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Abstract

A two-step estimation method of stochastic volatility models is proposed: In the �rst step,

we estimate the (unobserved) instantaneous volatility process using the estimator of Kristensen

(2010, Econometric Theory 26). In the second step, standard estimation methods for fully

observed di¤usion processes are employed, but with the �ltered volatility process replacing

the latent process. Our estimation strategy is applicable to both parametric and nonparametric

stochastic volatility models, and we give theoretical results for both. The resulting estimators of

the drift and di¤usion terms of the volatility model will carry additional biases and variances due

to the �rst-step estimation, but under regularity conditions these vanish asymptotically and our

estimators inherit the asymptotic properties of the infeasible estimators based on observations of

the volatility process. A simulation study examines the �nite-sample properties of the proposed

estimators.
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1 Introduction

One of the key components in asset pricing models is the conditional second moment or volatility of

the processes. It has long been recognized that volatility varies over time, and considerable e¤orts

have been put into modelling and forecasting this variable. Within a continuous-time framework,

stochastic volatility (SV) di¤usion models, such as the Heston (1993) and Hull and White (1987)

models, represent a popular class (see Shephard, 2005 for an overview). Unfortunately, the es-

timation and forecasting of such models are hampered by the fact that the volatility is a latent

and unobserved variable, and most proposed estimation methods are not easily implemented and

require considerable computational power.

In recent years, nonparametric estimators of the integrated volatility have emerged. These are

model-free estimators of the integral of the (realised) volatility process over a given time interval,

see Andersen et al. (2010) for an overview. Furthermore, they are very simple to compute and as

such do not su¤er from the aforementioned computational problems. However, realised volatility

estimators are only able to give a model-free measure of the volatility in-sample, and are not

informative about future, or out-of-sample, volatility.

In this paper, we propose a general estimation strategy for SV di¤usion models that combines

a simple, model-free realised volatility estimator with the additional structure imposed by the

Markov di¤usion model. The resulting estimators are simple to implement and require little, if

any, numerical optimization. The estimation strategy allows for both nonparametric and fully

parametric speci�cations of the SV model, and as such is very �exible.

The estimation method proceeds in two steps: In the �rst step, a nonparametric estimator of the

spot (or instantaneous) volatility as proposed in Kristensen (2010a) is computed. This estimator is

simply a kernel-weighted version of standard integrated volatility estimators and supplies us with

an estimate of the spot volatility process over the sample interval. The main idea is then to combine

the spot volatility estimator with existing estimation methods for fully observed di¤usion models:

If the volatility process indeed had been observed, we could use any of many existing estimation

methods to estimate the SV model. We have not observed the volatility process, but what we do

have is its consistent estimator which we can use in its place. Thus, in the second step, the spot

volatility estimator is plugged into a given existing estimation method for fully observed di¤usion

models.

We derive the asymptotics of the resulting estimators for two leading estimation methods: For

nonparametric SV models, we consider the nonparametric kernel estimator à la Bandi and Phillips

(2003). For fully parametric models, we consider estimators akin to the ones proposed in Prakasa

Rao (1988) or Bandi and Phillips (2007). For each of the two estimators, we give conditions

under which they are consistent and asymptotically normally distributed. In the nonparametric

case, our estimation problem is similar to the one considered in Rilstone (1996) where the kernel

regression with generated regressors is considered; see also Newey, Powell and Vella (1999) and

Xiao, Linton, Carroll and Mammen (2003) for similar nonparametric two-step estimators. The

parametric estimators can be seen as a two-step semiparametric estimation procedure, where a

2



parametric estimator relies on a preliminary nonparametric estimator; see e.g. Kanaya (2010a) and

Kristensen (2010b) for related estimators in a di¤usion setting.

Our estimators rely on certain nuisance parameters that need to be chosen in the implemen-

tation. In particular, a bandwidth has to be chosen in the estimation of the spot volatility. Our

theoretical results o¤er some guidance regarding how this and other parameters should be chosen.

Based on these, we discuss in some detail how the estimators can be implemented in practice. We

also investigate the �nite-sample performance of our estimator through a simulation study with

particular emphasis on its sensitivity towards the choice of nuisance parameters. We �nd that the

estimators are quite robust and fairly precise for reasonable sample sizes.

Within the class of Markov di¤usion models, a number of studies have proposed ways to identify

and estimate the parameters of an underlying parametric SV model. If only low-frequency data

is available, the estimation problem is harder since the amount of information available to the

econometrician is more limited. In a few speci�c examples, one can derive analytical expressions

of certain moment functions and use these in the estimation (Chacko and Viceira, 2003), but in

general numerical methods need to be used to deal with latent variables (see e.g. Altissimo and

Mele, 2009, Andersen and Lund, 1997; Chib et al., 2006; Gallant et al.,1997; Brownlees, Kristensen

and Shin, 2010). These are all situated within a parametric framework, and require substantial

computer power to implement.

In the case where high-frequency data is available, the use of integrated volatility estimators

has greatly facilitated the estimation of models of the volatility. A number of studies have proposed

to estimate parametric di¤usion models of the volatility by matching certain conditional moments

of the integrated volatility with their estimated ones using GMM-type methods. Examples of this

approach are Barndor¤-Nielsen and Shephard (2001), Bollerslev and Zhou (2002), Corradi and Dis-

taso (2006) and Todorov (2009). These methods appear to work well when the volatility process

is assumed to solve a simple parametric model where the conditional moments can be expressed

analytically. However, for more general parametric models, the closed form of the conditional mo-

ments can be di¢ cult to derive, and as a result the extension of this type of estimation strategy to

a more general setting will require the use of simulation-based or other computationally burden-

some methods. We also note that how to obtain nonparametric estimators of the SV model from

integrated volatility is not clear.

In related studies, Comte, Genon-Catalot and Rozenholc (2009), Renò (2006, 2008) and Bandi

and Renò (2009) propose estimators similar to ours, but they only consider nonparametric volatility

models. Furthermore, Comte et al (2009) assume that the integrated volatility is observable (if their

setting is read in the context of the volatility estimation). Renò (2006) and Bandi and Renò (2009)

do not develop a complete asymptotic theory of their estimators. A key result needed in deriving the

theoretical results of the proposed estimators here and in these studies is the uniform consistency

(and its rate) of the preliminary spot volatility estimator over a growing time interval. We are

able to give primitive conditions for the uniform consistency result for our speci�c estimator, where

these primitive conditions allow for most models found in the literature. The proof of this uniform

consistency result proves to be technically very demanding due to two properties of the object of
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interest, namely the sample path of the volatility process: First, it is not smooth, and second it is

unbounded as time diverges. This is in contrast to standard nonparametric estimation problems

(e.g. density and regression estimation), and we have to use some novel theoretical techniques

in order to establish our result for an expanding time interval, in particular a new result on the

global modulus of continuity of stochastic processes. In comparison, Renò (2008) only establishes

consistency of the preliminary estimator over a �xed time interval. This in turn means that he can

only show results for the estimation of the di¤usion coe¢ cient of the volatility model. Furthermore,

his consistency result relies on some strong assumptions on the model, including that the domain of

the volatility has to be a compact interval. This rules out standard models found in the literature.

Bandi and Renò (2009) avoid this issue by simply imposing the high-level assumption of the modulus

of continuity of the di¤usion processes over the expanding time interval, as well as imposing some

bounded conditions on the volatility process and its transformation function f . On the other hand,

their framework is more general than ours in that they allow for the presence of jumps in both

observable and latent processes, and as such their and our studies complement each other.

The remains of the paper is organised as follows: In the next section, we outline our proposed

estimation method for the nonparametric and fully parametric case. In Section 3, the asymptotic

properties of our estimators are derived under regularity conditions, while the practical implemen-

tation of the estimator is discussed in Section 4. The results of a simulation study investigating

the �nite-sample properties of our estimator are presented in Section 5. Section 6 concludes. All

proofs and lemmas are found in Appendix A, while tables and �gures can be found in Appendices

B and C.

We use the following notation throughout: The symbols P! and d! denote convergence in prob-

ability and distribution, respectively. The abbreviation a.s. is for "almost surely." The transpose

of a vector or matrix A is denoted AF. For a vector or matrix B = [bij ], jjBjj denotes
P
i;j jbij j.

For de�nitional equations, we use the notations: C := D and E =: F , where the former means that

C is de�ned by D, and the latter means that E is de�ned by F .

2 A General Estimation Method for SV Models

Let fXtg = fXt : t � 0g be a Brownian semimartingale solving(
dXt = �tdt+ �tdWt;

d�2t = �
�
�2t
�
dt+ �

�
�2t
�
dZt;

(1)

where fWgt�0 and fZtgt�0 are two (possibly correlated) standard Brownian motions, while f�tgt�0
and f�tgt�0 are adapted stochastic processes. The process

�
�2t
	
is usually denoted the (spot)

volatility process of fXtg, while f�tg is the drift process. The second part of the model in eq. (1),
stating the dynamics of the volatility process, is referred to as a stochastic volatility (SV) model.

Suppose we have observed Xt0 ; Xt1 ; :::; Xtn at n+1 discrete time points 0 = t0 < t1 < ::: < tn =

T . Given these observations, we wish to draw inference about the underlying drift and di¤usion

terms, � (�) and �2 (�). Since we have not observed the process
�
�2t
	
, the estimation of these two
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terms involve a latent variable which in general has to be integrated out. This could for example

be done using particle �ltering which is computationally demanding; see, for example, Brownlees

et al (2010). We here propose simple-to-compute estimators relying on a �rst-step kernel estimator

of the volatility.

To motivate our estimators, consider for the moment the counter-factual situation where the

volatility process has been observed at discrete, equidistant time points, 0 � �0 < �1 < ::: < �N � T

with � = j� j � � j�1j being the time-distance between consecutive observations. Then we can

estimate the drift � (�) and the di¤usion �2 (�) through standard estimation methods for discretely
sampled di¤usion processes. Two speci�c estimators are considered subsequently, nonparametric

and fully parametric ones. For semiparametric models, where either the drift or the di¤usion term

is left unspeci�ed, the estimation can proceed by combining the proposed non- and fully parametric

estimators. Alternatively, the semiparametric MLE approach in Kanaya (2010a) may be employed.

For fully nonparametric estimation of the drift and di¤usion function, kernel estimators have

been considered in Bandi and Phillips (2003), Florens-Zmirou (1993) and Jiang and Knight (1997)

amongst others. These are given by:

~� (x) =

PN�1
j=1 Kb

�
�2�j � x

� h
�2�j+1 � �

2
�j

i
�
PN
j=1Kb

�
�2�j � x

� ; ~�
2
(x) =

PN�1
j=1 Kb

�
�2�j � x

� h
�2�j+1 � �

2
�j

i2
�
PN
j=1Kb

�
�2�j � x

� ; (2)

where Kb (z) = K (z=b) =b, K is a kernel, and b > 0 a bandwidth; see Silverman (1986) for an

introduction to kernel estimation.

If parametric forms for either or both of the two functions are speci�ed, a number of estimators

o¤er themselves, see for example Florens-Zmirou (1989), Dacunha-Castelle and Florens-Zmirou

(1986), Jacod (2006), Sørensen (2009) and Yoshida (1992). We here follow Bandi and Phillips

(2007) and consider least-square estimators of the parameters. Suppose that the drift and/or

di¤usion functions belong to known parametric families, � (�) = � (�; ��1) and/or �2 (�) = �2 (�; ��2)
for two parameters ��1 2 �1 � Rd1 and ��2 2 �2 � Rd2 . We then specify our estimators as slightly
modi�ed versions of the ones in Bandi and Phillips (2007): De�ne the two objective functions,
~Q1 (�1) and ~Q2 (�2), by

~Q1 (�1) =
XN�1

j=1

h
(�2�j+1 � �

2
�j )� �(�

2
�j ; �1)�

i2
;

~Q2 (�2) =
XN�1

j=1

h
(�2�j+1 � �

2
�j )

2 � �2(�2�j ; �2)�
i2
:

(3)

We then choose our estimators as ~�k = argmin�k2�k ~Qk (�k) for k = 1; 2:

Now, let us return to the actual situation where the volatility is unobserved. Thus, the above

estimators are infeasible. Instead, we here suggest to substitute nonparametric estimates of the spot

volatilities for the unobserved ones. A number of estimators have been proposed in the literature.

We here focus on the kernel estimator of Kristensen (2010a):

�̂2� =
nX
i=1

Kh (ti�1 � �)
�
Xti �Xti�1

�2 (4)
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where Kh (z) = K (z=h) =h, K is another kernel, and h > 0 another bandwidth. As � :=

maxi=1;:::;n jti � ti�1j ! 0 and h ! 0 at a suitable rate, Kristensen (2010a) demonstrates that

�̂2�
P! �2� :

With this estimator, we can compute �̂2� at any given set of discrete time points � j , j = 0; :::; N .

These time points are under the control of the econometrician and may potentially di¤er from

the actual observation time points, t0; :::; tn. We therefore refer to f� jg as pseudo-sampling times.
When deriving the asymptotics of our estimators, we will impose certain restrictions on these. Now,

simply replace the spot volatilities with its estimates in eq. (2) to obtain feasible nonparametric

estimators:

�̂ (x) =

PN�1
j=1 Kb

�
�̂2�j � x

� h
�̂2�j+1 � �̂

2
�j

i
�
PN
j=1Kb

�
�̂2�j�1 � x

� ; (5)

�̂
2
(x) =

PN�1
j=1 Kb

�
�̂2�j � x

� h
�̂2�j+1 � �̂

2
�j

i2
�
PN
j=1Kb

�
�̂2�j � x

� : (6)

Similarly, for the parametric estimators, we simply replace �2�j by �̂
2
�j in eq. (3),

Q̂1 (�1) =
N�1X
j=1

h�
�̂2�j+1 � �̂

2
�j

�
� �

�
�̂2�j ; �1

�
�
i2
; (7)

Q̂2 (�2) =

N�1X
j=1

��
�̂2�j+1 � �̂

2
�j

�2
� �2

�
�̂2�j ; �2

�
�

�2
: (8)

and the feasible estimators are then de�ned as:

�̂k = argmin
�k2�k

Q̂k (�k) for k = 1; 2: (9)

We here have proposed speci�c estimators in nonparametric and fully parametric settings. It

should be clear though that the �ltered spot volatility can be combined with any other existing

estimation methods for fully observed di¤usion models as cited above to obtain estimators for SV

models.

3 Asymptotics of the Estimators

In this section, we derive the asymptotics of the non- and parametric estimators proposed in the

previous section. We �rst obtain a uniform convergence result of the preliminary kernel �ltered

estimator of the volatility process,
�
�̂2t
	
. This result is in turn used to demonstrate that the

proposed two-step estimators are asymptotically equivalent to the infeasible estimators based on

actual observations of
�
�2t
	
.
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3.1 The Spot Volatility Estimator

We here derive a uniform rate of convergence of the spot volatility estimator. Since the uniform

convergence (over time) of
�
�̂2t
	
may be of independent interests in other applications, we do not

restrict the true volatility process to be a Markov di¤usion (as imposed in eq. (1)). Instead, we

only require that the drift and volatility processes, �t and �
2
t , satisfy certain moment conditions,

and that the volatility process is su¢ ciently smooth. It could, for example, be long memory type

model (as found in Comte and Renault, 1996) or general Brownian semimartingales and as such be

used as an input in the estimation of more general models.

We �rst introduce a class of smooth kernels:

K (m; r) A kernel k : R! R is said to belong to K (m; r), m; r � 0, if:

(i)
R1
�1 k (x) dx = 1,

R1
�1 xk (x) dx = 0 and

R1
�1 x2k (x) dx = 1.

