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Abstract

This paper studies the impact of jumps on volatility estioraand inference based on various
realised variation measures such as realised variandisgaenultipower variation and truncated
realised multipower variation. We review the asymptotiedty of those realised variation mea-
sures and present a new estimator for the asymptotic ‘veglanf the centered realised variance
in the presence of jumps. Next, we compare the finite sampferpeance of the various estima-
tors by means of detailed Monte Carlo studies where we stuglynipact of the jump activity,
the jump size of the jumps in the price and the presence ofiaddl independent or dependent
jumps in the volatility on the finite sample performance & #arious estimators. We find that the
finite sample performance of realised variance, and inqdai of the log—transformed realised
variance, is generally good, whereas the jump—robussstatiturn out not to be as jump robust
as the asymptotic theory would suggest in the presence afrdytactive jump process.

In an empirical study on high frequency data from the Stash@alPoor’'s Depository Receipt
(SPY), we investigate the impact of jumps on inference oanldl by realised variance in prac-
tice.
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1 INTRODUCTION

1 Introduction

Volatility estimation and inference is one of the key prabtein finance and has become one of the
most active research areas in financial econometrics iratitelecade. In particular, the availability of
high frequency financial data makes it possible to constraiibus non—parametric volatility estima-
tors, whose theoretical behaviour is now very well undedtsee Andersen, Bollerslev, Diebold &
Labys (2001), Barndorff-Nielsen & Shephard (2002, 28bB42007). Besides the question of estimat-
ing volatility, the recent literature has also addressedpttoblem of testing for jumps in asset price
data, see Ait-Sahalia & Jacod (2@)9Barndorff-Nielsen & Shephard (2006), Huang & Tauchen
(2005), Lee & Mykland (2008). In this paper, we address aedjoselated questions, which has
not been studied empirically before: How do jumps impactrehce on volatility based on various
realised variation measures?

In order to answer that question, we will first focus on the hvaslely used and probably best
understood non—parametric stochastic volatility estimate. onrealised variance see Andersen,
Bollerslev, Diebold & Ebens (2001), Barndorff-Nielsen &egitnard (2002). Daily realised variance
is defined as the sum of the squared intra—day returns. It eashbwn, see Protter (2004), that
this quantity is a consistent estimator for the quadratitatian of the price process, which is often
regarded as a measure of accumulated daily variance. Howewarder to make inference on the
quadratic variation of the price process, we need a cemtnélresult for the volatility estimator. Re-
cently, Jacod (2008) has established a comprehensivetliguoty for realised variance (among other
functionals of semimartingales) when the logarithmic apsee is assumed to be an Itd semimartin-
gale; the correspondinigasiblelimit theory has then been derived in Veraart (2010) and vier te
these two papers for details on the underlying theory.

In this paper, we present a new estimator for the jump parh@fasymptotic ‘variance’ of the
centered realised variance which is based on the thresbalzept.

Next, this paper focuses on practical aspects of the newateimit theory for realised variance
when the asset price exhibits jumps. First of all, we stuayfihite sample performance of the new
theory by means of Monte Carlo studies. In particular, wd sédle that the feasible limit theory
makes use of spot volatility estimators. Hence we comparirsimulation experiment the finite
sample performance based on two widely used spot vola@ktymators: locally average realised
bipower variation and locally averaged truncated realisgthnce. Furthermore, we will see that the
asymptotic normality of realised variance in the preserfgeraps only holds when the asset price
and the volatility do not jump together. In fact, it is now piise to test whether there are co—jumps in
price and volatility, see Jacod & Todorov (2010). Howeveonf a practical point of view one might
want to ask the question, how big the estimation error is & oges the standard inference technique
even if there are common jumps in the price and the volatilitlgis is studied in another simulation
experiment in this paper.

Since economists are often interested in inference on th&cmus part of the quadratic variation,
we also study the impact of jumps on realised multipower amacated realised variation measures,
which are known to be robust to jumps. We review the asymptbgory of these quantities briefly
and include them into our Monte Carlo study. While such messturn out to be robust to rare
jumps, they are severely challenged — in finite samples — byptiesence of a very active jump
process generating many small jumps in addition to someebiggnps.

Next, we carry out a small empirical study based on high feegy data from the Standard &
Poor’s Depository Receipt (SPY) over a ten year period fr@881lto 2008. In this study, we in-
vestigate the impact of jumps on inference based on realisednce empirically. We estimate the
quadratic variation of the asset price by realised variamzkecompute the corresponding confidence
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bounds using the new feasible limit theory. The main aim f&ntw out how the size of the confidence
bounds differs depending on whether we account for jump®or n

The remaining part of the paper is structured as followsti@e@ reviews the asymptotic prop-
erties of realised variance, realised multipower varrafod truncated realised multipower variation
in the presence of jumps. Section 3 presents consistemadstis for the asymptotic ‘variances’ of
centered realised variation measures. Here we also prasew estimator of the jump part of the
asymptotic ‘variance’ of centered realised variance. latiBa 4, we check the finite sample perfor-
mance of the asymptotic theory, where we study the impaatropp in the price and also the impact
of co—jumps in the price and in the volatility on inference fealised variance. Next, we study the
impact of jumps on the size of the confidence bounds for m@Nsriance empirically in Section 5.
Finally, Section 6 concludes. All technical assumptionsofs and tables from the simulation study
are relegated to the Appendix, see Sections A, B and C, rixsglgc

2 Asymptotic theory for realised variation measures in the pesence of
jumps

Recent research on nonparametric volatility estimatios foaused on the class of 1td semimartin-
gales as a model for the logarithmic asset price. In this@eete will review the basic traits of 16
semimartingales and we will present some of the most ofted nenparametric volatility estimators.

The focus will be on a non—technical presentation of the tyithg theory and we refer to Jacod
(2008) and Veraart (2010) for the technical details.

2.1 The Itd semimartingale framework

Let (2, A, (F;)i>0,P) denoted a filtered probability space, on which we define avehled 1td semi-
martingaleX = (X;);>o. Note that an I1td semimartingale is a semimartingale wivhseacteristics
are absolutely continuous with respect to the Lebesgueurmathat means that it can be written as

t t
X =Xo+ / bsds + / osdWs + Ji, 1)
0 0

whereW = (W;)¢>0 is a Brownian motion and = (.J;);>0 is a pure jump process defined by

Jy = // (s,2)) (1 — v)(ds, dz) // p(ds, dz), )

wherep is a Poisson random measure®n x E with (E, £) being an auxiliary space on the prob-
ability space(Q2, A, (F;):>0, P). Further,v denotes the predictable compensatop @nd is given by
v(ds,dx) = ds ® A(dx), where) is ac—finite measure o(Z, £). We denote by: a truncation func-
tion which is bounded, has compact support ate) = x in a neighbourhood di and is assumed to
be continuous. Then we defir&(z) = x — x(z). The coefficientd, o andé are assumed to satisfy
some mild integrability conditions, see the Appendix forrendetails.

Let us now assume that the logarithmic asset price, denotel b= (X;);>0, is modelled by
such an Itd6 semimartingale. Clearly, this is a very generadielling framework since it allows for
stochastic volatility, fairly general jumps and can acdofan the leverage effect, i.e. the usually
negative correlation between asset prices and volasigg, Black (1976), Nelson (1991), sineeand
W are not assumed to be independent.
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Our aim is now to focus on theolatility of the logarithmic asset pricX¥ given by (1). A quantity
which is closely related to the volatility of the logaritherasset price, is thguadratic variationof X,
which is given by

t
[X]t:/o olds+ Y (AX,)?, ©)

0<s<t

whereAX; = X, — X, denotes the jump ok at times, see Protter (2004) for more details. We
see that the quadratic variation contains two parts: théraaous part given by the integrated squared
volatility processo and the jump part, which consists of the sum of the squareggushX. From

an economic point of view, the quadratic variation can berpreted as a measure of the accumulated
instantaneous conditional variance of the continuous lamglimp part of the price over a time interval
[0,t], wheret is usually taken to be one day.

