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Abstract

Motivated by features of low latency data in financial econometrics we study in detail integer-
valued Lévy processes as the basis of price processes for high frequency econometrics. We
propose using models built out of the difference of two subordinators. We apply these models
in practice to low latency data for a variety of different types of futures contracts.
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1 Introduction

In this paper we provide an exploratory analysis of low latency financial data. Our focus is on the

unconditional distributional features of returns at times of trades only, establishing the framework

of integer-valued Lévy processes as a fundamental starting point for models of low latency data.

This can be thought of as a first step towards more realistic stochastic process modelling, which in

particular would involve time-change to allow for serial dependence in returns and diurnal features.

Recently low latency data have become available for research. These data from specialist data

providers are recorded very close to the data exchange itself and are therefore of the highest available
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quality. Typically low latency data are added to the data providers database less than 1 millisecond

after they leave the exchange.

There has been considerable interest in using high frequency financial data to aid decision

making. Recent reviews are given by Russell and Engle (2010) and Bauwens and Hautsch (2009).

Leading applied reasons include:

(i) Building models to design efficient trading methods with low transaction costs. These meth-

ods are typically implemented electronically and are called “automated trading”. An interesting

recent example being Avellaneda and Stoikov (2008). Such methods often study the relative utility

of market and limit orders, see for example Lehmann (2008) for a theoretical discussion.

(ii) Harnessing the data to better estimate medium term financial volatility or dependence e.g.

by Andersen et al. (2001), Barndorff-Nielsen and Shephard (2002), Barndorff-Nielsen et al. (2008)

and Mykland and Zhang (2010).

(iii) Studies of the relationships between the many quantities of economic interest. For example

relationships between trade volumes and price changes have been studied by Potters and Bouchaud

(2003) and Lo and Wang (2010) amongst many and between order flow and tick price changes by

Weber and Rosenow (2005) and others.

In this paper we systematically develop a continuous time integer-valued Lévy process which

has features which are attractive for low latency data. In particular this process delivers prices

which obey the tick structure we observe empirically in low latency data. Its most basic form is

based on the Skellam distribution and can be thought of as modeling price changes as the difference

between two Poisson processes, but we generalise this to processes based on the difference of two

integer-valued subordinators. We also show that any integer-valued Lévy is the sum of a compound

Poisson process with only zero innovations and the difference of two independent subordinators,

and that we generalise this to the multivariate case.

The structure of integer-valued Lévy processes means our models will evolve over the tick struc-

ture of high frequency data. Related integer-valued econometric models include those discussed

by, for example, Hausman et al. (1992), Rydberg and Shephard (2003), Russell and Engle (2006),

Hasbrouck (1999), Phillips and Yu (2008) and Hansen and Horel (2009).

The model we discuss in this paper is not fully fledged. However, it can be extended us-

ing time-changes to yield volatility clustering as well as allowing serial correlation due to market

microstructure effects.

The structure of this paper is as follows. In Section 2 we first discuss some features of low

latency data and their empirical statistics. We detail what we call pure mid-prices, which are a

variant on the usual mid-price changes which preserves the tick structure of the bid and ask prices
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recorded in low latency data. Section 3 looks at the mathematics of integer-valued continuous time

processes. We introduce the basic continuous time Skellam process and discuss its properties. We

generalise it in a number of ways, to allow for heavier tails. We apply compound Poisson processes

to the financial data in Section 4 and fit the so-called ∆NB Lévy and ∆PTS processes, classes of

processes we introduce here, in Section 5. We then draw some conclusions in Section 6. Derivations

of important properties of integer-valued Lévy processes are in the Appendices.

2 Low latency data and integer-valued distributions

2.1 Low latency futures data

We will study tick price processes in low latency data from futures exchanges. Futures exchanges

trade many assets ranging from equity indices to interest rate products and commodities. Liquidity

on the electronic marketplace in many of these futures contracts is good and the exchanges well

established. They are able to provide low latency data feeds recording every price and new order

update seen on the matching engine’s order book.

We study, in particular, futures data for the S&P500 (mini) contract, the US Treasury 10 year

note, the NYMEX benchmark Crude Oil contract and the IMM Eurodollar futures contract. These

markets are sufficiently different to demonstrate a range of tick price behaviours. These data was

provided to us by QuantHouse (www.quanthouse.com) from data feeds at the Chicago Mercantile

Exchange (CME) which is one of the largest Futures exchanges.

2.2 Mid-price changes

By ‘tick price process’ we refer to the continuous time evolution of the ‘best’ price in the market as

it changes over time from data update to update. The mid-price is the arithmetic average of the

best ask Pask,t and best bid price Pbid,t

Pmid,t = 0.5(Pask,t + Pbid,t), t ∈ R≥0.

This price is computed in continuous time and its value changes when either the ask or bid is

altered.

The minimum price change allowed by the exchange on any market, the ‘tick size’, means that

exchange prices map to the positive integers and mid-prices to the positive integers and half-integers.

We will do some rudimentary filtering by restricting attention to the period of the day when

the market trades actively and then selecting only those data updates at times when trades occur.

The times at which there are trades will be written as

τi, i = 1, 2, ..., N.
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Figure 1: Euro-Dollar IMM FX futures contract on 10th November 2008. Top left: ask, bid and
pure mid-price for the first 80 trades of the day. Top right: returns from pure mid-price. They
are all integers. Botton left: correlogram for mid-price, ask, bid and pure mid-price for entire
day. Bottom right: log-histogram of pure mid-price returns: non-parametric, Skellam and ∆NB
distributions.

The justification being that when trades occur there is agreement by at least two market participants

about the market price and so we have more confidence in its accuracy. Figure 1 shows this for

the Euro-Dollar IMM FX futures contract during 10th November 2008, which had 33,074 trades

on that day. The upper left hand plots the bid and ask at the times of the first 80 trades. It also

shows the pure mid-prices, which we will define in a moment. The corresponding pure mid-price

returns are given on the right of the top graphs in the figure. It shows integer returns, with most

being −1, 0 and 1. However, there is also a return of 2 ticks.

Consider changes in pmid,τi ,

c∗i =
Pmid,τi+1

− Pmid,τi
tickSize

, c∗i ∈
{
...,−1,−1

2
, 0,

1

2
, 1, ...

}
, (1)

between consecutive trades at times τi+1, τi. For the above contract the tick size is 0.0001 of a unit,

i.e. prices move from, for example, 1.2768 to 1.2767 U.S. Dollar to the Euro. Then these changes

c∗i mostly live on the integers but have some mass on the half integers mostly caused by one sided

moves in the spread, i.e. the ask moving up one tick but no move in the bid, making the spread
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to widen and the mid-price to move up by a half a tick. It turns out these spread induced half

tick changes are difficult to model for various reasons (including they make the distribution of price

changes non-monotonic as we go away from zero).

2.3 Pure mid-prices

We can reduce these spread induced changes by using what we call “pure mid-prices”. Pure mid-

prices move the price as little as possible subject to keeping the pure mid-price between the bid

and the ask at times of trade. This can be formalised in the following way.

Pure mid-prices are defined by the following criteria

Ppure,t = argmin
x

|x− Ppure,τi | , t ∈ (τi, τi+1]

subject to the discrete time constraining knots

Pbid,τi < Ppure,τi < Pask,τi , i = 1, 2, ..., N.

This means that pure mid-prices are not effected by a widening of the spread.

In tick space the assets we discuss in this paper will have a spread which will be one or more

ticks. As a result it makes sense from an econometric modelling viewpoint to add a second criteria

to scaled pure mid-prices — that they are half-integers. That is we only allow

Ppure,t
tickSize

∈
{
1

2
,
3

2
,
5

2
,
7

2
, ...

}
= Z≥0 +

1

2
.