(ii) There exists some positive constants �K < 1 and C < 1 such that the i-th derivative

k(i) satis�es

sup
x2R

jk(i) (x) j � �K;

Z 1

�1
jxjmjk(i) (x) jdx � �K; and

jk(i) (x) j is not decreasing on (�1;�C] and not increasing on [C;1), for each i =

0; 1; :::; r:

It can be shown that most standard kernels, including the Gaussian one, belong to this class. The

last condition in (ii), the monotonicity of the absolute derivative for large jxj; may be unfamiliar but
is actually satis�ed by many kernels (e.g., the Gaussian kernel, and kernels which have a compact

support). This condition is useful to obtain sharp convergence rates. We will require that the two

kernels, K and K, belong to this class for suitable values of (m; r). For the kernel K which is

used for the spot volatility estimation in eq. (4), the condition
R1
�1 xK (x) dx = 0 is not required

and thus one-sided kernels, e.g., one suggested in Zhang and Karunamini (1998) may be used as

suggested in Kristensen (2010a).

Next, we impose conditions on the drift and volatility process of fXtg:

A.1 There exist constants p > 0 and l1; l2 � 0: supt�T E
h
j�tj2+p

i
= O

�
T l1
�
and sups�T E

h
j�tj4

i
=

O
�
T l2
�
as T !1.

A.2 (i) There exist constants m1;m2 � 0: supt�T E
�
�2t
�
= O (Tm1) and supt�T E

�
�4t
�
= O (Tm2)

as T ! 1. (ii) There exist constants � > 0; � > 0 and C > 0 such that E
h���2t � �2s���i �

C jt� sj1+�.

The uniform moment conditions imposed in (A.1) and (A.2.i) are used to strengthen the conver-

gence results of Kristensen (2010a) from uniform convergence over the interval [0; T ] with T < 1
�xed to the case where T ! 1. If we only wanted to show convergence for �xed T < 1, these
moments could be disposed of. However, we need T ! 1 in order to estimate the drift function
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� (�), since it is not identi�ed from data observed within a �xed interval, c.f. Merton (1980) and

Kristensen (2010a, Theorem 5).

If the drift is zero, �t = 0 for all t, we can choose l1 = l2 = �1 in (A.1). We also note that if

f�tg is stationary with �nite fourth moment, we can choose p = 2 and l1 = l2 = 0 in (A.1). The

condition is however also satis�ed for non-stationary sequences; an instructive example of this is a

standard Brownian motion, say fBtg: if �t = Bt, we can choose p = 2 and l1 = l2 = 2.

In the case where the latent volatility process
�
�2s
	
is recurrent, we can easily �nd some exam-

ples that satisfy the condition (A.2.i): most parametric di¤usion models found in the literature,

including Ornstein-Uhlenbech (OU) and CIR/Feller�s square-root models, are positive recurrent

and stationary with the second moment �nite, where we can set m1 = m2 = 0. Even when
�
�2s
	

is null recurrent, many processes satisfy m2 � 2 and hence m1 � 1 (note that m1 � m2=2 always

holds). In fact, it is known that any di¤usion process (on the whole real line) whose drift func-

tion has compact support and a (uniformly) bounded di¤usion function is null recurrent (see e.g.

Has�minski¼¬, 1980, Chapter IV), and m2 is commonly equal to or less than 2 for such a di¤usion

process.

The condition (A.2.ii) is a smoothness condition of
�
�2t
	
in the L�-norm. A useful implication

of (A.2.ii) is that it delivers bounds on the modulus of continuity of the volatility process which is

de�ned as

![0;T ] (�) = max
s;t2[0;T ]:jt�sj��

���2t � �2s�� :
The properties of the modulus of continuity of a di¤usion process are well-known for the case where

the time horizon is �nite (T = �T < 1), c.f. Revuz and Yor (1994, Theorems 1.8 and 2.1, pp. 18,
25). However, we have not been able to �nd any results in the literature for the long span case

where T ! 1, and this is exactly what is needed in our case. In Appendix A.6, we therefore
establish a new result that the standard rate for the modulus of continuity can be extended to hold

over an in�nite time interval [0;1). In particular, we show that ![0;1) (�) = Oa:s: (�
) for any

 2 [0; �=�) as T ! 1. This result is often needed when one considers nonparametric estimators
for continuous-time processes under the long span asymptotics, and should have an independent

interest (see also Kanaya, 2010b for related results). The condition (A.2.ii) is automatically satis�ed

with � = �=2�1 if
�
�2t
	
is a stationary di¤usion process whose drift and di¤usion functions satisfy

E[
��� ��2t ����] <1 and E[

��� ��2t ����] <1 for some � > 2. These conditions are in turn satis�ed for

any � > 0 if, for example, f�tg is an OU or CIR process.
Finally, we restrict the set of feasible bandwidth sequences that can be used to estimate the

trajectory of
�
�2t
	
:

B.1 For some value  2 (0; �=�), the bandwidth h! 0 is chosen such that, as T !1 and �! 0:

�5=2T 3+3l2=2

h4+3
[log T + log (1=h)] = O (1) ;

�T 3+3m2=2

h4+3
[log T + log (1=h)] = O (1) :

These two conditions are required to ensure uniform consistency: The �rst condition is used

to control the bias due to the presence of the drift f�tg; it implies that the bias incurred from
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this term has negligible impact in the estimation uniformly as T ! 1. In particular, if the drift
is not present then the �rst condition is automatically satis�ed. The second condition of (B.1)

is a strengthening of the classical condition of "rapidly increasing experimental design" normally

used in the estimation of di¤usion models, �T
�
= �2n

�
! 0. This type of condition was originally

introduced in Prakasa Rao (1988) for the parametric estimation of di¤usion models, and is widely

used to establish properties of di¤usion estimators under in�ll asymptotics, � ! 0. In our case,

since we are using local estimators, we need to impose faster shrinking of the time interval �.

The two conditions in (B.1) are stronger than those imposed in Kristensen (2010a) where

uniform convergence over a compact time interval is shown. Similarly, the conditions are also

stronger than those normally found for uniform consistency of kernel estimators over an unbounded

interval (of the state space, not the time). This is due to the fact that our estimation problem

is much harder than standard kernel estimation problems: A standard assumption in the kernel

estimation literature is that the object of interest is uniformly bounded; for example, in Kristensen

(2010a) this is obtained by only giving uniform convergence over the interval [0; T ] for T (<1) �xed.
A similar idea is used in Renò (2008) where only results for T <1 �xed are given. In our setting,

we need T ! 1 since our "target" is the full trajectory
�
�2� : 0 < � <1

	
, which is required for

the identi�cation of the drift component � (�). Therefore, if we followed a standard proof strategy,
we would need to assume that

�
�2� : 0 < � <1

	
was uniformly bounded almost surely. However,

this in turn would rule out all standard volatility models since these have unbounded trajectories as

T !1. Instead, we here utilize the moment restrictions imposed in (A.2) to control the behaviour
of the trajectories of f�tg and

�
�2t
	
. This also explains why the parameters l2 and m2 appear in

(B.1). When both f�tg and
�
�2t
	
are stationary, the conditions in (B.1) can be simpli�ed (see B.1�

in the next section).

Theorem 1 Assume that (A.1)-(A.2) hold, and that K 2 K (1; 1). If h satis�es (B.1), then, for
any  2 (0; �=�):

sup
�2[0;T ]

���̂2� � �2� �� = OP (h
) +OP

�
�1=2T f2+p(1+m1)=2+l1+m1g=(2+p)h�(2+p=2)=(2+p)

�
(10)

as T !1 with �! 0.

Proof. See Appendix A.1.
Given this rate of convergence of �̂2� , we can now derive the asymptotics of the estimators in

the second step.

3.2 Nonparametric Estimation of the SV Model

We here derive the asymptotic properties of the nonparametric two-step estimators of the SV model.

The estimation problem in the second step can be seen as kernel estimation with errors-in-variables.

The implications of this for kernel regression was analyzed in Mammen, Rothe and Schienle (2010),

Rilstone (1996) and Sperlich (2009) in a cross-sectional framework while kernel density estimation of

stochastic processes with errors-in-variables was considered in Blanke and Pumo (2003). We follow
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a similar strategy to Mammen, Rothe and Schienle (2010), Rilstone (1996) and Sperlich (2009)

when analyzing the impact of the �rst-step estimation of
�
�2t
	
on the nonparametric estimators

of the SV model in the second step: We split up the total estimation error into two components:

One component due to the estimation of
�
�2t
	
in the �rst step, and a second component due to the

sampling error of the estimator based on the actual process. For example, for the nonparametric

drift estimator �̂ (x) proposed in eq. (5), we write the total estimation error as

�̂ (x)� � (x) = [�̂ (x)� ~� (x)] + [~� (x)� � (x)] ; (11)

where ~� (x) is the infeasible drift estimator given in eq. (2) based on observations of
�
�2t
	
. The

asymptotics of the second term follow from arguments as in Bandi and Phillips (2003) under the

regularity conditions stated below. Theorem 1 is used to demonstrate that the �rst term converges

to zero in probability at a su¢ ciently fast rate when the number of grid points N ! 1 is chosen

appropriately. The rate can be chosen so that the �rst term is asymptotically negligible, implying

that the feasible estimator shares the asymptotic properties of the infeasible one. We impose the

following conditions to ensure that this heuristic argument holds theoretically:

A.2�The process
�
�2t
	
has range I = (0; ��), where �� � 1, and satis�es:

(i) � (x) and �2 (x) are at least twice continuously di¤erentiable.

(ii) �2 (�) > 0 on I.

(iii) The scale measure S (x) =
R x
c s (y) dy, where

s (y) := exp

�
�2
Z y

c
� (u)��2 (u) du

�
;

for some generic constant c 2 I, satis�es

S (x)! �1 as x! 0; S (x)!1 as x! ��:

Also,
R r
0 �

�2 (x) s (x) dx <1.

(iv) E
�
�4t
�
<1; E

h��� ��2t ����i <1 and E
h��� ��2t ����i <1 for some � > 2.

Condition (A.2�) is a strengthening of (A.2) which holds under (A.2�). It is a fairly standard

regularity condition that is often imposed when deriving asymptotics of di¤usion estimators. (A.2�.i)

and (A.2�.ii) are su¢ cient for the existence of a unique strong solution up to an explosion time

(Karatzas and Shreve, 1991, Theorem 5.5.15 and Corollary 5.3.23). In conjunction with (A.2�.i)-

(A.2�.ii), (A.2�.iii) is su¢ cient for the process to be nonexplosive and positive recurrent and for its

invariant density to exist (see Proposition 5.5.22 of Karatzas and Shreve, 1991 and Chapter 15 of

Karlin and Taylor, 1981). We will in the following let � (x) denote the invariant density of
�
�2t
	
,

and assume that the process has been initialized at this distribution. Given these, the process is

stationary and we can set m1 = m2 = 0 in (A.2). The positive recurrence condition is not strictly

necessary to derive asymptotic results for our estimators. We can extend our results to null recurrent
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volatility processes by using arguments similar to those in Bandi and Phillips (2003). However,

under the null recurrence, the convergence rates of bandwidths and time intervals become stochastic

since they depend on the local time, and the required conditions and proofs become much more

complicated. We therefore maintain the stationarity assumption for simplicity. The �nal condition,

(A.2�.iv), imposes two moment conditions on the volatility process. The condition is satis�ed by

many volatility models, including CIR and GARCH-di¤usion models. If one is only interested in

estimating the drift and not the di¤usion, (A.2�.iv) can be weakened to E
���� ��2t ���� < 1 and

E
�
�
�
�2t
��
<1.

Given (A.2�), we can simplify the conditions in (B.1) (by "m1 = m2"). For further simplicity,

we set p = 2 and thus l1 = l2. Now, the conditions in (B.1) simplify to the following:

B.1�Condition (A.1) holds with p = 2. For some  2 (0; �=�), the bandwidth h ! 0 is chosen

such that, as T !1 and �! 0: �T l2 = O (1) and
�T 3

h4+3
[log T + log (1=h)] = O (1).

We will in the following work with Condition (B.1�) instead of (B.1) since this facilitates our

subsequent analyses: In particular, under (B.1�), the second term in the right-hand side of eq. (10)

is oP (h), and the rate in Theorem 1 simpli�es to

sup
�2[0;T ]

j�̂2� � �2� j = OP (h
) (as T !1, �! 0). (12)

Suppose now that l2 is relatively small. Then, for any given , the best possible rate of �̂2� satisfying

(B.1�) (in terms of T and �) is

sup
�2[0;T ]

j�̂2� � �2� j = OP

��
�T 3 log T

� 
4+3

�
if Th!1:

If Th = O (1), then the best rate can be written as OP (
�
W
�
1=�T 3

�� �
4+3 ) whereW (�) is the Lam-

bertW function, which is de�ned as the inverse function of f (w) = wew. Note that
�
�T 3

� 
4+3

+"
<�

W
�
1=�T 3

�� �
4+3 <

�
�T 3

� 
4+3 for any " > 0. Given the aforementioned technical di¢ culties, it

is not surprising that the rate obtained here is slower than possible rates for �xed T (see Section 3

of Kristensen, 2010a).

In addition to (B.1�), we constrain the set of feasible bandwidths and pseudo-sampling points.

The �rst set, (B-NDR), is used to derive the asymptotic properties of the drift estimator, while the

second, (B-NDI), is employed when analyzing the ones of the di¤usion estimator.

B-NDR As T !1, �! 0, N !1, � ! 0 and b! 0:

(i) h
�
b�1��1=2 + ��1

�
! 0, �=b! 0 and Tb!1.

(ii) h2N
�
b�1 + b��1

�
! 0, b5T = O (1) and Tb�2 ! 0.

B-NDI As T !1, �! 0, N !1, � ! 0 and b! 0:

(i) h
�
b�1 + ��1+

�
! 0, �=b! 0 and Nb!1.
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(ii) h2N
�
b�1 + b��2+2

�
! 0, b5N = O (1) and Nb�2 ! 0.

The conditions in (B-NDR) and (B-NDI) that do not involve h are similar to the ones imposed in

Bandi and Phillips (2003) for the case of stationary di¤usion processes. The additional assumptions

involving h are introduced to ensure that the error due to the preliminary estimation of
�
�2t
	
does

not a¤ect the asymptotic properties. Roughly speaking, we need to set the �rst-step bandwidth

h smaller than the second-step one b. Similar conditions are employed in Newey et al (1999) and

Xiao et al (2003) to establish theoretical results of their two-step nonparametric estimators.

We are now ready to state the asymptotic distributions of our two-step drift and di¤usion

estimators:

Theorem 2 Assume that (A.1), (A.2�) and (B.1�) are satis�ed, K 2 K (1; 1) and K 2 K (2; 2). If
(B-NDR.i) holds, then �̂ (x) P! � (x). Further, if (B-NDR.ii) holds, then

p
Tb
�
�̂ (x)� � (x)� b2 � bias� (x)

� d! N

�
0;
�2 (x)

� (x)

Z
K2 (z) dz

�
where

bias� (x) :=
@� (x)

@x

@� (x)

@x
=� (x) +

1

2

@2� (x)

@x2
:

Proof. See Appendix A.2.

