (�0)0vec
�
db0
�
= Sb;T (�0)0K�1

T dh
D! Sb;1(�0)0dh;

S�;T (�0)0 (R�)? d� = T�1=2S�;T (�0)0 (R�)? d��
D! S�;1(�0)0 (R�)? d�� ;

K�1
T Hbb;T (�0)vec

�
db0
�
= K�1

T Hbb;T (�0; �)K�1
T dh

D! Hbb;1(�0)dh

T�1=2R0?H��;T (�0) (R�)? d� = T�1R0?H��;T (�0) (R�)? d��
D! R0?H��;1(�0) (R�)? d�� ;

and similar for the cross terms. We conclude that

p
T

 
(Ir 
KT ) vec

�
~b0
�

~� � �0

!
= �~H�1�;T ~S�;T + oP (1) ;

where ~HT
D! ~H and ~ST

D! ~S with ~H�� and ~S� de�ned in eq. (4.11). Thus,

p
TV

1=2
�;T vec

�
~� � �0

�
=
p
TV

1=2
�;T

 
vec

�
~b0
�

vec (~�)� vec (�0)

!
= �M�

~H�1��;T ~S�;T + oP (1) ;

Next, from the proof of Theorem 4.7, for any �,

p
TV

1=2
�;T vec(�̂ (�)� �0) =

p
TV

1=2
�;T

 
vec(b̂ (�)0)

vec (�̂ (�))� vec (�0)

!
= �H�1��;T (�)S�;T (�) + oP (1) :

Given these results, we derive the asymptotic distributions of the sup-LR and sup-LM

test. Regarding the sup-LR test, use a second-order Taylor expansion to obtain

LRT (�) = 2
h
L�T (�̂ (�) ; �)� L�T (~�)

i
=
1

2
S�;T (�̂ (�) ; �)(�̂ (�)� ~�) + (�̂ (�)� ~�)0H��;T (�� (�) ; �)(�̂ (�)� ~�);

where �� (�) lies between �̂ (�) and ~�. Since �̂ (�) maximizes L�T (�; �), S�;T (�̂ (�) ; �) = 0, while

�
p
TV

1=2
�;T vec

�
�̂ (�)� ~�

�
= �

p
TV

1=2
�;T vec

�
�̂ (�)� �0

�
+
p
TV

1=2
�;T vec

�
~� � �0

�
= H�1��;T (�0; �)S�;T (�0; �)�M�

~H�1��;T ~S�;T + oP (1)
D! H�1�� (�)S�(�)�M�

�
M 0
�H��(�)M�

��1
M 0
�S�(�)

= P (�)S�(�);

where we have employed Lemmas C.1-C.3, and

P (�) := H�1�� (�)�M�

�
M 0
�H��(�)M�

��1
M 0
�:

Thus,

lim
T!1

LRT (�)
d
= S�(�)0P (�)0H��(�)P (�)S�(�) = V (�)0V (�) ;

where V (�) is given in the theorem. For the LM test, use a �rst order Taylor expansion to

write the unrestricted score evaluated at the restricted estimators as

S�;T (~�; �) = S�;T (�0; �) +H��;T (�0; �)
p
TV

1=2
�;T vec(

~� � �0) + oP (1) ;
D! S�(�)�H��(�0; �)M�

~H�1�� ~S�
= H��(�)P (�)S�(�);

32



In conclusion, uniformly in �,

lim
T!1

LMT (�)
D
= S�(�)0P (�)0H��(�)P (�0; �)S�(�0; �) = V (�)0V (�) :

C Asymptotics of derivatives of likelihood function

In the following, we use the notation V �1=2T d# = unvec(V
�1=2
T vec (d#)) to save space, and

similar for other parameters.

Lemma C.1 Under Assumptions 4.1-4.4 with q0 > 2max f1; �g and q2 > 2, the log-likelihood
function LT (#) de�ned in (2.11) with d# = (d�; d�) and d� = (db0; d�) satis�es:

1. If �0 6= 0, then as T !1;

T�1=2dLT (#0;V
�1=2
T d#)

D! S�;1 (�0; d�) + S�;1 (�0; d�) ;

where

S�;1 (�; d�) =

�
tr(db0

Z 1

0
F (s) dB0w (s; �))

�
+ vec(d�)0Bu (1; �) ;

S�;1 (�; d�) = (vecd�)
0Bv (1; �) ;

and (B0u; B
0
v; B

0
w; F

0)0 are de�ned in (4.1).