2.2 Realised variance

The key question is: How can we estimate this accumulatdy piace variation, defined by (3), given
high frequency financial data?

Assume that we observe the procéssver an interval0, 7'] for T > 0 at timesiA,, for A,, > 0
andi = 0,...|T/A,]. Further, let0 < ¢t < T'. Note that we will always assume thai, — 0 as
n — oo. Typically we haveA,, = 1/n. So for its discretely observed increments we write
Now we define theealised varianc€RV) over the interval0, t| as the sum of the squared increments,
ie.

[t/An]
RV = > (A7X)*.
i=1

It is well-known, see e.g. Andersen, Bollerslev, Diebold Bees (2001), Barndorff-Nielsen & Shep-
hard (2002) and Protter (2004), that ttealised varianceestimates the quadratic variation of the
underlying process consistently, i.e.

RV X% [X),, asn — oo,

where the convergence is uniform on compacts in probalfiitp), see Protter (2004, p. 57). Realised
variance is now a widely used ‘volatility’ estimator, seg.dduang & Tauchen (2005) and Andersen
et al. (2007). However, in order to assess the quality ofdkignator, one has to construct confidence
intervals and, hence, one needs a central limit result fdised variance. From recent work by Jacod
(2008, Theorem 2.12 (ii)), we obtain a central limit theooy fealised variance in the presence of
jumps.

Assume that Assumption (L-2), see Appendix, holds. Then

] [t/ A , 1 [t/An] ) t )
= | X @ om ) - o= | X @ | [t ¥ ax)

i=1 0 0<s<t

(4)
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converges, ada,, — 0, finite dimensionally stably in law to a random variable whitas zero mean
and (conditional) asymptotic ‘variance’ given by

t
Vi :=2I; +2D;,  where I ::/ olds, Dy= Y (a%p_+a%p) (AXT,)?,
0
pTp<t

where(T},),>1 denote stopping times which are the enumerations of the jimgs of X..

Remark Note that stable convergence in law is a stronger conveegeoiccept than convergence in
law, see Rényi (1963) and Jacod (2008) for more detailsattiqular, it will allow us to replace the

asymptotic ‘varianceV; by a consistent estimatdf without having an impact on the validility of the
central limit theorem, see below.

Under the additional assumption thit and ¢ do not have common jumps, the above result
simplifies to

[t/An]

1 2 L, 2
S (Arx)?- / s+ Y (AX.)? | | — MN(©, V), 5)
Van \ o 0 0<s<t

finite dimensionally stably in law. In this casé), simplifies 023" ;. -, o7 (AXr,)?, since the

jump times ofX are not jump times of and, hencea%p_ = a%p for p € N such thatl;,, < ¢. Note
that M N stands fomixed normal

Remark When there are no jumps, the limit result is well-known, see &acod (1994), Jacod &
Protter (1998) and Barndorff-Nielsen & Shephard (2002).

In order to use this limit result in practice, we need a cdasisestimator for the asymptotic ‘variance’
V. .
Let us assume that" denotes such a consistent estimatoVgfthen we get

) [t/An] :
> (APX)? - /agdH > (Ax)?] | = N(0,1), (6)

VARV \ =1 0 0<s<t

where the convergence is in law.

Remark Since the central limit result (5) holdsablyin law (and not just in law), we can replatg
by a consistent estimatdf” and obtain thdeasiblecentral limit result (6) without further proof.

2.3 Realised multipower variation

We have seen that the realised variance estimates the gotdgratic variation consistently. How-
ever, it is also interesting to study the continuous part @nedjump part of the qudratic variation
separately. In order to do that, two concepts have been pedpaealised multipower variation, see
Barndorff-Nielsen & Shephard (20042006), and truncated realised variation, see Mancini {200
More recently, a combination of these two concept has also budied, see Corsi et al. (2010). Here,
we will review these concepts briefly.

The concept ofealised multipower variatiofRMPV) has been introduced by Barndorff-Nielsen
& Shephard (2004, 2006) as a consistent estimator of the continuous parteofitiadratic variation,

5
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which we denote byX|§ = ft o2ds. Subsequently, it has also been studied by Woerner (208&)dJ
(2006).

In the following, we will denote by:, = E (|U|*) = n~1/22%/21 (£EL), for U ~ N(0,1) and
x > 0 thexth absolute moment of a standard normally distributed ramdariable. Further, lef € N

and letr = (rq,...,77) denote a multi-index wheng > 0 fori =1,...,I. We write
r| = T ry. = max 7; r- = min 7; = .
I Z v R R A i€ty Hr HM”

We define the realised multipower variation (RMPV) by

[t/An] T
RMPV(r)p = A M2 N [T AR Xx]7 7)

=1 j=1

From Jacod (2006), we know that under assumption (H), seergyp, and ifr,. < 2, then
t
RMPV (r)! L p, / olflds,  asA, — 0. (8)
0
The corresponding central limit result only holds undeictr conditions (mainly on the jump part of

X), see Jacod (2006). Under assumption (A), see Appendixchatasically says that the jump part
of X is of finite variation and the volatility processnever vanishes, then for. < 1:

1 n ! r| ' 2|r| >
N (RMPV(r)t —,ur/o ogh ds) — MN <O,A(r)/0 olds |, 9)

where the convergence is stably in law and

I-1 4

H,“2r (2 - 1) H,“r +2 Z H Hor; H Hor; H Horj+rj g (10)

=1 j=1 j=I—i+1 j=1

Remark Note that, in the presence of jumps, the above central limeiotem does not hold for the
realised bipower variation, whee= 2 andr; = ro = 1. See Vetter (2010) for a detailed treatment
of that case.

The choicegr| = 2 and|r| = 4 are of particular interest in financial econometrics, sitiesy
lead to consistent estimators of integrated variance ategjiated quarticity, respectively. In many
applications, we are interested in the case where ¢/I for c € Nand: = 1,...,1. In this case,
A(r) simplifies to

-1
A((C/[’ T 70/1)) = :uéc/l - (2I - 1):“2/[ +2 Z :uc/llugc/[
=1

If ¢ = 2,1 = 2, we obtain realised bipower variation and foe 2, I = 3 realised tripower variation.
More generally, for estimating the integrate¢th power ofo, we could use any multipower variation
(satisfying the assumptions above) such that |r|/I. However, from the formulae above we see
that the efficiency of multipower variation decreaseg as oo, see also Table 1 for some examples.

The main intuition behind the concept of realised multippwariation lies in the fact that the
probability of having several jumps in neighbouring intdsvis very low, hence the effect of jumps is
averaged out compared to realised variance, say.

6
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ol | He/1 pet =g pir 2A(r)
c=2T=2|2/m~0797 7/2~1570 in?+7m—3~2.608
c=21=3 0.802 1.935 3.061
c=4,1=3 0.830 1.743 13.649
c=4,1=4 0.797 2.467 14.916

Table 1: Scaling and efficiency parameters for the realisalipower variation. Here we choose
r=(r,...,77), wherer; = c¢/I,forc,I € N,i=1,...,I. Thenlim;_ ., p; 2A(r) = n2c*/8.

Remark In order to improve the finite sample performance of realis@ttipower, in particular when
itis compared to realised variance, one often multipliesrdalised multipower variation by the factor
%, which converges to 1 as — oo. This factor makes up for the fact that realised variance
consists of ¢/A,, | terms in the sum, whereas RMPV only consist$giA,, | — I + 1 terms.

Another adjusted version of RMPV, which one can often find siegygered versions, see e.g.
Huang & Tauchen (2005), which make RMPV robust towards sgmpest of market microstructure
effects.