Theorem 3 Assume that (A.1), (A.2�) and (B.1�) are satis�ed, K 2 K (1; 1) and K 2 K (2; 2). If
(B-NDI.i) holds, then �̂ (x) P! � (x). Further, if additionally (B-NDI.ii) holds, thenp

T��1b
h
�̂
2
(x)� �2 (x)� b2 � bias�2 (x)

i
d! N

�
0;
2�4 (x)

� (x)

Z
K2 (z) dz

�
where

bias�2 (x) :=
@�2 (x)

@x

@� (x)

@x
=� (x) +

1

2

@2�2 (x)

@x2
:

Proof. See Appendix A.3.
If the condition b5T = O (1) in (B-NDR.ii) is strengthened to b5T ! 0, the bias component in

Theorem 2 vanishes fast enough to have no impact on the asymptotic distribution. Similarly in

Theorem 3, if b5N = o (1), the bias term can be ignored.

The above results show that the feasible estimators behave asymptotically in the same way

as the infeasible ones based on actual observations of
�
�2t
	
at the pseudo-sampling points under

the regularity conditions imposed. In particular, our asymptotic results do not include additional

bias and variance components due to the �rst step in our estimation procedure, and the feasible

and infeasible estimators are asymptotically equivalent. This is due to (B-NDR) and (B-NDI)

respectively that ensure that the �rst-step estimation errors are asymptotically negligible. In �nite

sample, the �rst step will obviously have an e¤ect on the �nal estimators and it would be desirable

to be able to quantify these. However, we have not been able to derive explicit expression of the

uniform bias and variance of �̂2t , and its impact on the second step. This is not special to this paper.
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For example, in the literature on semiparametric two-step estimators involving kernel estimation

in the �rst step, all theoretical results are usually stated such that the �rst-step bias and variance

vanishes asymptotically. Similarly, the theoretical results for the two-step nonparametric estimators

developed in Newey et al. (1999) and Xiao et al. (2003) do not include �rst-step estimation errors.

Furthermore, note that the estimation errors from the �rst step will be smaller than those in

the second step if we set the pseudo sampling interval � of f�̂2t g (in estimating � (x) and �2 (x))
relatively larger than the observation interval � of fXtg. A realistic scenario would be that intra-
daily observations of fXtg are available. Then by choosing � corresponding to, for example, daily
frequencies, we expect that the �rst-step estimation error will be negligible. This is supported by

Fan (2006a,b), Jiang and Knight (1999) and Phillips and Yu (2005, 2006) where it is demonstrated

that the Nadaraya-Watson type estimators for (observable) di¤usion processes exhibit good per-

formance even for relatively large choices of �, i.e., the discretization bias is less serious than other

biases. In total, by choosing � (relatively) larger than �, the above asymptotic distribution should

be a reasonable approximation even though it neglects the �rst step estimation error. We will

discuss the speci�c choice of � in further detail in Section 4.

3.3 (Semi-) Parametric Estimation of the SV Model

We here give results for the parametric estimators of the SV model. The estimation problem in this

section can be seen as a two-step semiparametric estimators where in the �rst step a nonparametric

estimator is obtained which in turn in the second step is used to obtain a parametric estimator;

for similar problems within the framework of observable di¤usion processes, we refer to e.g. Bandi

and Phillips (2007), Kanaya (2010a) and Kristensen (2010b).

The proof strategy is the same as in the previous section: We split up the total estimation error

into two components, where the �rst part, due to pre-estimation of
�
�2t
	
, is shown to be negligible

asymptotically under suitable conditions on the bandwidth and pseudo-sampling points.

First, we present a set of conditions required for our estimators of the parameters in the drift

term:

A-SDR (i) ��1 is an interior point of some compact subset �1 of Rd1 ; andZ
I
[� (x; �1)� � (x)]2 � (x) dx = 0

if and only if �1 = ��1.

(ii) � (x; �1) is twice continuously di¤erentiable in �1 and there exists some functions Ak (�),
k = 1; 2, such that uniformly over �1 2 �1:

��� (x; �1)� � �x; �01��� � A1 (x)
�����1 � �01���� ; ��������@� (x; �1)@�1

��������+
�����
�����@2� (x; �1)@�1@�

F
1

�����
����� � A2 (x) ;

where E
�
A2k
�
�2s
��
<1, k = 1; 2.
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(iii) � (x; �1), @�1� (x; �1) and @�1�F1
� (x; �1) are di¤erentiable in x for each �1 2 �1. There

exist some constants C > 0 and v1 > 0 such that uniformly over �1 2 �1:��������@� (x; �1)@x

��������+ ��������@2� (x; �1)@x@�1

��������+
�����
�����@3� (x; �1)@x@�1@�

F
1

�����
����� � C [1 + jxjv1 ] ;

and E[
���2t ��2v1 ] <1.

The �rst two conditions of (A-SDR) are standard for the parametric di¤usion estimation, and

are similar to those imposed in, for example, Jacod (2006), Kessler (1997) and Yoshida (1992):

(A-SDR.i) ensures identi�cation of �1 through the drift function. The smoothness assumptions in

(A-SDR.ii) implies that the objective function and its limit are twice di¤erentiable functions of �1,

which in turn enable us to use a standard Taylor expansion argument for deriving the asymptotic

distribution. The moment conditions are needed to ensure that the variance of the estimator is

well-de�ned. The �nal condition, which may be atypical, is used to demonstrate that the error from

replacing �t by �̂t in the estimation is asymptotically negligible. All the conditions are satis�ed by

standard volatility models such as CIR and GARCH di¤usion models.

The above conditions are used to show both consistency and asymptotic normality. For con-

sistency only, the conditions could be weakened considerably, but for simplicity we maintain the

conditions for both properties.

Finally, we restrict the pseudo-sampling points and the bandwidth:

B-SDR As T !1, �! 0, N !1 and � ! 0: (i) h=� ! 0; (ii)
p
T [� + h=�]! 0.

The conditions on the shrinking rates of the bandwidth h and the sampling time � in (B-

SDR) are simpler than the ones in (B-NDR) for the nonparametric estimation, since no smoothing

parameter has to be chosen in the second step. Without the �rst-step estimation, the condition

would simplify to
p
T� ! 0, under which the discretization error of the infeasible estimator is

negligible. Given these conditions, we have the following theorem:

Theorem 4 Suppose that (A.1), (A.2�), (B.1�) and (A-SDR) are satis�ed; and K 2 K (1; 1). If
(B-SDR.i) holds, then �̂1

P! ��1. If additionally (B-SDR.ii) holds, then
p
T (�̂1 � ��1)

d! N
�
0;H��1

1 
�1H
��1
1

�
; where


�1 := 4E
h
@�1�

�
�2t ; �

�
1

�
@�1�

�
�2t ; �

�
1

�F
�2
�
�2t
�i
; and H�

1 := 2E
h
@�1�

�
�2t ; �

�
1

�
@�1�

�
�2t ; �

�
1

�Fi
:

Proof. See Appendix A.4.
Similarly to the nonparametric case, this theorem gives conditions under which �̂1 is �rst-

order equivalent to the infeasible estimator, ~�1. The shared asymptotic distribution is completely

standard for estimation of ergodic di¤usion models, see e.g. Sørensen (2009) or Yoshida (1992). The

asymptotic variance component of the estimator can easily be estimated by replacing population

moments and true values with sample versions and true values and estimated ones, respectively.

To derive properties of the estimator of the di¤usion parameters, the following conditions are

imposed on the SV model:
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A-SDI (i) ��2 is an interior point of some compact subset �2 of Rd2 ; andZ
I

�
�2 (x; �2)� �2 (x)

�2
� (x) dx = 0

if and only if �2 = ��2.

(ii) �2 (x; �2) is twice continuously di¤erentiable in �2 and there exist functions Bk (�), k =
1; 2, such that uniformly over �2 2 �2:

���2 (x; �2)� �2 �x; �02��� � B1 (x)
�2 � �02 ; ��������@�2 (x; �2)@�2

��������+
�����
�����@2�2 (x; �2)@�2@�

F
2

�����
����� � B2 (y) ;

where E
�
B2k
�
�2t
��
<1, k = 1; 2.

(iii) �2 (x; �2), @�2�
2 (x; �2) and @�2�F2

�2 (x; �2) are di¤erentiable in x for each �2 2 �2. There
exist constants C > 0 and v2 > 0 such that uniformly over �2 2 �2:��������@�2 (x; �2)@x

��������+ ��������@2�2 (x; �2)@x@�2

��������+
�����
�����@3�2 (x; �2)@x@�2@�

F
2

�����
����� � C [1 + jxjv1 ] ;

where E
h���2t ��2v2i <1.

The conditions imposed here on the di¤usion function are analogous to the ones imposed on the

drift, and we refer to the discussion following after condition (A-SDR). We impose the following

conditions on the pseudo-sampling points and the bandwidth:

B-SDI N !1, � ! 0 and b! 0 satisfy: (i) h=�1� ! 0; (ii)
p
N
�
� + h=�1�

�
! 0.

Again, these are similar to those for the drift estimation, except that now the rates for the

estimator, bandwidth h, and the pseudo time distance are di¤erent due to the faster convergence of

the di¤usion estimator. We here impose the classical condition of "rapidly increasing experimental

design,"
p
N�(=

p
T�)! 0, while for the drift estimator we only required

p
T� ! 0.

Theorem 5 Suppose that (A.1), (A.2�), (B.1�) and (A-SDI) are satis�ed; and K 2 K (1; 1). If the
condition (B-SDI.i) holds, then �̂2

P! ��2. If additionally (B-SDI.ii) holds, then

p
N(�̂2 � ��2)

d! N
�
0;H��1

2 
�2H
��1
2

�
; where


�2 := 8E
h
@�2�

2
�
�2t ; �

�
2

�
@�2�

2
�
�2t ; �

�
2

�F
�4
�
�2t
�i
; H�

2 := 2E
h
@�2�

2
�
�2t ; �

�
2

�
@�2�

2
�
�2t ; �

�
2

�Fi
:

Proof. See Appendix A.4.
Similarly to the parametric drift estimator, this theorem states that the two-step estimator is

�rst-order asymptotically equivalent to the infeasible estimator ~�2. We also note that, analogous

to the nonparametric estimators, the convergence rate of the di¤usion estimator is faster than that

of the drift estimator. Again, the two matrices 
�2 and H
�
2 can be estimated by standard moment

estimators.
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Note again that the asymptotic distributions obtained in Theorems 4 and 5 are not a¤ected

by the �rst step estimation errors as long as the stated conditions on � in (B-SDR) and (B-SDI)

are satis�ed. While these conditions require large � (relatively to �, or small N relatively to n),

a natural choice might be setting � = � (or equivalently N = n), which is often used in semi-

parametric two-step estimation or generated-regressor problems (see, e.g., Kanaya, 2010a, and

Kristensen, 2010b). Small � (and large pseudo sample size N) might enhance e¢ ciency in the

second step. We discuss this point in the following.

Consider �rst the drift estimation: As can be seen in Theorem 4, the normalization factor for

the asymptoptic distribution is given as
p
T , which is independent of a speci�c choice of � (and

N). Thus, in view of the convergence rate of �̂1, there is no gain by using small � (such as � = N).

Again, the variance of the limit distribution in Theorem 4 is the same as the one obtained when the

true volatility process �2� is observable, which is guaranteed by using relatively large �. Therefore,

we can further say that as far as the �rst-order asymptotic approximation is concerned, there is no

loss by using relatively large � and estimated �̂� (instead of �2� ) in estimating �1.

A situation is somewhat di¤erent in the di¤usion estimation: The convergence rate of the

estimator �̂2 is directly a¤ected by that of � (N). Thus, choosing large N (e.g., N = n) might

improve the convergence rate of �̂2. However, in order to obtain the convergence and distributional

result under such N , we need to quantify the impacts of the (uniform) bias and variance of �̂2t on

the second step. As in the nonparametric case, we have not been able to quantify them. We also

note that it is generally uncertain if we could obtain the asymptotic normality under relatively

large N such as N = n.

The above theoretical results are similar to the ones obtained in Todorov (2009), where esti-

mators of the integrated volatility is used in the estimation of SV models: He gives conditions

under which the �rst-step estimation error from using estimated integrated volatilities instead of

the actual ones does not a¤ect the asymptotic distribution of his parametric GMM estimators, but

refrain from a higher-order analysis of the impact of the �rst-step estimation error.

4 Bandwidth Selection and Sampling

All of the estimators analyzed in Sections 3.2 and 3.3 involve nuisance parameters in the form of

bandwidths and/or pseudo-sampling intervals. We here discuss how these should be selected in

practice. The purpose here is to propose practical working rules. As such, we only provide an

informal analysis since a full theoretical description would be quite involved and outside the scope

of this study. Some of the proposed selection rules may give shrinking rates of bandwidths or

sampling intervals which violate some of the conditions stated for Theorems 2-5 to hold. However,

it seems di¢ cult to obtain simple data-driven selection rules which are formally consistent with the

theoretical conditions. This is often the case in the literature on non- and semiparametric two-step

estimators.1

1For example, Xiao, Linton, Carroll and Mammen (2003) consider bandwidth selection rules in their simulation

study that work well in practice, but do not satisfy conditions imposed in deriving their asymptotic results.
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To compute the �rst-step volatility estimator, a natural, data-driven bandwidth selection method

is cross-validation. Kristensen (2010a) argues that the following cross-validation criteria should lead

to asymptotically optimal bandwidths: hCV = argminh>0CV�2 (h), where

CV�2 (h) =
nX
i=1

I fTl � ti � Tug
h�
Xti+1 �Xti

�2
=�� �̂2�i;ti

i2
;

for some 0 � Tl < Tu � T , and where �̂2�i;ti is the leave-one-out estimator. This criterion is tailored

to minimize the integrated squared error of the volatility estimator,
R Tl
Tu

�
�2t � �̂2t

�2
dt. Since the

end goal is to obtain precise estimates of the SV model, we should indeed choose h to optimize

some criterion for the second step estimator (e.g., the mean squared error of �̂ (x), �̂
2
(x), �̂1 or �̂2).

In this respect, hCV is not ideal. According to the theoretical results, undersmoothing appears to

be required, so we recommend that one chooses an initial bandwidth by cross-validation which in

turn is scaled down by an appropriate factor.

Once
�
�̂2t
	
has been obtained, we have to choose an additional bandwidth b and a (pseudo-)

sampling frequency N (or equivalently �) for the computation of the drift and di¤usion estimates.

We here propose to choose � > 0 at a daily frequency such that we use daily (estimated) volatilities

in the second step of our estimation procedure. The primary reason for this choice is that in

practice the volatility is known to have intradaily seasonal patterns; by choosing daily frequencies

in the second step, we can ignore these in the estimation. Secondly, by choosing � to correspond to

daily observations, we hope that the additional time series dependence in
�
�̂2t
	
due to the �rst-step

estimation is controlled so that the second-step estimation error dominates (as is the case in our

theoretical results).

Given the choice of � > 0, we also propose to use cross-validation in the second step; the

precise procedure is described in Kanaya and Kristensen (2010) who develop bandwidth selection

procedures for di¤usion processes. Their results assume uncontaminated observations of the dif-

fusion process, but we expect that with � chosen at a daily frequency, the estimation error in�
�̂2i� : i = 1; :::; N

	
can be ignored.