2. If �0 = 0, then uniformly over � 2 �, as T !1;

T�1=2dLT (�0; �;V
�1=2
��;T d�) = S�;T (�0; �;V

�1=2
��;T d�)

D! S�;1 (�; d�) : (C.1)

Proof. The �rst order di¤erential of LT (�; �) is given by

T�1=2dLT (#;V
�1=2
T d#) = Sb;T

�
�; �;K�1

T db
�
+ S�;T (�; �; d�) + S�;T (�; �; d�)

where, with

Zt (b) := Z0;t�1 + b
0Z1;t�1 (C.2)

p
TS�;T (�; �; d�) =

TX
t=1

[d�Zt (b) + d� (Zt (b) ; �) + d�Z2;t�1]
0
�10 "t (�) ; (C.3)

p
TSb;T (�; �; db) =

TX
t=1

Z 01;t�1db (�+ �@z (Zt (b) ; �))
0
�10 "t (�) : (C.4)

p
TS�;T (�; �; d�) = (vec (d�))

0
TX
t=1

@� (Zt (b) ; �)
0 �0
�10 "t (�) : (C.5)

Proof of part 2 (�0 = 0): Evaluated at the parameter value #0 (�) = (0; �0; �), with �0 = 0;

we get

S�;T (�0; �; d�) =
1p
T
(vec (d�))0

TX
t=1

ut (�) ; Sb;T (�0; �; db) =
1p
T

TX
t=1

Z 01;t�1dbwt;
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where ut (�) 2 Rp(r+r�+pk) and wt 2 Rr are de�ned in eq. (2.21), where we note that wt (�)
does not depend on � when �0 = 0 and we therefore simply write wt. By the same arguments

as in the Proof of Lemma 4.5, we now apply Corollary 3.7 with xt�1 = K�1
T Z1;t�1 to obtain

S�;T (�0; �; d�) = T�1=2 (vec (d�))0
TX
t=1

ut (�)
D! (vec (d�))0

Z 1

0
dBu (s; �) ;

on the space C (�), and

Sb;T
�
�0; �;K

�1
T db

�
= T�1=2

TX
t=1

��
Z 01;t�1K

�1
T

	
db
�
wt

D!
Z 1

0

�
F (s)0 db

�
dBw (s) :

The two convergence results above hold simultaneously. This proves the second part of the

theorem.

Proof of Part 1 (�0 6= 0): By the same arguments as in the proof of Part 2 the claimed

results holds for the derivatives considered there. Simultaneously with those convergence

results, it also holds that, by Corollary 3.7,

S�;T (�0; �0; d�) = T�1=2 (vec (d�))0
TX
t=1

vt (�0)
D! (vec (d�))0

Z 1

0
dBv (s; �0) :

Lemma C.2 Under Assumptions 4.1-4.4, with d# = (d�; d�), d� = (d�; db) and the log-

likelihood function LT (�; �) de�ned in (2.11), the following hold:

1. If �0 6= 0, then with q0 > 2max f1; �g and q2 > 2:

� 1

T
d2LT (#0;V

�1=2
T d#; V

�1=2
T d�#)

D! H��;1(#0; d�; d��) +H��;1(#0; d�; d��) +H��;;1(#0; d�; d��) +H��;;1(#0; d�; d��)

where

H��;1(#; d�; d��) = vec (d�)0�u;u (�; �) vec (d��) + trfdb0
Z 1

0
F (s)F 0 (s) dsd�b�w;w (�; �)g

(C.6)

+

Z 1

0
F (s)0 dsdb�w;u (�; �) vec (d��) + vec (d�)

0�u;w (�; �) db
0
Z 1

0
F (s) ds;

H��;1(#; d�; d�) = vec (d�)0�u;v (�; �) vec (d�) + vec
�
db0
�0�Z

Fds
 �u;v (�; �)
�
vec (d�)

H��;1(#; d�; d�) = vec (d�)0�v;v (�; �) vec (d�) :

Here � is de�ned in (4.2) and (B0u; B
0
v; B

0
w; F

0)0 in (4.1).