2.4 Truncated realised variance

Besides the concept of realised multipower variation tli®the concept of truncated RV or RMVP.
The idea of truncating RV to only use ‘small’ increments ahdnce, get rid of jumps has been
introduced by Mancini (2001), see also Mancini (2009), aasl $ubsequently been studied in a more
general framework by Jacod (2008). The main results areJaead (2008, Theorem 2.4 (iii) and
Theorem 2.10), that the truncated realised variance (TRYihed by

[t/An]

TRV (w, )i = Y (AFX)*Tjarx|<ans)
i=1

for « > 0 andw € (0,1/2) is a consistent estimator 6X|¢, provided assumption (H), see Appendix,
holds. Further, under the stronger assumption (B) (on theitgdndex of the jumps inX), we have
the following central limit theorem:

1 t t
TRV (w,a)} —/ agds> — MN (o,z/ aglds> , asA, —0.
VA, ( (0ra); 0 0

Remark When we compare RMPY) with |r| = 2 and TRV, we observe that both classes of es-
timators are consistent and asymptotically unbiased astirs for[X|¢. The advantage of the TRV
estimator is that it is more efficient then RMRY.,( However, the nice feature of the RMRY(es-
timator lies in the fact that it does not require to chooserasiold, which can be complicated in
practice.

2.5 Truncated/threshold realised multipower variation

Recently, the two concepts of multipower variation and ¢ation have been combined in order to get
an estimator which achieves even better finite sample piiepesee Corsi et al. (2010). Truncated
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realised multipower variation (TRMPV) is defined by

[t/An] 1
— Al-Irl/2 " i
TRMPV(I’,O[,LU)? - An " Z; I_Il ‘Azn-l-j—lX‘ ’ H{‘A?+j71X‘SQjA7L]}’ (11)
1= =
where we use the notation as in the RMPV case and, additpnall= («,...,a7) andw =
(wi,...,wr), where alla; > 0 andw; € (0,1/2) fori = 1,...,I. Regarding the consistency,

we get the same result as in (8), where RMPV is replaced by TRMRder the same assumptions as
above, we also obtain a central limit theorem of the form{ere RMPV is replaced by TRMPV. In
addition, the central limit theorem also holds for the cémsgtt, = 1 and, hence, includes truncated
realised bipower variation.

2.6 Difference of RV and RMPV

So far, we have seen that RV can be used for making inferent& joand RMPV, TRV and TRMPV

can be used for inference dX¢]. In order to make inference on the jump part of the quadratic

variation, we can use the difference of RV and RMPV, whichlieen studied in Veraart (2010).
Under assumption (C), see Appendix, we have that fer 2/1

1 n — n
T (th - ,uZ/IIRMPV(r)t> . MN (0,01, +2D,),  asA, — 0,
wheref; = ,uz_/zfA(@/I, ,2/T)) —2.

2.7 Final remarks regarding the asymptotic theory

It should be noted that the asymptotic theory for the redliseasures reviewed above has been de-
rived under the assumption that there is always a Browniampcment present, i.e. the price process
does not solely consist of a pure jump component. For purg jpmcesses, the asymptotic the-
ory is much less developed. However, for some subclassearefjpmp processes there are some
asymptotic results for realised measures, see e.g. Ja80d)(2Zlodorov & Tauchen (2010) for some
first investigations along those lines. However, the assiamphat a Brownian component is always
present does not seem to be that unrealistic in the lightagniefindings by Cont & Mancini (2007)
and Ait-Sahalia & Jacod (2010).

3 Consistent estimators of the asymptotic variance of cented realised
variation measures

In order to use the central limit results reviewed above t&eriaference oriX], [X¢] or on[X 1],
we need a consistent estimators for the conditional asyingt@riances’. In order to do that, we
proceed in two steps: We review the well-known estimatorghe continuous part, i.e. fak, and
then we construct a new estimator for the jump @2yt
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3.1 Estimating the continuous part

From the previous section, we know that we can use RMPV, apdiiicular realised tripower varia-
tion with r; = 4/3, for estimatingl, i.e. we define

[t/An]—2
I{ = u s RMPV((4/3,4/3,4/3)) = s A0 Y |AFXYP AL X[VP AT L X |12
1=1

Then ft" is a consistent and unbiased estimator of the integratedigjtiaeven in the presence of
jumps in the price process, in particul&f XBr = fot otds, asn — oo. Other choices of RMPV})
with |r| = 4 would be possible, too, but the choice above is the mostefiicne from the RMP\f{
estimators which are robust towards jumps and are of thertyped/I.

3.2 Estimating the jump part

Next, we propose a new estimator for the jump procBss= Zp:Tpgt a%p_ + a%p) (AXTP)Q.
which is based on the truncation concept. In particular, sesallocalised version of TRV for estimat-
ing the spot volatilityc? and we use the truncation concept again, this time usingithetrements
only, for approximating the jumps dp. Altogether, we get the following result.

Proposition 3.1 Let assumption (G1), see Appendix, be satisfied(ALgt,en € N such thatk,, —
oo andk,A,, — 0 asn — oo. Further, let

Lna(i) ={j eN:j#i:1<j < [t/An],|i = j| < Ky}
Fora > 0,w € (0,1), we define

[t/An]

A(1),n A(1),n 1 n n 2
D™ = DV (o w) = A Y (A Ljarxisangy D (A7X) Ijanxi<ang)-
=1 J€In, (1)
ThenD)"™ L D, asn — .
Proof The proof is given in the appendix. O

An alternative estimator ab; has recently been proposed in Veraart (2010, Theorem 2)eftUnd
assumption (D). Further, we define an index K¢, ) by

L) ={j e N\ {i = 1,i,i =1} : 1 < j < [t/An], i — jI < k)
Then,

[t/An]

—2
DA = max ( Do ANXP R 3 |ARX] AT X -2 ’0) (12)
i=1 " " el (ni)

is also a consistent estimator bf.
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3.3 Putting it together

Recall that, for inference on the realised variance, we neestimatel; = 21; + 2D,. Hence, we
choose the following two estimators:

‘Z(l),n = ‘Z(l)7n(a’ w) — 2[;” —|— 2ﬁ£1)’n(a7w)7
‘2(2),71 _ 2[”tn + 2ﬁt(2),n

3.4 Relevant quantities for the simulation study

After we have reviewed the asymptotic theory for (truncated and (truncated) RMPV in the pres-
ence of jumps, we study the finite sample properties of thesmators. In order to do that, we define
the quantities of interest, which are asymptotically (urtle appropriate assumptions) standard nor-
mally distributed.

Now we can combine the previous results and obtain a feas#i&al limit theory for realised
variance in the presence of jumps, see (Veraart 2010, @oycBD

Lett = 1andA, = 1/n and assume that, = 0. Then[X], = [ o2ds + Yoz, <1 (AX,)%.
Let

n

TO (k) i= T (ky, , ) = /7 (Z (A7X)? — [X]1> (‘71(1)’”(0"“’0_1/2’

=1 (13)

T (k) = v (Zn: (AT X)? — [X]1> (‘71(2),n>—1/2.

i=1

By applying the delta method for stable convergence, sete@éfal. (2006), to the logarithmic
transform of the realised variance, we deduce that

S ~ (D ~1/2 .
- f(log (Z (A7) ) —log([Xh)> (A e) @m0t
T (k) = Vi <1og (Z (Am?) ~log ([Xh)> (7o) @,

are asymptotically standard normally distributed.

In the following simulation study, we will study the finitersgle performance of these statistics.
Furthermore, we can now construct asymptotic confidenesvals for the quadratic variation of the
log—price process. The corresponding upper and lower acamt&lbounds are hence given by

n n

n 1o @D)n n 15 2)n
SAIX)? g\ T @w),  and S (ATX)? £ g gy/n DO,
i=1 1=1

respectively, wherel_% corresponds to the— 5 quantile of a standard normally distributed random
variable. Analogously as above, we construct statistiseth@n suitably centered and scaled RMPV
and TRMPV, see below for more details.

10
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4 Simulation study

After we have reviewed the feasible central limit theoryrialised variation measures, we study their
finite sample behaviour by carrying out several Monte Caxjpeeiments. In particular, we simulate
data from seven different stochastic volatility models ¥arious different jump specifications, see
Section 4.2 for more details. Then we compute 20 differeatistics consisting of suitably centered
and scaled realised measures. More precisely, we compaiterihquantities defined in Section 4.3
and the corresponding log—transformed quantities (usiegléelta method for stable convergence).