The semiparametric estimators only require the choice of the �rst-step bandwidth, h, and the

second-step sampling frequency, �. Given that our estimation strategy corresponds to a two-step

semiparametric estimation procedure, we expect in general that undersmoothing should be used in

the �rst-step. Regarding the choice of �, we now brie�y analyze how this impacts on the MSE�s

of the parametric estimators. For this purpose, we also assume that the error in the �rst step

estimation can be ignored and consider the MSE of the infeasible estimators based on the objective

functions in eq. (3). First, the MSE for the estimator of the drift parameter, ~�k, is given by

MSE�k := E

��
~�k � ��k

�F �
~�k � ��k

��
; k = 1; 2:

Using the standard Taylor expansion,

~�k � ��k = � [H�
k + oP (1)]

�1 Ŝk
�
��k; �

2
�
; (13)
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for k = 1; 2, where Ŝk is the score function (see the Appendix A.4) and H�
k is the limit of the

Hessian function evaluated at the true value ��k (given in Theorems 4 and 5). Since it is not easy

to directly analyze MSE�k , we consider its approximation MSE
�
�k
, which we construct by following

the same strategy as in analyzing the MSE of nonparametric estimators (see Sec. 3.3 of Pagan and

Ullah, 1999 and Kanaya and Kristensen, 2010). De�ne

MSE��k : = E

��
H��1
k Ŝk

�
��k; �

2
��F

H��1
k Ŝk

�
��k; �

2
��

= tr
n
H��1
k E

h
Ŝk
�
��k; �

2
�
Ŝk
�
��k; �

2
�Fi

H��1
k

o
; (14)

for k = 1; 2, where tr fAg is the sum of diagonal elements of the matrix A. By the same arguments

as in the nonparametric case, this should be a good approximation to MSE�k . Our semi-parametric
~�k has no smoothing bias unlike the nonparametric estimators (see Kanaya and Kristensen, 2010),

and therefore we can decompose MSE��k into three terms:

MSE��k = tr
n
B�kB

F
�k

o
+ tr fV�kg+ tr fC�kg (15)

where B�k;ds is the discretization bias and V�k and C�k are the variance and covariance components
respectively; see Appendix A.5 for their �nite-sample expressions. We derive asymptotic expressions

of these terms under the following assumptions:

C-SDR The functions jj@�1� (x; ��1)jj, jj@x�1� (x; ��1)jj, jj@xx�1� (x; ��1)jj, j� (x)j, j�0 (x)j, j�00 (x)j and
�2 (x) are all bounded by some function  (x) satisfying E

h�� ��2s���6i <1.
C-SDI The functions

����@�2�2 (x; ��2)����, ����@x�2�2 (x; ��2)����, ����@xx�2�2 (x; ��2)����, �2 (x), ��@x�2 (x)��, ��@xx�2 (x)��
and j� (x)j are all bounded by some function  (x) satisfying E

h�� ��2s���6i <1.
Theorem 6 Suppose that (A.2�) holds.
(i) If (A-SDR.i), (A-SDR.ii) and (C-SDR) are satis�ed, then it holds that

B�k = � �B�k + o (�) ; C�k = O
�
�2
�
; (16)

with k = 1 and

�B�1 := E
�
@�1�

�
�2t ; �

�
1

� �
�0
�
�2t
�
�
�
�2t
�
+ �00

�
�2t
�
�2
�
�2t
�
=2
��
;

and also

V�1 =
1

T
tr
�
H��1
1 
�1H

��1
1

	
+ o

�
1

T

�
: (17)

(ii) If (A-SDI.i), (A-SDI.ii) and (C-SDI) are satis�ed, then eqs. in (16) hold with k = 2 and

�B�2 := E
�
@�2�

2
�
�2t ; �

�
2

� �
@x�

2
�
�2t
�
�
�
�2t
�
+ @xx�

2
�
�2t
�
�2
�
�2t
�
=2
��
;

and also

V�2 =
1

n
tr
�
H��1
2 
�2H

��1
2

	
+ o

�
1

n

�
:
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Proof. See Appendix A.5.
Thus, we have

MSE��1 = O
�
�2
�
+O (1=T ) ; and MSE��2 = O

�
�2
�
+O (1=n) = O

�
�2
�
+O (�=T ) :

These expressions are consistent to those derived in Tang and Chen (2009), who consider the

estimation of di¤usion processes with the linear drift function. From this theorem, we see that the

optimal choice of � (for any given T ) is always to let it shrink to zero at the fastest possible rate.

Again, in practice we will however use the daily frequency in the second step since it allows us to

ignore intradaily patterns in the volatility.

5 A Simulation Study

We here examine the performance of our non- and semi-parametric estimators. We assume that

the following stochastic volatility model is a data-generating process:(
dXt = �tdWt;

d�2t = �
�
�� �2t

�
dt+ ��2tdZt;

(18)

where Wt and Zt are independent standard Brownian motions. This is the continuous-time limit

version of the GARCH model as derived in Nelson (1990) and Drost and Werker (1996), and

satis�es the conditions imposed in Section 3. We measure time in days and consider the following

two sample frequencies: ��1 = 60 � 24 and 12 � 24 which correspond to sampling every 1 and 5
minutes respectively. We choose the parameter values as � = 0:476, � = 0:510 and �2 = 0:0518,

and the time span as T = 3� 250 days which roughly corresponds to 3 year with 250 business days
per year. In order to simulate data from the model, we employ the Euler discretisation scheme (see

Kloeden and Platten, 1999),(
�Xid = �(i�1)d

p
d"1;i;

��2id = �(�� �2(i�1)d)d+ ��
2
(i�1)d

p
d"2;i;

where f"1;ig and f"2;ig are i.i.d. N (0; 1) with f"1;ig and f"2;ig independent. Here, d > 0 is the

length of the discretization step; it is chosen as d = �=100, where ��1 = 60 � 24 corresponds to
the highest sampling frequency used in the simulation study.

Throughout, we implement the �rst-step kernel estimator of �2
t
using a Gaussian kernel. The

bandwidth h is chosen as h = 0:10 for ��1 = 60 � 24 and h = 0:14 for ��1 = 12 � 24. These
two bandwidth choices were found by running the standard cross-validation procedure described

in Section 4 for �ve trial Monte Carlo samples yielding h�i , i = 1; :::; 5. For all the subsequent

Monte Carlo samples that our simulation study is based on, we then �xed the bandwidth at the

average across these �ve cross-validated bandwidth choices divided by two, h = �h�=2, and are in

e¤ect undersmoothing in the �rst step. The reason for not running the cross-validation procedure

for each sample is that the procedure is rather time-consuming.
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In the second step, we have to choose the pseudo-sampling frequency, �, for both the non- and

semiparametric estimator. We here experiment with three di¤erent choices: In the case where

��1 = 60� 24, we chose � = 1=8, � = 1=4 and � = 1=2, and for ��1 = 12� 24, we chose � = 1=2,
� = 1 and � = 2. Here, � = 1=2, for example, corresponds to two pseudo-observations per day. For

the nonparametric estimator, we also have to choose a second kernel, K, and bandwidth, b. The
kernel K was chosen as the Gaussian one. As with the bandwidth choice for b, we also here ran

cross-validation procedure for �ve trial samples and then �xed the bandwidth b at the average over

these cross-validated bandwidths. Again, this was done in order to speed up the simulation study.

As noted earlier, our two-step estimators su¤er from double sampling error: One component

is due to the sample variation in the unobserved process
�
�2t
	
, and a second one due to only

observing (�Xt)
2 =� which is a contaminated version of �2t . In order to evaluate how much of the

resulting sampling error is due to the contamination, we also computed the corresponding infeasible

estimators using the actual values of �2� ; �
2
2�; �

2
3�; ::::

To evaluate the performance of the nonparametric estimators, we computed approximate in-

tegrated bias, variance and MSE for x = [0:3; 0:8] (the volatility process spent 95% of the time

within that interval in our samples). The integrated squared bias of the drift estimates was esti-

mated by BIAS2 =
R 0:8
0:3 [� (x)� �� (x)]

2 dx where �� (x) = 1
S

PS
s=1 �̂s (x) and �̂s (x) was the esti-

mated drift in the s-th sample over S(= 400) Monte Carlo replications we generated. Similarly,

the integrated variance and MSE were estimated by VAR = 1
S

PS
s=1

R 0:8
0:3 [�̂s (x)� �� (x)]

2 dx and

MSE = 1
S

PS
s=1

R 0:8
0:3 [�̂s (x)� � (x)]

2 dx = BIAS2 +VAR:

In Table 1, we report integrated squared bias, variance and MSE of the drift and di¤usion

estimators for the �rst sampling scheme, ��1 = 60 � 24. In column 1 and 2, the performance of
the infeasible and feasible nonparametric drift estimator is reported. As predicted by theory, the

performance of the infeasible estimator deteriorates as the sampling frequency ��1 decreases. As

expected, this is not in general the case for the feasible two-step estimator however: Too small or

too large choices of ��1 yield poor estimates; here, � = 1=4 gives the best performance of the three

di¤erent choices. A similar pattern is found in column 3 and 4 where the results of the di¤usion

estimators are reported: The MSE of the infeasible di¤usion estimator increases with �, while the

feasible one performs best at the intermediate choice of � = 1.

In Figure 1-4, we have plotted the pointwise means of the infeasible and feasible estimators for

� = 1=4 together with their 95% con�dence intervals. The plots mirror the results of Table 1 with

little di¤erence between the 1-step and 2-step estimators which is rather encouraging.

In Table 2, we report the same results but now for the second sampling scheme, ��1 = 12�24.
In general the performance of the feasible estimator is worse due to less precise estimates of

�
�2t
	

in the �rst step. To control the added estimation error in the second step, we here have chosen

� = 1=2, � = 1 and � = 2 in the second step. The same picture appears as for the higher frequency.

Again, the intermediate choice of � = 1 yields the most precise estimates with a too low or too high

choices of � reducing precision.

Two results of the simulation study that may seem surprising are: First, the 2-step estimators

outperform the 1-step ones in some cases (��1 = 60 � 24 and � = 1=4; ��1 = 12 � 24 and
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� = 1). This seems to indicate that the pre-smoothing of data actually improves on the performance

of the Nadraya-Watson estimators in some cases. Second, the MSE of the drift estimator with

��1 = 12�24 and � = 1 is lower than the one with ��1 = 60�24 and � = 1=4. This is most likely
due to the fact that the bandwidths h and b in our simulation study have been chosen in a rather

ad hoc manner. It further emphasizes the importance of developing good, data-driven bandwidth

selection procedures for our estimators.

We next analyze the �nite-sample performance of the parametric estimators. We maintain the

SV model in eq. (18) as the DGP with the same parameter values. For this model, the parametric

least-squares criteria of eqs. (7)-(8) are

Q̂1 (�1) =
N�1X
j=1

h
��̂2�j+1 � �

�
�� �̂2�j

�
�
i2
; Q̂2 (�2) =

N�1X
j=1

��
��̂2�j+1

�2
� �2�̂4�j�

�2
;

and the corresponding estimators can be written in the closed form:

�̂ = �aOLS
bOLS

; �̂ = �bOLS; �̂2 = cOLS;

where, with X�j = (1; �̂
2
�j )

F,

 
aOLS

bOLS

!
=
1

�

0@N�1X
j=1

X�jX
0
�j

1A�10@N�1X
j=1

Xj��̂
2
�j+1

1A ; cOLS =
1

�

0@N�1X
j=1

�̂8�j

1A�10@N�1X
j=1

�̂4�j

�
��̂2�j+1

�21A :

Tables 3 and 4 report results for the cases ��1 = 60� 24 and ��1 = 12� 24 respectively. For
both sampling frequencies, we chose, after some experimentation, three pseudo-sampling frequen-

cies, � = 1=12, 1=6 and 1=4. We here note that we use smaller pseudo frequencies compared to the

nonparametric case. It appears as if parametric estimators are less a¤ected by the �rst-step error,

such that we can choose a smaller �.

In contrast to the nonparametric estimators, the infeasible estimators outperform our 2-step

estimators in all cases. Otherwise, patterns similar to those for the nonparametric estimators

appear: First, more data available in the �rst step (� = 1= (24� 60) versus � = 1= (24� 12))
improves the quality of the spot volatility estimator which in turn leads to better performance

of the �nal estimators. Second, a small level of � is not necessarily optimal; for example, with

� = 1= (24� 12), the estimation results based on � = 1=6 generally outperform the ones using

� = 1=12. Otherwise, the performance of the parametric estimators are somewhat mixed across

the di¤erent parameters. The long-run level, �, is estimated consistently well across all sampling

schemes and is close to the infeasible estimator based on observing the volatility process. On the

other hand, relatively large biases are incurred when implementing our estimator for the mean-

reversion parameter, �: For example, in the case with � = 1= (24� 12) and � = 1=6, the smallest
squared bias of our estimator is 14:4633�10�4 compared to 2:3990�10�4 for the infeasible estimator.
Finally, the performance of our estimator of �2 falls somewhere in between these two cases.
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6 Conclusion and Extensions

We have proposed a method for the estimation of SV models in the presence of high-frequency

data. The asymptotic properties of the estimator were derived and their �nite-sample precision

examined in a simulation study. It is of interest to extend our estimation method in a number of

directions; we discuss these below.

In the observation equation, it would be of interest to allow for market microstructure noise

and for jumps. The presence of these would a¤ect the performance of the kernel �lter �̂2t . In

Kristensen (2010a), methods to handle noise and jumps in the kernel �ltering are proposed; these

could without problems be used also in our context. However, the asymptotic and �nite-sample

impact of using these di¤erent �rst-step estimators should be analyzed.

In the state equation for �2t , it could also be of interest to allow for jumps. Again, Kristensen

(2010a) discusses how these can be handled in the pre-estimation of �2t . This estimator could then

be combined with the nonparametric estimation procedure for jump-di¤usions proposed in Bandi

and Nguyen (2003); see also Bandi and Renò (2008).

Finally, our theoretical results ignore the �rst-step sampling error. It would be useful to extend

our asymptotic results to include both �rst- and second-step sampling errors. A �rst step in this

direction has been made by Mammen, Rothe and Schienle (2010) in a cross-sectional setting.
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A Proofs

A.1 Proof of Theorem 1: Spot Volatility Estimator

As noted in the main text, our proof of the uniform convergence result will rely on almost sure Hölder

continuity of the process t 7! �2t uniformly over the in�nite time interval [0;1). The following
lemma shows that indeed the spot volatility process has this property under weak conditions. The

lemma follows from a more general result on uniform Hölder continuity of stochastic processes

stated in Appendix A.6.

Lemma 1 Suppose that (A.3) holds. Then, for any  2 (0; �=�), there exists some constant

D (> 0) such that

Pr

24! 2 

������9 �� (!) s.t. sup

jt�sj2(0; ��(!)); s;t2[0;1)

���2t (!)� �2s (!)��
jt� sj � D

35 = 1: (19)

Proof. From (A.3) and Lemma 9, there exists a continuous modi�cation f~�2t g of
�
�2t
	
which is

a.s. Hölder globally over [0;1). Identifying
�
�2t
	
with f~�2t g, we have eq. (19).

Next, we expand the spot volatility estimator and analyze each of the terms in this expansion.

In what follows, we extend the processes f�tg and
�
�2t
	
by letting �t = �2t = 0 if t < 0. By Ito�s

lemma for continuous semimartingales,
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Thus, the left-hand side of (10) is bounded by

sup
�2[0;T ]

���̂2� � �2� �� � 2R1 + 2R2 + 2R3 + 2R4 +R5;
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�2[0;T ]

�����
nX
i=2

Kh (ti�1 � �)
Z ti

ti�1

 Z s

ti�1

�udWu

!
�sdWs

����� ;
R5 : = sup

�2[0;T ]

�����
nX
i=2

Kh (ti�1 � �)
Z ti

ti�1

�2sds� �2�

����� :
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We show below that

R1 = OP

�
�T (2+2l1)=(2+p)h�2=(2+p)

�
; (20)

R2 = OP

�
�1=2T f2+p(1+m1)=2+l1+m1g=(2+p)h�(2+p=2)=(2+p)

�
; (21)

R3 = OP (h
) ; (22)

R4 = OP (h
) ; (23)

R5 = OP
�
�T 1+m1=h2

�
+Oa:s: (h

) : (24)

Together, eqs. (20)-(24) establish the desired result (10) (we can see that R1 is of smaller order

than R2 by comparing eq. (28) with eq. (30)).