Hence if, for example the tick size was one, Pask,τi = 101 and Pbid,τi = 100 then Ppure,τi = 100.5,

while if this is followed by Pask,τi+1
= 103 and Pbid,τi+1

= 101 then Ppure,t keeps at 100.5 until time

τi+1 when it instantly jumps up to Ppure,τi+1
= 101.5. Likewise if Pask,τi+1

= 102 and Pbid,τi+1
= 100

then Ppure,τi+1
= 100.5. This then delivers an integer return sequence from the half-integer scaled

pure mid-prices. This will turn out to be relatively easy to model1.

We should note that if the futures contract is traded on a so-called one-tick market (see, for

example, Field and Large (2008)), where depths are so large that the spread is always one tick

wide, then the pure mid-price and the usual mid-price will always be identical.

These remarks are illustrated in Figure 1 which plots (in the upper panel) returns on pure

mid-prices at the times of the trades that occurred on the Euro-Dollar FX contract during 10th

November 2008. Pure mid-prices returns are integers.

The bottom graphs hold some summaries of returns. On the left are the correlograms and

they show the usual small amount of negative autocorrelation due to market microstructure effects

1Note both
Pask,t−Ppure,t

tickSize
∈ Z≥0 +

1

2
and

Ppure,t−Pbid,t

tickSize
∈ Z≥0 +

1

2
. Hence a very basic factor model for the bid

and ask in continuous time is to model a discrete-valued martingale
Ppure,t

tickSize
− 1

2
and two stationary non-negative

discrete-valued processes
Pask,t−Ppure,t

tickSize
− 1

2
and

Ppure,t−Pbid,t

tickSize
− 1

2
.
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Figure 2: Euro-Dollar IMM FX futures contract on 7th November 2008. Top left: ask, bid and
pure mid-price for the first 80 trades of the day. Top right: returns from pure mid-price. They
are all integers. Botton left: correlogram for mid-price, ask, bid and pure mid-price for entire
day. Bottom right: log-histogram of pure mid-price returns: non-parametric, Skellam and ∆NB
distributions.

(e.g. Hansen and Lunde (2006) and the references contained within it). Strong autocorrelation

basically lasts one lag and is more modest for the pure mid-price return series (it is well known the

trades themselves will live on the lattice structure but will have a great deal of autocorrelation).

The latter point seems a robust feature across a lot of assets we have studied. Interestingly the

pure mid-price returns have less autocorrelation than the returns from mid-prices, asks or bids.

The bottom right hand side plot shows the unconditional histogram for the pure mid-price

returns for the whole day of data. The non-parametrically estimated log-probabilities seem to be

declining roughly linearly in the tails for this dataset.

The pictures change over time, but many features are constant. Figure 2 shows the analysis

on 7th November 2008, a US Non-farm payroll day. Now tick changes of order ±40 occur during

the day, just after the announcement, and the log probability plot shows more extended tails as a

consequence. Again the correlogram is closer to being white noise for the pure mid-price changes

than for the alternatives we considered.

For many other markets a similar picture holds for pure mid-price changes. Later we will
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illustrate this using data from the Ten Year US treasury note (TNC), Nymex/CME benchmark

crude oil contract (CLN) and the mini S&P500 contract (ESPC).

For each of these series Table 1 provides summary statistics, indicating the number of low latency

returns available. The Table also shows the standard deviations when scaled prices are computed

using mid-prices, asks, bids and pure mid-prices. As expected the standard deviations are lower

for mid-prices than for asks and bids, which reflects their smaller amount of autocorrelation. An

interesting feature of the Table is that the standard deviation of the pure mid-price returns are

typically smaller than that for the mid-price returns.

Standard deviation

# of trades Mid Ask Bid Pure

Euro 07/11/08 42,592 0.834 0.849 0.999 0.723
Euro 10/11/08 33,074 0.545 0.584 0.584 0.538

ESPC 10/11/08 163,970 0.260 0.267 0.268 0.260
CLN 10/11/08 90,762 0.822 0.937 0.990 0.760
TNC 10/11/08 26,764 0.319 0.326 0.324 0.318

Table 1: Summary statistics for the five low latency data sets used in this paper. Shows the sample
size on each day and the standard deviations of the returns, having scaled the returns so they are
in ticks. The returns are computed using mid-prices, asks, bids or using pure mid-prices.

3 Mathematics of integer-valued Lévy processes

3.1 Introduction

In order to build models of integer-valued price changes it is important to have an understanding

of continuous time processes which can deliver independent and stationary increments which are

integer-valued. These processes can be time-changed to deliver empirically plausible models with

both diurnal features and time-varying volatility, in the same way Brownian motion is often time-

changed to deliver stochastic volatility.

The basis of our analysis will be integer-valued Lévy processes. Recall a càdlàg stochastic process

L = {Lt}t≥0 with L0 = 0 is a Lévy process if and only if it has independent and (strictly) stationary

increments. See the reviews of Lévy processes by, for example, Sato (1999) and Cont and Tankov

(2004). An integer-valued Lévy process has its law concentrated on Z = {i : i = 0,±1,±2, ...}. The
simplest example of this class is the Poisson process, but clearly this is not satisfactory for our tick

process.

The following theorem indicates the way we can build these kinds of models.

Theorem 1 Suppose L is a integer-valued Lévy process. Then the Lévy measure ν of L is concen-

trated on Z\ {0} and has finite mass.
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Proof. Given in the Appendix.

The finiteness of ν implies that L is of finite activity, i.e. it has at most finitely many jumps in

any finite time interval. Consequently, without loss of generality, L can be written in the form

Lt = L+
t − L−

t ,

where the paths of L+
t and L−

t can be deduced from the single path of Lt simply by summing the

positive and negative jumps of L separately. Thus L+ and L− are both discrete subordinators (Lévy

processes with non-negative increments2), whose Lévy measures ν+ and ν− are the restrictions of

ν to the positive and negative half axes, respectively. Since ν+ and ν− are both finite measures,

L+ and L− are compound Poisson (CP) processes, and, in obvious notation, L may be written as

Lt =

N+
t∑

j=1

C+
j −

N−
t∑

j=1

C−
j .

where
{
N+
t , N

−
t

}
are independent (homogeneous) Poisson processes with intensities ψ+ = ν ((0,∞))

and ψ− = ν ((−∞, 0)) ,while the C±
j are strictly positive integer innovations. The fact that they

are greater than or equal to one is important. Notice that with probability one the paths of N+
t and

N−
t jump at different times. The class of Lévy processes that are piecewise constant are known to

coincide with the class of compound Poisson processes, see (Sato, 1999, Theorem 21.2).

Remark 1 The tick process itself can be written as a compound Poisson process

Lt =

Nt∑

j=1

Cj ,

where Nt is the number of trades up to time t and Cj are the potential moves when there is a

trade. In this case Cj has an atom at 0 as many trades will not move the price. Without observing

the counting process Nt the process would not be identified due to the Cj having an atom at zero.

Compound Poisson models with general, not necessarily an integer, returns have a long history,

examples include Press (1967) and Madan and Seneta (1984).

Remark 2 The proof of the validity of the splitting L = L+−L−, discussed above, can be extended

to multivariate integer-valued Lévy processes. We say that a d-dimensional Lévy process L is

integer-valued if it takes values in Z
d\ {0} (where 0 is the origin in Z

d). Thus if, for example,

L is a bivariate integer-valued Lévy process then it can be represented as a sum of 8 independent

compound Poisson processes, one for each of the four quadrants and one for each of the four half

axes.
2Discrete infinite divisibility for distributions on N0 = {i : i = 0, 1, 2, ...} is discussed briefly in Bondesson (1992)

and more extensively in Steutel and Van Harn (2004).
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3.2 Cumulants

A characterising feature of Lévy processes is that, so long as they exist,

κj,t = tκj, j = 1, 2, ...,

where κj,t and κj are the j-th cumulant of Lt and L1, respectively.

