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Abstract

This paper studies the impact of jumps on volatility estimation and inference based on various
realised variation measures such as realised variance, realised multipower variation and truncated
realised multipower variation. We review the asymptotic theory of those realised variation mea-
sures and present a new estimator for the asymptotic ‘variance’ of the centered realised variance
in the presence of jumps. Next, we compare the finite sample performance of the various estima-
tors by means of detailed Monte Carlo studies where we study the impact of the jump activity,
the jump size of the jumps in the price and the presence of additional independent or dependent
jumps in the volatility on the finite sample performance of the various estimators. We find that the
finite sample performance of realised variance, and in particular of the log–transformed realised
variance, is generally good, whereas the jump–robust statistics turn out not to be as jump robust
as the asymptotic theory would suggest in the presence of a highly active jump process.

In an empirical study on high frequency data from the Standard & Poor’s Depository Receipt
(SPY), we investigate the impact of jumps on inference on volatility by realised variance in prac-
tice.
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1 INTRODUCTION

1 Introduction

Volatility estimation and inference is one of the key problems in finance and has become one of the
most active research areas in financial econometrics in the last decade. In particular, the availability of
high frequency financial data makes it possible to constructvarious non–parametric volatility estima-
tors, whose theoretical behaviour is now very well understood, see Andersen, Bollerslev, Diebold &
Labys (2001), Barndorff-Nielsen & Shephard (2002, 2004a,b, 2007). Besides the question of estimat-
ing volatility, the recent literature has also addressed the problem of testing for jumps in asset price
data, see Aı̈t-Sahalia & Jacod (2009b), Barndorff-Nielsen & Shephard (2006), Huang & Tauchen
(2005), Lee & Mykland (2008). In this paper, we address a closely related questions, which has
not been studied empirically before: How do jumps impact inference on volatility based on various
realised variation measures?

In order to answer that question, we will first focus on the most widely used and probably best
understood non–parametric stochastic volatility estimator, i.e. onrealised variance, see Andersen,
Bollerslev, Diebold & Ebens (2001), Barndorff-Nielsen & Shephard (2002). Daily realised variance
is defined as the sum of the squared intra–day returns. It can be shown, see Protter (2004), that
this quantity is a consistent estimator for the quadratic variation of the price process, which is often
regarded as a measure of accumulated daily variance. However, in order to make inference on the
quadratic variation of the price process, we need a central limit result for the volatility estimator. Re-
cently, Jacod (2008) has established a comprehensive limittheory for realised variance (among other
functionals of semimartingales) when the logarithmic asset price is assumed to be an Itô semimartin-
gale; the correspondingfeasiblelimit theory has then been derived in Veraart (2010) and we refer to
these two papers for details on the underlying theory.

In this paper, we present a new estimator for the jump part of the asymptotic ‘variance’ of the
centered realised variance which is based on the threshold concept.

Next, this paper focuses on practical aspects of the new central limit theory for realised variance
when the asset price exhibits jumps. First of all, we study the finite sample performance of the new
theory by means of Monte Carlo studies. In particular, we will see that the feasible limit theory
makes use of spot volatility estimators. Hence we compare inour simulation experiment the finite
sample performance based on two widely used spot volatilityestimators: locally average realised
bipower variation and locally averaged truncated realisedvariance. Furthermore, we will see that the
asymptotic normality of realised variance in the presence of jumps only holds when the asset price
and the volatility do not jump together. In fact, it is now possible to test whether there are co–jumps in
price and volatility, see Jacod & Todorov (2010). However, from a practical point of view one might
want to ask the question, how big the estimation error is if one uses the standard inference technique
even if there are common jumps in the price and the volatility. This is studied in another simulation
experiment in this paper.

Since economists are often interested in inference on the continuous part of the quadratic variation,
we also study the impact of jumps on realised multipower and truncated realised variation measures,
which are known to be robust to jumps. We review the asymptotic theory of these quantities briefly
and include them into our Monte Carlo study. While such measures turn out to be robust to rare
jumps, they are severely challenged — in finite samples — by the presence of a very active jump
process generating many small jumps in addition to some bigger jumps.

Next, we carry out a small empirical study based on high frequency data from the Standard &
Poor’s Depository Receipt (SPY) over a ten year period from 1998 to 2008. In this study, we in-
vestigate the impact of jumps on inference based on realisedvariance empirically. We estimate the
quadratic variation of the asset price by realised varianceand compute the corresponding confidence
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2 ASYMPTOTIC THEORY FOR REALISED MEASURES IN THE PRESENCE OFJUMPS

bounds using the new feasible limit theory. The main aim is tofind out how the size of the confidence
bounds differs depending on whether we account for jumps or not.

The remaining part of the paper is structured as follows. Section 2 reviews the asymptotic prop-
erties of realised variance, realised multipower variation and truncated realised multipower variation
in the presence of jumps. Section 3 presents consistent estimators for the asymptotic ‘variances’ of
centered realised variation measures. Here we also presenta new estimator of the jump part of the
asymptotic ‘variance’ of centered realised variance. In Section 4, we check the finite sample perfor-
mance of the asymptotic theory, where we study the impact of jumps in the price and also the impact
of co–jumps in the price and in the volatility on inference for realised variance. Next, we study the
impact of jumps on the size of the confidence bounds for realised variance empirically in Section 5.
Finally, Section 6 concludes. All technical assumptions, proofs and tables from the simulation study
are relegated to the Appendix, see Sections A, B and C, respectively.

2 Asymptotic theory for realised variation measures in the presence of
jumps

Recent research on nonparametric volatility estimation has focused on the class of Itô semimartin-
gales as a model for the logarithmic asset price. In this section we will review the basic traits of Iô
semimartingales and we will present some of the most often used nonparametric volatility estimators.

The focus will be on a non–technical presentation of the underlying theory and we refer to Jacod
(2008) and Veraart (2010) for the technical details.

2.1 The Itô semimartingale framework

Let (Ω,A, (Ft)t≥0,P) denoted a filtered probability space, on which we define a real–valued Itô semi-
martingaleX = (Xt)t≥0. Note that an Itô semimartingale is a semimartingale whosecharacteristics
are absolutely continuous with respect to the Lebesgue measure. That means that it can be written as

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs + Jt, (1)

whereW = (Wt)t≥0 is a Brownian motion andJ = (Jt)t≥0 is a pure jump process defined by

Jt =

∫ t

0

∫

E
κ(δ(s, x))(µ − ν)(ds, dx) +

∫ t

0

∫

E
κ′(δ(s, x))µ(ds, dx), (2)

whereµ is a Poisson random measure onR+ × E with (E, E) being an auxiliary space on the prob-
ability space(Ω,A, (Ft)t≥0,P). Further,ν denotes the predictable compensator ofµ and is given by
ν(ds, dx) = ds⊗ λ(dx), whereλ is aσ–finite measure on(E, E). We denote byκ a truncation func-
tion which is bounded, has compact support andκ(x) = x in a neighbourhood of0 and is assumed to
be continuous. Then we defineκ′(x) = x − κ(x). The coefficientsb, σ andδ are assumed to satisfy
some mild integrability conditions, see the Appendix for more details.

Let us now assume that the logarithmic asset price, denoted by X = (Xt)t≥0, is modelled by
such an Itô semimartingale. Clearly, this is a very generalmodelling framework since it allows for
stochastic volatility, fairly general jumps and can account for the leverage effect, i.e. the usually
negative correlation between asset prices and volatility,see Black (1976), Nelson (1991), sinceσ and
W are not assumed to be independent.
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2 ASYMPTOTIC THEORY FOR REALISED MEASURES IN THE PRESENCE OFJUMPS

Our aim is now to focus on thevolatility of the logarithmic asset priceX given by (1). A quantity
which is closely related to the volatility of the logarithmic asset price, is thequadratic variationof X,
which is given by

[X]t =

∫ t

0
σ2

sds+
∑

0≤s≤t

(∆Xs)
2 , (3)

where∆Xs = Xs −Xs− denotes the jump ofX at times, see Protter (2004) for more details. We
see that the quadratic variation contains two parts: the continuous part given by the integrated squared
volatility processσ and the jump part, which consists of the sum of the squared jumps ofX. From
an economic point of view, the quadratic variation can be interpreted as a measure of the accumulated
instantaneous conditional variance of the continuous and the jump part of the price over a time interval
[0, t], wheret is usually taken to be one day.

2.2 Realised variance

The key question is: How can we estimate this accumulated daily price variation, defined by (3), given
high frequency financial data?

Assume that we observe the processX over an interval[0, T ] for T > 0 at timesi∆n for ∆n > 0
andi = 0, . . . ⌊T/∆n⌋. Further, let0 < t ≤ T . Note that we will always assume that∆n → 0 as
n→ ∞. Typically we have∆n = 1/n. So for its discretely observed increments we write

∆n
i X = Xi∆n −X(i−1)∆n

.

Now we define therealised variance(RV) over the interval[0, t] as the sum of the squared increments,
i.e.

RV n
t =

⌊t/∆n⌋∑

i=1

(∆n
i X)2 .

It is well–known, see e.g. Andersen, Bollerslev, Diebold & Ebens (2001), Barndorff-Nielsen & Shep-
hard (2002) and Protter (2004), that therealised varianceestimates the quadratic variation of the
underlying process consistently, i.e.

RV n
t

ucp−→ [X]t, asn → ∞,

where the convergence is uniform on compacts in probability(ucp), see Protter (2004, p. 57). Realised
variance is now a widely used ‘volatility’ estimator, see e.g. Huang & Tauchen (2005) and Andersen
et al. (2007). However, in order to assess the quality of thisestimator, one has to construct confidence
intervals and, hence, one needs a central limit result for realised variance. From recent work by Jacod
(2008, Theorem 2.12 (ii)), we obtain a central limit theory for realised variance in the presence of
jumps.

Assume that Assumption (L-2), see Appendix, holds. Then

1√
∆n




⌊t/∆n⌋∑

i=1

(∆n
i X)2 − [X]t


 =

1√
∆n




⌊t/∆n⌋∑

i=1

(∆n
i X)2 −



∫ t

0
σ2

sds +
∑

0≤s≤t

(∆Xs)
2






(4)
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2 ASYMPTOTIC THEORY FOR REALISED MEASURES IN THE PRESENCE OFJUMPS

converges, as∆n → 0, finite dimensionally stably in law to a random variable which has zero mean
and (conditional) asymptotic ‘variance’ given by

Vt := 2It + 2Dt, where It :=

∫ t

0
σ4

sds, Dt :=
∑

p:Tp≤t

(
σ2

Tp− + σ2
Tp

)
(∆XTp)

2,

where(Tp)p≥1 denote stopping times which are the enumerations of the jumptimes ofX.

Remark Note that stable convergence in law is a stronger convergence concept than convergence in
law, see Rényi (1963) and Jacod (2008) for more details. In particular, it will allow us to replace the
asymptotic ‘variance’Vt by a consistent estimator̂Vt without having an impact on the validility of the
central limit theorem, see below.

Under the additional assumption thatX and σ do not have common jumps, the above result
simplifies to

1√
∆n




⌊t/∆n⌋∑

i=1

(∆n
i X)2 −



∫ t

0
σ2

sds +
∑

0≤s≤t

(∆Xs)
2




→MN(0, Vt), (5)

finite dimensionally stably in law. In this case,Dt simplifies to2
∑

p:Tp≤t σ
2
Tp

(∆XTp)
2, since the

jump times ofX are not jump times ofσ and, hence,σ2
Tp−

= σ2
Tp

for p ∈ N such thatTp ≤ t. Note
thatMN stands formixed normal.

Remark When there are no jumps, the limit result is well–known, see e.g. Jacod (1994), Jacod &
Protter (1998) and Barndorff-Nielsen & Shephard (2002).

In order to use this limit result in practice, we need a consistent estimator for the asymptotic ‘variance’
Vt.

Let us assume that̂V n
t denotes such a consistent estimator ofVt, then we get

1√
∆nV̂ n

t




⌊t/∆n⌋∑

i=1

(∆n
i X)2 −



∫ t

0
σ2

sds+
∑

0≤s≤t

(∆Xs)
2




→ N (0, 1) , (6)

where the convergence is in law.

Remark Since the central limit result (5) holdsstablyin law (and not just in law), we can replaceVt

by a consistent estimator̂V n
t and obtain thefeasiblecentral limit result (6) without further proof.

2.3 Realised multipower variation

We have seen that the realised variance estimates the entirequadratic variation consistently. How-
ever, it is also interesting to study the continuous part andthe jump part of the qudratic variation
separately. In order to do that, two concepts have been proposed: realised multipower variation, see
Barndorff-Nielsen & Shephard (2004b, 2006), and truncated realised variation, see Mancini (2001).
More recently, a combination of these two concept has also been studied, see Corsi et al. (2010). Here,
we will review these concepts briefly.

The concept ofrealised multipower variation(RMPV) has been introduced by Barndorff-Nielsen
& Shephard (2004b, 2006) as a consistent estimator of the continuous part of the quadratic variation,
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2 ASYMPTOTIC THEORY FOR REALISED MEASURES IN THE PRESENCE OFJUMPS

which we denote by[X]ct =
∫ t
0 σ

2
sds. Subsequently, it has also been studied by Woerner (2006), Jacod

(2006).
In the following, we will denote byµx = E (|U |x) = π−1/22x/2Γ

(
x+1
2

)
, for U ∼ N(0, 1) and

x > 0 thexth absolute moment of a standard normally distributed random variable. Further, letI ∈ N

and letr = (r1, . . . , rI) denote a multi–index whereri > 0 for i = 1, . . . , I. We write

|r| =
I∑

i=1

ri, r+ = max
i∈1,...,I

ri, r− = min
i∈1,...,I

ri, µr =
I∏

i=1

µri
.