2. If �0 = 0, then with q2 = max (4; 2d�) and q0 > q2max (1; �), it holds uniformly over

� 2 �,
� 1
T
d2LT (�0; �;V

�1=2
�;T d�; V

�1=2
�;T d��)

D! H��;1(�; d�; d��);

where H��;1(�; d�; d��) given by (C.6) is evaluated at �0 (with �0 = 0).
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Proof. Note that,

� 1
T
d2LT (#0;V

�1=2
T d#; V

�1=2
T d�#) = H��;T (#0;V

�1=2
�;T d�; V

�1=2
�;T d��) +H��;T (#0;V

�1=2
�;T d�; V

�1=2
T d��)

+H��;T (#0;V
�1=2
�;T d�; V

�1=2
�;T d��) +H��;T (#0;V

�1=2
�;T d�; V

�1=2
�;T d��);

with

H��;T (#0;V
�1=2
�;T d�; V

�1=2
�;T d��) = H�;� (�) +Hb;b

�
�;K�1

T db;K�1
T d�b

�
+H�;b

�
�;K�1

T d�b
�

+Hb;�
�
�;K�1

T db
�
;

H��;T (#0;V
�1=2
�;T d�; V

�1=2
�;T d��) = H�;� (�) +H�;b

�
�;K�1

T d�b
�
;

H��;T (#0;V
�1=2
�;T d�; V

�1=2
�;T d��) = H�;� (�) ;

where we suppress dependence on all directions except db and have used the notation that

H�;b (�; db) = � 1
T d

2LT (�0; �; d�; d�b) and so forth.

Proof of part 2 (�0 = 0): First, consider H��;T at �0 = (0; �0), with �0 = 0 and � freely

varying. The following claims are shown to hold uniformly over � 2 �:

Claim 2.1 : H�;� (�)
P! vec (d�)0�uu (�) vec (d��) ;

Claim 2.2 : Hb;b
�
�;K�1

T db;K�1
T d�b

� D! trf(db)0
Z 1

0
F (s)F (s)0 ds(d�b)�w;wg;

Claim 2.3 : Hb;�
�
�;K�1

T db
� D!

Z 1

0
F (s)0 dsdb�w;u (�; �) vec (d��)

Proof of Claim 2.1 : We have

H�;� (�) =
1

T

TX
t=1

[d� (Zt (b)) + d� (Zt (b) ; �) + d�Z2;t�1]
0
�10 (C.7)

�
�
d�� (Zt (b)) + d�� (Zt (b) �) + d��Z2;t�1

�
;

Evaluated at �0;

H�;� (�) =
1

T
vec (d�)0

TX
t=1

h�
Z 00;t�1;  (Z0;t�1; �)

0 ; Z 02;t�1
�0 �

Z 00;t�1;  (Z0;t�1; �)
0 ; Z 02;t�1

�

 
�10

i
� vec (d��) ;

and the result follows by the uniform law of large numbers in Kristensen and Rahbek (2005).

Proof of Claim 2.2 : Next, Hb;b
�
�; db; d�b

�
= H

(1)
b;b

�
�; db; d�b

�
+H

(2)
b;b

�
�; db; d�b

�
, where

H
(1)
b;b

�
�; db; d�b

�
=
1

T

TX
t=1

"t (�)
0
�10 �

�
Z 01;t�1db
 Ir�

�
@2zz (Zt (b) ; �) d

�b0Z1;t�1 (C.8)

=
1

T

TX
t=1

trfvec
�
Z 01;t�1db
 Ir�

�
vec(Z 01;t�1d�b)

0 �@2z (Zt (b) ; �) 0 
 "t (�)0
�10 �
�
g;
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with

@2zz (z; �) = @vec (@z (z; �)) =@z
0;

and

H
(2)
b;b

�
�; db; d�b

�
=
1

T

TX
t=1

�
f�+ �@z (Zt (b) ; �)gZ 01;t�1d�b

�0

�10

�
f�+ �@z (Zt (b) ; �)gZ 01;t�1db

�
:

(C.9)

At �0 with �0 = 0,H
(1)
b;b

�
�; db; d�b

�
= 0, such that by Corollary 3.7,

Hb;b
�
�;K�1

T db;K�1
T d�b

�
= T�1

TX
t=1

�
�0d�b

0K�1
T Z1;t�1

�0

�10 �0db

0K�1
T Z1;t�1

D! tr

�
d�b0
Z 1

0
FF 0dsdb�w;w

�
with �w;w = V ar (wt) = �00


�1
0 �0.