The cumulant function of any Lévy process Yt has the form

C {θ ‡ Yt} = log [E exp {iθYt}] = tC {θ ‡ Y1} .

This implies for the integer-valued process L that

C {θ ‡ Lt} = tC
{
θ ‡ L+

1

}
+ tC

{
−θ ‡ L−

1

}

and consequently

κj,t = tκ+j + t (−1)j κ−j

where κ+j and κ−j denote the cumulants of L+
1 and L−

1 , respectively. Further, since L
± are compound

Poisson with rates ψ± we have

C
{
θ ‡ L±

1

}
= −ψ±

[
1− exp

{
C
(
θ ‡ C±

1

)}]

where C
(
θ ‡ C±

1

)
is the cumulant function of C±

1 . Hence

κ±j = −ψ±
(
1− µ′±j

)
= ψ±

(
µ′±j − 1

)
,

where the uncentred moments

µ′±j = E
{(
C±
1

)j}
.

Note that µ′±j ≥ 1 by construction.

3.3 Skellam Lévy process

In the simplest case where all the jumps are unit, then with probability one, C±
n = 1 so prices move

a single tick at a time. Then L±
t = N±

t so

Lt = N+
t −N−

t .

We call this a Skellam Lévy process, for the process is the Lévy process generated from the Skellam

distribution, introduced by Irwin (1937). That distribution is the law of the difference of two
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independent Poisson distributions, with parameters ψ+ and ψ−, say, and we will denote it by

Sk(ψ+, ψ−). Then we have the important result that

Lt ∼ Sk(tψ+, tψ−), (2)

and

Lt − Ls ∼ Sk((t− s)ψ+, (t− s)ψ−), t > s.

For k ∈ N0 the point probabilities of the Skellam distribution, Sk(ψ+, ψ−), are

pk =

∞∑

n=0

Pr(N+
t = n+ k) Pr(N−

t = n)

= e−ψ
+−ψ−

∞∑

n=0

(ψ+)
k+n

(ψ−)
n

n!(k + n)!
,

= e−ψ
+−ψ− (

ψ+
)k ∞∑

n=0

(ψ+ψ−)
n

n!(k + n)!

= e−ψ
+−ψ− (

ψ+
)k (√

ψ+ψ−
)−k

I|k|(2
√
ψ+ψ−),

where Ik(x) is a modified Bessel function of the first kind (Abramowitz and Stegun, 1970, p. 375,

(9.6.10))

Ik(x) =

(
1

2
x

)k ∞∑

n=0

(
1
4x

2
)n

n!Γ (k + n+ 1)
.

By symmetry, the point probability for an arbitrary k ∈ Z can be expressed as

pk = e−ψ
+−ψ−

(
ψ+

ψ−

)k/2
I|k|(2

√
ψ+ψ−). (3)

Importantly E(Lt) = (ψ+ − ψ−) t and Var(Lt) = (ψ+ + ψ−) t. Hence if ψ+ = ψ− the process

is a martingale.

Remark 3 The most important special case is the standard Skellam process when ψ+ = ψ− =

1/2 and then

C {θ ‡ L1} =
1

2

(
−2 + eiθ + e−iθ

)
= −(1− cos θ).

We will use the notation St, t ∈ R≥0, S0 = 0, to denote the standard Skellam process. Clearly this

is a martingale with unit variance per unit of time and

St ∼ Sk

(
1

2
t,
1

2
t

)
, κ1 = 0, κ2 = 1, κ3 = 0, κ4 = 1.
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Figure 3: Log-density of the normal and Skellam distributions for St/
√
t. Code: skellam.ox.

Hence this is a integer-value analogy of Brownian motion. This process has a unit expected number

of price changes per unit of time. Let us study the distribution of St/
√
t. Expanding in small θ,

C
{
θ ‡ St/

√
t
}
=
θ2

2
+

θ4

24t
+ ....

and hence, as t → ∞, so St/
√
t
d→ N(0, 1). Figure 3 shows the log-density of St/

√
t. It is slightly

sub-linear in the tails for small t and it becomes quadratic as t increases.

3.4 ∆NB Lévy process

3.4.1 Negative binomial precursor

We now study a more general model, based upon the negative binomial distribution. The negative

binomial distribution comes from mixing a Poisson

Pr(L+
1 = k|λ) = λke−λ

k!
, k = 0, 1, 2, ...,

with a random intensity parameter λ

λ ∼ Ga

(
δ,

p

1− p

)
, p ∈ (0, 1) , δ > 0, E(λ) = δ

p

1− p
, Var(λ) = δ

(
p

1− p

)2

,
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which is gamma distributed. Then, the following is well known

Pr(L+
1 = k) =

∫∞
0

λke−λ

k! λδ−1 exp{−λ(1−p)/p}(
p

1−p

)δ
Γ(δ)

dλ = 1
k!

1(
p

1−p

)δ
Γ(δ)

∫∞
0 λk+δ−1 exp (−λ/p) dλ

= 1
k!

1(
p

1−p

)δ
Γ(δ)

pδ+kΓ (δ + k)

= 1
k!

Γ(δ+k)
Γ(δ) (1− p)δ pk,

that is the negative binomial distribution, which we will write as NB (δ, p). This distribution goes

back to Greenwood and Yule (1920). The first four cumulants of NB (δ, p) are

κ1 = δ
p

1 − p
, κ2 = δ

p

(1− p)2
, κ3 = δ

p+ p2

(1− p)3
, κ4 = δ

p + 4p2 + p3

(1− p)4
,

and the cumulant function is

C
{
θ ‡ L+

1

}
= δ

{
log(1− p)− log(1− peiθ)

}
.

It follows immediately, as is well known, that this distribution is infinitely divisible and it supports

a negative binomial Lévy process with

L+
t ∼ NB (tδ, p) .

This process is overdispersed as κ1,t/κ2,t = κ1/κ2 = 1 − p ∈ (0, 1]. It is well known that the

negative binomial process can also be generated as L+
t = N ◦ Tt = NTt , where the subordinator T

is a gamma process stochastically independent from N a standard Poisson process.

We recall that the negative binomial nests the Poisson distribution. In fact, reparameterising

from (δ, p) to (ψ, p) by letting

ψ = δ
p

1− p
,

then

Pr(L+
1 = k) =

ψk

k!

Γ (δ + k)

Γ (δ)
(1− p)δ+k

with

E(λ) = δ
p

1 − p
= ψ, Var(λ) = δ

(
p

1− p

)2

= ψ
p

1 − p
.

For fixed ψ, as p ↓ 0 so λ
p→ ψ. Hence, using this parameterisation, Poisson is the extreme case of

p = 0. We will use this ψ parameterisation in our empirical work.

Remark 4 The negative binomial process can be thought of as a compound Poisson process

L∗
t =

Nt∑

j=1

Xj , Xj ∼ i.i.d., X ⊥⊥ N,
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where the innovations are logarithmic variables

Pr(Xj = k) =
pk

|log(1− p)| k , k = 1, 2, ...,

while Nt is a Poisson process with intensity

δ |log(1− p)| = ψ
(1− p)

p
|log(1− p)| .

A derivation of this known result will be given in Example 2 below. This implies

log Pr(Xj = k) = k log p− log k − log {− log(1− p)} ,

so the log-histogram of the innovations will appear approximately linear in the tails. Statistically

this is a convenient form, it means the p parameter entirely controls the size of the moves and the

δ parameter can be freely set to control the intensity of the moves. Note as p ↓ 0 so |log(1− p)| ∼ p

so Pr(Xj = k) ≃ pk−1/k, which will have nearly all of its mass at one; furthermore, the intensity

tends to ψ.