Proof of eq. (20). By Jensen�s inequality and max1�i�n jti � ti�1j � �,�����
Z ti

ti�1

 Z s

ti�1

�udu

!
�sds

����� �
Z ti

ti�1

 Z ti

ti�1

j�uj du
!
j�sj ds =

 Z ti

ti�1

�sds

!2
� �

Z ti

ti�1

�2sds:

Thus, for a sequence �T !1 as T !1,

R1 � � sup
�2[0;T ]

nX
i=2

jKh (ti�1 � �)j
Z ti

ti�1

j�sj2 ds

= � sup
�2[0;T ]

nX
i=2

jKh (ti�1 � �)j
Z ti

ti�1

j�sj2 1 fj�sj � �T g ds

+� sup
�2[0;T ]

nX
i=2

jKh (ti�1 � �)j
Z ti

ti�1

j�sj2 1 fj�sj > �T g ds

=: R11 +R12: (25)

Here, R11 is the truncated version of R1 and satis�es

R11 = � sup
�2[0;T ]

nX
i=2

1

h

Z ti

ti�1

����K �s� �h +
tj�1 � s

h

����� j�sj2 1 fj�sj � �T g ds

= � sup
�2[0;T ]

1

h

Z T

0

����K �s� �h +O (�=h)

����� j�sj2 1 fj�sj � �T g ds

= � sup
�2[0;T ]

Z (T��)=h

��=h
jK (u+O (�=h))j

���uh+� ��2 1����uh+� �� � �T
	
du

� �(�T )
2 �

Z 1

�1
jK (u+O (�=h))j du = O

�
�(�T )

2
�
: (26)

Note that
R1
�1 jK (u+O (�=h))j du !

R1
�1 jK (u)j du as �=h ! 0 by the assumption that K 2

K (1; 1) and the bounded convergence theorem. As for R12,

E [R12] � E

�
� �K

1

h

Z T

0
j�sj2 1 fj�sj > �T g ds

�
�

�K

h (�T )
p�T sup

s�T
E
h
j�sj2+p

i
= O

�
�T 1+l1

h (�T )
p

�
;

(27)
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where the last equality follows from assumption (A.1). Now, choose �T = T (1+l1)=(p+2)h�1=(p+2).

Then, eqs. (25)-(27) establish that

R1 = O
�
�(�T )

2
�
+OP

�
�T 1+l1

h (�T )
p

�
= OP

�
�T (2+2l1)=(2+p)h�2=(2+p)

�
: (28)

Proof of eq. (21). By an application of Hölder�s inequality, we have

R2 � sup
�2[0;T ]

nX
i=2

jKh (ti�1 � �)j
Z ti

ti�1

j�sj ds max
s2[ti�1;ti]

�����
Z s

ti�1

�udWu

����� �pR21 �R22; (29)

where

R21 : = sup
�2[0;T ]

nX
i=2

jKh (ti�1 � �)j
 Z ti

ti�1

j�sj ds
!2
; and

R22 : = sup
�2[0;T ]

nX
i=2

jKh (ti�1 � �)j
����� max
s2[ti�1;ti]

 Z s

ti�1

�udWu

!�����
2

:

With f�T gT�0 being as before: R21 = O
�
�(�T )

2
�
+OP

�
�T (1+l1)

h(�T )
p

�
by the same arguments as for

R1, while

E [R22] = E

24 sup
�2[0;T ]

nX
i=2

jKh (ti�1 � �)j
����� max
s2[ti�1;ti]

 Z s

ti�1

�udWu

!�����
2
35

�
�K

h

nX
i=1

CE

"Z ti

ti�1

�2udu

#
� �KC

T

h
sup
s�T

E
�
�2s
�
= O

�
T 1+m1

h

�
;

by the Burkholder-Davis-Gundy inequality and assumption (A.1). Given these with eq. (29) and

the choice of �T = T (1+l1)=(p+2)h�1=(p+2), we obtain

R2 =

(
O
�
�(�T )

2
�
+OP

 
�T (1+l1)

h (�T )
p

!)1=2�
OP

�
T 1+m1

h

��1=2
(30)

= OP

�
�1=2T f2+p(1+m1)=2+l1+m1g=(2+p)h�(2+p=2)=(2+p)

�
:

Proof of eq. (22). First, let Tk := f� 2 [0; T ] : j� � �kj � T=�T g ; k = 1; : : : ; �T , be a covering

of [0; T ], where �T is the number of intervals, and �k is the center of each interval Tk. Then, R3 is
bounded by

R3 � max
k2f1;:::;�T g

sup
�2Tk

�����
nX
i=2

[Kh (ti�1 � �)�Kh (ti�1 � �k)]
Z ti

ti�1

 Z s

ti�1

�udu

!
�sdWs

�����
+ max
k2f1;:::;�T g

�����
nX
i=2

Kh (ti�1 � �k)
Z ti

ti�1

 Z s

ti�1

�udu

!
�sdWs

�����
= : R31 +R32:
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The following bound of R31 then holds:

R31 � max
k2f1;:::;�T g

sup
�2Tk

(
nX
i=2

[Kh (ti�1 � �)�Kh (ti�1 � �k)]2
)1=2

�

8<:
nX
i=2

 Z ti

ti�1

 Z s

ti�1

�udu

!
�sdWs

!29=;
1=2

� 1

h

(
n �K2

�
T

h�T

�2
�OP

�
�2T 1+�

�)1=2
= O

 
�1=2T 2+�=2

h2�T

!
; (31)

where � := max fl2;m2g. The �rst inequality holds by Holder�s inequality; and the second by the
global Lipschitz continuity of K and by the following result:

E

24 nX
i=2

 Z ti

ti�1

 Z s

ti�1

�udu

!
�sdWs

!235 = E

24 nX
i=2

Z ti

ti�1

 Z s

ti�1

�udu

!2
�2sds

35
� E

"
�

nX
i=2

Z ti

ti�1

�2udu

Z ti

ti�1

�2sds

#
(32)

� E

"
�2

2

nX
i=2

Z ti

ti�1

�4udu+

Z ti

ti�1

�4sds

#
= O

�
�2T 1+�

�
; (33)

where Jensen�s inequality and the inequality AB �
�
A2 +B2

�
=2 have been used to derive eqs.

(32) and (33), respectively. Next, consider the term R32: De�ne a function % : [0;1)! [0;1) as

% (s) := ti�1 if s 2 [ti�1; ti): (34)

Using this function, we can re-write the inside of the absolute-value sign of R32 as

nX
i=2

K

�
ti�1 � �k

h

�Z ti

ti�1

 Z s

ti�1

�udu

!
�sdWs =

Z T

0
K

�
% (s)� �k

h

� Z s

%(s)
�udu

!
�sdWs =Mk

T (1) ;

where Mk
T (r) :=

R rT
0 K

�
%(s)��k

h

��R s
%(s) �udu

�
�sdWs. Note that

�
Mk
T (r)

	
r2[0;1] is a continuous

martingale (for each k and T ) which vanishes at zero and has the quadratic variation process

D
Mk
T

E
r
=

Z rT

0
K2

�
% (s)� �k

h

� Z s

%(s)
�udu

!2
�2sds: (35)

Then, for any non-stochastic c (> 0), it holds that

Pr
����Mk

T (1)
��� � c

�
� Pr

����Mk
T (1)

��� � c;
D
Mk
T

E
1
� �T

�
+ Pr

�D
Mk
T

E
1
> �T

�
; (36)

where f�T g is a sequence that depends on T . We show that each term of the right-hand of eq.

(36) tends to zero (for an appropriate choice of c and �T ). Applying the exponential inequality for

30



continuous martingales (see, e.g., Exercise 3.15 in Ch. IV of Revuz and Yor, 1999 or Dzhaparidze

and van Zanten, 2001) to the �rst term of the right-hand side of eq. (36), we have

Pr
����Mk

T (1)
��� � c;

D
Mk
T

E
1
� �T

�
� 2 exp

�
� c2

2�T

�
: (37)

To �nd the bound for the second term of eq. (36), Pr
�

Mk
T

�
1
> �n

�
, we derive an upper bound for


Mk
�
T
:

D
Mk
T

E
1
� �K2

Z T

0

 Z s

%(s)
�udu

!2
�2sds � �K2

nX
i=2

Z ti

ti�1

 Z ti

ti�1

�udu

!2
�2sds

� � �K2
nX
i=2

 Z ti

ti�1

�2udu

!Z ti

ti�1

�2sds

� �
�
�K2=2

� nX
i=2

24 Z ti

ti�1

�2udu

!2
+

 Z ti

ti�1

�2sds

!235
� �2

�
�K2=2

� nX
i=2

"Z ti

ti�1

�4udu+

Z ti

ti�1

�4sds

#
= �2

�
�K2=2

� �Z T

0
�4udu+

Z T

0
�4sds

�
where Jensen�s inequality and the inequality AB �

�
A2 +B2

�
=2 have been used. This implies that

Pr
�D
Mk
T

E
1
> �T

�
� Pr

�
�2
�
�K2=2

� �Z T

0
�4udu+

Z T

0
�4sds

�
> �T

�
�

�
�K2=2

� �2T
�T

 
sup
s�T

E
�
�4s
�
+ sup
s�T

E
�
�4s
�!
= O

�
�2T 1+�

�T

�
(38)

by Markov�s inequality and assumption (A.1)-(A.2), where � := max fl2;m2g. By eqs. (36), (37)
and (38),

Pr
�
Mk
T (1) � c

�
� 2 exp

�
� c2

2�n

�
+O

�
�2T 1+�

�T

�
: (39)

Note that the right-hand side of eq. (39) does not depend on k. Thus, setting c = JaT where J is

any positive constant and faT g is a sequences which tend to zero as T !1,

Pr (R32 � JaT ) = Pr

�
1

h
max

k2f1;:::;�T g

���Mk
T (1)

��� � JaT

�
�

�TX
k=1

Pr
����Mk

T (1)
��� � JaTh

�
= 2�T exp

�
�J

2a2Th
2

2�T

�
+O

�
�T�

2T 1+�

�T

�
: (40)

If the right-hand side of eq. (40) shrinks to zero as J !1, then R32 = OP (aT ).

Now, letting aT = h , �T = �1=2T 2+�=2=h2+ and �T = J�T�
2T 1+�, we have R31 = O (h)

and

Pr (R32 � Jh) = 2 exp

(
log

 
�1=2T 2+�=2

h2+

!
� J h4+3

�5=2T 3+3�=2

)
+O

�
J�1

�
:
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Note that the �rst and second conditions in (B.1) implies that �5=2T 3+3�=2=h4+3 ! 0, and there-

fore

log

 
�1=2T 2+�=2

h2+

!
� J h4+3

�5=2T 3+3�=2

=
h4+3

�5=2T 3+3�=2| {z }
!1

8>>><>>>:
�
log�1=2

� �5=2T 3+3�=2
h4+3| {z }

=o(log�1=2)

� J
h
log T (2+�=2) + log (1=h)(2+)

i �5=2T 3+3�=2
h4+3| {z }

=O(1)

9>>>=>>>;
! �1:

This implies that Pr (R32 � Jh)! 0 for any J , which establishes the desired result.

Proof of eq. (23). The convergence rate of R4 can be derived in the similar manner as for R3.
Construct a covering of [0; T ], fUkgvTk=1 : Each Uk has the radius T=vT from the center �k. Then,

R4 � max
k2f1;:::;vT g

sup
�2Uk

�����
nX
i=2

[Kh (ti�1 � �)�Kh (ti�1 � �k)]
Z ti

ti�1

 Z s

ti�1

�udWu

!
�sdWs

�����
+ max
k2f1;:::;vT g

�����
nX
i=1

Kh (ti�1 � �k)
Z ti

ti�1

 Z s

ti�1

�udWu

!
�sdWs

�����
=: R41 +R42: (41)

By arguments similar to those in deriving the bound of R31 in eq. (31),

R41 �
(

max
k2f1;:::;vT g

sup
�2Uk

nX
i=2

[Kh (ti�1 � �)�Kh (ti�1 � �k)]2
)1=2

�

8<:
nX
i=2

"Z ti

ti�1

 Z s

ti�1

�udWu

!
�sdWs

#29=;
1=2

� 1

h

�
�K2 nT

2

h2v2T
�OP

�
�T (1+m2)

��1=2
= OP

 
T (2+m2=2)

h2vT

!
; (42)

To �nd the probability bound of R42, de�ne a continuous martingale
�
Nk
T (r)

	
r2[0;1] for each k and

T by

Nk
T (r) :=

Z rT

0
K

�
% (s)� �k

h

� Z s

%(s)
�udWu

!
�sdWs;

whose quadratic variation process
�

Nk
T

�
r

	
is computed analogously to

�

Mk
T

�
r

	
. Then, by the

same arguments as for R32,

Pr (jR42j > JbT ) �
vTX
k=1

h
Pr
����Nk

T (1)
��� � JbTh;

D
Nk
T

E
1
� �T

�
+ Pr

�D
Nk
T

E
1
> �T

�i
:

Since

Pr
����Nk

T (1)
��� � JbTh;

D
Nk
T

E
1
� �T

�
� 2vT exp

�
�J2b2Th2=2�T

	
;
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and Pr
�

Nk
T

�
1
> �T

�
= O

�
�T (1+m2)=�T

�
, which can be derived analogously to eqs. (37) and (38),

it holds that

Pr (jR42j > JbT ) � 2vT exp
�
�J

2b2Th
2

2�T

�
+O

 
vn�T

(1+m2)

�T

!
: (43)

With bT = h , vT = T (2+m2=2)=h2+ and �T = JvT�T
(1+m2), we have R41 = OP (h

) and

Pr (jR42j > Jh) � 2 exp
(
log

 
T (2+m2=2)

h2+

!
� Jh4+3

2�T (3+m2=2)

)
+O

�
J�1

�
: (44)

Given the second condition in (B.1),

log

 
T (2+m2=2)

h2+

!
� Jh4+3

2�T (3+m2=2)

=
h4+3

�T 3+3m2=2| {z }
!1

8>><>>:
�T (3+m2=2)

h4+3
[(2 +m2=2) log T + (2 + ) log (1=h)]| {z }

=O(1)

� J

2

9>>=>>;! �1 for large J:

Therefore, the left-hand side of eq. (44) tends to zero as J !1, and R42 = OP (h
).

Proof of eq. (24). Assumption (A.2) and Lemma 1 imply that there exists some �� (> 0) such
that for any � � ��, j�t � �sj � D jt� sj a.s. We have

R5 = sup
�2[0;T ]

�����
nX
i=2

1

h

Z ti

ti�1

K

�
s� �
h

+
ti�1 � s

h

�
�2sds� �2�

�����
= sup

�2[0;T ]

����1h
Z T

0
K

�
s� �
h

+ k (s)

�
�2sds� �2�

����
� sup

�2[0;T ]

1

h

Z (T��)=h

��=h
jK (u+ k (s))j

���2uh+� � �2� �� du
� Dh

Z 1

�1
jK (u+ k (s))j juj du; (45)

where k (s) = (% (s)� s) =h and % (s) is de�ned in eq. (34). Noting that k (s) = O (�=h) uniformly

over s, we can show
R1
�1 jK (u+ k (s))j juj

 du =
R1
�1 jK (u+O (�=h))j juj

 du < 1 by using the

dominated convergence theorem with K� (u) juj a dominant function, where K� is constructed in

the following manner:

K� (u) :=

8>><>>:
�K if juj � C + �";

jK (C)j � �K

�"
[u� C � �"] + �K if juj 2 (C + �"; C + 2"];

jK (u� 2�")j if juj > C + 2�":

(46)

where �" (> 0) is some constant. Since K is monotone for jxj � C, it holds that jK (u+ k (s))j �
K� (u) for any s if sups % (s) � �" (recall that % (s) = O (�=h) uniformly over any s). We can

also show that
R
K� (u) juj du < 1 if

R
jK (u)j juj du < 1, which follows from K 2 K (1; 1) and

 < 1=2. Eq. (45) now yields the desired result.
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A.2 Proof of Theorem 2: Nonparametric Drift Estimator

As in eq. (11), we split up �̂ (x) � � (x) into two terms. The �rst term of the right-hand side

of eq. (11) converges to zero by Lemma 2 under (B-NDR.i). Noting that h=b�1=2 ! 0 and

�=b ! 0 respectively imply h=b < �1=2 and �1=2 < b1=2 , the condition of Lemma 2 is satis�ed

with q = 1=2. The convergence of the second term is investigated in Lemma 3. The condition (B-

NDR.ii) ensures that the �rst term �̂ (x)� ~� (x) has no e¤ect such that the asymptotic distribution
is completely determined by ~� (x)� � (x).