4.1 Research questions addressed in the simulation study

The simulation is designed such that it addresses the foltpresearch questions regarding the finite
sample performance of realised variance:

e The estimatorlA)t of the jump part of the asymptotic ‘variance’ of centered R¥kes use of
spot volatility estimators. Here we use locally averagedised bipower variation and truncated
realised variance. Which estimator is more reliable? Hoall skhe choose the local window
k, (which has to satisfys,, — oo andk,A, — 0 asn — oo). We compare the choice of
kn = |50A, /4| as suggested by Ait-Sahalia & Jacod (2908ith the choicek,, = | A, /2]
which is more in line with Lee & Mykland (2008) who suggestedchoose a relatively small
local window so that the computational intensity does naobge too high. Note that we use
A, =1/nforn € {39,78,...,23400}, hence| A, /% | < [50A, 4.

e Which estimator foiD; is the better one? The one derived in Veraart (2010) or thpuesented
in this paper?

e How good is the finite sample performance of realised vagangeneral?

e Does the finite sample performance change when the actexrgt bf the jump process and/or
the jump size increase? In the presence of common jumps iprite and the volatility, cen-
tered RV is not asymptotically normally distributed. Howedahis statistic behave in such a
framework?

e How do the log—-transformed quantities perform comparetiéaaw statistics?

Regarding realised multipower variation and truncatedised measures, we aim to shed some
light on the following questions:

e How robust are RMPV and TRMV towards jumps of finite and inérattivity in finite samples?

e Which jump robust measure performs best in the presencengga

4.2 Simulation design

In order to study the impact of jumps on the performance dfsead variation measure, we simulate
from a variety of stochastic volatility models with and vatkt jumps.

Throughout the simulation study, we choose one day as bagiofuime for our simulation. We
then simulate the diffusion part based on an Euler schemerenve choose the increment of one
second per tick on the Euler clock, where we have 23,400 skscarday (which corresponds to the
equity market being open for 6.5 hours a day).

11
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Diffusion (D): The Heston stochastic volatility model serves as a jump-Hienchmark model where
the choice of parameters is taken from the empirical resulfsit-Sahalia & Kimmel (2007).
lLe.dX; = 01 dWy, do} = k(B — o?)dt + yodBy, E(dW;dB;) = pdt, whereg!/?2 = 0.4,y =
0.5,k =5, p = —0.5. See Table 3 for the results.

Jump diffusion (JD): Using the same model specification for the continuous part @3), we now
add compound Poisson jumps with normally distributed jumps; = o;dW; + dZZN:tl Ji,
whereN, is a Poisson process with i.i.d. normally distributed jurizes such thazf.itl Ji| Ny ~
N(0,0%). Infact, we work with a stratified compound Poisson proceséry 1, 5 or 10 jumps
per day which are uniformly distributed over the day. Alsdyem we have more jumps, we
decrease their size, so that the contribution of the jumgawmae’ stays the same throughout
the simulation. In order to achieve that, we simulate thepsizes conditional oV, = ¢

from .J; ~ N(0, 7 ). Note that, working with the stationary’, we have thaE (fol agds) =

E(0f) = B, E(>i,J?) = cVar(J1) = 03. We chooser? such that = Bi% i.e. the

percentage of the mean of the jump part of the quadraticti@miaompared to the mean of the
total variation equals 15% or 30%. Note that empirical sadiometimes find a much lower
jump contribution, see e.g. Huang & Tauchen (2005) who foumdo 7%. See Tables 4, 5, 6

for the results.

Infinite activity jumps in the price (IAP): Now letd X; = o:dW; 4+ dL;, whereL is a symmetrical
temperedv—stable Lévy process for < o« < 1 andX > 0. l.e. the Lévy density ol is given
by v(dx) = |z|~(@+*Ve= dz. Clearly,Var(L;) = 2I'(2 — «)/A\?~°. As before, we want the
percentage of the jump part of the variance tpbe 15%, 30%, whereVar(L1) = p/(1—p).
Hence we choosa = (ﬂ

1/(a—2) . :
2(1_p)) ¢ for = 0.1,0.5,0.9. Note that the simulation of the

tempered stable Lévy process is based on the series ref@tse given in Rosinski (2001).
See Tables 7, 8, 9 for the results.

Next, we study the case of having jumps in the volatility @

Independent finite activity jumps in volatility and price (I FAJ): Here we havelX; = o.dW; +
a1V, do? = k(8 — 02)dt + vo1dBy, + dJP, E(dW,dBy) = pdt, whereJ®) and.J® being
independent stratified compound Poisson processes (agpefith 5 and 10 jumps per day.
See e.g. Zhou (2003) and the references therein for theeagistof a process? defined as
above. The jump sizes of(!) are drawn from a double exponential distribution with equal
probability of positive and negative jumps and the jump siakthe independent proceg$?)
are exponentially distributed. Again, the parameters hosen such that the jump percentage
of the total variation is set to 15%. See Tables 10, 11 for ¢iselts.

Common finite activity jumps in volatility and price (CFAJ): The simulation set up is similar to
IFAJ, but in order to make the jump processE®), J(2) dependent, we work with the same
jump times and, in particular, we sgi)| = J(2), where we allow for 5 or 10 jumps a day.
See Tables 12, 13 for the results.

BNS model with independent jumps in price and volatility (BNSIJ): Next, we focus on the Barndorff-
Nielsen & Shephard (2001, 2002) model, where the volatpitycess is purely jump—driven,
in particular: dX; = o;dW; + dJ;, do? = —\o2dt + dLy;, whereL is an inverse Gaussian
(IG(u,1)) subordinator with parameteps = 1, = 0.16,1 = p2. J is a stratified Poisson

12



4  SIMULATION STUDY

process, independent af with normally distributed jumps (as in JD), with 0, 1, 5, 10rjps a
day. Again the percentage of the jump variation is set to 15é& Tables 14, 15, 16, 17 for the
results.

BNS model with common jumps in price and volatility (BNSCJ): Finally, we simulate the classi-
cal BNS model with common IG jumps, i.6X; = o dW; + pdLy;, do? = —\o?dt + dLy,
with the parameter choices as in BNSIJ and, furthes {—0.2,—0.4}. See Tables 18, 19
and Figure 5 for the results. Note that the paramgetierthe BNS model is not a correlation
parameter as such (since it is not restricted to be in [-1bLf it plays its role, see e.g. Veraart
& Veraart (2010) for more details.

4.3 Quantities of interest in the simulation study

According to the asymptotic theory, properly centered aradesl (truncated) realised (multi-) power
variation converge —under the assumptions stated abovstandard normally distributed random
variables. In order to check their finite sample performamezcompute these suitably centered and
normalised quantities, where in the tables the column wigrhieadindR.V.Mspecifies, which realised
variation measure is studied. Throughout the simulatiodystwe use the following abbreviations for
the realised variance measures:

RV: Centered realised variance, scalediily" (v, w), i.e. T (ky, o, w);

RV2: Centered realised variance, scale@y+2 Zi(&(z._lmn +8(2i_1)An_)(A?X)H{‘A?XDQA%},

(2

where the spot volatility is estimated by locally averagealised bipower variation;

pRV: Centered realised variance, scalediy + 2max{zi(A§‘X)2(3(2i_l)An + 3(22,_1)An_) _

Qf?, 0}, where the spot volatility is estimated by locally averagreecated realised variance;

PRV2: Centered realised variance, scaledi§y"”, i.e. T (k).

cRV: Centered realised variance, scaled by the estimator ofdh#ncous part of the asymptotic
‘variance’ only, i.e. by2I7.

(Truncated) realised multipower variations:

TRV: Centered and scaled truncated realised variance;

TR2V: Centered and scaled truncated realised bipower variation;
R2V: Centered and scaled realised bipower variation;

R3V: Centered and scaled realised tripower variation;

R4V: Centered and scaled realised quadpower variation;

Note that the threshold parameters are chosen tobe, w = 0.47 following the simulation study in
Ait-Sahalia & Jacod (200$) and the asymptotic ‘variance’ is estimatedddy for suitable constants
¢ > 0 as specified above.