We define the realised multipower variation (RMPV) by

RMPV (r)nt = ∆1−|r|/2
n

⌊t/∆n⌋∑

i=1

I∏

j=1

∣∣∆n
i+j−1X

∣∣rj . (7)

From Jacod (2006), we know that under assumption (H), see Appendix, and ifr+ < 2, then

RMPV (r)nt
ucp→ µr

∫ t

0
σ|r|s ds, as∆n → 0. (8)

The corresponding central limit result only holds under stricter conditions (mainly on the jump part of
X), see Jacod (2006). Under assumption (A), see Appendix, which basically says that the jump part
of X is of finite variation and the volatility processσ never vanishes, then forr+ < 1:

1√
∆n

(
RMPV (r)nt − µr

∫ t

0
σ|r|s ds

)
→MN

(
0, A(r)

∫ t

0
σ2|r|

s ds

)
, (9)

where the convergence is stably in law and

A(r) =
I∏

i=1

µ2ri
− (2I − 1)

I∏

i=1

µ2
ri

+ 2
I−1∑

i=1

i∏

j=1

µrj

I∏

j=I−i+1

µrj

I−i∏

j=1

µrj+rj+i
. (10)

Remark Note that, in the presence of jumps, the above central limit theorem does not hold for the
realised bipower variation, whereI = 2 andr1 = r2 = 1. See Vetter (2010) for a detailed treatment
of that case.

The choices|r| = 2 and |r| = 4 are of particular interest in financial econometrics, sincethey
lead to consistent estimators of integrated variance and integrated quarticity, respectively. In many
applications, we are interested in the case whereri = c/I for c ∈ N andi = 1, . . . , I. In this case,
A(r) simplifies to

A((c/I, . . . , c/I)) = µI
2c/I − (2I − 1)µ2I

c/I + 2

I−1∑

i=1

µ2i
c/Iµ

I−i
2c/I .

If c = 2, I = 2, we obtain realised bipower variation and forc = 2, I = 3 realised tripower variation.
More generally, for estimating the integrated|r|th power ofσ, we could use any multipower variation
(satisfying the assumptions above) such thatc = |r|/I. However, from the formulae above we see
that the efficiency of multipower variation decreases asI → ∞, see also Table 1 for some examples.

The main intuition behind the concept of realised multipower variation lies in the fact that the
probability of having several jumps in neighbouring intervals is very low, hence the effect of jumps is
averaged out compared to realised variance, say.
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2 ASYMPTOTIC THEORY FOR REALISED MEASURES IN THE PRESENCE OFJUMPS

c, I µc/I µ−1
r

= µ−I
c/I µ−2

r
A(r)

c = 2, I = 2
√

2/π ≃ 0.797 π/2 ≃ 1.570 1
4π

2 + π − 3 ≃ 2.608
c = 2, I = 3 0.802 1.935 3.061
c = 4, I = 3 0.830 1.743 13.649
c = 4, I = 4 0.797 2.467 14.916

Table 1: Scaling and efficiency parameters for the realised multipower variation. Here we choose
r = (r1, . . . , rI), whereri = c/I, for c, I ∈ N, i = 1, . . . , I. ThenlimI→∞ µ−2

r
A(r) = π2c2/8.

Remark In order to improve the finite sample performance of realisedmultipower, in particular when
it is compared to realised variance, one often multiplies the realised multipower variation by the factor

⌊t/∆n⌋
⌊t/∆n⌋−I+1 , which converges to 1 asn→ ∞. This factor makes up for the fact that realised variance
consists of⌊t/∆n⌋ terms in the sum, whereas RMPV only consists of⌊t/∆n⌋ − I + 1 terms.

Another adjusted version of RMPV, which one can often find arestaggered versions, see e.g.
Huang & Tauchen (2005), which make RMPV robust towards some types of market microstructure
effects.

2.4 Truncated realised variance

Besides the concept of realised multipower variation thereis the concept of truncated RV or RMVP.
The idea of truncating RV to only use ‘small’ increments and,hence, get rid of jumps has been
introduced by Mancini (2001), see also Mancini (2009), and has subsequently been studied in a more
general framework by Jacod (2008). The main results are, seeJacod (2008, Theorem 2.4 (iii) and
Theorem 2.10), that the truncated realised variance (TRV) defined by

TRV (ω,α)nt =

⌊t/∆n⌋∑

i=1

(∆n
i X)2 I{|∆n

i X|≤α∆ω
n}
,

for α > 0 andω ∈ (0, 1/2) is a consistent estimator of[X]ct , provided assumption (H), see Appendix,
holds. Further, under the stronger assumption (B) (on the activity index of the jumps inX), we have
the following central limit theorem:

1√
∆n

(
TRV (ω,α)nt −

∫ t

0
σ2

sds

)
→MN

(
0, 2

∫ t

0
σ4

sds

)
, as∆n → 0.

Remark When we compare RMPV(r ) with |r| = 2 and TRV, we observe that both classes of es-
timators are consistent and asymptotically unbiased estimators for[X]c. The advantage of the TRV
estimator is that it is more efficient then RMPV(r ). However, the nice feature of the RMPV(r ) es-
timator lies in the fact that it does not require to choose a threshold, which can be complicated in
practice.

2.5 Truncated/threshold realised multipower variation

Recently, the two concepts of multipower variation and truncation have been combined in order to get
an estimator which achieves even better finite sample properties, see Corsi et al. (2010). Truncated
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3 CONSISTENT ESTIMATORS OF THE ASYMPTOTIC VARIANCE

realised multipower variation (TRMPV) is defined by

TRMPV (r, α, ω)nt = ∆1−|r|/2
n

⌊t/∆n⌋∑

i=1

I∏

j=1

∣∣∆n
i+j−1X

∣∣rj
I
{|∆n

i+j−1X|≤αj∆
ωj
n }
, (11)

where we use the notation as in the RMPV case and, additionally, α = (α1, . . . , αI) and ω =
(ω1, . . . , ωI), where allαi > 0 andωi ∈ (0, 1/2) for i = 1, . . . , I. Regarding the consistency,
we get the same result as in (8), where RMPV is replaced by TRMPV. Under the same assumptions as
above, we also obtain a central limit theorem of the form (9),where RMPV is replaced by TRMPV. In
addition, the central limit theorem also holds for the case thatr+ = 1 and, hence, includes truncated
realised bipower variation.

2.6 Difference of RV and RMPV

So far, we have seen that RV can be used for making inference on[X] and RMPV, TRV and TRMPV
can be used for inference on[Xc]. In order to make inference on the jump part of the quadratic
variation, we can use the difference of RV and RMPV, which hasbeen studied in Veraart (2010).

Under assumption (C), see Appendix, we have that forri = 2/I

1√
∆n

(
RV n

t − µ−I
2/IRMPV (r)nt

)
→MN (0, θIIt + 2Dt) , as∆n → 0,

whereθI = µ−2I
2/I A((2/I, . . . , 2/I)) − 2.

2.7 Final remarks regarding the asymptotic theory

It should be noted that the asymptotic theory for the realised measures reviewed above has been de-
rived under the assumption that there is always a Brownian component present, i.e. the price process
does not solely consist of a pure jump component. For pure jump processes, the asymptotic the-
ory is much less developed. However, for some subclasses of pure jump processes there are some
asymptotic results for realised measures, see e.g. Jacod (2004), Todorov & Tauchen (2010) for some
first investigations along those lines. However, the assumption that a Brownian component is always
present does not seem to be that unrealistic in the light of recent findings by Cont & Mancini (2007)
and Aı̈t-Sahalia & Jacod (2010).

3 Consistent estimators of the asymptotic variance of centered realised
variation measures

In order to use the central limit results reviewed above to make inference on[X], [Xc] or on [Xd],
we need a consistent estimators for the conditional asymptotic ‘variances’. In order to do that, we
proceed in two steps: We review the well–known estimators for the continuous part, i.e. forIt, and
then we construct a new estimator for the jump partDt.

8



3 CONSISTENT ESTIMATORS OF THE ASYMPTOTIC VARIANCE

3.1 Estimating the continuous part

From the previous section, we know that we can use RMPV, and inparticular realised tripower varia-
tion with ri = 4/3, for estimatingIt, i.e. we define

În
t = µ−3

4/3RMPV ((4/3, 4/3, 4/3)) = µ−3
4/3∆

−1
n

⌊t/∆n⌋−2∑

i=1

|∆n
i X|4/3|∆n

i+1X|4/3|∆n
i+2X|4/3.

Then În
t is a consistent and unbiased estimator of the integrated quarticity even in the presence of

jumps in the price process, in particularÎn
t

ucp−→ It =
∫ t
0 σ

4
sds, asn→ ∞. Other choices of RMPV(r )

with |r| = 4 would be possible, too, but the choice above is the most efficient one from the RMPV(r )
estimators which are robust towards jumps and are of the typeri = 4/I.

3.2 Estimating the jump part

Next, we propose a new estimator for the jump processDt =
∑

p:Tp≤t

(
σ2

Tp−
+ σ2

Tp

) (
∆XTp

)2
,

which is based on the truncation concept. In particular, we use a localised version of TRV for estimat-
ing the spot volatilityσ2 and we use the truncation concept again, this time using the big increments
only, for approximating the jumps ofD. Altogether, we get the following result.

Proposition 3.1 Let assumption (G1), see Appendix, be satisfied. Let(kn)n∈N ⊆ N such thatkn →
∞ andkn∆n → 0 asn→ ∞. Further, let

In,t(i) = {j ∈ N : j 6= i : 1 ≤ j ≤ ⌊t/∆n⌋, |i− j| ≤ kn}.

For α > 0, ω ∈
(
0, 1

2

)
, we define

D̂
(1),n
t := D̂

(1),n
t (α, ω) :=

1

kn∆n

⌊t/∆n⌋∑

i=1

(∆n
i X)2 I{|∆n

i X|>α∆ω
n}

∑

j∈In,t(i)

(
∆n

jX
)2

I{|∆n
j X|≤α∆ω

n}
.

ThenD̂(1),n
t

P→ Dt, asn→ ∞.

Proof The proof is given in the appendix. �

An alternative estimator ofDt has recently been proposed in Veraart (2010, Theorem 2). Under
assumption (D). Further, we define an index setI∗(n, i) by

I∗n,t(i) = {j ∈ N \ {i− 1, i, i − 1} : 1 ≤ j ≤ ⌊t/∆n⌋, |i − j| ≤ kn}.

Then,

D̂
(2),n
t = max




[t/∆n]∑

i=1

(∆n
i X)2

µ−2
1

(kn − 2)∆n

∑

j∈I∗(n,i)

∣∣∆n
jX
∣∣ ∣∣∆n

j+1X
∣∣− 2În

t , 0


 (12)

is also a consistent estimator ofDt.
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3 CONSISTENT ESTIMATORS OF THE ASYMPTOTIC VARIANCE

3.3 Putting it together

Recall that, for inference on the realised variance, we needto estimateVt = 2It + 2Dt. Hence, we
choose the following two estimators:

V̂
(1),n
t := V̂

(1),n
t (α, ω) = 2În

t + 2D̂
(1),n
t (α, ω),

V̂
(2),n
t = 2În

t + 2D̂
(2),n
t .

3.4 Relevant quantities for the simulation study

After we have reviewed the asymptotic theory for (truncated) RV and (truncated) RMPV in the pres-
ence of jumps, we study the finite sample properties of these estimators. In order to do that, we define
the quantities of interest, which are asymptotically (under the appropriate assumptions) standard nor-
mally distributed.

Now we can combine the previous results and obtain a feasiblecentral limit theory for realised
variance in the presence of jumps, see (Veraart 2010, Corollary 5).

Let t = 1 and∆n = 1/n and assume thatX0 = 0. Then[X]1 =
∫ 1
0 σ

2
sds +

∑
p:Tp≤1 (∆Xs)

2.
Let

T (1)(kn) := T (1)(kn, α, ω) =
√
n

(
n∑

i=1

(∆n
i X)2 − [X]1

)(
V̂

(1),n
1 (α, ω)

)−1/2
,

T (2)(kn) =
√
n

(
n∑

i=1

(∆n
i X)2 − [X]1

)(
V̂

(2),n
1

)−1/2
.

(13)

By applying the delta method for stable convergence, see Dette et al. (2006), to the logarithmic
transform of the realised variance, we deduce that

T
(1)

(kn) := T
(1)

(kn, α, ω)

=
√
n

(
log

(
n∑

i=1

(∆n
i X)2

)
− log ([X]1)

)(
V̂

(1),n
1 (α, ω)

)−1/2
n∑

i=1

(∆n
i X)2 ,

T
(2)

(kn) =
√
n

(
log

(
n∑

i=1

(∆n
i X)2

)
− log ([X]1)

)(
V̂

(2),n
1

)−1/2
n∑

i=1

(∆n
i X)2 ,

(14)

are asymptotically standard normally distributed.
In the following simulation study, we will study the finite sample performance of these statistics.

Furthermore, we can now construct asymptotic confidence intervals for the quadratic variation of the
log–price process. The corresponding upper and lower confidence bounds are hence given by

n∑

i=1

(∆n
i X)2 ± q1−α

2

√
n−1V̂

(1),n
1 (α, ω), and

n∑

i=1

(∆n
i X)2 ± q1−α

2

√
n−1V̂

(2),n
1 ,

respectively, whereq1−α
2

corresponds to the1− α
2 quantile of a standard normally distributed random

variable. Analogously as above, we construct statistics based on suitably centered and scaled RMPV
and TRMPV, see below for more details.
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4 SIMULATION STUDY

4 Simulation study

After we have reviewed the feasible central limit theory forrealised variation measures, we study their
finite sample behaviour by carrying out several Monte Carlo experiments. In particular, we simulate
data from seven different stochastic volatility models forvarious different jump specifications, see
Section 4.2 for more details. Then we compute 20 different statistics consisting of suitably centered
and scaled realised measures. More precisely, we compute the ten quantities defined in Section 4.3
and the corresponding log–transformed quantities (using the delta method for stable convergence).