Lemma 2 Assume that (A.1), (A.2�) and (B.1�) are satis�ed, K 2 K (1; 1) and K 2 K (2; 2). If
there exists some q (> 0) such that h=b = O (bq), then

�̂ (x)� ~� (x) = OP

�
h
.
b�1=2

�
+OP (h

=�) : (47)

as T;N !1 and � ! 0 with b! 0.

Proof. We �rst split up the left-hand side of eq. (47) into three terms:

�̂ (x)� ~� (x) = A1 +A2 +A3;

where

A1 :=
(1=T )

PN�1
j=1 Kb

�
�2�j � x

��
�2�j+1 � �

2
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� �
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�
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2
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�
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PN
j=1Kb

�
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A2 :=
(1=T )
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h
Kb
�
�̂2�j � x

�
�Kb

�
�2�j � x

�i�
�2�j+1 � �

2
�j

�
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PN
j=1Kb

�
�̂2�j � x
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A3 :=
(1=T )

PN�1
j=1 Kb

�
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� h�
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2
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�
�
�
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2
�j
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PN
j=1Kb
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We below show that A1 = OP
�
h(d+1)=bd+2

�
, A2 = OP

�
h=

�
b�1=2

��
and A3 = OP (h

=�) which

establish the result stated in eq. (47). Before showing the convergence result of each term, we

present the following useful result which we use repeatedly: for any d > 0,

�

T
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h
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�
�2�j � x

�
�Kb

�
�̂2�j � x

�i
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�
h

b

�
: (48)
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Proof of eq. (48). To �nd the probability bound, look at

the left-hand side of eq. (48)

=
1

N

NX
j=1

1

b
K0
��
�2�j � x

�
b�1 � wj

�
�2�j � �̂

2
�j

�
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�
� wj

�
�2�j � �̂

2
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�
b�1

� sup
1�j�N
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����2�j � �̂2�j ��� b�1
�

8<: 1

N
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1

b

���K0 ���2�j � x� b�1 � wj ��2�j � �̂2�j� b�1����1nwj ����2�j � �̂2�j ��� b�1 � ��o

+
1

N

NX
j=1

1

b

���K0 ���2�j � x� b�1 � wj ��2�j � �̂2�j� b�1����1nwj ����2�j � �̂2�j ��� b�1 > ��o
9=;

(49)

� OP (h
=b)

�

8<: 1

N

NX
j=1

1

b
K�
��
�2�j � x

�
b�1
�
+
1

N

NX
j=1

�K

b
�
 
sup1�j�N wj j�2�j � �̂

2
�j jb

�1

��

!1=q9=;
= OP (h

=b)�
(
OP (1) +

�K

b
�OP

 �
bq

��

�1=q!)
; (50)

where the �rst equality holds by the mean-value theorem with wj 2 [0; 1], j = 1; : : : ; N , being some
random variables. The inequality (49) holds by eq. (12) and���K0 ���2�j � x� b�1 + wj ��2�j � �̂2�j� b�1����1nwj ����2�j � �̂2�j ��� b�1 � ��o � K� ���2�j � x� b�1�

(51)

where K� is some function and �� is some positive constant, such that

sup
j�j���

���K0 ���2�j � x� b�1 + ����� � K� ���2�j � x� b�1� :
Since K 2 K (0; 1), such K� and �� exist by the same argument in showing the convergence of R5
in the proof of Theorem 1, where we can let K� (u) = K� (u) as given in eq. (46). The equality

in eq. (50) holds since N�1PN
j=1K�b

�
�2�j � x

�
= OP (1) and wj

�
�2�j � �̂

2
�j

�
b�1 = OP (h

=b)

(uniformly over any j), where the former follows from the positive recurrence of the process
�
�2t
	

and standard arguments on the kernel estimation with the uniform boundedness of K� and its tail
decay condition.

Convergence of A1. The term A1 can be re-written as

A1 =
(1=T )

PN�1
j=1 Kb

�
�2�j � x

��
�2�j+1 � �

2
�j

�
(�=T )

PN
j=1Kb

�
�̂2�j � x

�
� (�=T )

PN
j=1Kb

�
�2�j � x

�� 1
N

NX
j=1

h
Kb
�
�2�j � x

�
�Kb

�
�̂2�j � x

�i
:
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By eq. (48), and

1

T

N�1X
j=1

Kb
�
�2�j � x

��
�2�j+1 � �

2
�j

�
= � (x)� (x) + oP (1) ; (52)

�

T

NX
j=1

Kb
�
�2�j � x

�
= � (x) + oP (1) ; (53)

we have

A1 =
� (x) + oP (1)

(�0 (x) + oP (1))
2 �OP

�
h

b

�
= OP

�
h

b

�
:

Convergence of A2. Write the numerator of the term A2 as:

1

T

N�1X
j=1

h
Kb
�
�̂2�j � x

�
�Kb

�
�2�j � x

�i�
�2�j+1 � �

2
�j

�
= Anu21 +A

nu
22 : (54)

where

Anu21 :=
1

T

N�1X
j=1

h
Kb
�
�̂2�j � x

�
�Kb

�
�2�j � x

�i Z �j+1

�j

�
�
�2s
�
ds;

Anu22 :=
1

T

N�1X
j=1

h
Kb
�
�̂2�j � x

�
�Kb

�
�2�j � x

�i Z �j+1

�j

�
�
�2s
�
dZs:

By a similar argument to show (50), we can �nd the bound of Anu21 :

Anu21 � sup
1�j�N

wj

����2�j � �̂2�j ��� b�1 �
8<: 1T

N�1X
j=1

1

b

Z �j+1

�j

K�
��
�2s � x

�
b�1
� ��� ��2s��� ds

+
�K

b

1

T

N�1X
j=1

Z �j+1

�j

��� ��2s��� ds�
 
sup1�j�N wj j�2�j � �̂

2
�j jb

�1

��

!1=q9=;
= OP (h

=b)�
(
OP (1) +

�K

b
�Op (1)�OP

 �
b

��

�1=q!)
= OP (h

=b) ; (55)

where we have used

1

T

N�1X
j=1

1

b

Z �j+1

�j

K�
��
�2s � x

�
b�1
� ��� ��2s��� ds = OP (1) ;

1

T

NX
j=1

Z �j

�j�1

��� ��2s��� ds = OP (1) :
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Note that both the equalities holds by the condition (A.2�). Next, look at the term Anu22 . We use a

similar argument to show eq. (48):

Anu22 =
1

T

N�1X
j=1

h
Kb
�
�̂2�j � x

�
�Kb

�
�2�j � x

�i Z �j+1

�j

�
�
�2s
�
dZs

=
1

T

N�1X
j=1

1

b
K0
��
�2�j � x

�
b�1 + wj

�
�2�j � �̂

2
�j

�
b�1
�
wj

�
�2�j � �̂

2
�j

�
b�1

Z �j+1

�j

�
�
�2s
�
dZs

� sup
1�j�N�1

wj

����2�j � �̂2�j ��� b�1
�
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N�1X
j=1

1

b

���K0 ���2�j � x� b�1 + wj ��2�j � �̂2�j� b�1����
�����
Z �j+1

�j

�
�
�2s
�
dZs

�����
� 1

n
wj

����2�j � �̂2�j ��� b�1 � ��o
+
1

T

N�1X
j=1

1

b

���K0 ���2�j � x� b�1 + wj ��2�j � �̂2�j� b�1����
�����
Z �j+1

�j

�
�
�2s
�
dZs

�����
� 1

n
wj

����2�j � �̂2�j ��� b�1 > ��o
9=;

� sup
1�j�N�1

wj

����2�j � �̂2�j ��� b�1 �
8<: 1T

N�1X
j=1

1

b
K�
��
�2�j � x

�
b�1
� �����
Z �j+1
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�
�
�2s
�
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+
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T
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j=1

�K

b
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Z �j+1

�j

�
�
�2s
�
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������
 
sup1�j�N�1wj j�2�j � �̂

2
�j jb

�1

��

!d9=;
= OP (h

=b)�
(
OP

�
��1=2

�
+
�K

b
�OP

�
��1=2

�
�OP

 �
h

b

�d!)
; (56)

where the last equality uses

1

T

N�1X
j=1

1

b
K�
��
�2�j � x

�
b�1
� �����
Z �j+1

�j

�
�
�2s
�
dZs

����� = OP

�
��1=2

�
; and (57)

1

T

NX
j=1

�����
Z �j

�j�1

�
�
�2s
�
dZs

����� = OP

�
��1=2

�
: (58)
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Eq. (58) follows by (B-NDR.i) and the Burkholder-Davis-Gundy inequality, while eq. (57) can be

shown as follows:

E

24 1
T

N�1X
j=1

1

b

�����
Z �j

�j�1

K�
��
�2�j � x

�
b�1
�
�
�
�2s
�
dZs

�����
35

� 1

T
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1

b
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24�����
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h
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�
�
�
�2s
�i2

ds

�����
1=2
35

� 1

T

N�1X
j=1

1

b

(
E

�n
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��
�2�j � x

�
b�1
�o2�

E

"Z �j

�j�1

�2
�
�2s
�
ds

#)1=2

� 1

T

N�1X
j=1

E
h
K�
��
�2�j � x

�
b�1
�i(

E

"Z �j

�j�1

�2
�
�2s
�
ds

#)1=2
= O

�
��1=2

�
;

where Ito�s isometry and Holder�s and Schwartz�s inequalities are used. The last equality holds

since b�1E
h
K�
�
(�2�j � x)b

�1
�i

= O (1) and E
hR �j
�j�1

�2
�
�2s
�
ds
i
= O (�). Noting that we can

show that the denominator of the term A2 is OP (1) by using eqs. (48) and (53), we have

A2 =
Anu21 +A

nu
22

OP (1)
=
OP (h

=b) +OP

�
h=b�1=2

�
OP (1)

= OP

�
h=b�1=2

�
:

by eqs. (54), (55) and (56).

Convergence of A3.

A3 �
(1=T )

PN�1
j=1

���Kb ��̂2�j�1 � x�����O �2 sup�2[0;T ] ���̂2� � �2� ���
(�=T )

PN
j=1Kb

�
�̂2�j � x

� = OP (h
=�) :

Now, the proof is completed.

Lemma 3 Assume that (A.2�) holds, and K 2 K (2; 2). If N;T ! 1 and b ! 0 with �=b ! 0

and Tb!1, then ~� (x) P! � (x). If in addition Tb�2 ! 0 and Tb5 = O (1), then

p
Tb
�
~� (x)� � (x)� b2 � bias� (x)

� d! N

�
0; �4 (x)

Z
K2 (z) dz

�
;

where bias� (x) is given in Theorem 2.

Proof. We follow similar steps as in Bandi and Phillips (2003) noting the followings: Their

theorems are based on the assumptions that (i) the process is not necessarily stationary/ergodic,

but only Harris recurrent; and (ii) the path of the di¤usion process is a.s. uniformly continuous with

the degree of
p
� log (1=�). Bandi and Phillips (2003) then require that

p
� log (1=�)�L (x; T ) =b! 0

for both the consistency and the asymptotic normality, with �L (x; T ) denoting the chronological

local time. However, when the ergodicity of the process is assumed, this condition can be weakened

to
p
� log (1=�)=b and

p
Tb �

p
� log (1=�) ! 0 for the consistency and asymptotic normality,

respectively.
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Finally, note that the uniform continuity assumption in (ii) may not be always justi�ed under

the long-span scheme (see Kanaya, 2010b). Instead, we only assume that the degree of the uniform

continuity of the di¤usion process is � (for some  2 (0; 1=2)) instead of
p
� log (1=�), which can

be justi�ed by the condition (A.2.ii) and arguments in Appendix A.6.

A.3 Proof of Theorem 3: Nonparametric Di¤usion Estimator

We follow the same strategy as in the proof of Theorem 2: First, write

�̂
2
(x)� �2 (x) =

h
�̂
2
(x)� ~�2 (x)

i
+
h
~�
2
(x)� �2 (x)

i
;

where the two terms in the right-hand side are analyzed in Lemma 4 and 5 respectively. Note

that h=�1� ! 0 and �=b ! 0 respectively imply h < �1� and �1� < b
1�
 , and thus

h=b < b
1�

�1
= b

1�2
 . Therefore, the condition of Lemma 4 is satis�ed with q = (1� 2) =.

The condition (B-NDI.ii) ensures that �̂
2
(x) � ~�

2
(x) = oP (1=

p
Nb), and thus the asymptotic

distribution is determined by
p
Nb
h
~�
2
(x)� �2 (x)

i
.

Lemma 4 Assume that (A.1), (A.2�) and (B.1�) are satis�ed, K 2 K (1; 1) and K 2 K (2; 2). If
there exists some q (> 0) such that h=b = O (bq), then

�̂
2
(x)� ~�2 (x) = OP (h

=b) +OP
�
h=�1�

�
;

as N;T !1 with b; � ! 0 and h=�1� ! 0.

Proof. Similarly to the proof of Lemma 2,

�̂
2
(x)� ~�2 (x) = B1 +B2 +B3;

where
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(1=T )
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2
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B3 :=

(1=T )
PN�1
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�
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2
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2
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�2�
(�=T )

PN
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�
�̂2�j � x

� :

We claim that B1 = OP (h
 /b), B2 = OP (h

 /b), and B3 = OP
�
h=�1�

�
. First, the convergence

of B1 follows from the same arguments as for A1 in Lemma 1. Next, look at the numerator of the
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term B2:
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+
�K

Tb

N�1X
j=1

�
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2
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2
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= OP (h
=b)�

(
OP (1) +

�K

b
�OP (1)�OP
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bq

��

�1=q!)
;

where the �rst equality holds by the mean-value theorem with wj 2 [0; 1], j = 1; : : : ; N � 1, being
some random variables. The last equality holds since we can show

1

Tb

N�1X
j=1

K�
 
�2�j � x

b

!�
�2�j+1 � �

2
�j

�2
= OP (1) ;

1

T

N�1X
j=1

�
�2�j+1 � �

2
�j

�2
= OP (1) :

Finally, to show the convergence of B3, look at the following quantity:

sup
1�j�N�1

������̂2�j+1 � �̂2�j�2 � ��2�j+1 � �2�j�2����
� 2 sup

�2[0;T ]

���̂2� � �2� ��� sup
1�j�N�1

�����̂2�j+1 � �̂2�j�+ ��2�j+1 � �2�j����
= 2 sup
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���̂2� � �2� ��� sup
1�j�N�1
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� 2 sup
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"
2 sup
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= OP
�
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�
+OP (h

)�Oa:s: (�) ; (59)

where the last equality by eq. (12) and Lemma 1. Note that T�1
PN�1
j=1 Kb

�
�̂2�j�1 � x

�
= OP

�
��1
�
.