3.4.2 ∆NB Lévy process in detail

We work with Lt where

Lt = L+
t − L−

t , L+
t ⊥⊥ L−

t , L+
t ∼ NB

(
tδ+, p+

)
, L−

t ∼ NB
(
tδ−, p−

)
,

with p± ∈ (0, 1), δ± > 0.

Introducing the rising factorial, or Pochhammer symbol,

(a)n = a (a+ 1) · · · (a+ n− 1) =
Γ (a+ n)

Γ (a)
,

we have

Pr(L+
1 = k) =

(δ)k
k!

pk (1− p)δ .

and, for k ∈ N0, the point probabilities of Lt are

pk =

∞∑

n=0

Pr(L+
t = n+ k) Pr(L−

t = n)

=

∞∑

n=0

(δ+)n+k
(n+ k)!

(
p+
)n+k (

1− p+
)δ+ (δ−)n

n!

(
p−
)n (

1− p−
)δ−

=
(
1− p−

)δ− (
1− p+

)δ+ (
p+
)k ∞∑

n=0

(δ+)n+k
(n+ k)!

(δ−)n
n!

(
p+p−

)n
.

Now, (δ)n+k = (δ)k(δ + k)n and

Γ (n+ k + 1)

Γ (k + 1)
= (k + 1)n,

13



so

pk =
(
1− p−

)δ− (
1− p+

)δ+ (p+)
k
(δ+)k

Γ (k + 1)

∞∑

n=0

(δ+ + k)n
(k + 1)n

(δ−)n
n!

(
p+p−

)n

=
(
1− p−

)δ− (
1− p+

)δ+ (p+)
k
(δ+)k
k!

F
(
δ+ + k, δ−; k + 1; p+p−

)
,

where

F (α, β; γ; z) =

∞∑

n=0

(α)n (β)n
(γ)n

zn

n!
, z ∈ [0, 1) , α, β, γ > 0, (4)

is the classical hypergeometric function which has many properties and applications (see, for exam-

ple, (Abramowitz and Stegun, 1970, Ch. 15)). To be explicit, here α = δ+ +m > 0, β = δ− > 0,

γ = m+ 1 ≥ 1, z = p+p− ∈ (0, 1). By symmetry, for any k ∈ Z,

pk =
(
1− p−

)δ− (
1− p+

)δ+ (p+)
k+

(p+)
k−

(δ+)k+(δ
−)k−

k+!k−!
F
(
δ+ + k+, δ− + k−; k+ + k− + 1; p+p−

)

where k+ = max(0, k) and k− = max(0,−k). This seems to be a new type of four parameter

distribution. We write it as a ∆NB(δ+, p+, δ−, p−) distribution or, using the parametrisation

discussed above,

∆NB(ψ+, p+, ψ−, p−).

The latter is convenient for us as it allows a simple comparison with the Skellam distribution and

it will be used throughout our empirical work.

Clearly

C {θ ‡ L1} = C
{
θ ‡ L+

1

}
+C

{
−θ ‡ L−

1

}
= δ+

{
log(1− p+)− log(1− p+eiθ)

}

+δ−
{
log(1− p−)− log(1− p−e−iθ)

}
,

which directly demonstrates it is infinitely divisible. We call the resulting Lévy process a ∆NB

process and it has the property that

Lt ∼ ∆NB(tδ+, p+, tδ−, p−),

or in the alternative parameterisation Lt ∼ ∆NB(tψ+, p+, tψ−, p−).

Then

κ1 = δ+
p+

1− p+
− δ−

p−

1− p−
, κ2 = δ+

p+

(1− p+)2
+ δ−

p−

(1− p−)2
,

κ3 = δ+
p+ + p+2

(1− p+)3
− δ−

p− + p−2

(1− p−)3
, κ4 = δ+

p+ + 4p+2 + p+3

(1− p+)4
+ δ−

p− + 4p−2 + p−3

(1− p−)4
.
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Remark 5 The symmetric version of this distribution is distinct from a symmetric Skellam distri-

bution Sk(ψ,ψ) with gamma distributed intensity ψ. Hence this process is not a Skellam process

time changed by a gamma process.

Remark 6 The most important special case is the standard symmetric process when

δ+ = δ− = δ, p+ = p− = p, δ =
1

2

(1− p)2

p
,

then at time one

κ1 = 0, κ2 = 2δ
p

(1− p)2
= 1, κ3 = 0, κ4 = 2δ

p + 4p2 + p3

(1− p)4
=

1 + 4p + p2

(1− p)2
.

Thus unlike the standard Skellam distribution it does deliver the flexibility to deliver any value of

κ4 ≥ 1. Of course as p+ ↓ 0 so κ4 ↓ 1 (the standard Skellam case), while as p+ ↑ 1 then κ4 ↑ ∞.

Figure 4 compares a sample path from the standard ∆NB process, given in part (a) of the Figure,

to that of a standard Skellam process, given in part (b). Clearly the ∆NB process has a smaller

number of jumps, but some of the jumps are more than a single tick. Part (c) shows a log-histogram

of the returns from the ∆NB process computing each return over one thousandth of a unit of time.

It shows a very large probability of a zero, with some probability at ±1. What is important is there

is a small positive probability of moves to ±2 and even some observed ±3. For the Skellam process

the corresponding log-histogram has no mass outside ±1. This is important empirically.

Remark 7 If δ+ = δ− then ψ± can be thought of as an exponential random variable and so L±
1

become two geometric random variables with parameters p±. As a result L1 is a “integer-valued

skewed Laplace” random variable. It has the feature that

pk = Pr(Y1 = k) =
(1− p−) (1− p+)

1− p−p+
(
p+
)k+ (

p−
)k−

, k ∈ Z,

where k+ = max(0, k) and k− = max(0,−k). This follows as F (k + 1, 1; k + 1; z) =
∑∞

n=0 (1)n
zn

n! =

1
1−z , (1)n = Γ(n+1)

Γ(1) = n!. Some properties of this kind of distribution appear in Kozubowski and

Inusah (2006) and Inusaha and Kozubowski (2006). The attractions of this distribution are two

fold: (i) it is very simple to estimate using a likelihood function, (ii) the log-probabilities decay

linearly and this is in line with some empirical features found above. However, Yt is not skewed

Laplace, instead its distribution is ∆NB(t, p+, t, p−).

3.5 A generic precursor

The discussion of the negative binomial distribution, as a gamma time-changed Poisson process, is

nested within the following setup which maybe useful for the development of more general models.
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Figure 4: Top figures: sample path from the standard ∆NB (with p+ = 0.32) and Skellam Lévy
processes. Bottom figures: log-histogram from the increments of ∆NB and Skellam Lévy process.
Code: hyper.ox.

Let N be a Poisson process with unit intensity and T be a subordinator (i.e. a non-negative Lévy

processes) such that N ⊥⊥ T and let

L+ = N ◦ T

be the subordination of N by T i.e. L+
t = NTt .

To analyse this class it is helpful to take a step back and introduce some well known mathematics

through the kumulant function

K (θ ‡X) = log E {exp(−θX)}

for a random variable X ≥ 0. Then it is well known that the Lévy-Khintchine representation for

all non-negative Lévy processes can be written as

K{θ ‡ L+
t } = −atθ − t

∫ ∞

0

(
1− e−θu

)
ν
(
du ‡ L+

1

)
, (5)

where the drift a ≥ 0 and ν is a measure on R>0 such that
∫∞
0 min{1, y}ν

(
du ‡ L+

1

)
< ∞. Hence

all non-negative processes can be classified by their Lévy measure ν
(
du ‡ L+

1

)
and the drift.
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Theorem 2 L+ = N ◦ T can be written as a compound Poisson process

L+
t =

N∗
t∑

j=1

Uj, Uj ∼ i.i.d., N∗ ⊥⊥ U,

where N∗
t is a Poisson process with constant rate

λN
∗

= −K(1 ‡ T1) <∞

and

Pr(Uj = m) =
(
λN

∗
)−1

qm, qm =

∫ ∞

0

um

m!
e−uν (du ‡ T1) .