Proof of Claim 2.3 : We write Hb;� (�; db) = H
(1)
b;� (�; db) +H

(2)
b;� (�; db), where

H
(1)
b;� (�; db) =

1

T

TX
t=1

��
d��+ d��@z (Zt (b) ; �)

	
db0Z1;t�1

�0

�10 "t (�) (C.10)

H
(2)
b;� (�; db) =

1

T

TX
t=1

�
f�+ �@z (Zt (b) ; �)g db0Z1;t�1

�0

�10

�
d��Z0;t�1 + d�� (Zt (b) ; �) + d��Z2;t�1

�
(C.11)

With � = �0 (such that in particular b = 0), set f (1)t�1 (�) = (Ir; @z (Z0;t�1; �) ; 0) and

et = 

�1
0 "t, then

H
(1)
b;� (�; db) =

1

T

TX
t=1

Z
0
1;t�1dbf

(1)
t�1 (�) d��

0et:

By the same arguments as in the proof of Lemma 4.5, we see that f (1)t�1 (�) satis�es the

conditions of Theorem 3.5 withf (1) (yt�1; �) � c (1 + k@z (Z0;t�1; �)k) � c (1 + kZ0;t�1k�)

Thus,
f (1) (yt�1; �)m � c (1 + kZ0;t�1km�). Furthermore, by the di¤erentiability of  ,

E
hf (1) (yt�1; �)� f (1) �yt�1; �0�ni = E

�@z (Z0;t�1; �)� @z �Z0;t�1; �0�n�
� E

"@
�
@z 

�
Z0;t�1; ��

��
@�


n#� � �0n

� E [kZ0;t�1k�n]
� � �0n ;

such that � = 1. Thus, the requirement n > 2 translates into E
h
kZ0;t�1k(2+�)�

i
< 1 for

some � > 0, and the requirement m > �m := max (4; 2d�) translates into E
�
kZ0;t�1k �m��

�
<1

with �� = max (1; �). Theorem 3.5 now implies that H(1)
b;�

�
�;K�1

T db
�
= OP (1) and hence,
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H
(1)
b;�

�
�;K�1

T db
�
= oP (1) ; uniformly in �.

Consider H(2)
b;� (�; db) and observe that,

H
(2)
b;� (�; db) =

1

T

TX
t=1

�
�db0Z1;t�1

�0
f
(2)
t�1 (�)

where

f
(2)
t�1 (�) = 


�1
0

�
d��Z0;t�1 + d�� (Zt (b) ; �) + d��Z2;t�1

�
Applying Theorem 3.6 gives at �0;

H
(2)
b;�

�
�;K�1

T db
� D!

Z 1

0
F (s)0 dsdb�w;u (�; �) vec (d��) :

This �nishes the proof of part 2.

Proof of part 1 (�0 6= 0): We state the needed as claims again:

Claim 1.1 : H�;� (�0)
P! vec (d�)0�u;u (�0; �0) vec (d��) ;

Claim 1.2 : Hb;b
�
�0;K

�1
T db;K�1

T d�b
� D! trf(db)0

Z 1

0
F (s)F (s)0 ds(d�b)�w;w (�0; �0)g;

Claim 1.3 : Hb;�
�
�0;K

�1
T db

� D!
Z 1

0
F (s)0 dsdb�w;u (�0; �0) vec (d��)

Claim 1.4 : H�;� (�0)
P! vec (d�)0�u;v (�0; �0) vec

�
d��
�

Claim 1.5 : Hb;�
�
�0;K

�1
T db

� D!
Z 1

0
F (s)0 dsdb�w;v (�0; �0) vec

�
d��
�
:

Claim 1.6 : H�;� (�0)
P! vec (d�)0�v;v (�0; �0) vec

�
d��
�
:

Proof of Claims 1.1-1.3: They follow as before for claims 2.1-2.3.

Proof of Claim 1.4: The di¤erential H�;� (�) takes the form H�;� (�) = H
(1)
�;� (�) +H

(2)
�;� (�)

H
(1)
�;� (�) = �

1

T

TX
t=1

�
d�@� (Zt (b) ; �) vec

�
d��
��0

�10 "t (�) ;

H
(2)
�;� (�) =

1

T

TX
t=1

[d�Z0;t�1 + d� (Zt (b) ; �) + d�Z2;t�1]
0
�10 �@� (Zt (b) ; �) vec

�
d��
�
:

By Corollary 3.7, at #0; T 1=2H
(1)
�;� (�)

D! Y (1; �) for an appropriately de�ned Gaussian process

Y (s; �) ; while by Corollary 3.7 with xT;t�1 = 1, H
(2)
�;� (�0)

D! d�0�u;v (�0; �0) d�.