Note also that  2 (0; 1=2) and h=�1� ! 0 imply h=� ! 0, and therefore h2��1 = h=�1� �
h=� � h=�1� , which, together with eq. (59), establishes the desired result B3 = OP

�
h=�1�

�
.

This completes the proof.
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Lemma 5 Assume that (A.2�) holds, and K 2 K (2; 2). If N;T ! 1; b ! 0 with �=b ! 0 and

Nb!1, then ~�2 (x) P! �2 (x). If in addition Nb�2 ! 0 and Nb5 = (1), then

p
Nb
h
~�
2
(x)� �2 (x)� b2 � bias�2 (x)

i
d! N

�
0; 4�2 (x)

Z
K2 (z) dz

�
;

where bias�2 (x) is given in Theorem 3.

Proof. This follows from the same arguments as in Bandi and Phillips (2003); see also the remarks
made in the proof of Lemma 3.

A.4 Proof of Theorems 4-5: Semiparametric Estimators

To derive the asymptotic results for the proposed estimator, we re-de�ne the objective functions.

Instead of Q̂k (�k) (for k = 1; 2) in eq. (7), we consider the following objective functions:

R̂1
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The maximizer of Rk
�
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2
�
is equal to the original estimator �̂k de�ned in eq. (9) as the

maximizer of Q̂k (�k). This re-de�nition facilitates our subsequent analyses (note that for any

normalization factor aT , a
�1
T
~Q1 (�1) does not converge to the mean of the squared di¤erenceR

I [� (y; �1)� � (y)]
2 � (y) dy; the same argument also applies to a�1T ~Q2 (�2)). We also introduce

their limits:
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�
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The �rst and second order derivatives of the above objective functions are
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;
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and
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We �rst state the asymptotic distribution of the infeasible estimators:

Lemma 6 Suppose that the conditions in (A.2�) are satis�ed, and let T !1 and � ! 0.

(i) If (A-SDR) holds, then

sup
�k2�k

���R̂k ��k; �2��Rk (�k)��� = oP (1) ; and sup
�k2�k

Ĥk ��k; �2��Hk (�k) = oP (1) ; (60)

with k = 1 and thus ~�1
P! ��1. Moreover, if T�

2 ! 0, then

p
T Ŝ1

�
��1; �

2
� d! N (0;
�1) ; and

p
T
h
~�1 � ��1

i
d! N

�
0;H��1

1 
�1H
��1
1

�
;

where 
�1 and H
�
1 are given in Theorem 4.

(ii) If (A-SDI) holds, then the results (60) hold with k = 2 and thus ~�2
P! ��2. Moreover, if T� ! 0,

then
p
nŜn

�
��2; �

2
� d! N (0;
�2) ; and

p
n
h
~�2 � ��2

i
d! N

�
0;H��1

2 
�2H
��1
2

�
;

where 
�2 and H
�
2 are given in Theorem 5.

Proof. This follows along the same lines as in Sørensen (2009) or Yoshida (1992), and so we omit
the proof.

Next, we derive the stochastic di¤erence between the feasible and infeasible objective function

and its derivatives

Lemma 7 Assume that (A.1), (A.2�) and (B.1�) are satis�ed, K 2 K (1; 1). If the condition

(A-SDR.iii) holds, then ���R̂1 ��1; �̂2�� R̂1 ��1; �2���� = OP (h
=�) ; (61)

p
T
Ŝ1 ���1; �̂2�� Ŝ1 ���1; �2� = OP

�
T 1=2h=�

�
; (62)Ĥ1 ��1; �̂2�� Ĥ1 ��1; �2� = OP (h

=�) ; (63)

where (61) and (63) hold uniformly over any �1 2 �1.
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Proof. We only prove eq. (61) since the proofs of eqs. (62)-(63) are analogous. Write R̂1
�
�1; �̂

2
�
�

R̂1
�
�1; �

2
�
= a (�1)� 2b (�1), where

a (�1) : =
1

T

N�1X
j=1

h
�2
�
�2�j ; �1

�
� �2

�
�̂2�j ; �1

�i
�;

b (�1) : =
1

T

N�1X
j=1

h
�
�
�2�j ; �1

��
�2�j+1 � �

2
�j

�
� �

�
�̂2�j ; �1

��
�̂2�j+1 � �̂

2
�j

�i
:

We below derive the convergence rate of each term. By the mean-value theorem, for some wj 2 [0; 1],

a (�1) =
1

N

N�1X
j=1

h
@y�

�
�2�j + wj

�
�2�j � �̂

2
�j

�
; �1

�
�
�
�2�j + wj

�
�2�j � �̂

2
�j

�
; �1

�i �
�2� � �̂2�

�
� 1

N

N�1X
j=1

C
h
1 +

����2�j + wj ��2�j � �̂2�j����v1i2 � sup
�2[0;T ]

���2� � �̂2� ��
� 1

N

N�1X
j=1

C

�
1 +

����2�j ���2v1 + ����2�j � �̂2�j ���2v1��OP (h) = OP (h
) ;

where the second inequality follows from (A-SDR.iii); the third inequality from the inequality:

(A+B)v1 � Cv1(jAj
2v1 + jBj2v1) for some constant Cv1 (> 0), and the last equality holds since

N�1PN�1
j=1 j�2�j j

2v1 = Op (1), which follows from E[
���2s��2v1 ] < 1, and j�2�j � �̂2�j j = OP (h

) uni-

formly over any j. Next, by the same arguments, it holds that

b (�1) =
1

T

N�1X
j=1

�
�
�2�j ; �1

� h�
�2�j+1 � �

2
�j

�
�
�
�̂2�j+1 � �̂

2
�j

�i

+
1

T

N�1X
j=1

h
�
�
�2�j ; �1

�
� �

�
�̂2�j ; �1

�i�
�̂2�j+1 � �̂

2
�j

�

� 1

N

N�1X
j=1

������2�j ; �1����� 2 sup
�2[0;T ]

���2� � �̂2� �� =�
+
1

N

N�1X
j=1

���@y���2�j + wj ��̂2�j � �2�j� ; �1����� sup
�2[0;T ]

���2� � �̂2� ��� sup
1�j�N�1

����̂2�j+1 � �̂2�j ��� =�
= OP (h

=�) +OP (h
 [h + � ] =�) ;

where the last equality holds since N�1PN�1
j=1

���@y���2�j + wj ��̂2�j � �2�j� ; �1���� = OP (1) (uni-

formly over �1), and

sup
1�j�N�1

����̂2�j+1 � �̂2�j ��� = sup
1�j�N�1

����̂2�j+1 � �2�j+1 + �2�j+1 � �2�j + �2�j � �̂2�j ���
� 2 sup

�2[0;T ]

���2� � �̂2� ��+ sup
1�j�N�1

����2�j+1 � �2�j ���
= OP (h

) +Oa:s: (�
) = OP (h

 + �) : (64)

Now, we have b (�1) = OP
�
h=�1�

�
uniformly over �1.
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Lemma 8 Assume that (A.1), (A.2�) and (B.1�) are satis�ed, K 2 K (1; 1). If the condition

(A-SDI.iii) holds, then ���R̂2 ��2; �̂2�� R̂2 ��2; �2���� = OP
�
h=�1�

�
; (65)

p
N
Ŝ2 ���2; �̂2�� Ŝ2 ���2; �2� = OP

�p
Nh=�1�

�
; (66)Ĥ2 ��2; �̂2�� Ĥ2 ��2; �2� = OP

�
h=�1�

�
; (67)

where (65) and (67) hold uniformly over any �2 2 �2.

Proof. We only prove eq. (65). Eqs. (66) and (67) can be shown analogously. Write R̂2
�
�2; �̂

2
�
�

R̂2
�
�2; �

2
�
= c (�2)� 2d (�2), where

c (�2) : =
1

N

N�1X
i=1

h
�4
�
�̂2�j+1 ; �2

�
� �4

�
�2�j+1 ; �2

�i
;

d (�2) : =
1

T

N�1X
i=1

�
�2
�
�̂2�j+1 ; �2

��
�̂2�j+1 � �̂

2
�j

�2
� �2

�
�2�j+1 ; �2

��
�2�j+1 � �

2
�j

�2�
:

We can show that c (�2) = OP (h
) (uniformly over �2) by using the same arguments as for the

convergence of a (�1) in the proof of Lemma 7. As for d (�2),

d (�2) =
1

T

N�1X
i=1

h
�2
�
�̂2�j+1 ; �2

�
� �2

�
�2�j+1 ; �2

�i�
�̂2�j+1 � �̂

2
�j

�2
+
1

T

N�1X
i=1

�2
�
�2�j+1 ; �2

���
�̂2�j+1 � �̂

2
�j

�2
�
�
�2�j+1 � �

2
�j

�2�

� 1

N

N�1X
i=1

@y�
2
�
�2�j + wj

�
�2�j � �̂

2
�j

�
; �2

�
| {z }

=OP (1)

� sup
�2[0;T ]

���2� � �̂2� ��� sup
1�j�N�1

����̂2�j+1 � �̂2�j ���2 =�

+
1

N

N�1X
i=1

�2
�
�2�j+1 ; �2

�
| {z } sup

1�j�N�1

������̂2�j+1 � �̂2�j�2 � ��2�j+1 � �2�j�2���� =�
= OP (h

)�OP
�
h2 + �2

�
� (1=�) +

�
OP
�
h2
�
+OP (h

)�Oa:s: (�)
�
� (1=�) ;

where the last equality follows from eq. (64) and eq. (59). Noting that  2 (0; 1=2) ; we have
d (�2) = OP

�
h=�1�

�
.

We are now ready to prove Theorems 4-5:

Proof of Theorem 4. To prove consistency, we verify the conditions in Newey and McFad-

den (1994, Theorem 2.1): (i) compactness of the parameter space; (ii) continuity of the objective

function and its limit function; (iii) uniform convergence of the objective function; and (iv) identi-

�ability. Conditions (A-SDR.i) and (A-SDR.ii) imply (i), (ii) and (iv), and we only need to show

uniform convergence. Write

R̂1
�
�1; �̂

2
�
�R1 (�1) =

h
R̂1
�
�1; �̂

2
�
� R̂1

�
�1; �

2
�i
+
h
R̂1
�
�1; �

2
�
�R1 (�1)

i
; (68)
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where the two terms in the right-hand side converge uniformly by Lemma 7 and 6 respectively.

For the asymptotic normality, we introduce the score and Hessian functions. By the Taylor

expansion, p
T
h
�̂1 � ��1

i
= Ĥ�1

1

�
��1; �̂

2
�p

T Ŝ1
�
��1; �̂

2
�
;

where ��1 is on the line segment connecting �̂1 to ��1. By (62) in Lemma 8,
p
T [Ŝ1

�
��1; �̂

2
�
�

Ŝ1
�
��1; �

2
�
] = oP (1) with (B-SDR), while the Hessian satis�es

Ĥ1
�
�1; �̂

2
�
�H1 (�1) =

h
Ĥ1
�
�1; �̂

2
�
� Ĥ1

�
�1; �

2
�i
+
h
Ĥ1
�
�1; �

2
�
�H1 (�1)

i
!P 0

uniformly �1 by Lemmas 7 and 6. Thus, �̂1 has the same asymptotic distribution as the infeasible

estimator ~�1, which is given in Lemma 6.

Proof of Theorem 5. This follows along the same lines as the proof of Theorem 4.

A.5 Proof of Theorem 6: Expansions of approximated MSEs

Let

U1 (j) : = 2@�1�
�
�2�j ; �

�
1

� h
�(�2�j ; �

�
1)� � (�2�j+1 � �

2
�j )
i
;

U2 (j) : = 2@�2�
2
�
�2�j ; �

�
2

�
[�2(�2�j ; �

�
2)� � (�2�j+1 � �

2
�j )

2]:

Then, we can write Ŝk
�
��k; �

2
�
= T�1

PN�1
j=1 Uk (j), and

H��1
k E

h
Ŝk
�
��k; �

2
�
Ŝk
�
��k; �

2
�Fi

H��1
k = B�kB

F
�k
+ V�k + C�k ;

where

B�k : = �H��1
k E

h
Ŝk
�
��k; �

2
�i
;

V�k : = H��1
k

�
T�2

XN�1

j=1
E
h
(Uk (j)� E [Uk (j)]) (Uk (j)� E [Uk (j)])F

i�
H��1
k ;

C�k : = H��1
k

�
T�2

X
1�i6=j�N�1

E
h
(Uk (i)� E [Uk (i)]) (Uk (j)� E [Uk (j)])F

i�
H��1
k :

We below provide the proof for part (i) (k = 1) only. Part (ii) (k = 2) can be proved in the same

way, and its proof is omitted. Let L be the di¤erential operator de�ned by Lf (x) = f 0 (x)� (x) +

f 00 (x)�2 (x) =2 for any twice di¤erentiable function f . We �rst consider the expression of B�1 :

E [Uk (j)] = �2E
"
@�1�

�
�2�j ; �

�
1

�Z �j+1

�j

Z s

�j

L�
�
�2u
�
duds

#

= �2E
"Z �j+1

�j

Z s

�j

@�1�
�
�2u; �

�
1

�
L�
�
�2u
�
duds

#

+2

Z �j+1

�j

Z s

�j

E
hh
@�1�

�
�2u; �

�
1

�
� @�1�

�
�2�j ; �

�
1

�i
L�
�
�2u
�i
duds

= ��2E
�
@�1�

�
�2u; �

�
1

�
L�
�
�2u
��
+ 2

Z �j+1

�j

Z s

�j

Z u

�j

E
�
L@�1�

�
�2v; �

�
1

�
L�
�
�2u
��
dvduds

= ��2E
�
@�1�

�
�2t ; �

�
1

�
L�
�
�2t
��
[1 +O (�)] ; (69)
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uniformly over j, where the �rst and third equalities use the martingale property of stochastic

integrals and Ito�s lemma, which is applied to �
�
�2s
�
� �(�2�j ) and @�1�

�
�2u; �

�
1

�
� @�1�

�
�2�j ; �

�
1

�
;

and the last equality holds since

E
�
L@�1�

�
�2v; �

�
1

�
L�
�
�2u
��
�
n
E
h��L@�1� ��2v; ��1���2iE h��L� ��2u���2io1=2 � E

h�� ��2t ���4i = O (1) ;

uniformly over any u and v, which follows from the moment conditions in (C-SDR). Now, the above

de�nition of B�k and eq. (69) implies the expression (16).
To �nd the expression of V�k , �rst note that

E
h
U1 (j)U1 (j)

F
i
= 4E

�
@�1�

�
�2t ; �

�
1

�
@�1�

�
�2t ; �

�
1

�F
�
(
�2
�
�2�j

�
�2 � 2�

�
�2�j

�
�

 Z �j+1

�j

�
�
�2s
�
ds+

Z �j+1

�j

�
�
�2s
�
dZs

!