Proof. Given in the Appendix.

This result gives a complete characterisation of this class of time-changed processes, showing it

is always representable as a compound Poisson process. Further, the rate of the intensity is known,

as is the probability function of the innovations Uj .

We call models of the form Lt = L+
t −L−

t , where L
+
t = N+

T+
t

and L−
t = N−

T−
t

, “type P processes”,

mimicing the nomenclature “type G processes” used where Brownian motion is time changed by a

subordinator (see Rosinski (1991)).

Example 1 Suppose Tt ∼ IG (tδ, γ), which means it is inverse Gaussian. Then

ν (du ‡ T1) =
δ√
2π
u−

3

2 e−
1

2
γ2udu, K(θ ‡ T1) = δ

{
γ −

(
γ2 + 2θ

)1/2}
,

so that

qm =
δ√
2π

1

m!

∫ ∞

0
ume−uu−

3

2 e−
1

2
γ2udu =

δ√
2π

1

m!

Γ
(
m− 1

2

)
(
1 + γ2

2

)m− 1

2

=
δ

π
(2)

1

2 B

(
3

2
,m− 1

2

)
1

(
1 + 1

2γ
2
)m− 1

2

, (6)

where B (, ) is a beta function and the intensity is λN
∗
= δ

{(
γ2 + 2

)1/2 − γ
}
. We call the resulting

NTt a Poisson inverse Gaussian Lévy process, noting that the PIG(δ, γ) distribution of NT1 was

introduced by Holla (1967), see the discussion in, for example, Karlis and Xekalaki (2005). If

T±
t are independent inverse Gaussian Lévy processes with parameters (δ±, γ±) then we call Lt =

N+
T+
t

−N−
T−
t

a delta Poisson inverse Gaussian Lévy process and write it as

Lt ∼ ∆PIG(tδ+, γ+, tδ−, γ−).

Example 2 This example reproduces results from the previous subsection but uses a different route.

Suppose Tt ∼ Ga (tδ, 1/α), so relating to previously α = (1− p)/p. For this process

ν (du ‡ T1) = δu−1e−αudu, K(θ ‡ T1) = −δ log
(
1 +

θ

α

)
.
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So noting (1 + α)−1 = p, then

qm =
δ

m!

∫ ∞

0
e−uum−1e−αudu = δ

pm

m
, λN

∗

= δ log

(
1 +

1

α

)
= δ |log (1− p)| . (7)

The latter term is the intensity of the Poisson process N∗
t . Hence the law of the innovations for

this compound Poisson process is

Pr(Uj = m) =
1

| log(1− p)|
pm

m
.

That is, the innovations follow the logarithmic distribution, which is well known to be infinitely

divisible. Furthermore, the law of L+
1 is the negative binomial with point probabilities

Pr(L+
1 = k) =

(k+δ−1
k

)
(1− p)δpk.

It is well known that a Poisson number of i.i.d. logarithmic variables follows a negative binomial

distribution and that the negative binomial is infinitely divisible. In fact, the negative binomial has

the stronger property of being discrete selfdecomposable, cf. Steutel and Van Harn (2004).

3.5.1 Delta Poisson tempered stable processes

Let p(x;κ, δ) denote the probability density function of the positive κ-stable law S(κ, δ) with

cumulant transform −δ(2θ)κ, 0 < κ < 1, and let p(x;κ, δ, γ) denote the tempered (exponentially

tilted) version of p(x;κ, δ) defined by

p(x;κ, δ, γ) = eδγp(x;κ, δ)e−
1

2
γ1/κx. (8)

The distribution with density (8) (κ ∈ (0, 1), δ > 0, γ ≥ 0) will be referred to as a tempered stable

law and we denote it by TS(κ, δ, γ). This process is infinitely divisible and so supports a Lévy

process. Simulation of tempered stable variables is studied by Brix (1999) and extensively by

Devroye (2009), the latter provides a very reliable algorithm across all parameters.

Suppose Tt ∼ TS(κ, tδ, γ), a tempered stable process. Here 0 < κ < 1, δ, γ > 0. For this process

ν (du ‡ T1) = cu−1−κ exp

(
−1

2
γ1/κu

)
du, K(θ ‡ T1) = δγ − δ

(
γ1/κ + 2θ

)κ
,

so Tt ∼ TS(κ, tδ, γ) and

E(T1) = 2κδγ(κ−1)/κ, Var(T1) = 4κ(1 − κ)δγ(κ−2)/κ.

Here c = δ2κκ/Γ (1− κ). This process nests the gamma (κ ↓ 0), the positive stable (γ ↓ 0) and

inverse Gaussian (κ = 1/2). Then the intensity of N+
Tt

is λN
∗
= δ

{(
γ1/κ + 2

)κ − γ
}

and

qm =
c

m!

∫ ∞

0
um−κ−1e−u(1+

1

2
γ1/κ)du =

c

m!

Γ (m− κ)(
1 + γ1/κ

2

)m−κ .
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Note that Shepard’s formula states that as m → ∞ so Γ (m+ a) /Γ (m+ b) ∼ ma−b, which means

that

qm ∼ cgκmκ−1 exp (−gm) , g = log

(
1 +

γ1/κ

2

)
.

Hence this distribution has a semi-heavy tail and will be heavy tailed in the limit as γ ↓ 0. We call

this the Poisson tempered stable distribution.

This distribution was derived using a different approach by Zhu and Joe (2009), who call it

a “generalised Poisson-inverse Gaussian family”. The class of tempered stable distributions was

introduced by Tweedie (1984). See also Hougaard (1986), Jørgensen (1987), Brix (1999) and

Rosinski (2007). The normal variance-mean mixtures with tempered stable mixing were introduced

by Barndorff-Nielsen and Shephard (2001), while Carr et al. (2002) have used normal tempered

stable processes in finance under the nomenclature “CGMY processes”. If T±
t are independent

tempered stable processes with parameters (κ±, δ±, γ±) then we call Lt = N+
T+
t

− N−
T−
t

a delta

Poisson tempered stable process and write it as

Lt ∼ ∆PTS(κ+, tδ+, γ+, κ−, tδ−, γ−).

Finally it makes sense at some points to reparameterise this process so using

ψ± = 2κ±δ±
(
γ±
)(κ±−1)/κ±

= E(T±
1 ),

instead of δ±.

3.6 Integer-valued Lévy processes, semimartingales and arbitrage

Now assume κ+1 , κ
−
1 are bounded then the Lévy process with integer-valued measure ν can be

written as

Lt = L+
t − L−

t = At +Mt,

where

At = t
(
κ+1 − κ−1

)
, Mt =

(
L+
t − tκ+1

)
+
(
L−
t − tκ−1

)
.

Hence A is of locally bounded variation and M is a martingale, so L is a semimartingale. As a

result (Delbaen and Schachermeyer, 2006, Theorem 1) applies, which states that the concept of

“no free lunch without vanishing risk” is equivalent to the existence of an equivalent martingale

measure (EMM) Q.

Suppose we have a semimartingale that is locally equivalent to L then necessarily the semi-

martingale is a Lévy process L# without drift and whose integer-valued Levy measure ν# is equiv-

alent to ν (e.g. (Barndorff-Nielsen and Shiryaev, 2010, Theorem 6.1 and Example 6.2)). There are
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of course many such processes L#, and one way to obtain an EMM would be to use an Esscher

transformation (e.g. (Barndorff-Nielsen and Shiryaev, 2010, Section 7.1.3)). However, then L#

would not be a integer-valued Lévy process, and there is some appeal in choosing L# to be also a

integer-valued Lévy process. All one has to do is to change one or more of the point masses of ν so

as to ensure that E(L#
t ) = 0 while keeping the total mass of ν# finite. Note that having E(L#

t ) = 0

is then equivalent to requiring that the integral of
∫
xν#(dx) = 0.