4.1 Research questions addressed in the simulation study

The simulation is designed such that it addresses the following research questions regarding the finite
sample performance of realised variance:

• The estimatorD̂t of the jump part of the asymptotic ‘variance’ of centered RV makes use of
spot volatility estimators. Here we use locally averaged realised bipower variation and truncated
realised variance. Which estimator is more reliable? How shall we choose the local window
kn (which has to satisfykn → ∞ andkn∆n → 0 asn → ∞). We compare the choice of
kn = ⌊50∆−1/4

n ⌋ as suggested by Aı̈t-Sahalia & Jacod (2009b) with the choicekn = ⌊∆−1/2
n ⌋

which is more in line with Lee & Mykland (2008) who suggested to choose a relatively small
local window so that the computational intensity does not become too high. Note that we use
∆n = 1/n for n ∈ {39, 78, . . . , 23400}, hence⌊∆−1/2

n ⌋ ≤ ⌊50∆−1/4
n ⌋.

• Which estimator forDt is the better one? The one derived in Veraart (2010) or the onepresented
in this paper?

• How good is the finite sample performance of realised variance in general?

• Does the finite sample performance change when the activity level of the jump process and/or
the jump size increase? In the presence of common jumps in theprice and the volatility, cen-
tered RV is not asymptotically normally distributed. How does this statistic behave in such a
framework?

• How do the log–transformed quantities perform compared to the raw statistics?

Regarding realised multipower variation and truncated realised measures, we aim to shed some
light on the following questions:

• How robust are RMPV and TRMV towards jumps of finite and infinite activity in finite samples?

• Which jump robust measure performs best in the presence of jumps?

4.2 Simulation design

In order to study the impact of jumps on the performance of realised variation measure, we simulate
from a variety of stochastic volatility models with and without jumps.

Throughout the simulation study, we choose one day as basic unit of time for our simulation. We
then simulate the diffusion part based on an Euler scheme, where we choose the increment of one
second per tick on the Euler clock, where we have 23,400 seconds a day (which corresponds to the
equity market being open for 6.5 hours a day).

11



4 SIMULATION STUDY

Diffusion (D): The Heston stochastic volatility model serves as a jump–free benchmark model where
the choice of parameters is taken from the empirical resultsin Aı̈t-Sahalia & Kimmel (2007).
I.e.dXt = σtdWt, dσ2

t = κ(β − σ2
t )dt + γσtdBt, E(dWtdBt) = ρdt, whereβ1/2 = 0.4, γ =

0.5, κ = 5, ρ = −0.5. See Table 3 for the results.

Jump diffusion (JD): Using the same model specification for the continuous part asin (D), we now
add compound Poisson jumps with normally distributed jumps: dXt = σtdWt + d

∑Nt

i=1 Ji,
whereNt is a Poisson process with i.i.d. normally distributed jump sizes such that

∑Nt

i=1 Ji|Nt ∼
N(0, σ2

J ). In fact, we work with a stratified compound Poisson process having 1, 5 or 10 jumps
per day which are uniformly distributed over the day. Also, when we have more jumps, we
decrease their size, so that the contribution of the jump ‘variance’ stays the same throughout
the simulation. In order to achieve that, we simulate the jump sizes conditional onNt = c

from Ji ∼ N(0,
σ2

J

c ). Note that, working with the stationaryσ2, we have thatE
(∫ 1

0 σ
2
sds
)

=

E
(
σ2

0

)
= β, E

(∑c
i=1 J

2
i

)
= cV ar(J1) = σ2

J . We chooseσ2
J such thatp =

σ2
J

β+σ2
J

, i.e. the

percentage of the mean of the jump part of the quadratic variation compared to the mean of the
total variation equals 15% or 30%. Note that empirical studies sometimes find a much lower
jump contribution, see e.g. Huang & Tauchen (2005) who foundup to7%. See Tables 4, 5, 6
for the results.

Infinite activity jumps in the price (IAP): Now letdXt = σtdWt + dLt, whereL is a symmetrical
temperedα–stable Lévy process for0 < α < 1 andλ > 0. I.e. the Lévy density ofL is given
by ν(dx) = |x|−(α+1)e−λxdx. Clearly,V ar(L1) = 2Γ(2 − α)/λ2−α. As before, we want the
percentage of the jump part of the variance to bep = 15%, 30%, whereV ar(L1) = βp/(1−p).
Hence we chooseλ =

(
βp

2(1−p)

)1/(α−2)
for α = 0.1, 0.5, 0.9. Note that the simulation of the

tempered stable Lévy process is based on the series representation given in Rosinski (2001).
See Tables 7, 8, 9 for the results.

Next, we study the case of having jumps in the volatility process.

Independent finite activity jumps in volatility and price (I FAJ): Here we havedXt = σtdWt +

dJ
(1)
t , dσ2

t = κ(β − σ2
t )dt + γσtdBt + dJ

(2)
t , E(dWtdBt) = ρdt, whereJ (1) andJ (2) being

independent stratified compound Poisson processes (as before) with 5 and 10 jumps per day.
See e.g. Zhou (2003) and the references therein for the existence of a processσ2 defined as
above. The jump sizes ofJ (1) are drawn from a double exponential distribution with equal
probability of positive and negative jumps and the jump sizes of the independent processJ (2)

are exponentially distributed. Again, the parameters are chosen such that the jump percentage
of the total variation is set to 15%. See Tables 10, 11 for the results.

Common finite activity jumps in volatility and price (CFAJ): The simulation set up is similar to
IFAJ, but in order to make the jump processesJ (1), J (2) dependent, we work with the same
jump times and, in particular, we set|J (1)| = J (2), where we allow for 5 or 10 jumps a day.
See Tables 12, 13 for the results.

BNS model with independent jumps in price and volatility (BNSIJ): Next, we focus on the Barndorff-
Nielsen & Shephard (2001, 2002) model, where the volatilityprocess is purely jump–driven,
in particular: dXt = σtdWt + dJt, dσ2

t = −λσ2
t dt + dLλt, whereL is an inverse Gaussian

(IG(µ, l)) subordinator with parametersλ = 1, µ = 0.16, l = µ2. J is a stratified Poisson

12



4 SIMULATION STUDY

process, independent ofL, with normally distributed jumps (as in JD), with 0, 1, 5, 10 jumps a
day. Again the percentage of the jump variation is set to 15%.See Tables 14, 15, 16, 17 for the
results.

BNS model with common jumps in price and volatility (BNSCJ): Finally, we simulate the classi-
cal BNS model with common IG jumps, i.e.dXt = σtdWt + ρdLλt, dσ2

t = −λσ2
t dt + dLλt,

with the parameter choices as in BNSIJ and, further,ρ ∈ {−0.2,−0.4}. See Tables 18, 19
and Figure 5 for the results. Note that the parameterρ in the BNS model is not a correlation
parameter as such (since it is not restricted to be in [-1,1]), but it plays its role, see e.g. Veraart
& Veraart (2010) for more details.

4.3 Quantities of interest in the simulation study

According to the asymptotic theory, properly centered and scaled (truncated) realised (multi-) power
variation converge –under the assumptions stated above– tostandard normally distributed random
variables. In order to check their finite sample performance, we compute these suitably centered and
normalised quantities, where in the tables the column with the headingR.V.Mspecifies, which realised
variation measure is studied. Throughout the simulation study, we use the following abbreviations for
the realised variance measures:

RV: Centered realised variance, scaled byV̂
(1),n
1 (α, ω), i.e.T (1)(kn, α, ω);

RV2: Centered realised variance, scaled by2În
1 +2

∑
i(σ̂

2
(i−1)∆n

+σ̂2
(i−1)∆n−

)(∆n
i X)I{|∆n

i X|>α∆ω
n}

,
where the spot volatility is estimated by locally averaged realised bipower variation;

pRV: Centered realised variance, scaled by2În
1 + 2max{

∑
i(∆

n
i X)2(σ̂2

(i−1)∆n
+ σ̂2

(i−1)∆n−
) −

2În
1 , 0}, where the spot volatility is estimated by locally averagedtruncated realised variance;

pRV2: Centered realised variance, scaled byV̂
(2),n
1 , i.e. T (2)(kn).

cRV: Centered realised variance, scaled by the estimator of the continuous part of the asymptotic
‘variance’ only, i.e. by2În

1 .

(Truncated) realised multipower variations:

TRV: Centered and scaled truncated realised variance;

TR2V: Centered and scaled truncated realised bipower variation;

R2V: Centered and scaled realised bipower variation;

R3V: Centered and scaled realised tripower variation;

R4V: Centered and scaled realised quadpower variation;

Note that the threshold parameters are chosen to beα = 2, ω = 0.47 following the simulation study in
Aı̈t-Sahalia & Jacod (2009b) and the asymptotic ‘variance’ is estimated bycÎn

1 for suitable constants
c > 0 as specified above.

13



4 SIMULATION STUDY

4.4 Results from the simulation study

In order to assess the finite sample performance of the various centered and standardised realised
measures in the simulation studies, we have computed their biases (which should be 0), their standard
deviations (which should be 1) and the empirical rejection rates for the levels 10% and 5%, which are
given in the tables in the Appendix. Furthermore, we have studied quantile–quantile plots and density
plots of the distributions of the various realised measures, which are not presented here due to space
constraints.

4.4.1 Preceding results regarding the spot volatility estimation

Before we evaluate the results from the simulation study forthe various realised measures, we briefly
focus on spot volatility estimation first since spot volatility estimators are used in the estimator of the
jump part of the asymptotic ‘variance’ of the realised variance.

The are various methods for estimating the squared spot volatility, i.e. σ2, see e.g. Aı̈t-Sahalia &
Jacod (2009b), Bandi & Renò (2010), Foster & Nelson (1996), Kristensen (2010), Lee & Mykland
(2008).
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Figure 1: Comparison of various spot volatility estimates for the square–root diffusion model for
different numbers of intra–daily observationsM .

Here we focus on two approaches: We use locally averaged truncated realised variance and locally
averaged realised bipower variation as described above. Wecompute both estimators for two different
choices of the local window sizekn. We work with∆n = 1/n andkn ∈ {⌊∆−1/2

n ⌋, ⌊50∆−1/4
n ⌋}.

Note that both choices satisfykn → ∞, kn∆n → 0. Clearly,⌊∆−1/2
n ⌋ ≤ ⌊50∆−1/4

n ⌋ for our choices
of ∆n. Note that Aı̈t-Sahalia & Jacod (2009b) used the bigger window size whereas Lee & Mykland
(2008) suggested to use a relatively small window to ensure that the computing load is not too high.
Throughout the various scenarios in the simulation study, we always obtained significantly better
results for the smaller windowkn = ⌊∆−1/2

n ⌋, using the root mean square error (RMSE) to compare
the various spot estimators. The bigger window size resulted in over–smoothing, which we can clearly
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Figure 2: Comparison of various spot volatility estimates for the BNS model, whereσ2 is a non–
Gaussian Ornstein Uhlenbeck process with inverse Gaussianinnovations for different numbers of
intra–daily observationsM .

see in Figure 1 and Figure 2. Figure 1 presents a plot of the simulatedσ2 following a square–root
diffusion process (represented by the thick solid line). The dashed and dotted lines represent the
locally averaged TRV and R2V, where the smoother lines come from the bigger window size. Figure
2 compares the various spot volatility estimators whenσ2 is sampled from a non–Gaussian Ornstein
Uhlenbeck process with inverse Gaussian innovations. NotethatM denotes the number of intra–daily
observations. I.e. the numbersM = 78, 390, 4680, 11700 correspond to 5 minute, 1 minute, 5 second
and 2 second observations in an equity market which is open 6.5 hours a day. We clearly observe that
the spot volatility estimates are rather noisy measures of the underlying volatility. With increasing
frequency of the data, however, their performance improves.

Note that we used the simulation design from Aı̈t-Sahalia & Jacod (2009b) for the Brownian–
driven stochastic volatility process and, hence, we used their threshold choice for computing TRV.
When comparing the performance of the locally averaged TRV and R2V for estimating the spot
volatility based on the RMSE, we obtained very similar results throughout the simulation study. But
we can nevertheless formulate some tendencies:

• TRV tends to perform better than R2V in the absence of jumps inthe price;

• In the presence of (smaller) jumps in the price, R2V tends to perform better for lower frequen-
cies (up to M=390), whereas TRV tends to perform better for higher frequencies;

• In the BNS jump–driven stochastic volatility model, R2V tends to perform better.

• In the presence of ratherbig jumps in the price, TRV tends to perform better.

Clearly, the performance of TRV can be improved by using a data driven, dynamic threshold, see
e.g. Aı̈t-Sahalia & Jacod (2010), Corsi et al. (2010), Mancini & Gobbi (2010). However, given that
the differences between the two estimators were not that bigand if they were, than R2V was in
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most cases the better estimator, from a practical point of view, R2V seems to be the winner in that
direct comparison given that it does not require to choose a threshold and leads nevertheless to fairly
reasonable estimates. Furthermore, we conclude that the choice of the window sizekn seems to be
more important than the particular choice of the realised measure. In our simulation experiment,
kn = ⌊∆−1/2

n ⌋ did a fairly good job for the various models studied here.

4.4.2 Results for realised variance

How good is the finite sample performance of realised variance in the presence of jumps? In order
to answer that question we have computed the difference of realised variance and the daily quadratic
variation of the simulated log–price process and have scaled it suitably by various estimators for the
asymptotic ‘variance’ (and divided it by

√
∆n), which asymptotically should be standard normally

distributed. The various statistics are denoted by RV, RV2,pRV, pRV2 and cRV as defined above and
the Tables in the Appendix present the bias, the standard deviation and the empirical rejection rate at
10% and 5% level for various numbersM = ⌊1/∆n⌋ of intra–daily observations.