13



4  SIMULATION STUDY

4.4 Results from the simulation study

In order to assess the finite sample performance of the wdentered and standardised realised
measures in the simulation studies, we have computed tlased(which should be 0), their standard
deviations (which should be 1) and the empirical rejectites for the levels 10% and 5%, which are
given in the tables in the Appendix. Furthermore, we havdistuquantile—quantile plots and density
plots of the distributions of the various realised measumdsch are not presented here due to space
constraints.

4.4.1 Preceding results regarding the spot volatility esthation

Before we evaluate the results from the simulation studyHerarious realised measures, we briefly
focus on spot volatility estimation first since spot volatiestimators are used in the estimator of the
jump part of the asymptotic ‘variance’ of the realised vace.

The are various methods for estimating the squared spdilitgja.e. o2, see e.g. Ait-Sahalia &
Jacod (2008), Bandi & Reno (2010), Foster & Nelson (1996), Kristens21(), Lee & Mykland
(2008).

~ M=390

[0} 1600 2600 3600 4600 (0} ZéOO 5600 7é00 lObOO
Figure 1. Comparison of various spot volatility estimates the square—root diffusion model for

different numbers of intra—daily observatiofs.

Here we focus on two approaches: We use locally averagecatenh realised variance and locally
averaged realised bipower variation as described aboveowpute both estimators for two different

choices of the local window size,. We work withA,, = 1/n andk,, € {LA;WJ, L50A;1/4J}.

Note that both choices satisky, — oo, k,A,, — 0. Clearly, LA;WJ < L50A;1/4J for our choices

of A,,. Note that Ait-Sahalia & Jacod (2006Rused the bigger window size whereas Lee & Mykland
(2008) suggested to use a relatively small window to enswatethe computing load is not too high.
Throughout the various scenarios in the simulation study,always obtained significantly better
results for the smaller window,, = LA;WJ, using the root mean square error (RMSE) to compare
the various spot estimators. The bigger window size resuttever—smoothing, which we can clearly
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Figure 2: Comparison of various spot volatility estimatesthe BNS model, where? is a non—
Gaussian Ornstein Uhlenbeck process with inverse Gaussiavations for different numbers of
intra—daily observationg/.

see in Figure 1 and Figure 2. Figure 1 presents a plot of thalateds? following a square—root
diffusion process (represented by the thick solid line).e Tashed and dotted lines represent the
locally averaged TRV and R2V, where the smoother lines caore the bigger window size. Figure
2 compares the various spot volatility estimators whérs sampled from a non-Gaussian Ornstein
Uhlenbeck process with inverse Gaussian innovations. thatéd/ denotes the number of intra—daily
observations. I.e. the numbet$ = 78,390, 4680, 11700 correspond to 5 minute, 1 minute, 5 second
and 2 second observations in an equity market which is ogehdirs a day. We clearly observe that
the spot volatility estimates are rather noisy measurefiefunderlying volatility. With increasing
frequency of the data, however, their performance improves

Note that we used the simulation design from Ait-Sahaliaagodl (2009) for the Brownian—
driven stochastic volatility process and, hence, we useit threshold choice for computing TRV.
When comparing the performance of the locally averaged TRW R2V for estimating the spot
volatility based on the RMSE, we obtained very similar resthroughout the simulation study. But
we can nevertheless formulate some tendencies:

e TRV tends to perform better than R2V in the absence of jumpisarprice;

e In the presence of (smaller) jumps in the price, R2V tendstfopm better for lower frequen-
cies (up to M=390), whereas TRV tends to perform better fghér frequencies;

e In the BNS jump—driven stochastic volatility model, R2V dsrto perform better.
e In the presence of rathéig jumps in the price, TRV tends to perform better.

Clearly, the performance of TRV can be improved by using a diven, dynamic threshold, see
e.g. Ait-Sahalia & Jacod (2010), Corsi et al. (2010), Man& Gobbi (2010). However, given that
the differences between the two estimators were not thatbdyif they were, than R2V was in
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4  SIMULATION STUDY

most cases the better estimator, from a practical pointef,vR2V seems to be the winner in that
direct comparison given that it does not require to choos$eeshold and leads nevertheless to fairly
reasonable estimates. Furthermore, we conclude that theecbf the window sizé:,, seems to be
more important than the particular choice of the realiseésuee. In our simulation experiment,
kn = | An'/?| did a fairly good job for the various models studied here.

4.4.2 Results for realised variance

How good is the finite sample performance of realised vadandhe presence of jumps? In order
to answer that question we have computed the differenceati$eel variance and the daily quadratic
variation of the simulated log—price process and have daakuitably by various estimators for the
asymptotic ‘variance’ (and divided it by’A,,), which asymptotically should be standard normally
distributed. The various statistics are denoted by RV, RR/, pRV2 and cRV as defined above and
the Tables in the Appendix present the bias, the standalidta®vand the empirical rejection rate at
10% and 5% level for various numbeb$ = |1/A,, | of intra—daily observations.

Our general findings are as follows: We obtain good finite damgsults (in terms of the bias
being close to 0, the standard deviation being close to 1laérmpirical rejection rates being close
to the theoretical level of 10% and 5% respectively, fdrbetween 78 and 195 and higher, corre-
sponding to 2-5 min and more frequent returns in an equitykatarln general, the results for the
log—transformed realised variance were better througtimisimulation study, but we do not report
them here and rather focus on the slightly worse resultshforaw realised variance since this quan-
tity is more widely used in practice. Note in particular, ttkfze finite sample bias only seems to go
away when one studies data at higher frequencies than 1 endath in a 6.5 hour market, whereas
the bias is noticeably smaller for log—transformed redlig@riances.

Note that throughout the simulation study, we have chosemtbdel parameters such that the
expected integrated variance stays the same. Furthegrtigegart of the quadratic variation compared
to the total variation amounts to 15%. We have rerun the sitimuis also for the percentage of the
jump part being 30%, but got very similar results as befonex. i@ain findings are as follows:

e The finite sample performance becomes good from 5 minute ataterds to more frequent
data;

e The finite sample bias goes to zero for data sampled at 1 minigevals and more frequent
data;

e The activity of the jumps in the price process does not seehate a big impact on the finite
sample performance of realised variance, see the resatts fiodel IAP, i.e. Tables 7, 8, 9.
In fact, it seems like the finite sample performance gets evbit better for jumps of higher
activity.

e In the presence of jumps, realised variance has to be scgledebof the new estimators de-
rived in this paper and in Veraart (2010) which account fonfs, otherwise the finite sample
performance is not good and gets clearly worse when the drexyuof the data increases, see
the performance of the statistics cRV in the Tables for maits, where the centered re-
alised variance is only standardised by an estimator of dméircuous part of the asymptotic
‘variance’.

e When comparing the performance of the various standardisglised variances, we observe
that pRV tends to perform best for low frequencies (up to M®3®llowed closely by pRV2.
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However, for higher frequencies, using the new estim&op" leads to better finite sample
results, see RV and RV2 in the Tables in the Appendix.

e In the presence of common jumps of the volatility and thegopoocess (model BNSCJ), we
still observe a good finite sample performance although sgenatotic theory does not hold in
that situation anymore. We have carried out that experirfa@rdifferent choices op, which
scales the jumps in the volatility to a different level foetprice jumps. Note that for = —0.2,
the jump part of the quadratic variation amounts to appraxaty 4.7% of the total quadratic
variation, whereag = —0.4 corresponds to 16.7% with our choice of parameters, seeJabl
18, 19 and Figure 5.

Note that as before we expect that the performance of thehbl# based estimators for the jump
part of the asymptotic ‘variance’ can be improved when ch@pa better threshold as discussed in
the previous section. However, from an applied point of yigus encouraging to see that pRV has
such a good finite sample performance, where the jump pahnkeaisymptotic ‘variance’ is estimated
based on the difference of generalised realised variarstesatised multipower variation and the spot
volatility is estimated based on the threshold conceptrevagather crude threshold has been used.

4.4.3 Results for (truncated ) realised (multi-) power varation

Besides the question of drawing inference on the entire ratiadvariation, it is also of interest to
study the continuous and the jump part of the quadratic Wanseparately. We have computed
various jump-robust realised measures denoted by TRV, TR2V, R3V, R4V as defined above and
have analysed their finite sample performance in the samdaion studies as realised variance.