Example 3 Suppose the Lévy process Lt ∼ Sk(tψ+, tψ−), then L#
t ∼ Sk(tψ, tψ) where ψ ∈ R>0.

Hence there are an infinite number of EMMs in this case.

Example 4 For a call option written at time 0 with an exercise price K at time t, then K must

be an integer for it to be tradeable. We then have the integer-valued Lévy process option price

C(L0, t,K) = exp(−rt)E#
[{

max(L#
t −K, 0)

}
|L#

0 = L0

]

= exp(−rt)E#
[
max

{(
L#
t − L0

)
− (K − L0) , 0

}
|L#

0 = L0

]

= exp(−rt)E#
{
max

(
L@
t −K@, 0

)}
, L@

t = L#
t − L0, K@ = K − L0,

= exp(−rt)
∞∑

j=1

j Pr(L@
t = j +K@),

where L@
t is the increment in the integer-valued Lévy process L# from time 0 to time t. Here E# de-

notes the expectation under L#. Note that C(L0, t,K) only exists when L0 is an integer so the usual

Black-Scholes risk management tools “delta” ∂C(L0, t,K)/∂L0 and “gamma” ∂2C(L0, t,K)/∂L2
0

do not exist. This integer driven result is distinct from the usual features of option pricing under

Lévy processes where the Lévy measure has support on the real line (e.g. (Cont and Tankov, 2004,

Chapter 12)). It is related to, but distinct from, Pelsser and Vorst (1994) and Chung and Shackle-

ton (2002) who studied greeks for binomial tree approximations to options for geometric Brownian

motion. In the concrete Skellam case L#
t ∼ Sk(tψ, tψ) then

C(L0, t,K) = exp {− (r + 2ψ) t}
∞∑

j=1

jI|j+K−L0| (2tψ) ,

recalling Ik(x) is the modified Bessel function of the third kind. Such option pricing formula may

be helpful in valuing the economic costs of limit orders more accurately due to the inherent tick

structure of the limit order book, e.g. Copeland and Galai (1983).

This approach to constructing L# has the advantage that if the general time change, T , which is

not necessarily a subordinator, is constructed to be probabilistically independent of the martingale

integer-valued Lévy process L# then L#
Tt

is also an integer-valued martingale. This allows for the

introduction of diurnal and time-varying volatility features.
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Example 5 If we extend Example 4 to the time-changed case then one approach is to compute

C(L0, t,K) = exp(−rt)
∞∑

j=1

jETt
{
Pr(L@

Tt = j +K@|Tt)
}
.

Here ETt denotes the expectation over the law of Tt. This approach echoes the approach to option

pricing under Gaussian stochastic volatility by Renault and Touzi (1996).

4 Fitting CP processes to futures tick data

4.1 General case

As we discussed in Section 3.1 one approach is to model

Lt =

Nt∑

j=1

Cj ,

where {Cj} are i.i.d. integer-valued innovations independent from the Poisson process N which in

turn generates the times of trades. If Cj has a distribution called G, then we will call Lt a CP-G

process.

One approach to inference is to estimate the intensity of N by counting the number of data

points during a day and separately estimating the probability function of C. We will focus on this

approach in this section.

Write a sample of innovations as C1, ..., CN1
and then a simple non-parametric estimate of the

discrete probabilities is

pk =
1

N1

N1∑

j=1

1Cj=k, k ∈ Z,

which we will compare to various parametric fits written as gk = Pr(Cj = k).

Throughout we will use the log-likelihood as a measure of fit for G. It is defined as

logL(G) =

N1∑

j=1

log gCj ,

evaluating the probability function only at points where there have been observations. Notice that

logL(p) maximises the potential log-likelihood, for pk is the non-parametric maximum likelihood

estimator of Pr(Cj = k).

4.2 Likelihood

For all the models considered in this paper we can directly compute the likelihood. This is built

out of three straightforward observations. First, for a homogeneous Poisson process with intensity
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ψ > 0 the joint density of the arrival times τ = (τ1, ..., τk)
′ between 0 and T is well known to be

(e.g. (Cox and Lewis, 1966, p. 27))

p(τ |ψ) = exp (−Tψ)ψk.

Second, for a compound Poisson process the jumps or “marks” C = (C1, ..., Ck)
′ are independent

of the times, so the joint density is

p(C, τ |θ) = exp (−Tψ)ψk
k∏

j=1

Pr(Cj|θ),

where θ denotes a general parameter. Finally, we put this together and it delivers

p(L+|θ)p(L−|θ) = exp
(
−Tψ+

) (
ψ+
)N+

T

N+

T∏

j=1

Pr(C+
j |θ+)

× exp
(
−Tψ−

) (
ψ−
)N−

T

N−
T∏

j=1

Pr(C−
j |θ−).

Here ψ± is the intensity of L± and C±
j are the corresponding jumps, while θ = (ψ+, ψ−, θ+, θ−)

′
.

Of course for a Skellam Lévy process Pr(C−
j = 1) = Pr(C+

j = 1) = 1. If ψ+, ψ−, θ+, θ− are

variation free (e.g. Engle et al. (1983)) then the maximum likelihood estimators of ψ+ and ψ− are

ψ̂+ = N+
T /T , ψ̂

− = N−
T /T.

4.3 CP-Skellam and CP-∆NB processes

Table 2 shows the ML estimates of the innovation distributions in the CP-Skellam and CP-∆NB

cases for the Euro-Dollar IMM FX futures contract on 7th and 10th of November, 2008. Figures

1 and 2 shows the corresponding computed probability function, as well as superimposing the

corresponding non-parametric fit, in the lower right graphs.

In the case of the relatively tranquil 10th November sample path, the Skellam distribution is

not too poor, it is slightly thinner in the tails than the data and perhaps struggles at ±4 ticks.

The ∆NB is statistically stronger, but there are small signs that even it is not sufficiently fat tailed.

The difference between the CP-Skellam and CP-∆NB is modest although statistically significant

(recall the ∆NB nests the Skellam model as a special case).

For the much more challenging 7th November case the differences are more stark. The Skellam

log-probability function looks sub-linear and cannot really deal with data which are at ±8 ticks.

The ∆NB log-probability function is linear in the tails, like a Laplace distribution. There is some

evidence that the data would prefer something even fatter tailed.
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CP-Skellam CP-∆NB logL

ψ̂+ ψ̂− ψ̂+ ψ̂− p̂+ p̂−

Euro 7/11/08 0.1810 0.1817 -38,705
0.1734 0.1742 0.2366 0.2286 -37,542

Euro 10/11/08 0.1328 0.1375 -24,739
0.1314 0.1360 0.0868 0.0700 -24,655

ESPC 10/11/08 0.0329 0.0339 -47,002
0.0329 0.0338 0.0072 0.0087 -46,993

CLN 10/11/08 0.1334 0.1378 -72,669
0.1254 0.1298 0.4619 0.4525 -64,237

TNC 10/11/08 0.0539 0.0516 -10,662
0.0539 0.0517 0 0 -10,662

Table 2: ML estimation of CP-Skellam and CP-∆NB models. Each fit is for data from the 7th or
10th of November, 2008.

4.4 Other examples

4.4.1 Oil futures

Next we will look at the Nymex/CME benchmark crude oil contract (CLN) series on 10th November

2008. The tick size is 0.01 of a unit, i.e. prices move from, for example, 64.41 to 64.42 dollars per

barrel. On the 10th November there were 90,762 trades.