Our general findings are as follows: We obtain good finite sample results (in terms of the bias
being close to 0, the standard deviation being close to 1 and the empirical rejection rates being close
to the theoretical level of 10% and 5% respectively, forM between 78 and 195 and higher, corre-
sponding to 2-5 min and more frequent returns in an equity market. In general, the results for the
log–transformed realised variance were better throughoutthe simulation study, but we do not report
them here and rather focus on the slightly worse results for the raw realised variance since this quan-
tity is more widely used in practice. Note in particular, that the finite sample bias only seems to go
away when one studies data at higher frequencies than 1 minute data in a 6.5 hour market, whereas
the bias is noticeably smaller for log–transformed realised variances.

Note that throughout the simulation study, we have chosen the model parameters such that the
expected integrated variance stays the same. Further, the jump part of the quadratic variation compared
to the total variation amounts to 15%. We have rerun the simulations also for the percentage of the
jump part being 30%, but got very similar results as before. Our main findings are as follows:

• The finite sample performance becomes good from 5 minute dataonwards to more frequent
data;

• The finite sample bias goes to zero for data sampled at 1 minuteintervals and more frequent
data;

• The activity of the jumps in the price process does not seem tohave a big impact on the finite
sample performance of realised variance, see the results from model IAP, i.e. Tables 7, 8, 9.
In fact, it seems like the finite sample performance gets evena bit better for jumps of higher
activity.

• In the presence of jumps, realised variance has to be scaled by one of the new estimators de-
rived in this paper and in Veraart (2010) which account for jumps, otherwise the finite sample
performance is not good and gets clearly worse when the frequency of the data increases, see
the performance of the statistics cRV in the Tables for more details, where the centered re-
alised variance is only standardised by an estimator of the continuous part of the asymptotic
‘variance’.

• When comparing the performance of the various standardisedrealised variances, we observe
that pRV tends to perform best for low frequencies (up to M=390), followed closely by pRV2.
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However, for higher frequencies, using the new estimatorD̂(1),n leads to better finite sample
results, see RV and RV2 in the Tables in the Appendix.

• In the presence of common jumps of the volatility and the price process (model BNSCJ), we
still observe a good finite sample performance although the asymptotic theory does not hold in
that situation anymore. We have carried out that experimentfor different choices ofρ, which
scales the jumps in the volatility to a different level for the price jumps. Note that forρ = −0.2,
the jump part of the quadratic variation amounts to approximately 4.7% of the total quadratic
variation, whereasρ = −0.4 corresponds to 16.7% with our choice of parameters, see Tables
18, 19 and Figure 5.

Note that as before we expect that the performance of the threshold based estimators for the jump
part of the asymptotic ‘variance’ can be improved when choosing a better threshold as discussed in
the previous section. However, from an applied point of view, it is encouraging to see that pRV has
such a good finite sample performance, where the jump part of the asymptotic ‘variance’ is estimated
based on the difference of generalised realised variance and realised multipower variation and the spot
volatility is estimated based on the threshold concept, where a rather crude threshold has been used.

4.4.3 Results for (truncated ) realised (multi-) power variation

Besides the question of drawing inference on the entire quadratic variation, it is also of interest to
study the continuous and the jump part of the quadratic variation separately. We have computed
various jump–robust realised measures denoted by TRV, TR2V, R2V, R3V, R4V as defined above and
have analysed their finite sample performance in the same simulation studies as realised variance.

Remark Note that we have included realised bipower variation, R2V,in the simulation experiment
even in the presence of jumps although its asymptotic distribution is not Gaussian in that case, see
Vetter (2010) for the detailed results. However, truncatedrealised bipower variation, TR2V, has the
corresponding Gaussian limit and, hence, we keep the R2V results to see more clearly the impact of
the truncation. So it should be stressed that we cannot expect to get the expected results of standard
deviation being equal to 1 and empirical rejection rates being close to 10% and 5% for R2V as soon
as there are jumps in the price present. However, we would still expect to find a bias tending to zero
as∆n → 0. Further, note that the multipower results only hold theoretically as long as assumption
(A) is satisfied.

The main findings for the jump–robust realised measures are as follows. In the absence of jumps in
the price, the performance of the various jump–robust measures is very similar and generally good,
but we observe that the finite sample bias at low frequencies tend to be fairly big for R3V and R4V
see e.g. Table 3 and 14.

In the presence of jumps in the price process, the general trend we observe is as follows:

• If there are rare jumps, the jump robust measures perform fairly well.

• However, if there are (finitely) many small jumps, our estimation results clearly show a (posi-
tive) finite sample estimation bias for all jump robust measures. Note here that the sign of the
bias for the truncation based methods could potentially change with a different choice of the
threshold.
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• If the price process consists of a Brownian semimartingale and a highly active jump process
(e.g. a tempered stable Lévy process), the jump–robust measures show signs of failure. In
particular, the more active the jump process gets, the worseresults we obtain, see Tables 7, 8,
9.

• Altogether we observe that, in the presence of many jumps, R4V tends to perform best out of
the various jump–robust measures studied here at lower frequencies (up to 1 minute data).

• In the BNS modelling framework (BNSCJ), we also obtain reasonable finite sample results for
R2V, which is somewhat surprising given that the asymptotictheory does not hold here. That
might be due to the fact that the jump activity of the inverse Gaussian subordinator is still rather
low.

4.5 Concluding remarks regarding the simulation study

In general, we have observed that the feasible asymptotic theory for realised variance seems to hold
also in finite samples when data at a frequency of 2-5 minutes or higher are studied. The differences
between the various estimators of the asymptotic ‘variance’ of realised variance are not that big, but
generally, we obtained the best results for pRV at lower frequencies.

When using jump–robust realised measures using the truncation principle, the multipower con-
cept or a combination of both, we found that they perform quite well in the presence of rare jumps.
However, as soon as there are many small jumps and in particular, if there is a very active jump pro-
cess present, then the finite sample performance of the jump–robust measures is not good any longer.
This is in line with the findings of Barndorff-Nielsen et al. (2005) and Veraart (2010). In order to
get somewhat reliable measures in that situation, higher order multipower variations such as R4V
(possibly combined with a dynamically chosen threshold) seem to be the best choice. Further, using
log–transformed versions of realised variance rather thanthe raw realised variance also improves the
finite sample performance.

While inference on the entire quadratic variation of the log–price process based on realised vari-
ance using the new estimator of the asymptotic ‘variance’ ofRV presented in this paper and the one
presented in Veraart (2010) turns out to work well even in finite samples and also in the presence of
very active jump processes, the finite sample results for drawing inference on the continuous part or
the jump part only are generally not that good when many jumpsare present.

5 Empirical study of SPY data

After we have checked the finite sample performance of various feasible estimators of the quadratic
variation of an Itô semimartingale, we use our findings now to carry out an empirical study of some
high frequency equity data.

5.1 Data description

We use data from the Standard & Poor’s Depository Receipt (SPY), which is a very liquid, exchange–
traded fund which holds all of the S&P 500 Index stocks. The sample we work with covers a period
from 3 August 1998 to 31 July 2008, i.e. 10 years of data. We focus on mid–quote data constructed
based on the quote data taken from the TAQ database through the Wharton Research Data Services
(WRDS) system. The SPY data were recorded at the AMEX from 1998-2002 and at the PACIF from
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Figure 3: SPY data from 3 August 1998 to 31 July 2008: (a) Cleaned daily log–mid–prices; (b) daily
log–mid–price returns; (c) time series of daily realised variances based on five minute returns.

2003-2008. The high frequency data have been kindly supplied to the author by Asger Lunde and
have been cleaned using the methods described in Barndorff-Nielsen et al. (2008b). We have sampled
the data at five minute intervals (using the previous tick method) and have obtainedn = 2515 days of
78 observations each, i.e. 196,170 data points. A plot of thecleaned SPY log–price data, the returns
and the time series of the realised variances is given in Figure 3.

The aim of this study is to analyse the impact of jumps on inference for realised variance. In order
to do that, we identify days which have a significant jump contribution and then check how much
wider the confidence intervals for realised variance becomeon those days.

5.2 Testing for jumps and inference on quadratic variation in the presence of jumps

As already mentioned above, there is a wide literature on testing for jumps using high frequency data.
In our empirical study, we follow Huang & Tauchen (2005) who found out in detailed Monte Carlo
studies that the ratio statistic of the Barndorff-Nielsen &Shephard (2006) test using a maximum
adjustment in the denominator has the best size property outof the various test statistics studied,
including the properly scaled difference of realised variance and realised bipower (often referred to as
raw test statistic), the difference of the log–transformed realised variance and realised bipower and the
ratio of the difference of realised variance and realised bipower divided by realised variance. When
carrying out the test, we get the following results, as reported in Table 2.

Note that Huang & Tauchen (2005) did not find significant differences when the test statistics
were scaled by realised tripower or realised quadpower variation, respectively. This is basically in
line with what we find here. In our empirical study, we reject the null hypothesis slightly more often
when using realised quadpower variation as the scaling factor, which is in line with what we expect:
Since realised quadpower variation averages over more returns than realised tripower variation, we
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Table 2: Empirical results from the maximum adjusted BNS ratio test.

Significance level M Number and percentage Average contribution of the
of rejections jump part of the CIs

99% 39 632 (25.12%) 55.61%
78 931 (37.01%) 64.96%
130 1136 (45.16%) 58.82%
195 1328 (52.80%) 53.75%
390 1779 (70.73%) 40.52%

99.90% 39 390 (15.50%) 57.07%
78 658 (26.16%) 67.43%
130 844 (33.55%) 60.59%
195 1052 (41.82%) 54.63%
390 1520 (60.43%) 41.38%

expect it to be generally smaller in the presence of jumps, which results in more rejection of the null
hypothesis given that the scaling factor appears in the denominator of the ratio statistic.

Our test signals the presence of a significant jump contribution to the total quadratic variation (at
99% significance level) on 25–70% of the days — depending on which data frequency we use for
computing the test statistic. In the following we will just refer to those days asjump days. Further-
more, we observe that the number of rejections of the null hypothesis increases when the number of
intra–daily observations, denoted byM , increases. That is also in line with Huang & Tauchen (2005)
findings that when data at lower frequencies are considered,jumps tend to average out and are not
necessarily detected by the jump test anymore.

However, in general we can say that the results from the jump test are rather surprising. Rejecting
the null hypothesis that frequently is not in line with earlier empirical studies in the literature, see e.g.
Huang & Tauchen (2005). However, there are also more recent studies, see e.g. Aı̈t-Sahalia & Jacod
(2009a) whose findings point towards the presence of a very active jump component even for highly
liquid stocks. If this is true, then we would expect to rejectthe null hypothesis of no jumps very often
and ideally on (almost) all days.

After we have tested for each day in the sample whether there was a significant jump part in
the quadratic variation and hence, have identified those jump days, we study how the jumps affect
the size of the confidence bounds for realised variance on these jump days. In order to do that, we
have computed the average length of the confidence bounds assuming that there were no jumps (i.e.
estimating the asymptotic ‘variance’ by2Î) and the average length of the confidence bounds which
accounts for jumps (i.e. estimating the asymptotic ‘variance’ by 2Î + 2D̂). We find that the part of
the confidence bounds due to the presence of jumps amounts to approximately 40-60% of the total
length, see the last column in Table 2. Further, we observe that the average jump contribution to the
total length of the CIs tends to decrease with increasing number of intra–daily observations.

In order to get an additional visual impression on how the confidence bounds for realised variance
change in the presence of jumps, we provide a plot of the confidence bounds for RV which account for
jumps and add the ones which ignore jumps. In Figure 4, we plotthe time series of realised variances
with the corresponding 95% confidence bounds for the days when the maximum adjusted BNS ratio
test based on ten minute data using realised tripower for thescaling rejects the null hypothesis at the
99.9% level, which was the case on 390 days. The crosses indicated the realised variances, the bars
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Figure 4: Here we plot the time series of realised variances (using the log–scale) with the corre-
sponding 95% confidence bounds for the days when the maximum adjusted BNS ratio test based on
ten minute data using realised tripower for the scaling rejects the null hypothesis at the 99.9% level,
which was the case on 390 days.

denote the confidence bounds which account for jumps and the triangles/circles denote the confidence
bounds which ignore jumps. We see that the confidence intervals which account for jumps are the
wider ones, which is what we expect.

6 Conclusion

This paper has investigated how accurate the asymptotic distribution of realised variation measures
is in finite samples when there are finite or infinite activity jumps in the underlying price process. In
order to do that, we have proposed a new estimator for the jumppart of the asymptotic ‘variance’
of centered realised variance. Then, we have carried out a detailed Monte Carlo study, where we
have compared the finite sample performance of 20 different centered and standardised realised mea-
sures. Here we were in particular interested in the performance of realised variance in the presence of
jumps. To the best of our knowledge, this is the first paper, which has addressed this important ques-
tion given the strong evidence for the presence of jumps in financial data, see e.g. Barndorff-Nielsen
& Shephard (2004b, 2006), Huang & Tauchen (2005), Lee & Mykland (2008), Aı̈t-Sahalia & Jacod
(2009b). We have studied the finite sample performance of the newly established asymptotic theory
for realised variance, see Jacod (2008), Veraart (2010). Inour simulation experiment we have com-
pared the results, when the asymptotic ‘variance’ is estimated based on two different spot volatility
estimators: locally averaged realised bipower variation and locally averaged truncated realised vari-
ance. In general, we have obtained good results in the Monte Carlo experiments, where the results
for the log–transformed realised variance were always slightly better than for the realised variance.
Furthermore, both estimators for the jump part of the realised variance provide fairly similar results.
The only noticeable differences between the two spot volatility estimators were that truncated realised
variance seems to perform slightly better in the stochasticvolatility jump diffusion model, whereas
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realised bipower variation seems to be slightly better in models which allow for jumps in the volatility
process.