+2

Z �j+1

�j

 Z s

�j

�
�
�2u
�
du+

Z s

�j

�
�
�2u
�
dZu

!
�
�
�2s
�
ds

+2

Z �j+1

�j

 Z s

�j

�
�
�2u
�
du+

Z s

�j

�
�
�2u
�
dZu

!
�
�
�2s
�
dZs +

Z �j+1

�j

�2
�
�2s
�
ds

)#
= �E

h
@�1�

�
�2t ; �

�
1

�
@�1�

�
�2t ; �

�
1

�F
�2
�
�2t
�i| {z }

=
�1

[1 +O (�)] ; uniformly over j

where Ito�s lemma is applied to (�2�j+1 � �
2
�j )

2 in the �rst equality; and the second equality follows

from arguments similar to those in deriving eq. (69). By the de�nition of V�k and the result that
E [Uk (j)] = O

�
�2
�
uniformly over j,

V�k = H��1
k

�
T�2

XN�1

j=1

�
�
�1 [1 + o (1)]�O

�
�4
���

H��1
k = T�1H��1

k 
�1H
��1
k [1 +O (�)] ;

implying eq. (17). To �nd the expression of C�k , we write

@�1�
�
�2�j ; �

�
1

�
[�(�2�j ; �

�
1)� � (�2�j+1 � �

2
�j )] =: �1 (j) + �2 (j) ;

where �1 (j) := �@�1�
�
�2�j ; �

�
1

� R �j+1
�j

R s
�j
L�
�
�2u
�
duds and

�2 (j) := @�1�
�
�2�j ; �

�
1

�(Z �j+1

�j

Z s

�j

�0
�
�2u
�
�
�
�2u
�
dZuds�

Z �j+1

�j

�
�
�2s
�
dZs

)
:

Then, by the martingale property of stochastic integrals, Fubini�s theorem and the conditions in (C-

SDR), E
h
�1 (i)�2 (j)

F
i
= 0 and E

h
�2 (i)�2 (j)

F
i
= 0 for i 6= j. Given the moment conditions

in (C-SDR), we can show that E
h
�1 (i)�1 (j)

F
i
= O

�
�4
�
uniformly over any i 6= j, by using

arguments analogous to those for B�k and V�k . This, together with eq. (69),

E
h
(Uk (i)� E [Uk (i)]) (Uk (j)� E [Uk (j)])F

i
= E[�1 (i)�1 (j)

F]�E [Uk (i)]E [Uk (j)]F = O
�
�4
�
;

which, together with the de�nition of C�k , implies that C�k = O
�
�2
�
. Now, the proof is completed.
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A.6 Path Continuity of Stochastic Processes

In this section, we prove a general result for the uniform Hölder continuity of a stochastic process

over an in�nite interval [0;1). This plays a key role in deriving the uniform consistency rate of

the spot volatility estimator.

Lemma 9 Suppose that a stochastic process f�tgt�0 on a probability space (
;F; P ) satis�es the
condition:

E [j�t � �sja] � C jt� sj1+b ; (70)

for some positive constants a; b and C each of which is independent of s and t. Then, there exists

a continuous modi�cation f~�tgt�0 of f�tgt�0, which is a.s. Hölder continuous with exponent d for
every d 2 (0; b=a) with a coe¢ cient # :=

P1
J=1 J

2+d (1=J !)d:

Pr

24! 2 

������9 �� (!) s.t. sup

jt�sj2(0; ��(!)); s;t2[0;1)

���~�t (!)� ~�s (!)���
jt� sjd

� #

35 = 1: (71)

Proof. The following arguments proceed along the lines of the proof of Theorem 2.2.8 in Karatzas

and Shreve (1991) where s; t are supposed to take values in some �nite interval [0; T ] (T = �T �xed).

We �rst prove the global Hölder property of the process on an enlarging interval, i.e., [0; T ] where

T !1, and next show that it actually holds over the in�nite interval [0;1).
For any " > 0, we have

Pr [j�t � �sj � "] � E [j�t � �sja]
"a

� C"�a jt� sj1+b (72)

by µCeby�ev�s inequality, and thus �t
P! �s as s ! t. Setting t = km=m!, s = (k � 1)m=m! and

" = (m=m!)d (where d 2 (0; b=a)) in eq. (72), we obtain

Pr
h���km=m! � �(k�1)m=m!�� � (m=m!)di � C (m=m!)(1+b�ad)

and consequently,

Pr

�
max
1�k�m!

���km=m! � �(k�1)m=m!�� � (m=m!)d� � Cm(1+b�ad)
.
(m!)b�ad :

By the fact that
P1
m=1m

(1+b�ad)
.
(m!)b�ad exists and the Borel-Cantelli lemma, there exists a set


� 2 F with Pr (
�) = 1 such that

8! 2 
�; 9m� (!) ; 8m � m� (!) ; max
1�k�m!

���km=m! � �(k�1)m=m!�� < (m=m!)d ; (73)

where m� is a positive and integer-valued random variable.

For each integer m (� 1) and any integer l � m, consider the following sets:

Eml := fkm=l! j k = 0; 1; : : : ; l!g ; and Em :=
S1
l=1E

m
l :
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The set Eml consists of (l! + 1) points in [0;m], while E
m consists of in�nitely many points in [0;m].

Note that Em is dense in [0;m] for any m. Now �x ! (2 
�) and m (� m� (!)). We shall show that

for every l (> m),
8t; s 2 Eml with jt� sj 2 (0;m=m!) ;

j�t (!)� �s (!)j � 2
lX

J=m+1

J2
�
J + 1

(J + 1)!

�d
:

(74)

To show this, we use the inductive method. First, we prove that eq. (74) is valid for l = m+1.

For any s; t 2 Emm+1 with jt� sj 2 (0;m=m!), there exist some k1; k2 2 f0; 1; : : : ; (m+ 1)!g with
0 � k2 � k1 � m such that

j�t (!)� �s (!)j �
���k1(m+1)=(m+1)! (!)� �(k1+1)(m+1)=(m+1)! (!)��

+
���(k1+1)(m+1)=(m+1)! (!)� �(k1+2)(m+1)=(m+1)! (!)��

+ � � �+
���(k2�1)(m+1)=(m+1)! (!)� �k2(m+1)=(m+1)! (!)�� :

Each term of the right-hand side is bounded by m [(m+ 2) = (m+ 2)!]d, which is implied by the

fact Emm+1 � Em+2m+2 and the inequality eq. (73). Thus, by the triangle inequalities, we have

j�t (!)� �s (!)j � m2

�
(m+ 2)

(m+ 2)!

�d
:

Second, suppose that eq. (74) is valid for l = m+1; : : : ; L� 1. For s < t; (s; t 2 EmL ) with jt� sj 2
(0;m=m!), consider the numbers s1 := min

�
u 2 EmL�1 : u � s

	
and t1 := max

�
u 2 EmL�1 : u � t

	
,

and notice that s1; t1 2 EmL�1 � EmL � EL+1L+1 ; s; t 2 EmL � EL+1L+1 ; s1 � s < m= (L� 1)!; and
t� t1 < m= (L� 1)!. By the inequality eq. (73) with m = L+ 1,

j�s1 (!)� �s (!)j � mL ((L+ 1) = (L+ 1)!)d ;

j�t (!)� �t1 (!)j � mL ((L+ 1) = (L+ 1)!)d :
(75)

There are two possible relationships among s; t; s1 and t1: (i) if jt� sj � m= (L� 1)!, it holds that
s � s1 � t1 � t (with at least one inequality strict); (ii) if jt� sj < m= (L� 1)!, either of jt� sj <
js1 � t1j = m= (L� 1)! or js1 � t1j = 0. Thus, we have jt1 � s1j � max fm= (L� 1)!; jt� sjg �
m=m!, and use the induction assumption (74) with l = L� 1:

j�t1 (!)� �s1 (!)j � 2
L�1X

J=m+1

J2
�
J + 1

(J + 1)!

�d
: (76)

Therefore, by eqs. (75) and (76) together with the triangle inequality,

j�t (!)� �s (!)j � 2mL ((L+ 1) = (L+ 1)!)d + 2
L�1X

J=m+1

J2
�
J + 1

(J + 1)!

�d
< 2

LX
J=m+1

J2
�
J + 1

(J + 1)!

�d
:

We have shown eq. (74) for any l (> m), as desired.

We can now show that f�t (!) j t 2 Emg is uniformly Hölder in t for 8! 2 
� for anym. Consider
any numbers s; t 2 Em with m � m� (= m� (!)) and jt� sj < �� (!) � m�=m�!. Note that
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Em � Em
0
form � m0. We can pick somem0 (� m) such that s; t 2 Em0

with (m0 + 2) = (m0 + 2)! �
t� s < (m0 + 1) = (m0 + 1)!. Then, by eq. (74), we obtain

j�t (!)� �s (!)j � 2
1X

J=m0+1

J2
�
J + 1

(J + 1)!

�d
�
��
m0 + 2

�
=
�
m0 + 2

�
!
�d � 1X

J=1

J2+d (1=J !)d

and thus, j�t (!)� �s (!)j/ jt� sjd � ch where # :=
P1
J=1 J

2+d (1=J !)d. Note that the existence

of # can be checked by d�Alembert�s criterion for any d (> 0).

We de�ne f~�tgt�0 as follows. For ! =2 
�, set ~�t (!) = 0, t 2 [0;m]. For ! 2 
� and t 2 Em, set
~�t (!) = �t (!). For ! 2 
� and t 2 [0;m]\ (Em)c, choose a sequence fsng1n=1with sn (2 Em)! t;

by the uniform continuity and the fact that sn is Cauchy, f�sn (!)g1n=1 is also Cauchy, whose limit
depends of t but not on the particular sequence fsng; and thus let ~�t (!) = limsn!t �sn (!). Thus,
the resulting process f~�tgt2[0;m] is continuous, and is also uniformly Hölder in t 2 [0;m]. We will
show f~�tg is a modi�cation of f�tg: observe that for t 2 Em; ~�t = �t a.s.; for t 2 [0;m] \ (Em)c

and fsng with sn (2 Em) ! t; we have �sn ! �t in probability (by eq. (70)) and �sn ! ~�t a.s.,

which implies ~�t = �t a.s.

Let m = [T ] + 1 with [T ] denoting the largest integer less than or equal to T . Now, we have

proved that for any ! 2 
�, there exist some m� (!) and �� (!) (� m�=m�!) such that 8m � m� (!)

sup
jt�sj2(0; ��(!))

t;s2[0;T ]

���~�t (!)� ~�s (!)���. jt� sjd � sup
jt�sj2(0; ��(!))

t;s2[0;m]

���~�t (!)� ~�s (!)���. jt� sjd � #;

which implies that Pr (
1) = 1, where


1 :=

8<:9 �� (!) ; 9T �; 8T (� T �) ; sup
jt�sj2(0; ��(!)); s;t2[0;T ]

���~�t (!)� ~�s (!)���
jt� sjd

� #

9=; : (77)

Note that


1 �

8<:9 �� (!) ; 9T �; sup
jt�sj2(0; ��(!)); s;t2[0;T �]

j~�t(!)�~�s(!)j
jt�sjd � #

9=;
=

8<:9 �� (!) ; 9T �; 8T (� T�) ; sup
jt�sj2(0; ��(!)); s;t2[0;T ]

j~�t(!)�~�s(!)j
jt�sjd � #

9=; =: 
2: (78)

Since Pr (
1) = 1, we then have Pr (
2) = 1. For any events E;F 2 F; we have the inequality:
Pr (E \ F ) � Pr (E) + Pr (F )� 1. With E = 
1 and F = 
2, we obtain Pr (
1 \ 
2) = 1, which,
together with


1 \ 
2 =

8<:! 2 

������9 �� (!) ; 8T; sup

jt�sj2(0; ��(!)); s;t2[0;T ]

j~�t(!)�~�s(!)j
jt�sjd � #

9=; ;

implies the desired result, eq. (71).
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B Tables

Drift Di¤usion

Infeasible 1-step Feasible 2-step Infeasible 1-step Feasible 2-step

0.6036 5.0377 0.0110 0.2038

� = 1=8 1.6332 0.6911 0.0147 0.0073

2.2368 5.7288 0.0257 0.2111

0.8503 0.6218 0.0258 0.0145

� = 1=4 1.5776 1.3627 0.0220 0.0201

2.4279 1.9845 0.0478 0.0347

1.3417 0.7511 0.0607 0.0304

� = 1=2 1.3348 1.3689 0.0289 0.0353

2.6764 2.1200 0.0896 0.0657

Table 1: Performance of infeasible and feasible nonparametric drift and di¤usion estimators,

� = 1= (24� 60). In each cell, integrated squared bias (�10�4), variance (�10�4) and MSE
(�10�4) are reported.

Drift Di¤usion

Infeasible 1-step Feasible 2-step Infeasible 1-step Feasible 2-step

1.2184 3.3333 0.0536 0.6269

� = 1=2 1.7283 2.2352 0.0393 0.0841

2.9466 5.5685 0.0929 0.7110

2.6679 0.2113 0.1250 0.0709

� = 1 1.0454 1.1474 0.0500 0.0614

3.7132 1.3587 0.1749 0.1323

5.7818 4.1220 0.2703 0.1309

� = 2 0.6394 0.6235 0.0613 0.0628

6.4211 4.7455 0.3316 0.1937

Table 2: Performance of infeasible and feasible nonparametric drift and di¤usion estimators,

� = 1= (24� 12). In each cell, integrated squared bias (�10�4), variance (�10�4) and MSE
(�10�4) are reported.
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� � �2

Infeasible Feasible Infeasible Feasible Infeasible Feasible

0.0021 0.0023 0.3029 24.7633 0.0361 4.4861

� = 1=12 0.6568 0.6650 19.0296 4.4351 0.0830 0.0815

0.6588 0.6673 19.3325 29.1984 0.1191 4.5676

0.0022 0.0026 2.3990 15.5280 0.1579 3.6615

� = 1=6 0.6576 0.6627 18.4518 12.3283 0.1547 0.1514

0.6597 0.6652 20.8508 27.8563 0.3126 3.8129

0.0021 0.0026 6.2912 6.8481 0.3493 0.3609

� = 1=4 0.6560 0.6623 17.3818 17.1802 0.2377 0.2497

0.6581 0.6650 23.6731 24.0283 0.5870 0.6106

Table 3: Performance of infeasible and feasible parametric drift and di¤usion estimators,

� = 1= (24� 60). In each cell, squared bias (�10�4), variance (�10�4) and MSE (�10�4) are
reported.

� � �2

Infeasible Feasible Infeasible Feasible Infeasible Feasible

0.0021 0.0024 0.3029 23.9588 0.0361 4.5830

� = 1=12 0.6568 0.6625 19.0296 7.2365 0.0830 0.1885

0.6588 0.6650 19.3325 31.1953 0.1191 4.7716

0.0022 0.0025 2.3990 14.4633 0.1579 21.2663

� = 1=6 0.6576 0.6614 18.4518 22.1306 0.1547 0.3595

0.6597 0.6639 20.8508 36.6940 0.3126 21.6258

0.0021 0.0025 6.2912 24.5878 0.3493 58.6862

� = 1=4 0.6560 0.6613 17.3818 33.3411 0.2377 0.5172

0.6581 0.6638 23.6731 57.9289 0.5870 59.2034

Table 4: Performance of infeasible and feasible parametric drift and di¤usion estimators,

� = 1= (24� 12). In each cell, squared bias (�10�4), variance (�10�4) and MSE (�10�4) are
reported
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C Figures
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Figure 1: Infeasible 1-step estimator of � (x), � = 1= (24� 60) and � = 1=4.

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.25

0.2

0.15

0.1

0.05

0

0.05

0.1

x

α
(x

)

2step estimator of α(x)  δ = 1/4

true
mean
95% conf. int.

Figure 2: Feasible 2-step estimator of � (x), � = 1= (24� 60) and � = 1=4.
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Figure 3: Infeasible 1-step estimator of �2 (x), � = 1= (24� 60) and � = 1=4.
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Figure 4: Feasible 2-step estimator of �2 (x), � = 1= (24� 60) and � = 1=4.
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