Proof of Claim 1.5: The di¤erential Hb;� (�; db) = H
(1)
b;� (�; db)+H

(2)
b;� (�; db) where, similar

to the proof of Claim 1.2, with

@2z;� (z; �) =
@vec (@z (z; �))

@vec (�)0
; (C.12)

we �nd,

H
(1)
b;� (�; db) =

1

T

TX
t=1

"t (�)
0
�10 �

�
Z 01;t�1db
 Ir�

�
@2z;� (Zt (b) ; �) vec

�
d��
�
; (C.13)
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H
(2)
b;� (�; db) =

1

T

TX
t=1

�
f�+ �@z (Zt (b) ; �)g db0Z1;t�1

�0

�10 �@� (Zt (b) ; �) vec

�
d��
�
; (C.14)

By Corollary 3.7, at #0, H
(1)
b;�

�
�0;K

�1
T db

� P! 0 and H(2)
b;�

�
�0;K

�1
T db

�
converges towards the

claimed limit.

Proof of Claim 1.6: The di¤erential H�;� (�) = H
(1)
�;� (�) +H

(2)
�;� (�), where

H
(1)
�;� (�) =

1

T

TX
t=1

"t (�)
0
�10 �

�
vec (d�)0 
 Ir�

�
@2�;� (Zt (b) ; �) vec

�
d��
�
;

with

@2�;� (z; �) =
@vec (@� (z; �))

@vec (�)0
;

and

H
(2)
�;� (�) = (vec (d�))

0 1

T

TX
t=1

@� (Zt (b) ; �)
0 �0
�10 �@� (Zt (b) ; �) vec

�
d��
�
:

It follows by Corollary 3.7 that at #0, H
(1)
�;� (�0)

P! 0 and H(2)
�;� (�0)

P! d�0�v;v (�0; �0) d��.

Lemma C.3 Assume that Assumptions 4.1-4.4 hold. With d# = (d�; d�) and d� = (d�; db)
and the log-likelihood function LT (�; �) de�ned in (2.11), the following hold:

1. If �0 6= 0, then with q0 > 2max f1; �g and q2 > 2:

sup
#2NT (#0)

���� 1T d3LT (#; V �1=2T d#; V
�1=2
T d�#; V

�1=2
T d�#)

���� = OP (jjd#jjjjd�#jjjjd�#jj)

for a sequence of neighborhoods

NT (#0) = f# : jj� � �0jj < �; jj� � �0jj < � and jjKT bjj < �g :

2. If �0 = 0, then with q0 > 2max f1; �g and q2 > 2:

sup
�2NT (�0)
�2�

���� 1T d3LT (�; �; V �1=2�;T d�; V
�1=2
�;T d��; V

�1=2
�;T d��)

���� = OP (jjd�jjjjd��jjjjd��jj)

for a sequence of neighborhoods

NT (�0) = f� : jj� � �0jj < �; and jjKT bjj < �g :

Proof of Lemma C.3. Write the third order di¤erential as,

1

T
d3LT (�; �; d�; d��; d~�) =

X
i;j

d
�
H�i;��j (�) ; d

~�
�
.

Below we consider each of the terms normalized as indicated in the lemma and argue that

they are OP (1) as T ! 1 as desired. We focus on the most di¢ cult cases when �0 = 0,

and third order derivatives are considered w.r.t. b and �. The remaining cases (�0 6= 0 and
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derivatives in other directions) proceeds in a completely analogous manner, and only di¤er

in terms of notation.

Claim 1 : sup�
d�H�;� (�) ; d~�� = OP (1). From the proof of Lemma C.2, recall that,

the di¤erential H�;� (�) = H
(1)
�;� (�) +H

(2)
�;� (�), where

H
(1)
�;� (�) =

1

T

TX
t=1

"t (�; �)
0
�10 �

�
vec (d�)0 
 Ir�

�
@2�;� (; �) vec

�
d��
�
;

H
(2)
�;� (�) =

1

T
(vec (d�))0

TX
t=1

@� (Zt (b) ; �)
0 �0
�10 �@� (Zt (b) ; �) vec

�
d��
�
;

with Zt (b) de�ned in (C.2). Thus,

d
�
H
(1)
�;� (�) ; d

~�
�

=
1

T

TX
t=1

"t (�; �)
0
�10 �

�
vec (d�)0 
 Ir�

� �
vec

�
d��
�0 
 I� @3��� (Zt (b) ; �) vec�d~��

� 1

T

TX
t=1

(�@� (Zt (b)) vec (d�))
0
�10 �

�
vec

�
d��
�0 
 Ir�� @2�;� (Zt (b) ; �) vec�d~�� ;

where

@3��� (z; �) =
@vec

�
@2�� (z; �)