Remark Note that we have included realised bipower variation, R@W¥he simulation experiment
even in the presence of jumps although its asymptotic Higidn is not Gaussian in that case, see
Vetter (2010) for the detailed results. However, truncatalised bipower variation, TR2V, has the
corresponding Gaussian limit and, hence, we keep the R2\tsde see more clearly the impact of
the truncation. So it should be stressed that we cannot eipeet the expected results of standard
deviation being equal to 1 and empirical rejection rategadpeiose to 10% and 5% for R2V as soon
as there are jumps in the price present. However, we woulasgiect to find a bias tending to zero
asA,, — 0. Further, note that the multipower results only hold thdcadly as long as assumption
(A) is satisfied.

The main findings for the jump-robust realised measuressafellaws. In the absence of jumps in
the price, the performance of the various jump-robust nreass very similar and generally good,
but we observe that the finite sample bias at low frequeneies to be fairly big for R3V and R4V
see e.g. Table 3 and 14.

In the presence of jumps in the price process, the general we observe is as follows:

e If there are rare jumps, the jump robust measures perfomty faell.

e However, if there are (finitely) many small jumps, our estiloraresults clearly show a (posi-
tive) finite sample estimation bias for all jump robust measu Note here that the sign of the
bias for the truncation based methods could potentiallyngbawith a different choice of the
threshold.
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e If the price process consists of a Brownian semimartingatk a highly active jump process
(e.g. a tempered stable Lévy process), the jump-robussumes show signs of failure. In
particular, the more active the jump process gets, the wesdts we obtain, see Tables 7, 8,
9.

e Altogether we observe that, in the presence of many jump¥, tBdds to perform best out of
the various jump-robust measures studied here at lowardrades (up to 1 minute data).

¢ In the BNS modelling framework (BNSCJ), we also obtain reasbe finite sample results for
R2V, which is somewhat surprising given that the asymptibtéory does not hold here. That
might be due to the fact that the jump activity of the inversei§sian subordinator is still rather
low.

4.5 Concluding remarks regarding the simulation study

In general, we have observed that the feasible asymptaaryhfor realised variance seems to hold
also in finite samples when data at a frequency of 2-5 minutéggber are studied. The differences
between the various estimators of the asymptotic ‘variaoiceealised variance are not that big, but
generally, we obtained the best results for pRV at lowerdesgies.

When using jump-robust realised measures using the tioncatinciple, the multipower con-
cept or a combination of both, we found that they performeguitll in the presence of rare jumps.
However, as soon as there are many small jumps and in partiécuthere is a very active jump pro-
cess present, then the finite sample performance of the juobpst measures is not good any longer.
This is in line with the findings of Barndorff-Nielsen et aR005) and Veraart (2010). In order to
get somewhat reliable measures in that situation, highgeramultipower variations such as R4V
(possibly combined with a dynamically chosen thresholénséo be the best choice. Further, using
log—transformed versions of realised variance rather thamaw realised variance also improves the
finite sample performance.

While inference on the entire quadratic variation of the-mgce process based on realised vari-
ance using the new estimator of the asymptotic ‘varianc&kVfpresented in this paper and the one
presented in Veraart (2010) turns out to work well even irtdisemples and also in the presence of
very active jump processes, the finite sample results favidgainference on the continuous part or
the jump part only are generally not that good when many juanpgpresent.

5 Empirical study of SPY data

After we have checked the finite sample performance of varfeasible estimators of the quadratic
variation of an Itd semimartingale, we use our findings nowdrry out an empirical study of some
high frequency equity data.

5.1 Data description

We use data from the Standard & Poor’s Depository ReceipYS#hich is a very liquid, exchange—
traded fund which holds all of the S&P 500 Index stocks. Thepga we work with covers a period
from 3 August 1998 to 31 July 2008, i.e. 10 years of data. Wadam mid—quote data constructed
based on the quote data taken from the TAQ database throegWhiarton Research Data Services
(WRDS) system. The SPY data were recorded at the AMEX fron84882 and at the PACIF from
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Figure 3: SPY data from 3 August 1998 to 31 July 2008: (a) (Hdatuily log—mid—prices; (b) daily
log—mid—price returns; (c) time series of daily realisedareces based on five minute returns.

2003-2008. The high frequency data have been kindly suppliehe author by Asger Lunde and
have been cleaned using the methods described in Barridietffen et al. (2008. We have sampled
the data at five minute intervals (using the previous tickimog} and have obtained= 2515 days of
78 observations each, i.e. 196,170 data points. A plot otléened SPY log—price data, the returns
and the time series of the realised variances is given inr€igu

The aim of this study is to analyse the impact of jumps on eriee for realised variance. In order
to do that, we identify days which have a significant jump dbaotion and then check how much
wider the confidence intervals for realised variance becomigose days.

5.2 Testing for jumps and inference on quadratic variation n the presence of jumps

As already mentioned above, there is a wide literature dmgefor jumps using high frequency data.
In our empirical study, we follow Huang & Tauchen (2005) wioaiid out in detailed Monte Carlo
studies that the ratio statistic of the Barndorff-NielsenS&ephard (2006) test using a maximum
adjustment in the denominator has the best size propertpfotlite various test statistics studied,
including the properly scaled difference of realised varz@and realised bipower (often referred to as
raw test statistic), the difference of the log—transformedised variance and realised bipower and the
ratio of the difference of realised variance and realisgaWwer divided by realised variance. When
carrying out the test, we get the following results, as reggbm Table 2.

Note that Huang & Tauchen (2005) did not find significant défeces when the test statistics
were scaled by realised tripower or realised quadpowentiani, respectively. This is basically in
line with what we find here. In our empirical study, we rejéw tiull hypothesis slightly more often
when using realised quadpower variation as the scalingrfaethich is in line with what we expect:
Since realised quadpower variation averages over morengetban realised tripower variation, we
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Table 2: Empirical results from the maximum adjusted BN ®rst.

Significance level M  Number and percentage Average cottiibwof the

of rejections jump part of the Cls
99% 39 632 (25.12%) 55.61%
78 931 (37.01%) 64.96%
130 1136 (45.16%) 58.82%
195 1328 (52.80%) 53.75%
390 1779 (70.73%) 40.52%
99.90% 39 390 (15.50%) 57.07%
78 658 (26.16%) 67.43%
130 844 (33.55%) 60.59%
195 1052 (41.82%) 54.63%
390 1520 (60.43%) 41.38%

expect it to be generally smaller in the presence of jumps;hwtesults in more rejection of the null
hypothesis given that the scaling factor appears in therdaragor of the ratio statistic.

Our test signals the presence of a significant jump contabub the total quadratic variation (at
99% significance level) on 25-70% of the days — depending oichuttata frequency we use for
computing the test statistic. In the following we will justfer to those days gamp days Further-
more, we observe that the number of rejections of the nulbthgsis increases when the number of
intra—daily observations, denoted by, increases. That is also in line with Huang & Tauchen (2005)
findings that when data at lower frequencies are considguetps tend to average out and are not
necessarily detected by the jump test anymore.

However, in general we can say that the results from the j@sipare rather surprising. Rejecting
the null hypothesis that frequently is not in line with earlempirical studies in the literature, see e.g.
Huang & Tauchen (2005). However, there are also more retedies, see e.g. Ait-Sahalia & Jacod
(2009%2) whose findings point towards the presence of a very activgpjoomponent even for highly
liquid stocks. If this is true, then we would expect to rejinet null hypothesis of no jumps very often
and ideally on (almost) all days.

After we have tested for each day in the sample whether thase ansignificant jump part in
the quadratic variation and hence, have identified those jdays, we study how the jumps affect
the size of the confidence bounds for realised variance @aetjenp days. In order to do that, we
have computed the average length of the confidence bounaisiiassthat there were no jumps (i.e.
estimating the asymptotic ‘variance’ ) and the average length of the confidence bounds which
accounts for jumps (i.e. estimating the asymptotic ‘var@rby 2/ + 2D). We find that the part of
the confidence bounds due to the presence of jumps amounpprtoxanately 40-60% of the total
length, see the last column in Table 2. Further, we obsemietiie average jump contribution to the
total length of the Cls tends to decrease with increasingbauraf intra—daily observations.