Regarding the size of the local windowkn, we have obtained good results when choosingkn =
1/
√

∆n which furthermore is not that computationally intense. Also, we have clearly seen that the
window sizekn has a great impact on the performance of the spot volatility estimator, whereas the
particular choice of the spot volatility estimator, i.e. which jump–robust realised quantity is used, does
not seem to matter much.

Furthermore, Monte Carlo results suggest that our feasiblelimit theory might still work even in
the case of common jumps of the volatility and the price process as long as the common jump part is
rather small.

Regarding the so–called jump robust measures such as realised multipower variation and trun-
cated realised measures, we found that the finite sample performance was not as good as expected.
While we have obtained fairly good results for rare jumps in the price, we could clearly see that the
performance of the jump robust realised measures studied here worsens dramatically when the jump
activity increases.

In addition to the simulation experiment, we have applied the feasible asymptotic theory for re-
alised variance to high frequency SPY data and have computedthe confidence intervals for realised
variance on the days which were identified as jump days using the maximum adjusted Banrdorff–
Nielsen & Shephard ratio test. We have clearly seen that the confidence bounds of realised variance
which account for jumps are significantly wider than the onessuggested by Barndorff-Nielsen &
Shephard (2002) in the absence of jumps.

In our empirical study, we have worked with rather low frequency data to ensure that the data are
not affected by market microstructure noise. However, in future research, it will be interesting to study
the impact of jumps on inference on the quadratic variation of the price process if the efficient price is
contaminated by market microstructure effects and, hence,not directly observed. In particular, ultra
high frequency data (e.g. one second returns) are typicallyprone to such effects and, hence, volatility
estimation and inference in such a framework is carried out using noise robust volatility estimators,
see e.g. Zhang et al. (2005), Hansen & Lunde (2006), Zhang (2006), Barndorff-Nielsen & Shephard
(2007), Barndorff-Nielsen et al. (2008a), and Podolskij & Vetter (2009). Volatility estimators which
are robust to market microstructure effects have a slower rate of convergence and do not achieve the
square root speed of convergence of realised variance and realised multipower variation. Hence, it
will be interesting to study in simulation studies and also empirically which estimators perform better
in finite samples in the presence of jumps and market microstructure effects.

A Technical assumptions

A.1 Assumptions onX and σ

For the central limit theorems of realised variance and realised multipower variation we need some
regularity assumptions and a structural assumption for thevolatility process which we introduce in
the following. All the technical assumptions are taken fromJacod (2008, p. 5–6) and Aı̈t-Sahalia &
Jacod (2009b, p. 187,204).

We work with a probability space denoted by(Ω,A, (Ft)t≥0,P) (or with a slightly enlarged ver-
sion of the original probability space). Let

φr(x) =

{
1 ∧ |x|r, if 0 < r <∞,
1IR\{0}(x), if r = 0.
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We focus on Itô semimartingalesX which satisfy the following conditions.

Assumption (H): X is an Itô semimartingale as defined in (1) and (2) and the processes(bt)t≥0 and(∫
φ2(x)Ft(dx)

)
t≥0

are locally predictable. Note thatFt(ω, dx) is the image of the Lebesgue
measure onR by the predictable mapx 7→ δ(ω, t, x). Further, the process(σt)t≥0 is càdlàg
adapted.

Assumption (L-s): (With s ∈ [0, 2]). X is an Itô semimartingale as defined above satisfying assump-
tion (H) and the volatility processσ has the form

σt = σ0 +

∫ t

0
b̃udu+

∫ t

0
σ̃udWu +

∫ t

0
σ̃′udW

′
u + κ(δ̃) ⋆ (µ− ν)t + κ′(δ̃) ⋆ µ

t
, (15)

and

• W ′ is another Brownian motion on the space(Ω,A, (Ft)t≥0,P), which is independent of
W ;

• the process(̃bt)t≥0 is optional and locally bounded;

• the processes(bt)t≥0, (σ̃t)t≥0, (σ̃′t)t≥0 are adapted left–continuous with right limits int,
and locally bounded;

• the functionsδ, δ̃ : Ω × R+ × R → R are defined such thatFt(ω, dx) is the image
of the Lebesgue measure onR by the mapx → δ(ω, t, x); δ(ω, t, x) and δ̃(ω, t, x)
are predictable, left–continuous with right limits int. Further|δ(ω, t, x)| ≤ γk(x) and
|δ(ω, t, x)| ≤ γ̃k(x) for all t ≤ Tk(ω) with deterministic functionsγk and γ̂k on R with∫
φs ◦ γk(x)dx < ∞ and

∫
φ2 ◦ γ̃k(x)dx < ∞ and(Tk)k≥1 is a sequence of stopping

times increasing to+∞.

Note that assumption (L-s) basically says that the stochastic volatility processσ has to be an Itô
semimartingale, too. Further, the parameters can be regarded as an generalised Blumenthal Getoor
index, see Blumenthal & Getoor (1961), measuring the jump activity of the jump part part ofX. See
Jacod (2008, Remark 2.1) for a wide class of processes which in fact satisfy the above assumptions.

Assumption(H’): Assumption (H) holds andσ2
t > 0 andσ2

t− > 0 for all t a.s..

Assumption (G1): Assumptions (L-s) and (H’) hold (for somes ∈ [0, 2]) and further

1. All pathst 7→ supx∈E
|δ(ω,t,x)|

γ(x) andt 7→ supx∈E
|δ̃(ω,t,x)|

γ(x) are locally bounded, whereγ is

a (nonrandom) nonnegative function satisfying
∫
E(γ(x))2 ∧ 1)λ(dx) <∞.

2. All pathst 7→ δ′t(ω) are left–continuous with right limits on the semiopen set[0, τ(ω)).
Here δ′t(ω) =

∫
κ ◦ δ(ω, t, x)λ(dx), if the integral is well–defined, otherwise we set

δ′t(ω) = ∞.

Assumption (G2): Assumption (G1) holds and|bt|+|σt|+|b̃t|+|σ̃t|+|σ̃′t| ≤ K, and|δ(t, x)| ≤ γ(x),
|δ̃(t, x)| ≤ γ(x) and alsoγ(x) ≤ K for some constantK.

Assumption (A): Assumption (L-s) holds fors < 1, (H’) is satisfied and s
2−s < r− < r+ < 1.

Assumption (B): Assumption (L-s) holds ands ≤ 4ω−1
2ω (henceω ≥ 1/4 ands < 1).

Assumption (C): Assumption (L-s) holds fors < 1, (H’) is satisfied andI ∈ N with2 < I <
2
s (2 − s). Further,X andσ do not have common jumps.
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B Proofs

B.1 Notation and preliminary remarks

Throughout the proofs we use the following notation:

δn
i = σ(i−1)∆n

∆n
i W, θn

i = |∆n
i X|I{|∆n

i X|≤α∆ω
n}
,

for α > 0 andω ∈ (0, 1
2). Further, we writeEn

i−1(·) = E(·|F(i−1)∆n
) for the conditional expectation.

Furthermore, we writeX = X ′ +Xd, whereXc denotes the continuous part andXd the discon-
tinuous part ofX and

X ′
t = X0 +

∫ t

0
bsds+Xc

t , Xc
t =

∫ t

0
σsdWs,

Xd =

∫ t

0

∫

E
κ(δ(s, x)) ⋆ (µ− ν)(ds, dx) +

∫ t

0

∫

E
κ′(δ(s, x)) ⋆ µ(ds, dx).

In the following, we will apply the following inequalities,which are valid under Assumption (G2),
see e.g. Aı̈t-Sahalia & Jacod (2009b), Jacod (2008), Vetter (2010), whereKi > 0 for i ∈ N denote
positive constants:

E
n
i−1(|∆n

i X
c|) ≤ K1∆

1/2
n , E

n
i−1(|∆n

i X
′|) ≤ K2∆

1/2
n , E

n
i−1(|∆n

i X
d|) ≤ K3∆n,

E
n
i−1(|∆n

i X|) ≤ K4∆
1/2
n .

(16)

Note that in the following, we will denote byK > 0 a constant which can change from line to
line throughout the proof.

Remark We will prove Proposition 3.1 under the stronger assumption(G2). Using a localisation
procedure, it follows from standard arguments, see Jacod (2008) for details, that our result also holds
under the weaker assumption (G1).

B.2 Proof

Proof of Proposition 3.1 The proof of the Proposition is a direct consequence of the previous remark
and the following two lemmas. �

Lemma B.1 Under Assumption (G2) and if

D̂
′n
t =

1

kn∆n

⌊t/∆n⌋∑

i=1

(∆n
i X)2 I{|∆n

i X|>α∆ω
n}

∑

j∈In,t(i)

(δn
j )2

P→ Dt, (17)

thenD̂n
t

P→ Dt, where

D̂n
t =

1

kn∆n

⌊t/∆n⌋∑

i=1

(∆n
i X)2 I{|∆n

i X|>α∆ω
n}

∑

j∈In,t(i)

(
∆n

jX
)2

I{|∆n
j X|≤α∆ω

n}
.
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Proof The proof goes along the lines of Aı̈t-Sahalia & Jacod (2009b, Lemma 1). In particular, we
can immediately deduce, see Aı̈t-Sahalia & Jacod (2009b, equation (67)), that

1

∆n
E
(∣∣(θn

i )2 − (δn
i )2
∣∣ |F(i−1)∆n

)
≤ Γ̂n, (18)

for a sequence(Γ̂n)n∈N satisfyinglimn→∞ Γ̂n = 0. Note that the differencêDn
t − D̂

′n
t consists of a

sum with strictly less than2kn⌊t/∆n⌋ terms, where each term is smaller than

1

kn∆n
(∆n

i X)2I{|∆n
i X|>α∆ω

n}

∣∣(θn
j )2 − (δn

j )2
∣∣ , for somei 6= j.

From using the inequalities (16), we get thatE
n
i−1((∆

n
i X)2I{|∆n

i X|>α∆ω
n}

) ≤ K∆n. Now, we use two

successive conditional expectations and (18) to deduce that each such term is smaller than1kn
KΓ̂n∆n.

So, altogether, we getE
∣∣∣D̂n

t − D̂
′n
t

∣∣∣ ≤ KtΓ̂n and, hence, the result follows. �

Lemma B.2 Under Assumption (G2), equation (17) holds.

Proof In order to prove this result, we adapt the proof given in Aı̈t-Sahalia & Jacod (2009b, pp. 216–
218) so that it is suitable for the different result, we provehere.

We introduce a continuous function on[0, 1] for any ρ ∈ (0, 1) which is defined byψρ(x) =
min(1, (2 − |x|/ρ)+), and we define two (increasing) processes by

Y (ρ)nt =
1

kn∆n

⌊t/∆n⌋∑

i=1

ψρ(∆
n
i X)(∆n

i X)2I{|∆n
i X|>α∆ω

n}

∑

j∈In,t(i)

(δn
j )2, Z(ρ)nt = D̂

′n
t − Y (ρ)nt .

It is sufficient to prove that we have the following three convergence results for a suitable process
Z(ρ):

lim
ρ→0

lim sup
n

E(Y (ρ)nt ) = 0, (19)

ρ ∈ (0, 1), n → ∞ ⇒ Z(ρ)nt
P→ Z(ρ)t, (20)

ρ→ 0 ⇒ Z(ρ)t
P→ Dt. (21)

Now we prove (19). Note thatY (ρ)nt is a sum of strictly less than2kn⌊t/∆n⌋ terms, where each
term is given by

1

kn∆n
ψρ(∆

n
i X)(∆n

i X)2I{|∆n
i
X|>α∆ω

n}
(δn

j )2, for i 6= j.

From (16), we get thatEn
j−1((δ

n
j )2) ≤ K∆n.

Next, we study the termψρ(∆
n
i X)(∆n

i X)2I{|∆n
i X|>α∆ω

n}
. Note that an application of the Markov

inequality and the inequalities in (16) leads toE
n
i−1

(
(∆n

i X)2I{|∆n
i X|>α∆ω

n}

)
≤ K∆

1+1/2−ω
n . Now

we take two successive conditional expectations and getE(Y (ρ)nt ) ≤ Kt∆
1/2−ω
n . So we can deduce

(19).
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Next, we define the processZ(ρ) by

Z(ρ)t =
∑

q:Tq(ρ)≤t

(∆XTq(ρ))
2(1 − ψρ(∆XTp(ρ)))

(
σ2

Tq(ρ)− + σ2
Tq(ρ)

)
,

where, forq = 1, 2, . . . , Tq(ρ) denote the (successive) jump times ofµ([0, t] × {x : γ(x) > ρ/2}).
Note that this is theγ from Assumption (G1)! From the same arguments as in Aı̈t-Sahalia & Jacod
(2009b), we now obtain (21). Note, in particular, that1−ψρ converges to the to the indicator function
on R \ {0}.

Finally, we prove (20). Letρ ∈ (0, 1) be fixed. For ease of notation, we writeTq = Tq(ρ). Note
that

Z(ρ)nt =
1

kn∆n

⌊t/∆n⌋∑

i=1

(1 − ψρ(∆
n
i X))(∆n

i X)2I{|∆n
i X|>α∆ω

n}

∑

j∈In,t(i)

(δn
j )2.

From the definition of the Poisson processµ, we see immediately that|∆Xs| ≤ ρ/2 if s 6∈ {Tq, q =
1, 2, . . . }.