�
@vec (�)0

:

Likewise,

Td
�
H
(2)
�;� (�) ; d

��
�

= (vec (d�))0
TX
t=1

@� (Zt (b) ; �)
0 �0
�10 �

�
vec

�
d��
�0 
 I� @2�� (Zt (b) ; �) vec�d~��

+
�
vec

�
d��
��0 TX

t=1

@� (Zt (b) ; �)
0 �0
�10 �

�
vec (d�)0 
 I

�
@2�� (Zt (b) ; �) vec

�
d~�
�
:

Hence, by Assumption 4.1,d�H(1)
�;� (�) ; d

~�
� � c kd�k

d��d~� 1
T

TX
t=1

k"t (�; �)k (1 + jjZt (b) jj�)

� c kd�k
d��d~�

� 1

T

TX
t=1

(k"tk+ jjZ0;t�1jj+ jjZ2;t�1jj+ jjZt (b) jj) (1 + jjZt (b) jj�) :

Next, note that with � 2 NT (�0); we can write, b = K�1
T h;where jjhjj < �; and hence,

jjZt (b) jj � jjZ0;t�1jj+ �
K�1

T Z1;t�1
 � jjZ0;t�1jj+ � sup

u2[0;1]

K�1
T Z1;[Tu]

 . (C.15)

As supu2[0;1]
K�1

T Z1;[Tu]
 = OP (1), we get by the LLN (Kristensen and Rahbek, 2005),d�H(1)

�;� (�) ; d
~�
� = OP

�
kd�k

d��d~�� :
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Claim 2: sup�

d�H�;� (�) ;K�1
T d~b

� = OP (1). As in Claim 1, given the expression of

H�;� (�),

d
�
H
(1)
�;� (�) ; d

~b
�

= � 1
T

TX
t=1

Z 01;t�1d~b [�+ �@z (Zt (b) ; �)]
0
�10 �

�
vec (d�)0 
 Ir�

�
@2�;� (Zt (b) ; �) vec

�
d��
�
;

+
1

T

TX
t=1

"t (�; �)
0
�10 �

�
vec (d�)0 
 Ir�

� �
vec

�
d��
�0 
 I� @3��;z (Zt (b) ; �) d~b0Z1;t�1;

and

d
�
H
(2)
�;� (�) ; d

~b
�

=
1

T
(vec (d�))0

TX
t=1

@� (Zt (b) ; �)
0 �0
�10 �

�
vec

�
d��
�0 
 I� @2�;z (Zt (b) ; �) d~b0Z1;t�1

+
1

T

TX
t=1

h�
vec (d�)0 
 I

�
@2�;z (Zt (b) ; �) d

~b0Z1;t�1
i0
�0
�10 �@� (Zt (b) ; �) vec

�
d��
�
;

where @2�;z (Zt (b) ; �) is de�ned in eq. (C.12), and

@3��z (z; �) =
@vec

�
@2�� (z; �)

�
@z0

:

Thus, ���d�H(1)
�;� (�) ;K

�1
T d~b

����
� c kd�k

d�� 1
T

TX
t=1

Z 01;t�1K�1
T d~b

 (1 + k@z (Zt (b) ; �)k)@2�;� (Zt (b) ; �)
+ c kd�k

d�� 1
T

TX
t=1

k"t (�; �)k
@3��;z (Zt (b) ; �)d~b0K�1

T Z1;t�1


� c kd�k

d�� 1
T

TX
t=1

Z 01;t�1K�1
T

 (1 + kZt (b)k�)2
+ c kd�k

d�� 1
T

TX
t=1

(k"tk+ jjZ0;t�1jj+ jjZ2;t�1jj) (1 + kZt (b)k�)
K�1

T Z1;t�1
 ;

and so
���d�H(1)

�;� (�) ;K
�1
T d~b

���� = OP (1) by eq. (C.15).