In order to get an additional visual impression on how thdidence bounds for realised variance
change in the presence of jumps, we provide a plot of the caméeel bounds for RV which account for
jumps and add the ones which ignore jumps. In Figure 4, wetidotime series of realised variances
with the corresponding 95% confidence bounds for the daysiwemaximum adjusted BNS ratio
test based on ten minute data using realised tripower fosdhkng rejects the null hypothesis at the
99.9% level, which was the case on 390 days. The crossesiadithe realised variances, the bars
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Figure 4. Here we plot the time series of realised varianoef§ the log—scale) with the corre-
sponding 95% confidence bounds for the days when the maxindjusted BNS ratio test based on
ten minute data using realised tripower for the scalingctsjéhe null hypothesis at the 99.9% level,
which was the case on 390 days.

denote the confidence bounds which account for jumps andigémgles/circles denote the confidence
bounds which ignore jumps. We see that the confidence irgewlaich account for jumps are the
wider ones, which is what we expect.

6 Conclusion

This paper has investigated how accurate the asymptotidhdigon of realised variation measures
is in finite samples when there are finite or infinite activitynps in the underlying price process. In
order to do that, we have proposed a new estimator for the janpof the asymptotic ‘variance’
of centered realised variance. Then, we have carried outailatt Monte Carlo study, where we
have compared the finite sample performance of 20 differemieced and standardised realised mea-
sures. Here we were in particular interested in the perfoomaf realised variance in the presence of
jumps. To the best of our knowledge, this is the first papeiciwvhas addressed this important ques-
tion given the strong evidence for the presence of jumps anfifal data, see e.g. Barndorff-Nielsen
& Shephard (2004, 2006), Huang & Tauchen (2005), Lee & Mykland (2008), A&h&lia & Jacod
(200%). We have studied the finite sample performance of the nestgbished asymptotic theory
for realised variance, see Jacod (2008), Veraart (2010puirsimulation experiment we have com-
pared the results, when the asymptotic ‘variance’ is eséthhased on two different spot volatility
estimators: locally averaged realised bipower variatiod lacally averaged truncated realised vari-
ance. In general, we have obtained good results in the Moatk @xperiments, where the results
for the log—transformed realised variance were alway$ilidoetter than for the realised variance.
Furthermore, both estimators for the jump part of the redligariance provide fairly similar results.
The only noticeable differences between the two spot Vitjatistimators were that truncated realised
variance seems to perform slightly better in the stochastiatility jump diffusion model, whereas
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realised bipower variation seems to be slightly better imet®which allow for jumps in the volatility
process.

Regarding the size of the local winddw;, we have obtained good results when chooging=
1/v/A,, which furthermore is not that computationally intense. cAlee have clearly seen that the
window sizek,, has a great impact on the performance of the spot volatifityrator, whereas the
particular choice of the spot volatility estimator, i.e.iathjump-robust realised quantity is used, does
not seem to matter much.

Furthermore, Monte Carlo results suggest that our featiibie theory might still work even in
the case of common jumps of the volatility and the price pseaes long as the common jump part is
rather small.

Regarding the so—called jump robust measures such aseckatisltipower variation and trun-
cated realised measures, we found that the finite samplerpeifce was not as good as expected.
While we have obtained fairly good results for rare jumpshia price, we could clearly see that the
performance of the jump robust realised measures studiedwmrsens dramatically when the jump
activity increases.

In addition to the simulation experiment, we have appliezlfdasible asymptotic theory for re-
alised variance to high frequency SPY data and have complogedonfidence intervals for realised
variance on the days which were identified as jump days u$iegrtaximum adjusted Banrdorff—
Nielsen & Shephard ratio test. We have clearly seen thatdh&dence bounds of realised variance
which account for jumps are significantly wider than the oseggested by Barndorff-Nielsen &
Shephard (2002) in the absence of jumps.

In our empirical study, we have worked with rather low fregecyedata to ensure that the data are
not affected by market microstructure noise. However, fariiresearch, it will be interesting to study
the impact of jumps on inference on the quadratic variaticthe price process if the efficient price is
contaminated by market microstructure effects and, hematedlirectly observed. In particular, ultra
high frequency data (e.g. one second returns) are typipadige to such effects and, hence, volatility
estimation and inference in such a framework is carried sirigunoise robust volatility estimators,
see e.g. Zhang et al. (2005), Hansen & Lunde (2006), Zhar@pj2®arndorff-Nielsen & Shephard
(2007), Barndorff-Nielsen et al. (2088 and Podolskij & Vetter (2009). Volatility estimators vehi
are robust to market microstructure effects have a slowerafaconvergence and do not achieve the
square root speed of convergence of realised variance atisec multipower variation. Hence, it
will be interesting to study in simulation studies and alswpéically which estimators perform better
in finite samples in the presence of jumps and market micrcisire effects.

A Technical assumptions

A.1 Assumptions onX and o

For the central limit theorems of realised variance andgsedlmultipower variation we need some
regularity assumptions and a structural assumption fowdetility process which we introduce in
the following. All the technical assumptions are taken frémecod (2008, p. 5-6) and Ait-Sahalia &
Jacod (2008, p. 187,204).

We work with a probability space denoted &y, A, (F;):>0,P) (or with a slightly enlarged ver-
sion of the original probability space). Let

qzb(:n)—{l/\’w‘T’ if 0<r < oo,
" Ig)\ oy (2), if r=0.
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We focus on It semimartingales which satisfy the following conditions.

Assumption (H): X is an Itd semimartingale as defined in (1) and (2) and thegss®sb;):>( and
(f o) Fy dm))t>0 are locally predictable. Note th#} (w, dx) is the image of the Lebesgue
measure o by the predictable map — d(w,t,z). Further, the proces@);>¢ is cadlag
adapted.

Assumption (L-s): (With s € [0,2]). X is an Itd semimartingale as defined above satisfying assump
tion (H) and the volatility process has the form

t_ t ¢ . .
o =09+ / bydu + / o dWy, + / T AWy, + #(0) * (p — )¢ + #'(0) % 1, (15)
0 0 0 - -
and

e W' is another Brownian motion on the spage A, (F;):>0, P), which is independent of
w;

e the procesﬁ;t)tzo is optional and locally bounded;

e the processed):>o, (71)i>0, (0})1>0 are adapted left—continuous with right limits#n
and locally bounded;

e the functionss,d : Q x Ry x R — R are defined such thaf,(w, dz) is the image
of the Lebesgue measure @ by the mapz — d(w,t,z); 0(w,t,x) and §(w, ¢, x)
are predictable, left—continuous with right limits én Further|§(w, t,z)| < ~(x) and
|0(w, t x)| < i (z) for all t < Ty (w) with deterministic functionsy, and4; on R with
[ ¢s 0 p(z)de < oo and [ ¢g o i (z)dx < oo and(T})x>1 is a sequence of stopping
times increasing te-oo.

Note that assumption (k} basically says that the stochastic volatility procedsas to be an Itd
semimartingale, too. Further, the parametean be regarded as an generalised Blumenthal Getoor
index, see Blumenthal & Getoor (1961), measuring the juntipigcof the jump part part ofX. See
Jacod (2008, Remark 2.1) for a wide class of processes whifgtti satisfy the above assumptions.

Assumption(H’): Assumption (H) holds ana? > 0 ands? > 0 forall ¢ a.s..

Assumption (G1): Assumptions (L-s) and (H’) hold (for somec [0, 2]) and further

1. All pathst s sup, . (“’(’t’)‘”” andt — sup,cp “““’(“f” are locally bounded, whergis

a (nonrandom) nonnegative function satisfyifjgy(z))? A 1)A(dz) <

2. All pathst — 0} (w) are left—continuous with right Iimits on the semiopen Bet(w)).
Heredj(w) = [k o d(w,t,z)\(dx), if the integral is well-defined, otherwise we set
§;(w) = oo.