So, for eacht ≥ 0 and for eachω and forn large enough, we get: there is no jump timeTq in
(0, kn∆n] and in(t− (kn + 1)∆n, t]. Further, in the interval((i− 1)∆n, i∆n] (for i∆n ≤ t) there is
at most oneTq. If there is no jump time in the interval, thenψρ(∆

n
i X) = 1. So, as soon asn is large

enough, we obtain that

Z(ρ)nt =
∑

q:kn∆n<Tq≤t−(kn+1)∆n

ζn
q ,

wherei(n, q) = inf(i : i∆n ≥ Tq), I ′(n, q) = {j : j 6= i(n, q), |j − i(n, q)| ≤ kn} and

ζn
q =

1

kn∆n
(∆n

i(n,q)X)2I{|∆n
i(n,q)

X|>α∆ω
n}

(1 − ψρ(∆
n
i(n,q)X))

∑

j∈I′(n,q)

(δn
j )2.

We have to show that for anyq:

ζn
q

P→ (∆XTq)
2(1 − ψρ(∆XTq))

(
σ2

Tq− + σ2
Tq

)
.

From Aı̈t-Sahalia & Jacod (2009b), we know that

1

kn∆n

∑

j∈I′
−

(n,q)

(δn
j )2

P→ σ2
Tq−,

1

kn∆n

∑

j∈I′+(n,q)

(δn
j )2

P→ σ2
Tq
,

whereI ′−(n, q) andI ′+(n, q) are the subsets ofI ′(n, q) containing allj smaller and bigger, respec-
tively, thani(n, q). Next, from Aı̈t-Sahalia & Jacod (2009b) we also know that

(∆n
i(n,q)X)p(1 − ψρ(∆

n
i(n,q)X)) → (∆XTq )

p(1 − ψρ(∆XTq)),

pointwise forp ≥ 3. A straightforward application of the Dubins–Schwarz theorem and Lévy’s
modulus of continuity leads to

(∆n
i(n,q)X)2I{|∆n

i(n,q)
X|>α∆ω

n}
(1 − ψρ(∆

n
i(n,q)X)) → (∆XTq)

2(1 − ψρ(∆XTq)),

for α > 0, 0 < ω < 1/2 and, hence, we obtain the result. �

C Tables from the simulation study
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Table 3: Model (D).

M R.V.M. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050

78 RV -0.31 1.19 0.150 0.100 TRV -0.31 1.19 0.150 0.100
RV2 -0.31 1.19 0.150 0.100 TR2V -0.41 1.18 0.154 0.106
pRV -0.28 1.07 0.121 0.078 R2V -0.41 1.18 0.154 0.106

pRV2 -0.3 1.15 0.140 0.094 R3V -0.47 1.17 0.163 0.113
cRV -0.31 1.19 0.150 0.100 R4V -0.52 1.16 0.168 0.115

390 RV -0.12 1.03 0.105 0.058 TRV -0.12 1.03 0.105 0.058
RV2 -0.12 1.03 0.105 0.058 TR2V -0.17 1.03 0.111 0.064
pRV -0.12 0.98 0.092 0.050 R2V -0.17 1.03 0.111 0.064

pRV2 -0.12 1.01 0.101 0.056 R3V -0.2 1.03 0.113 0.067
cRV -0.12 1.03 0.105 0.058 R4V -0.23 1.04 0.116 0.070

780 RV -0.09 1 0.102 0.050 TRV -0.09 1 0.101 0.050
RV2 -0.09 1 0.102 0.050 TR2V -0.12 1 0.098 0.051
pRV -0.09 0.98 0.091 0.044 R2V -0.12 1 0.098 0.051

pRV2 -0.09 0.99 0.099 0.048 R3V -0.14 1 0.102 0.055
cRV -0.09 1 0.102 0.050 R4V -0.16 1 0.104 0.056

4680 RV -0.07 1.01 0.105 0.054 TRV -0.07 1.01 0.105 0.054
RV2 -0.07 1.01 0.105 0.054 TR2V -0.09 1.01 0.104 0.053
pRV -0.07 0.99 0.101 0.054 R2V -0.09 1.01 0.104 0.053

pRV2 -0.07 1 0.103 0.054 R3V -0.09 1.01 0.105 0.054
cRV -0.07 1.01 0.105 0.054 R4V -0.09 1.01 0.106 0.057
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Table 4: Model (JD) with one jump a day, where the percentage of the jump part of the quadratic
variation of the total quadratic variation is 15%.

M R.V.M. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050

78 RV -0.29 1.21 0.1492 0.0976 TRV 0.2 1.23 0.1752 0.1094
RV2 -0.29 1.21 0.1502 0.0988 TR2V -0.17 1.12 0.1218 0.0726
pRV -0.25 1.1 0.1228 0.0762 R2V -0.03 1.14 0.126 0.0726

pRV2 -0.28 1.19 0.148 0.0948 R3V -0.19 1.11 0.1204 0.0738
cRV -0.29 1.26 0.1686 0.1096 R4V -0.27 1.1 0.1244 0.078

390 RV -0.11 1.02 0.1056 0.0532 TRV 0.05 1.02 0.1086 0.0578
RV2 -0.11 1.02 0.1068 0.0544 TR2V -0.1 0.98 0.0978 0.053
pRV -0.11 1.03 0.109 0.0556 R2V 0.24 1.04 0.1226 0.0678

pRV2 -0.11 1.06 0.1188 0.0596 R3V 0.04 0.99 0.0976 0.0496
cRV -0.11 1.13 0.1392 0.0788 R4V -0.03 0.98 0.0936 0.0494

780 RV -0.07 1 0.095 0.0466 TRV 0.01 0.98 0.0972 0.0504
RV2 -0.07 1.01 0.096 0.0484 TR2V -0.07 0.97 0.088 0.0464
pRV -0.08 1.03 0.1046 0.0544 R2V 0.32 1.04 0.1338 0.0718

pRV2 -0.08 1.04 0.11 0.0576 R3V 0.1 0.97 0.0964 0.0492
cRV -0.08 1.12 0.1372 0.0772 R4V 0.03 0.97 0.0906 0.0478

4680 RV -0.04 0.98 0.0962 0.0492 TRV -0.04 0.98 0.0916 0.0526
RV2 -0.04 0.98 0.0966 0.0498 TR2V -0.07 0.98 0.0922 0.047
pRV -0.04 1.01 0.1026 0.0544 R2V 0.38 1.08 0.1506 0.0896

pRV2 -0.04 1.01 0.1062 0.0558 R3V 0.11 1 0.1002 0.0494
cRV -0.04 1.11 0.1334 0.0784 R4V 0.04 0.99 0.0988 0.0474
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Table 5: Model (JD) with five jumps a day, where the percentageof the jump part of the quadratic
variation of the total quadratic variation is 15%.

M R.V.M. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050

78 RV -0.3 1.19 0.1492 0.0958 TRV 0.68 1.18 0.2328 0.1436
RV2 -0.29 1.19 0.1496 0.096 TR2V 0.2 1.06 0.1066 0.0498
pRV -0.26 1.05 0.111 0.0682 R2V 0.22 1.06 0.1092 0.0506

pRV2 -0.28 1.15 0.1388 0.0868 R3V 0.05 1.05 0.0912 0.0488
cRV -0.29 1.2 0.1538 0.0988 R4V -0.03 1.04 0.0898 0.0522

390 RV -0.11 1.04 0.112 0.0636 TRV 0.96 1.12 0.2852 0.1924
RV2 -0.11 1.05 0.113 0.0648 TR2V 0.33 0.98 0.12 0.0592
pRV -0.1 1.02 0.1082 0.058 R2V 0.64 1 0.183 0.0968

pRV2 -0.11 1.06 0.1208 0.0664 R3V 0.38 0.97 0.1146 0.0566
cRV -0.11 1.11 0.1344 0.0772 R4V 0.27 0.96 0.0982 0.0498

780 RV -0.07 0.98 0.0906 0.0488 TRV 0.71 1.05 0.21 0.1266
RV2 -0.07 0.99 0.0914 0.0492 TR2V 0.21 0.94 0.09 0.043
pRV -0.06 1.01 0.1002 0.0534 R2V 0.75 0.99 0.203 0.1154

pRV2 -0.06 1.03 0.1064 0.0584 R3V 0.43 0.94 0.1174 0.0544
cRV -0.07 1.08 0.1226 0.0692 R4V 0.31 0.94 0.099 0.045

4680 RV -0.03 0.96 0.0898 0.0412 TRV 0.15 0.97 0.093 0.0458
RV2 -0.03 0.96 0.0898 0.0412 TR2V -0.01 0.95 0.0854 0.0426
pRV -0.03 1.01 0.1068 0.055 R2V 0.92 1.05 0.2558 0.1648

pRV2 -0.03 1.01 0.1064 0.053 R3V 0.44 0.97 0.1198 0.0658
cRV -0.03 1.09 0.133 0.0742 R4V 0.3 0.95 0.1008 0.0524
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Table 6: Model (JD) with ten jumps a day, where the percentageof the jump part of the quadratic
variation of the total quadratic variation is 15%.

M R.V.M. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050

78 RV -0.25 1.17 0.1426 0.0884 TRV 0.77 1.1 0.2272 0.1372
RV2 -0.25 1.17 0.1432 0.0886 TR2V 0.34 1.02 0.1094 0.049
pRV -0.22 1.04 0.1048 0.0636 R2V 0.35 1.02 0.1108 0.05

pRV2 -0.24 1.13 0.1308 0.0808 R3V 0.18 1.01 0.09 0.0442
cRV -0.24 1.17 0.1438 0.0892 R4V 0.09 1 0.087 0.0444

390 RV -0.14 1.05 0.1192 0.0658 TRV 1.56 1.16 0.4688 0.3574
RV2 -0.14 1.06 0.119 0.0664 TR2V 0.68 0.97 0.176 0.0892
pRV -0.13 0.99 0.101 0.0532 R2V 0.83 0.97 0.2244 0.1256

pRV2 -0.14 1.05 0.1206 0.0644 R3V 0.56 0.95 0.1456 0.071
cRV -0.14 1.08 0.1308 0.0724 R4V 0.45 0.95 0.1212 0.0572

780 RV -0.1 1.02 0.1088 0.061 TRV 1.5 1.16 0.455 0.3488
RV2 -0.1 1.03 0.1108 0.0624 TR2V 0.58 0.96 0.152 0.0814
pRV -0.09 1.02 0.1066 0.0564 R2V 1 0.98 0.2788 0.167

pRV2 -0.09 1.05 0.1176 0.0654 R3V 0.65 0.95 0.157 0.0834
cRV -0.1 1.09 0.1322 0.077 R4V 0.51 0.94 0.1226 0.066

4680 RV -0.02 1 0.1026 0.0464 TRV 0.54 1.03 0.1672 0.0984
RV2 -0.02 1 0.1026 0.0456 TR2V 0.13 0.97 0.0952 0.0464
pRV -0.02 1.06 0.125 0.0634 R2V 1.3 1.04 0.382 0.2714

pRV2 -0.02 1.06 0.1232 0.0626 R3V 0.71 0.97 0.1784 0.1028
cRV -0.02 1.12 0.1434 0.0828 R4V 0.52 0.96 0.1342 0.0724
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Table 7: Model (IAP) withα = 0.1, where the percentage of the jump part of the quadratic variation
of the total quadratic variation is 15%.

M R.V.M. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050

78 RV -0.3 1.19 0.1488 0.1004 TRV 0.41 1.22 0.198 0.1256
RV2 -0.3 1.19 0.1492 0.1012 TR2V 0.03 1.11 0.1182 0.0702
pRV -0.26 1.07 0.1172 0.0732 R2V 0.11 1.14 0.1326 0.0776

pRV2 -0.28 1.15 0.1436 0.0918 R3V -0.04 1.1 0.1158 0.07
cRV -0.29 1.22 0.1588 0.1068 R4V -0.13 1.09 0.119 0.0722

390 RV -0.13 1.09 0.1094 0.0616 TRV 0.6 1.11 0.198 0.1178
RV2 -0.13 1.1 0.111 0.0634 TR2V 0.18 1 0.1072 0.0536
pRV -0.12 1.08 0.1052 0.0636 R2V 0.47 1.07 0.1684 0.0954

pRV2 -0.13 1.12 0.1158 0.069 R3V 0.25 1 0.1134 0.0536
cRV -0.13 1.18 0.135 0.0848 R4V 0.15 0.99 0.102 0.046

780 RV -0.1 1.12 0.1014 0.0518 TRV 0.56 1.07 0.1736 0.1026
RV2 -0.1 1.12 0.1024 0.052 TR2V 0.18 0.97 0.1008 0.0486
pRV -0.1 1.13 0.1054 0.0568 R2V 0.59 1.08 0.189 0.1134

pRV2 -0.1 1.16 0.1146 0.0608 R3V 0.32 0.99 0.118 0.0546
cRV -0.11 1.21 0.1318 0.0758 R4V 0.22 0.97 0.0982 0.0472

4680 RV -0.06 1.08 0.09 0.044 TRV 0.38 1 0.127 0.0646
RV2 -0.06 1.09 0.0898 0.044 TR2V 0.1 0.96 0.084 0.0432
pRV -0.06 1.15 0.101 0.051 R2V 0.79 1.12 0.2324 0.1522

pRV2 -0.06 1.15 0.101 0.0518 R3V 0.39 0.98 0.1256 0.0616
cRV -0.06 1.24 0.1302 0.073 R4V 0.28 0.97 0.1026 0.0474
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Table 8: Model (IAP) withα = 0.5, where the percentage of the jump part of the quadratic variation
of the total quadratic variation is 15%.