The results from the Skellam and ∆NB distribution are given in Table 2 and Figure 5. It

shows again the ∆NB distribution doing much better in the tails of the distribution and having

a substantially higher likelihood. Here p+ and p− have roughly similar values, which means the

estimated distribution is roughly symmetric in this case. Interestingly the ∆NB tails decay less

fast than linearly. Indeed this is a pretty heavy tailed integer-valued process.

4.4.2 Ten Year US treasury note

The Ten Year US treasury note (TNC) series on 10th November 2008 has a tick size of 1
64 of a

dollar, so the movements are from, for example, 11534
64 to 11535

64 dollars. On the 10th November

there were 26,754 trades. Of these observations only a tiny fraction of moves in the pure mid-price

which are larger than ±1 hence for this dataset the Skellam distribution will be nearly satisfactory.

This is reflected in Table 2 which shows no improvement by using the more complicated ∆NB

distribution with the estimated p+ and p− parameters being close to zero. The resulting graphs

are in Figure 6.

4.4.3 The mini S&P500 contract

Finally we look at the mini S&P500 contract (ESPC) series on 10th November 2008. The corre-

sponding graphs are in Figure 7. The tick size is 0.25 of a unit, i.e. prices move from, for example,
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Figure 5: Nymex/CME benchmark crude oil contract (CLN) on 10th November 2008. Top left: ask,
bid and pure mid-price for the first 80 trades of the day. Top right: returns from pure mid-price.
They are all integers. Botton left: correlogram for mid-price, ask, bid and pure mid-price for entire
day. Bottom right: log-histogram of pure mid-price returns: non-parametric, Skellam and ∆NB
distributions.

952.00 to 951.75 dollars. On the 10th November there were 163, 974 trades. Again for these data

the Skellam distribution seems satisfactory as there is hardly any mass outside ±1 ticks, but there

is a tiny amount of unmodelled mass at quite large moves, such as ±5 ticks. Table 2 which shows

no improvement by using the more complicated ∆NB model. Note the correlogram for pure

mid-prices changes is very slightly closer to that of white noise than the corresponding correlogram

for the mid-price changes.

5 Estimating generic integer-valued Lévy processes from futures

tick data

5.1 Econometric framework

We now turn to the perhaps more interesting problem of the econometrics of integer-valued Lévy

processes estimated directly from futures tick data.
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Figure 6: Ten Year US treasury note (TNC) contract on 10th November 2008. Top left: ask, bid
and pure mid-price for the first 80 trades of the day. Top right: returns from pure mid-price. They
are all integers. Botton left: correlogram for mid-price, ask, bid and pure mid-price for entire
day. Bottom right: log-histogram of pure mid-price returns: non-parametric, Skellam and ∆NB
distributions.

We will write a continuous time pure mid-price process during a single day as

Lt = L0 +

Nt∑

j=1

Cj = L0 +

N+
t∑

j=1

C+
j −

N−
t∑

j=1

C−
j , t ∈ [0, 1],

where Nt is the number of trades up to time t, N+
t are the number of trades which deliver an

uptick in the price and N−
t are the number of trades which yield a downtick in the price. Clearly

Nt ≥ N+
t +N−

t as many trades occur without the pure mid-price moving. Here the innovations

are C+
j , C

−
j ∈ {1, 2, ...}. One of the attractive features of the high frequency data is that we are

able to separately observe the five processes Nt, N
+
t , N

−
t , C

+
j , C

−
j . This is helpful econometrically.

This component view of high frequency data echoes earlier work by, for example, Engle (2000),

Rydberg and Shephard (2003), Barndorff-Nielsen et al. (2009) and Russell and Engle (2010).

Remark 8 We can go from a compound Poisson process {Nt, Cj} for trades, which includes inno-

vations of zeros, into a Lévy model for
{
N+
t , N

−
t , C

+
j , C

−
j

}
which exclude the zeros. In particular,
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Figure 7: Mini S&P500 contract (ESPC) on 10th November 2008. Top left: ask, bid and pure
mid-price for the first 80 trades of the day. Top right: returns from pure mid-price. They are all
integers. Botton left: correlogram for mid-price, ask, bid and pure mid-price for entire day. Bottom
right: log-histogram of pure mid-price returns: non-parametric, Skellam and ∆NB distributions.

writing the intensity of Nt as λ, then

λ+ = λPr(Cj ≥ 1), λ− = λPr(Cj ≤ −1),

Pr(C+
j = k) =

Pr(Cj = k)

Pr(Cj ≥ 1)
, Pr(C−

j = k) =
Pr(Cj = −k)
Pr(Cj ≤ −1)

, k = 1, 2, ....

5.2 Skellam Lévy process and one-tick markets

For a Skellam Lévy process then

Lt − Ls ∼ Sk((t− s)ψ+, (t− s)ψ−), t > s.

But in continuous time the price process is constant until an innovation hits. These are
{
C+
j , C

−
j

}

and are degenerate, being a sequence of ones with probability one. Hence in that case

Lt = L0 +N+
t −N−

t , t ∈ [0, 1].

This process does not allow instantaneous moves in the price of more than one tick, which limits its

direct application to so-called one-tick markets (see, for example, Field and Large (2008)). Hence
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the Skellam Lévy process is fundamentally different from the CP-Skellam process. In the latter

cases the innovations can be larger than one. This single tick empirical limitation of the Skellam

Lévy process means we will not continue with its application here.

5.3 Generic integer-valued Lévy processes

5.3.1 Econometrics

If we return to the generic approach of Section 3.5 then the conditional likelihood for positive moves

is

logL(p+;C+
1 , ..., C

+
N1

|N+
1 ) =

N+

1∑

j=1

log
{
Pr(C+

j )
}
=

N+

1∑

j=1

{
log qC+

j
− log

(
λN

+∗
)}

.

The same approach can be followed for negative moves.

Example 6 In the ∆PTS process case then

λN
+∗ = δ+

{((
γ+
)1/κ+

+ 2
)κ+

− γ+
}
, qm =

δ+2κ
+

κ+/Γ (1− κ+)

m!

Γ (m− κ+)(
1 + γ1/κ

2

)m−κ .

Notice that logL(p+;C+
1 , ..., C

+
N1

|N+
1 ) does not depend upon δ, solely κ+ and γ+. Once κ+ and γ+

are estimated as κ̂+ and γ̂+, respectively, then

δ̂+ =
N+

1

(
γ̂+

1/κ̂+

+ 2

)κ̂+
− γ̂+

.

Throughout we then reparameterise δ± to

ψ± = 2κ±δ±
(
γ±
)(κ±−1)/κ±

,

so that E
(
L+
t |L+

0

)
= L+

0 + tψ+.

Example 7 In the ∆NB process special case

λN
+∗ = δ+

∣∣log
(
1− p+

)∣∣ , qm = δ+
(p+)

m

m
. (9)

Notice that logL(p+;C+
1 , ..., C

+
N1

|N+
1 ) does not depend upon δ+, solely p+, and has a very sim-

ple form in this case with
∑N+

1

j=1C
+
j being a sufficient statistic for p+. Throughout we use the

parameterisation δ+ to ψ+ = δ+p+/ (1− p+).
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Intensities

Up Down ψ̂+ ψ̂−

Euro 7/11/08 5,298 5,348 6,513 6,544
Euro 10/11/08 3,468 3,633 3,861 4,015

ESPC 10/11/08 5,148 5,292 5,232 5,382
CLN 10/11/08 7,320 7,649 10,612 11,009
TNC 10/11/08 1,363 1,308 1,373 1,312

Table 3: ML estimation of intensities ψ+ = E(L+
1 ) and ψ

− = E(L−
1 ). Also recorded are the number

of updates which move the price up or down.