By identical arguments,
���d�H(2)

�;� (�) ;K
�1
T d~b

���� = OP (1).
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Claim 3: sup�
d�Hb;b (�) ;K�1

T d~b
� = OP (1). Given the expression of Hb;b (�) in the Proof

of Lemma C.2, d
�
Hb;b (�) ; d~b

�
= d

�
H
(1)
b;b (�) ; d

~b
�
+ d

�
H
(2)
b;b (�) ; d

~b
�
, where

d
�
H
(1)
b;b (�) ; d

~b
�

=
1

T

TX
t=1

Z 01;t�1d~b [�+ �@z (Zt (b) ; �)]
0
�10 �

�
Z 01;t�1db
 Ir�

�
@2zz (Zt (b) ; �) d

�b0Z1;t�1

+
1

T

TX
t=1

"t (�; �)
0
�10 �

�
Z 01;t�1db
 Ir�

� �
Z 01;t�1d�b
 Ir�

�
@3zzz (Zt (b) ; �) d

~b0Z1;t�1

with

@3zzz (z; �) = @vec
�
@2zz (z; �)

�
=@z0;

and

d
�
H
(2)
b;b (�) ; d

~b
�

=
1

T

TX
t=1

h
(I 
 �) @2zz (Zt (b) ; �) d~b0Z1;t�1Z 01;t�1d�b

i0

�10

�
f�+ �@z (Zt (b) ; �)gZ 01;t�1db

�
+
1

T

TX
t=1

�
f�+ �@z (Zt (b) ; �)gZ 01;t�1d�b

�0

�10

h
(I 
 �) @2zz (Zt (b) ; �) d~b0Z1;t�1Z 01;t�1db

i
:

Thus, multiplying all directions with K�1
T and using eq. (C.15),

���d�H(1)
b;b (�) ;K

�1
T d~b

���� � c

T
kdbk

d�bd~b TX
t=1

K�1
T Z1;t�1

3 [1 + kZt (b)k�] kZt (b)k�
= OP (1) ;

and, by identical arguments,
���d�H(2)

b;b (�) ;K
�1
T d~b

���� = OP (1).

D Auxiliary Lemmas

Consider QT (; �) which is a function of observations X1; :::; XT and parameters  2 � � Rd

and � 2 � � Rk. Introduce furthermore 0, which is an interior point of �. We then
state conditions under which ̂ (�) = argmin2�QT (; �) is consistent and has a well-de�ned

asymptotic distribution. The proof is based on standard expansions of the likelihood function

similar to Kristensen and Rahbek (2010). However, the objective function, and thereby the

estimator, depends on a nuisance parameter �, and we state results that hold uniformly over

� 2 �. In the following, for any constant c, let WT
D! c denote convergence in distribution

towards the degenerate distribution at c.

Lemma D.1 Assume that:

(i) QT (�; �) : Rd ! R is three times continuously di¤erentiable in  for all �.
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(ii) There exists a sequence of nonsingular matrices UT 2 Rd�d such that U�1T = O (1) and�
dQT (0; �;U

�1=2
T d); d2QT (0; �;U

�1=2
T d; U

�1=2
T d)

�
=0

D! (0;H1 (�; d; d�)) ,

where the convergence takes place on �, and where the stochastic process H1 (�; d; d�) >

0 a.s.

(iii) sup�2� sup2NT (0(�))
���d3QT (; �;U�1=2T d; U

�1=2
T d�; U

�1=2
T d~)

��� = OP (jjdjjjjd�jjjjd~jj)
over the sequence of local neighborhoods

NT (0) =
n
 : jjU1=2T ( � 0) jj < �

o
:

Then with probability tending to one, for any � 2 �, there exists a unique minimum point
̂ (�) of QT (; �) in NT (0) which solves @QT (̂ (�) ; �)=@ = 0.

It satis�es sup�2�
U1=2T (̂ (�)� 0)

 = oP (1).

Proof of Lemma D.1. Use a second order Taylor expansion to obtain for any bounded
sequence dT (�) 2 Rd such that 0 + U�1=2T dT (�) 2 NT (0),

QT (0 + U
�1=2
T dT (�) ; �)�QT (0; �) = dQT (0; �;U

�1=2
T dT (�))

+
1

2
d2QT (� (�) ; �;U

�1=2
T dT (�) ; U

�1=2
T dT (�));

for some � (�) 2 [0; 0 + U
�1=2
T dT (�)] 2 NT (0). De�ne the bounded sequence �dT (�) =