M R.V.M. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050

78 RV -0.27 1.17 0.1476 0.0916 TRV 0.64 1.14 0.2096 0.122
RV2 -0.27 1.17 0.1476 0.092 TR2V 0.26 1.03 0.111 0.0518
pRV -0.25 1.04 0.1092 0.0644 R2V 0.27 1.04 0.1154 0.054

pRV2 -0.26 1.13 0.136 0.0818 R3V 0.12 1.02 0.0996 0.0516
cRV -0.27 1.18 0.1492 0.093 R4V 0.03 1.01 0.0968 0.0522

390 RV -0.13 1.06 0.1186 0.0658 TRV 1.35 1.13 0.4028 0.2964
RV2 -0.13 1.06 0.1192 0.0666 TR2V 0.71 0.97 0.1862 0.0994
pRV -0.12 1.02 0.1062 0.0576 R2V 0.87 1 0.2338 0.141

pRV2 -0.13 1.06 0.1192 0.0664 R3V 0.63 0.97 0.1584 0.0802
cRV -0.13 1.1 0.1292 0.075 R4V 0.53 0.96 0.1346 0.0664

780 RV -0.11 1.02 0.1064 0.0602 TRV 1.56 1.14 0.473 0.3588
RV2 -0.11 1.03 0.1076 0.0612 TR2V 0.8 0.97 0.2006 0.1134
pRV -0.1 1.01 0.1038 0.0564 R2V 1.09 1.02 0.3102 0.2046

pRV2 -0.11 1.04 0.1128 0.066 R3V 0.78 0.97 0.2052 0.1114
cRV -0.11 1.08 0.1218 0.0748 R4V 0.65 0.96 0.1612 0.0834

4680 RV -0.03 0.98 0.1004 0.0474 TRV 1.79 1.11 0.5416 0.4264
RV2 -0.03 0.98 0.101 0.0474 TR2V 0.86 0.95 0.2096 0.1276
pRV -0.03 1.01 0.1134 0.0568 R2V 1.71 1.06 0.5258 0.407

pRV2 -0.03 1.02 0.117 0.0592 R3V 1.13 0.96 0.3064 0.2018
cRV -0.03 1.08 0.1326 0.0734 R4V 0.93 0.94 0.2348 0.1396

32



C TABLES FROM THE SIMULATION STUDY

Table 9: Model (IAP) withα = 0.9, where the percentage of the jump part of the quadratic variation
of the total quadratic variation is 15%.

M R.V.M. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050

78 RV -0.29 1.15 0.1384 0.09 TRV 0.68 1.01 0.1822 0.1006
RV2 -0.29 1.15 0.1384 0.09 TR2V 0.42 0.99 0.1214 0.052
pRV -0.27 1.04 0.11 0.0652 R2V 0.42 0.99 0.1216 0.0522

pRV2 -0.28 1.11 0.129 0.0814 R3V 0.29 0.99 0.1012 0.047
cRV -0.29 1.15 0.1386 0.09 R4V 0.21 0.99 0.097 0.0482

390 RV -0.14 1.04 0.117 0.061 TRV 1.86 1.01 0.5914 0.4686
RV2 -0.14 1.04 0.1172 0.061 TR2V 1.37 0.92 0.408 0.2762
pRV -0.13 0.99 0.099 0.05 R2V 1.38 0.92 0.413 0.2792

pRV2 -0.13 1.02 0.1108 0.057 R3V 1.18 0.92 0.3302 0.206
cRV -0.14 1.04 0.1184 0.0616 R4V 1.07 0.93 0.2874 0.1704

780 RV -0.09 1.02 0.1072 0.0562 TRV 2.66 1.1 0.8218 0.7366
RV2 -0.09 1.02 0.1076 0.0562 TR2V 1.89 0.96 0.6158 0.4866
pRV -0.09 0.98 0.0928 0.0476 R2V 1.92 0.96 0.6308 0.5006

pRV2 -0.09 1.01 0.1024 0.0542 R3V 1.65 0.94 0.5164 0.3788
cRV -0.09 1.03 0.109 0.0568 R4V 1.5 0.93 0.454 0.3178

4680 RV -0.03 1.01 0.104 0.0522 TRV 5.41 1.52 0.994 0.9902
RV2 -0.03 1.01 0.1042 0.053 TR2V 3.33 1.07 0.9354 0.8956
pRV -0.03 1 0.0994 0.05 R2V 3.73 1.1 0.9638 0.9418

pRV2 -0.03 1.03 0.1082 0.054 R3V 3.02 1.02 0.9088 0.85
cRV -0.03 1.05 0.1148 0.0596 R4V 2.71 1 0.8556 0.7806
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Table 10: Model (IFAJ) with five jumps a day.

M R.V.M. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050

78 RV -0.3 1.17 0.1442 0.0956 TRV 0.46 1.15 0.1798 0.1078
RV2 -0.3 1.17 0.1456 0.096 TR2V 0.06 1.06 0.098 0.058
pRV -0.26 1.06 0.1126 0.0712 R2V 0.16 1.08 0.1088 0.0616

pRV2 -0.29 1.14 0.1362 0.0898 R3V 0 1.05 0.0994 0.055
cRV -0.29 1.21 0.1534 0.103 R4V -0.08 1.04 0.1048 0.057

390 RV -0.12 1.03 0.1166 0.0572 TRV 0.49 1.04 0.1608 0.0908
RV2 -0.12 1.03 0.1178 0.0596 TR2V 0.11 0.98 0.0966 0.0522
pRV -0.11 1.03 0.1178 0.0602 R2V 0.53 1.04 0.1634 0.0944

pRV2 -0.12 1.06 0.1264 0.0682 R3V 0.27 0.99 0.1126 0.053
cRV -0.12 1.12 0.1438 0.0818 R4V 0.17 0.98 0.1002 0.0472

780 RV -0.08 1.02 0.1024 0.0506 TRV 0.36 1.01 0.1264 0.068
RV2 -0.08 1.02 0.1038 0.0506 TR2V 0.09 0.97 0.0912 0.0446
pRV -0.08 1.06 0.1166 0.0596 R2V 0.67 1.05 0.201 0.1144

pRV2 -0.09 1.07 0.1196 0.0628 R3V 0.37 0.99 0.1208 0.0608
cRV -0.09 1.13 0.138 0.0794 R4V 0.27 0.99 0.1084 0.0502

4680 RV -0.03 1.12 0.0996 0.047 TRV 0.11 0.99 0.1 0.05
RV2 -0.03 1.12 0.1002 0.0468 TR2V -0.01 0.97 0.0924 0.0468
pRV -0.03 1.19 0.1178 0.0592 R2V 0.83 1.09 0.2438 0.159

pRV2 -0.03 1.19 0.1178 0.059 R3V 0.39 1 0.124 0.0692
cRV -0.03 1.28 0.1442 0.0822 R4V 0.27 0.98 0.1102 0.0536
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Table 11: Model (IFAJ) with ten jumps a day.

M R.V.M. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050

78 RV -0.31 1.16 0.1444 0.0972 TRV 0.26 1.12 0.144 0.0838
RV2 -0.31 1.16 0.1446 0.0974 TR2V 0 1.09 0.1126 0.0636
pRV -0.28 1.04 0.115 0.074 R2V 0.01 1.1 0.1136 0.0642

pRV2 -0.3 1.12 0.1358 0.09 R3V -0.09 1.09 0.1084 0.0648
cRV -0.31 1.17 0.1458 0.098 R4V -0.16 1.08 0.1146 0.0684

390 RV -0.16 1.04 0.1144 0.0586 TRV 0.66 1.05 0.2 0.1152
RV2 -0.16 1.04 0.1152 0.0592 TR2V 0.27 0.98 0.1092 0.0522
pRV -0.15 1 0.1026 0.0534 R2V 0.41 1 0.1332 0.0666

pRV2 -0.16 1.04 0.1146 0.0598 R3V 0.25 0.98 0.1038 0.0472
cRV -0.16 1.06 0.1238 0.0654 R4V 0.17 0.98 0.095 0.0446

780 RV -0.11 1 0.1044 0.0574 TRV 0.69 1.02 0.1918 0.1106
RV2 -0.11 1.01 0.1052 0.0582 TR2V 0.26 0.96 0.099 0.0472
pRV -0.11 1 0.1042 0.0532 R2V 0.53 0.98 0.1442 0.0732

pRV2 -0.11 1.02 0.1112 0.0604 R3V 0.33 0.97 0.105 0.0522
cRV -0.11 1.05 0.1178 0.0676 R4V 0.24 0.97 0.1012 0.0478

4680 RV -0.04 1 0.0984 0.0514 TRV 0.39 1 0.1296 0.0756
RV2 -0.04 1 0.0986 0.0512 TR2V 0.1 0.97 0.0918 0.0464
pRV -0.04 1.03 0.1108 0.0582 R2V 0.78 1.01 0.214 0.1316

pRV2 -0.04 1.04 0.1118 0.06 R3V 0.44 0.96 0.1242 0.0622
cRV -0.05 1.07 0.122 0.0684 R4V 0.32 0.96 0.1026 0.0566
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Table 12: Model (CFAJ) with five jumps a day.

M R.V.M. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050

78 RV -0.31 1.2 0.1468 0.098 TRV 0.38 1.11 0.1578 0.0866
RV2 -0.31 1.21 0.1474 0.098 TR2V 0.06 1.06 0.0954 0.0524
pRV -0.26 1.08 0.1172 0.0746 R2V 0.17 1.08 0.1072 0.0546

pRV2 -0.29 1.17 0.1412 0.0908 R3V 0.01 1.06 0.092 0.055
cRV -0.3 1.24 0.159 0.1058 R4V -0.07 1.05 0.0938 0.0576

390 RV -0.14 1.03 0.1082 0.058 TRV 0.45 1.02 0.1446 0.084
RV2 -0.14 1.04 0.11 0.0604 TR2V 0.12 0.97 0.0924 0.0482
pRV -0.13 1.05 0.1164 0.0606 R2V 0.57 1.03 0.1642 0.093

pRV2 -0.13 1.07 0.126 0.066 R3V 0.32 0.98 0.1126 0.0532
cRV -0.13 1.13 0.141 0.081 R4V 0.22 0.97 0.0984 0.0498

780 RV -0.09 0.99 0.096 0.052 TRV 0.36 0.99 0.1186 0.0646
RV2 -0.09 0.99 0.0962 0.0522 TR2V 0.08 0.95 0.086 0.0416
pRV -0.09 1.03 0.1096 0.063 R2V 0.68 1.01 0.191 0.1056

pRV2 -0.1 1.04 0.1138 0.0654 R3V 0.39 0.95 0.1118 0.0478
cRV -0.1 1.11 0.1344 0.0816 R4V 0.28 0.94 0.0976 0.0422

4680 RV -0.05 0.96 0.0846 0.0418 TRV 0.09 0.96 0.088 0.0428
RV2 -0.05 0.96 0.0852 0.0418 TR2V -0.03 0.95 0.0866 0.0428
pRV -0.05 1.02 0.1062 0.0546 R2V 0.85 1.05 0.2396 0.1516

pRV2 -0.05 1.02 0.1048 0.0536 R3V 0.41 0.97 0.1198 0.0578
cRV -0.05 1.11 0.1344 0.074 R4V 0.28 0.96 0.0972 0.0504
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Table 13: Model (CFAJ) with ten jumps a day.

M R.V.M. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050

78 RV -0.27 1.15 0.1428 0.088 TRV 0.26 1.08 0.1298 0.0692
RV2 -0.27 1.16 0.143 0.0882 TR2V 0.02 1.06 0.1014 0.0558
pRV -0.24 1.04 0.1114 0.0694 R2V 0.04 1.06 0.1016 0.055

pRV2 -0.26 1.12 0.1328 0.0814 R3V -0.06 1.05 0.1028 0.0578
cRV -0.26 1.16 0.1454 0.0916 R4V -0.13 1.05 0.1062 0.063

390 RV -0.14 1.03 0.112 0.061 TRV 0.64 1.02 0.1788 0.0998
RV2 -0.14 1.03 0.1118 0.0612 TR2V 0.28 0.97 0.1046 0.0492
pRV -0.13 1 0.1012 0.0522 R2V 0.43 0.99 0.1324 0.0644

pRV2 -0.13 1.04 0.1134 0.0606 R3V 0.28 0.98 0.1036 0.0514
cRV -0.14 1.06 0.1216 0.0672 R4V 0.21 0.97 0.0964 0.0488

780 RV -0.09 1.01 0.103 0.056 TRV 0.67 1.02 0.1886 0.1098
RV2 -0.09 1.01 0.1038 0.0562 TR2V 0.28 0.96 0.1032 0.0458
pRV -0.09 1.01 0.1 0.053 R2V 0.57 0.98 0.1536 0.0782

pRV2 -0.09 1.03 0.1094 0.0582 R3V 0.37 0.96 0.1118 0.0542
cRV -0.09 1.06 0.1182 0.0646 R4V 0.29 0.96 0.104 0.0496

4680 RV -0.02 1 0.101 0.0512 TRV 0.4 1.01 0.138 0.0738
RV2 -0.02 1 0.1014 0.0514 TR2V 0.12 0.98 0.1004 0.0492
pRV -0.02 1.04 0.1108 0.0586 R2V 0.84 1.02 0.228 0.1464

pRV2 -0.02 1.04 0.1128 0.0608 R3V 0.49 0.98 0.1366 0.075
cRV -0.02 1.08 0.124 0.0676 R4V 0.36 0.97 0.1158 0.0616
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Table 14: Model (BNSIJ) without jumps in the price.