5.3.2 Empirical results

All of the resulting fits look at the entire day and the results are given in Tables 3 and 4. Table 3

shows the counted up and down moves on each day which determines the intensity of the process,

while the estimated ψ+ and ψ− are the estimated expected total up and down ticks seen during

the day. These are the same whatever model is being fitted. In the ESPC and TNC cases these

are slightly above the counts, for the other assets they are quite a lot above the counts due to those

series having quite frequent multiple tick moves. The tail thickness of up moves is determined by

p+ and show quite thick tails for the Euro and CLN futures prices.

Estimated ∆NB Lévy process Estimated ∆PTS Lévy process

p̂+ logL p̂− logL γ̂+ κ̂+ logL γ̂− κ̂− logL

Euro 7/11/08 .329 -3,089 .323 -3,070 1.37 0.386 -3,076 1.38 0.350 -3,060
Euro 10/11/08 .190 -1,272 .178 -1,261 1.00 0.001 -1,272 1.00 0.002 -1,261

ESPC 10/11/08 .031 -424 .033 -449 2.46 0.948 -401 1.79 0.959 -415
CLN 10/11/08 .504 -6,497 .497 -6,719 1.04 0.072 -6,496 1.00 0.001 -6,719
TNC 10/11/08 .014 -59 .006 -27 5.25 0.953 -57 1.02 0.003 -27

Table 4: ML estimation of ∆NB Lévy process. Each fit uses all the data on that day. Up moves
records the number of upmovements during the day, downmoves looks at down moves.

The fitted probabilities for the Pr(C+
j = k) from the ∆NB Lévy process are shown in Figure 8

for the five series, together with a non-parametric fit and the result for the ∆PTS process. The

graphs are reasonably promising, although there is some evidence that the ∆NB distribution is

slightly too thin for the Euro series on the 7th November. The most significant issue is shown for

ESPC, where the moves are nearly almost always one or two ticks, but there is a small chance of

quite a large move. The ∆NB process is quite unable to pick up those surprise shocks, but the

∆PTS copes. These large moves drive the high estimated values for κ±. The graphs also shows the

probabilities for Pr(C−
j = k), the results are broadly similar. Of course there is no probability at

the atom at zero for these innovations.
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Figure 8: Fits of the ∆NB and ∆Poisson-TS processes, together with a nonparametric fit. The
results are given on the log scale.

6 Conclusion

In this paper we developed an exploratory analysis of integer-valued low latency financial data. Our

focus is on the unconditional distributional features of returns at times of trades only, establishing

the framework of integer-valued Lévy processes as a fundamental starting point for models of low

latency data. This can be thought of as a first step towards more realistic stochastic process

modelling, which in particular would involve time-change to allow for volatility clustering and

diurnal features.

In this work high quality, low latency tick price data from futures exchanges were used. With

this we demonstrated that the CP-Skellam process (a compound Poisson process with Skellam in-

novations) provides a good fit to the unconditional distribution of mid-price changes on ‘normal’

times. Further we exhibit how unconditional price change distributions are affected by large eco-

nomic events such as the release of US non-farm payroll numbers. On those days the quality of

CP-Skellam fits tends to be poor. We also used the data to illustrate differences between the em-

pirical, unconditional price change distributions of different futures markets showing, for example,

log-linear tails for Crude Oil futures price changes. Such markets also pose fitting problems for the
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simple Skellam distribution.

We have addressed the cases where simple Skellam fitting proves inadequate. Our mathematical

theory has developed alternative distributions to the Skellam. Notable amongst these is the ∆NB

distribution for which we have derived a tractable distribution law. This distribution is more

flexible and consequently more able to model the pure mid-price innovations for futures prices.

The resulting process is nested inside the ∆PTS.

We should mention the following. The simple binomial model of Cox et al. (1979) is related to

the simple Skellam process in continuous time. Over a very small amount of time, in the Skellam

process with probability one the price either stays the same, goes up one tick or goes down one

tick. Hence the model is closest to a continuous time trinomial tree, discussed by for example Hull

and White (1996) and Boyle (1986). A recent paper on this subject is, for example, Yuen and

Yang (2010). Related mathematical finance work is carried out by Kirch and Runggaldier (2004)

who look at modelling derivative prices based upon Poisson processes.

Finally, the basic building blocks developed here can be extended to allow for volatility clustering

using a time-change, while it would be also attractive to allow for limited amounts of autocorrelation

to deal with the remaining microstructure noise in the pure mid-price.
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A Appendix

A.1 Proof of Theorem 1

Proof Clearly L has no Gaussian component and so its Lévy-Ito representation has the form

Lt = at+

∫ t

0

∫

|x|≥ε
xN(dxds) +

∫ t

0

∫

|x|<ε
x(N(dxds)− ν(dx)ds) (A.1)

for any ε > 0 and whereN is a Poisson random measure with compensator E{N(dxds)} = ν(dx)ds.

Since L is taking integer values only, by choosing ε < 1 the last term in (A.1) disappears, and it

follows that a must be 0. Thus, in fact,

Lt =

∫ t

0

∫

R

xN(dxds).
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Furthermore, again since L is integer valued, for any i ∈ Z and t > 0 we have that N((i−1, i)×[0, t])

is almost surely 0 and therefore

E{N((i − 1, i)× [0, t])} = ν((i− 1, i))t = 0

implying that ν is concentrated on Z\{0}. Recalling that any Lévy measure has the property

∫
min

{
1, x2

}
ν (dx) <∞

we furthermore conclude that ν is a finite measure.

The finiteness of ν means that L is a finite activity process. Hence, splitting the jumps of L into

positive and negative values, we can reexpress L as the difference L+ − L− between two discrete

subordinators L+ and L−.

A.2 Proof of Theorem 2

Proof. The kumulant functions (log Laplace transforms) of L+ and T are related by

K̄
(
θ ‡ L+

t

)
= log E

{
exp(−θL+

t )
}
= tK̄

((
1− e−θ

)
‡ T1

)
.

Now

K̄
((

1− e−θ
)
‡ T1

)
=

∫ ∞

0

{
e−(1−e

−θ)u − 1
}
ν (du ‡ T1) .

Then

K̄
((

1− e−θ
)
‡ T1

)
=

∫ ∞

0

(
e−u − 1

)
ν (du ‡ T1) +

∫ ∞

0

(
ee

−θu − 1
)
e−uν (du ‡ T1)

= K̄{1 ‡ T1}+
∞∑

m=1

e−mθ
∫ ∞

0

um

m!
e−uν (du ‡ T1)

= K̄{1 ‡ T1}+
∞∑

m=1

e−mθqm,

where, crucially,

qm =

∫ ∞

0

um

m!
e−uν (du ‡ T1) .

Using the fact that K̄
(
0 ‡ L+

t

)
= 0 we obtain

K̄
(
θ ‡ L+

t

)
= t

∞∑

m=1

(
e−mθ − 1

)
qm.

Consequently, as is easily checked by direct calculation, the Lévy measure of L+
t equals

ν
(
dx ‡ L+

t

)
= t

∞∑

1

qmδm (dx)
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where δm denotes the delta measure at m. It follows in particular that

ν
(
(0,∞) ‡ L+

t

)
= t

∫ (
1− e−u

)
ν (du ‡ T1) = −tK̄ (1 ‡ T1) <∞

and hence L+ is representable as a compound Poisson process of rate κ = ν
(
(0,∞) ‡ L+

1

)
and with

innovation summands U1, U2, ... having probability law

P (dx ‡ U) =
ν
(
dx ‡ L+

1

)

ν
(
(0,∞) ‡ L+

1

) . (A.2)

In other words, the point probabilities of U are

Pr(U = m) = κ−1qm.

This completes the proof.
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