U
1=2
T (� (�)� 0). Then, by another application of Taylor�s Theorem, there exists ~ (�) 2
[0; � (�)] 2 NT (0) such that

sup
�2�

���d2QT (� (�) ; �;U�1=2T dT (�) ; U
�1=2
T dT (�))� d2QT (0; �;U�1=2T dT (�) ; U

�1=2
T dT (�))

���
= sup
�2�

���d3QT (~ (�) ; �;U�1=2T dT (�) ; U
�1=2
T dT (�) ; U

�1=2
T

�dT (�))
���

= OP

�
kdT (�)k2

 �dT (�)� = OP
�
�3
�
;

where we have used (iii). Thus,

QT (0 + U
�1=2
T dT (�) ; �)�QT (0; �)

= dQT (0; �;U
�1=2
T dT (�)) +

1

2
H1 (dT (�) ; dT (�))

+
1

2

h
d2QT (0; �;U

�1=2
T dT (�) ; U

�1=2
T dT (�))�H1 (dT (�) ; dT (�))

i
+OP

�
�3
�

=
1

2
H1 (dT (�) ; dT (�)) +OP

�
�3
�
;

where the second equality follows by (ii). As H1 (dT (�) ; dT (�)) > 0 a.s., � can be chosen

su¢ ciently small such that QT (; �) is convex with probability tending to one in the neigh-

bourhood NT (0). In particular, there exists a unique minimizer ̂ (�) = 0 + U
�1=2
T d̂T (�)

which solves the �rst-order condition, dQT (̂; �; d) = 0 for all d. Since we can choose

� arbitrarily small, sup�
d̂T (�) = oP (1), and hence sup�

U1=2T (̂ (�)� 0)
 = oP (1) as

desired.
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Lemma D.2 Assume that assumptions (i)-(iii) of Lemma D.1 hold together with:

(iv) There exists a sequence of numbers �T 2 R+ such that ��1T ! 0 and uniformly over

� 2 �: �
dQT (0; �; �

1=2
T U

�1=2
T d); d2QT (0; �;U

�1=2
T d; U

�1=2
T d�)

�
D! (S1 (�; d) ;H1 (�; d; d�)) :

Then �1=2T U
1=2
T (̂ (�) � 0)

D! �H�1 (�)S (�) ; where H (�) 2 Rd�d and S (�) 2 Rd are
stochastic process given through the following identities:

S1 (�; d) = S (�)0 d; d0H (�) d� = H1 (�; d; d�) : (D.1)

Proof of Lemma D.2. By Lemma D.1, we know that ̂T is consistent and solves the �rst
order condition. A �rst order Taylor expansion of the score and using (iii) together with the

same arguments as in the proof of Lemma D.1 yields

0 = dQT (0; �
1=2
T U

�1=2
T d) + d2QT (� (�) ; �;U

�1=2
T d; U

�1=2
T �

1=2
T U

1=2
T (̂ (�)� 0))

= dQT (0; �
1=2
T U

�1=2
T d) + d2QT (0; �;U

�1=2
T d; U

�1=2
T �

1=2
T U

1=2
T (̂ (�)� 0)) + oP (1)

such that, by (iv),

�S1 (�; d) = H1
�
�; d; �

1=2
T U

1=2
T (̂ (�)� 0)

�
+ oP (1) :

This completes the proof.

E Model Speci�cations in Simulation Study

DGP under H(1)
R : �0 = 0: �0 = (1;�0:8724)0, �0 = (�0:0211; 0:0015)0, �0 = (0; 0)0 and

�0 =

"
0:2097 �0:0907
0:4468 0:4295

#
; 
0 =

"
0:0916 0:0242

0:0242 0:0415

#
:

DGP under H(2)
R : �0 = (1;�1)0: �0 = (1;�1)0, �0 = (14:3870;�0:2793)0, �0 = (�7:4947; 0:2975)0,

!0 = 0:1079, A0 = 0:0041, and

�0 =

"
0:2395 �0:0899
0:4201 0:4034

#
; 
0 =

"
0:0861 0:0251

0:0251 0:0417

#
:

DGP under H(1)
A : �0 6= 0 and H(2)

A : �0 6= (1;�1): �0 = (1;�0:9282)0, �0 = (14:7819;�0:2765)0,
�0 = (�7:3486; 0:1382)0, !0 = 0:1009, A0 = 0:0037, and

�0 =

"
0:2339 �0:0970
0:4193 0:4338

#
; 
0 =

"
0:0874 0:0247

0:0247 0:0415

#
:
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