M R.V.M. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050

78 RV -0.25 1.18 0.1424 0.0926 TRV -0.3 1.21 0.1508 0.1
RV2 -0.26 1.18 0.1426 0.0926 TR2V -0.4 1.21 0.1514 0.102
pRV -0.23 1.08 0.1178 0.0696 R2V -0.36 1.19 0.1444 0.0948

pRV2 -0.25 1.15 0.1368 0.0852 R3V -0.43 1.17 0.1488 0.0968
cRV -0.25 1.19 0.1446 0.0936 R4V -0.47 1.16 0.153 0.0962

390 RV -0.11 1.03 0.11 0.0622 TRV -0.19 1.15 0.1256 0.0774
RV2 -0.11 1.03 0.1098 0.0622 TR2V -0.21 1.12 0.1264 0.0746
pRV -0.1 0.99 0.0998 0.0542 R2V -0.14 1.03 0.1132 0.0622

pRV2 -0.11 1.02 0.1068 0.0606 R3V -0.17 1.03 0.114 0.062
cRV -0.11 1.04 0.1108 0.0632 R4V -0.19 1.03 0.1118 0.0632

780 RV -0.08 1.01 0.1046 0.054 TRV -0.19 1.24 0.1252 0.0736
RV2 -0.08 1 0.1046 0.0534 TR2V -0.2 1.19 0.123 0.0678
pRV -0.08 0.98 0.095 0.0476 R2V -0.11 1.01 0.1048 0.0506

pRV2 -0.08 1 0.1018 0.052 R3V -0.13 1.01 0.1048 0.0556
cRV -0.08 1.01 0.1062 0.0552 R4V -0.15 1 0.1038 0.0534

4680 RV -0.04 1 0.0996 0.051 TRV -0.26 1.8 0.1262 0.0768
RV2 -0.04 1 0.0992 0.0508 TR2V -0.24 1.65 0.1222 0.0774
pRV -0.04 0.99 0.0982 0.049 R2V -0.05 0.99 0.0982 0.0526

pRV2 -0.04 1 0.1004 0.051 R3V -0.05 0.99 0.1008 0.055
cRV -0.04 1 0.1012 0.0516 R4V -0.05 0.99 0.1018 0.053
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Table 15: Model (BNSIJ) with one jump in the price, where the percentage of the jump part of the
QV is 15%.

M R.V.M. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050

78 RV -0.26 1.2 0.144 0.094 TRV 0.3 1.32 0.2078 0.1382
RV2 -0.26 1.21 0.1452 0.0956 TR2V -0.14 1.12 0.1164 0.0674
pRV -0.23 1.1 0.1132 0.0688 R2V 0.03 1.12 0.1178 0.0624

pRV2 -0.25 1.18 0.14 0.0892 R3V -0.14 1.08 0.1046 0.0606
cRV -0.26 1.26 0.1636 0.1094 R4V -0.23 1.07 0.111 0.0658

390 RV -0.14 1.12 0.1048 0.058 TRV 0.01 1.17 0.1376 0.0826
RV2 -0.14 1.13 0.1074 0.059 TR2V -0.15 1.09 0.1142 0.063
pRV -0.13 1.13 0.1094 0.0576 R2V 0.27 1.06 0.1356 0.0716

pRV2 -0.14 1.16 0.1174 0.0654 R3V 0.05 1.01 0.098 0.0494
cRV -0.14 1.25 0.1472 0.0898 R4V -0.02 1 0.0988 0.0492

780 RV -0.09 1.05 0.1068 0.0588 TRV -0.06 1.23 0.1318 0.0744
RV2 -0.09 1.06 0.1072 0.0602 TR2V -0.16 1.14 0.1104 0.0646
pRV -0.09 1.09 0.1186 0.0656 R2V 0.35 1.06 0.1412 0.0816

pRV2 -0.09 1.1 0.1234 0.0714 R3V 0.12 0.99 0.102 0.0474
cRV -0.1 1.2 0.151 0.0946 R4V 0.04 0.98 0.0932 0.0452

4680 RV -0.04 1.01 0.0982 0.0502 TRV -0.24 1.75 0.122 0.073
RV2 -0.04 1.01 0.0992 0.0506 TR2V -0.25 1.61 0.118 0.0718
pRV -0.04 1.04 0.1114 0.058 R2V 0.42 1.09 0.1588 0.0948

pRV2 -0.04 1.05 0.112 0.058 R3V 0.12 1 0.1008 0.0504
cRV -0.04 1.17 0.1534 0.0888 R4V 0.04 0.99 0.0968 0.0464
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Table 16: Model (BNSIJ) with five jumps in the price, where thepercentage of the jump part of the
QV is 15%.

M R.V.M. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050

78 RV -0.28 1.21 0.1616 0.1062 TRV 0.87 1.34 0.3092 0.2188
RV2 -0.28 1.21 0.1612 0.1066 TR2V 0.27 1.12 0.1352 0.0708
pRV -0.24 1.05 0.1162 0.0674 R2V 0.32 1.08 0.1304 0.065

pRV2 -0.26 1.16 0.1468 0.0944 R3V 0.13 1.05 0.102 0.05
cRV -0.28 1.23 0.1658 0.1096 R4V 0.03 1.04 0.101 0.0512

390 RV -0.13 1.05 0.1168 0.0648 TRV 1.14 1.41 0.3838 0.2908
RV2 -0.13 1.06 0.1186 0.0664 TR2V 0.32 1.11 0.1358 0.0754
pRV -0.11 1.02 0.1066 0.0578 R2V 0.72 1.02 0.2058 0.1162

pRV2 -0.12 1.07 0.125 0.068 R3V 0.43 0.97 0.121 0.053
cRV -0.13 1.13 0.1466 0.0876 R4V 0.31 0.96 0.0958 0.0468

780 RV -0.09 1 0.0986 0.0488 TRV 0.8 1.4 0.2886 0.1984
RV2 -0.09 1.01 0.0998 0.0496 TR2V 0.17 1.18 0.126 0.0678
pRV -0.08 1.03 0.104 0.053 R2V 0.85 1.04 0.243 0.1446

pRV2 -0.09 1.05 0.1142 0.0586 R3V 0.48 0.98 0.137 0.0674
cRV -0.09 1.13 0.139 0.078 R4V 0.35 0.97 0.1086 0.0544

4680 RV -0.03 0.98 0.0902 0.0436 TRV 0.01 1.84 0.1316 0.0786
RV2 -0.03 0.98 0.09 0.0432 TR2V -0.17 1.65 0.1086 0.0672
pRV -0.03 1.04 0.1146 0.0578 R2V 1.05 1.07 0.2974 0.2

pRV2 -0.03 1.04 0.1106 0.0556 R3V 0.5 0.97 0.1352 0.0724
cRV -0.03 1.16 0.1512 0.0848 R4V 0.34 0.95 0.1072 0.0546

40



C TABLES FROM THE SIMULATION STUDY

Table 17: Model (BNSIJ) with ten jumps in the price, where thepercentage of the jump part of the
QV is 15%.

M R.V.M. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050

78 RV -0.28 1.19 0.1532 0.099 TRV 0.88 1.23 0.2958 0.1914
RV2 -0.28 1.2 0.1532 0.0988 TR2V 0.39 1.1 0.1456 0.0698
pRV -0.25 1.06 0.1088 0.0684 R2V 0.43 1.06 0.1386 0.0652

pRV2 -0.27 1.16 0.1428 0.088 R3V 0.25 1.05 0.107 0.0518
cRV -0.28 1.2 0.1562 0.1004 R4V 0.15 1.05 0.1004 0.0512

390 RV -0.11 1.05 0.1166 0.065 TRV 1.87 1.5 0.5992 0.5086
RV2 -0.11 1.06 0.1178 0.0658 TR2V 0.74 1.11 0.219 0.1302
pRV -0.1 0.98 0.095 0.0464 R2V 0.97 1 0.2656 0.1678

pRV2 -0.11 1.05 0.1174 0.0618 R3V 0.66 0.95 0.1604 0.0814
cRV -0.11 1.1 0.133 0.0764 R4V 0.52 0.93 0.126 0.0618

780 RV -0.08 1.02 0.104 0.0526 TRV 1.77 1.54 0.588 0.4902
RV2 -0.08 1.02 0.1038 0.0522 TR2V 0.6 1.15 0.186 0.1104
pRV -0.07 1.01 0.1024 0.0492 R2V 1.14 1 0.3338 0.2198

pRV2 -0.08 1.05 0.1164 0.0574 R3V 0.74 0.94 0.1784 0.0968
cRV -0.08 1.1 0.135 0.0728 R4V 0.58 0.93 0.137 0.0672

4680 RV -0.03 0.98 0.0922 0.0482 TRV 0.46 1.79 0.2178 0.1462
RV2 -0.03 0.98 0.091 0.0476 TR2V -0.02 1.55 0.1146 0.0656
pRV -0.03 1.05 0.1152 0.0622 R2V 1.41 1.09 0.4264 0.3112

pRV2 -0.03 1.05 0.1146 0.06 R3V 0.75 0.99 0.1982 0.1152
cRV -0.03 1.14 0.1478 0.0822 R4V 0.54 0.97 0.1472 0.0772
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Table 18: Model (BNSCJ) withρ = −0.2 corresponding to the jump part of the QV being 4.7%.

M R.V.M. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050

78 RV -0.25 1.18 0.144 0.0944 TRV -0.27 1.19 0.1494 0.0986
RV2 -0.25 1.18 0.1444 0.0946 TR2V -0.38 1.19 0.1466 0.0976
pRV -0.23 1.08 0.1184 0.073 R2V -0.33 1.17 0.138 0.0908

pRV2 -0.25 1.15 0.1392 0.088 R3V -0.4 1.16 0.1442 0.0962
cRV -0.25 1.19 0.1474 0.0968 R4V -0.44 1.14 0.147 0.0938

390 RV -0.1 1.03 0.111 0.063 TRV -0.16 1.13 0.124 0.0758
RV2 -0.1 1.03 0.1104 0.0628 TR2V -0.19 1.11 0.1218 0.071
pRV -0.1 1 0.101 0.0554 R2V -0.1 1.03 0.1096 0.0588

pRV2 -0.1 1.02 0.109 0.0616 R3V -0.14 1.03 0.113 0.0604
cRV -0.1 1.04 0.1132 0.0654 R4V -0.17 1.03 0.1092 0.0614

780 RV -0.07 1.01 0.107 0.055 TRV -0.15 1.21 0.1248 0.0712
RV2 -0.07 1.01 0.1066 0.0546 TR2V -0.18 1.17 0.1214 0.0666
pRV -0.07 0.99 0.0974 0.0494 R2V -0.06 1.01 0.1032 0.0498

pRV2 -0.07 1 0.1036 0.054 R3V -0.1 1 0.1014 0.0526
cRV -0.07 1.02 0.1084 0.0566 R4V -0.12 1 0.1002 0.0512

4680 RV -0.04 1 0.0976 0.0502 TRV -0.23 1.76 0.1262 0.0762
RV2 -0.04 0.99 0.097 0.0502 TR2V -0.21 1.62 0.1218 0.0778
pRV -0.04 0.99 0.0974 0.0496 R2V 0 0.99 0.099 0.0536

pRV2 -0.04 1 0.098 0.0506 R3V -0.01 0.99 0.0982 0.0546
cRV -0.04 1.01 0.1002 0.0522 R4V -0.02 0.99 0.0984 0.0516
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Table 19: Model (BNSCJ) withρ = −0.4 corresponding to the jump part of the QV being 16.7%.

M R.V.M. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050

78 RV -0.25 1.2 0.1452 0.0958 TRV -0.23 1.18 0.1446 0.0954
RV2 -0.25 1.2 0.1444 0.0954 TR2V -0.35 1.17 0.1384 0.0962
pRV -0.23 1.11 0.12 0.0742 R2V -0.28 1.17 0.1324 0.0882

pRV2 -0.25 1.18 0.1386 0.0884 R3V -0.36 1.15 0.1376 0.0908
cRV -0.25 1.23 0.1494 0.0996 R4V -0.41 1.13 0.1428 0.0914

390 RV -0.1 1.03 0.1126 0.063 TRV -0.12 1.12 0.123 0.0726
RV2 -0.1 1.03 0.1118 0.0626 TR2V -0.17 1.1 0.1194 0.0692
pRV -0.09 1.01 0.1052 0.0572 R2V -0.05 1.04 0.1102 0.0588

pRV2 -0.1 1.03 0.1114 0.0616 R3V -0.11 1.03 0.1098 0.0576
cRV -0.1 1.06 0.1192 0.0688 R4V -0.14 1.02 0.1094 0.059

780 RV -0.07 1.01 0.1082 0.055 TRV -0.12 1.19 0.1258 0.0718
RV2 -0.07 1.01 0.1076 0.0536 TR2V -0.16 1.15 0.1176 0.066
pRV -0.07 1 0.1014 0.0514 R2V -0.01 1.01 0.1044 0.0508

pRV2 -0.07 1.01 0.1068 0.054 R3V -0.06 1 0.1004 0.0508
cRV -0.07 1.04 0.115 0.0602 R4V -0.09 0.99 0.0998 0.0496

4680 RV -0.04 1 0.0968 0.0498 TRV -0.2 1.72 0.1248 0.076
RV2 -0.04 0.99 0.0962 0.0496 TR2V -0.2 1.58 0.1206 0.0766
pRV -0.04 1 0.0998 0.0514 R2V 0.07 1.01 0.1064 0.0584

pRV2 -0.04 1 0.0984 0.0512 R3V 0.01 0.99 0.0982 0.0526
cRV -0.04 1.02 0.1058 0.0562 R4V 0 0.98 0.0982 0.0508
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Figure 5: Empirical density of the logarithmic transform ofcentered and scaled realised variance
(denoted by RV in the tables) for the model BNSCJ withρ = −0.4.
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Rosinski, J. (2001), Series representations of Lévy processes from the perspective of point processes,
in O. Barndorff-Nielsen, T. Mikosch & S. Resnick, eds, ‘Levy Processes Theory and Applications’,
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