Assumption (G2): Assumption (G1) holds and;|+|o¢ |+ b |+|6¢|+|51] < K,and|s(t, z)| < y(z),
|0(t, )] <~(z)and alsoy(z) < K for some constank’.

Assumption (A): Assumption (L-s) holds fos < 1, (H) is satisfied and;*~ <r_ <ry < 1.
Assumption (B): Assumption (L-s) holds ansl < 2¢=1 (hencew > 1/4 ands < 1).

Assumption (C): Assumption (L-s) holds fos < 1, (H’) is satisfied and/ € N with2 < I <
2(2 — s). Further,X ando do not have common jumps.
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B Proofs

B.1 Notation and preliminary remarks

Throughout the proofs we use the following notation:
0" = i~y AT W, 07 = |AYX|I{arx|<ans)

for « > 0 andw € (0, 1). Further, we writef?" , (-) = E(- | Fi—1)a,,) for the conditional expectation.
Furthermore, we writ& = X’ + X<, whereX¢ denotes the continuous part aid the discon-
tinuous part ofX and

t
X = X0+/ bsds + X7, XC—/ osdWs,

// (1 — v)(ds, dz) + // ) * u(ds, dz).

In the following, we will apply the following inequalitiesyhich are valid under Assumption (G2),
see e.g. Ait-Sahalia & Jacod (2@f)9Jacod (2008), Vetter (2010), whekg > 0 for ¢« € N denote
positive constants:

L(IATXC)) < KAy, PAATX') < KA ER(JATXY) < K3A,,

(16)
Fa(AFX]) < Kany?,

Note that in the following, we will denote b’ > 0 a constant which can change from line to

line throughout the proof.

Remark We will prove Proposition 3.1 under the stronger assumptie). Using a localisation
procedure, it follows from standard arguments, see Jada@BjZor details, that our result also holds
under the weaker assumption (G1).

B.2 Proof

Proof of Proposition 3.1 The proof of the Proposition is a direct consequence of teeipus remark
and the following two lemmas. O

Lemma B.1 Under Assumption (G2) and if

[t/An]
i 1 . L
Dl =A > (AIX)Igarxean Y, (017 = Dy, (17)
=1 G€ILn.+()
thenﬁt" E) D;, where
R | A 2 2
= §€Ln.4(d)
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Proof The proof goes along the lines of Ait-Sahalia & Jacod (20@®mma 1). In particular, we
can immediately deduce, see Ait-Sahalia & Jacod (B08Quation (67)), that

1 n n T

A_nE (](67)* = (67)? | Fi—nya,) < Ta, (18)
for a sequencél’,, ) ey satisfyinglim, ... I', = 0. Note that the differenc®” — D;" consists of a
sum with strictly less tha@k, |t/A,, | terms, where each term is smaller than

L arx)r I(67)2 — (67)2|,  for somei # j

YN {lapX[>anw} [\ R t7 7
From using the inequalities (16), we get tﬁ#t_l((A?X)z]IﬂAgxpaA%}) < KA,,. Now, we lise two
successive conditional expectations and (18) to deduteaich such term is smaller th%gKPnAn.

So, altogether, we gét ‘f)? — ﬁ;" < KtI',, and, hence, the result follows. O

Lemma B.2 Under Assumption (G2), equation (17) holds.

Proof In order to prove this result, we adapt the proof given in®éihalia & Jacod (2008 pp. 216—
218) so that it is suitable for the different result, we prbeee.

We introduce a continuous function ¢@, 1] for any p € (0,1) which is defined by, (z) =
min(1, (2 — |z|/p)™), and we define two (increasing) processes by

[t/An]
n 1 n n n n n'n n
Y(p)f = 7—— E ¢p(AiX)(Az' X)2H{‘A?X|>CVA%} E (5j )27 Z(p)f = D" =Y (p)i.
knA
=1 JE€In,(4)

It is sufficient to prove that we have the following three cengence results for a suitable process
Z(p):

liH(l) limsup E(Y (p)}') = 0, (19)

p— n
pe(0,1),n— o= Z(p)f = Z(p), (20)
p— 0= Z(p); = D. (21)

Now we prove (19). Note that (p)y is a sum of strictly less tha®k,, |t/A,, | terms, where each
term is given by

1

m%(A?X)(A?X)q{mgxbmg}@?)z’ for i # j.

From (16), we get thaE} ((67)%) < KA.
Next, we study the termp(A?X)(A?X)%HA?XD&A%}. Note that an application of the Markov

inequality and the inequalities in (16) leadsBp | ((A7X)*Iap xjsang) ) < KAL*7. Now

we take two successive conditional expectations an@®ge(p);') < K tAL?7. So we can deduce
(19).
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Next, we define the proces&(p) by
Z(p)e= Y (AXp,)*(1 = Up(AX7,() <"%q(p>— + f’%q(m) ’

q:Ty(p)<t

where, forg = 1,2, ..., T,(p) denote the (successive) jump timesafo, t] x {z : y(z) > p/2}).
Note that this is they from Assumption (G1)! From the same arguments as in AitaBal& Jacod
(200%), we now obtain (21). Note, in particular, thiat- 1), converges to the to the indicator function
onR\ {0}.

Finally, we prove (20). Lep € (0,1) be fixed. For ease of notation, we writg = 7,(p). Note
that

[t/An]
Z(p)¢ = ko A Z —p AnX))(A?X)zﬂ{\A?XbaA%} Z (5;'1)2-
JE€EIn,t(i)

From the definition of the Poisson procgsswe see immediately that X| < p/2if s & {T},,q =
1,2,... }.

So, for eacht > 0 and for eachv and forn large enough, we get: there is no jump tiffigin
(0, knAy) and in(t — (ky, + 1)Ap, t]. Further, in the interval(i — 1)A,,,iA,] (for iA,, < t)thereis
at most onél},. If there is no jump time in the interval, thef),(A” X) = 1. So, as soon as s large
enough, we obtain that

Z(p)} = ) e,

q:k7LAn<Tq St_(kn"‘l)An
wherei(n, ) = inf(i : iy > Tp), I'(n.q) = {j : j #i(n,q).1j — i(n.q)| < kn} and

n 1 n n
Cq = m( z(n,q)X) H{‘Az(n )X‘>QA‘*’ ( 1/}/)( i(n,q) )) Z (63 )2'
e JEI' (n,q)

We have to show that for any

n P

G5 (AKX (1 = 6(AXT)) (o, + 0%, ) -
From Ait-Sahalia & Jacod (2009, we know that
1 n 1 o P
—— > @)= D IR i
JeI (n.q) JeI! (n,q)

whereI’ (n,q) andI’ (n,q) are the subsets df (n,q) containing allj smaller and bigger, respec-
tively, thani(n, ¢). Next, from Ait-Sahalia & Jacod (208pwe also know that

(Al X)P (1 = Yp(Af, X)) = (AXT,)P(1 — ¥ (AXT,)),

pointwise forp > 3. A straightforward application of the Dubins—Schwarz tie@o and Lévy’s
modulus of continuity leads to

(A?(n,q)X)zﬂ{\A'i”(n’q)XbaAw ( wp( i(n,q) X)) - (AXTq)2(1 - wp(AXTq))a

for > 0,0 < w < 1/2 and, hence, we obtain the result. O

C Tables from the simulation study
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Table 3: Model (D).

M R.VVM. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050
78 Rv -0.31 1.19 0.150 0.100 TRV -0.31 1.19 0.150 0.100
Rv2 -0.31 1.19 0.150 0.100 TR2V -0.41 1.18 0.154 0.106

pRV -0.28 1.07 0.121 0.078 R2v -0.41 1.18 0.154 0.106

pRvVZ2 -0.3 1.15 0.140 0.094 R3v -0.47 1.17 0.163 0.113

cRv -0.31 1.19 0.150 0.100 R4V -0.52 1.16 0.168 0.115

390 Rv -0.12 1.03 0.105 0.058 TRV -0.12 1.03 0.105 0.058
Rv2 -0.12 1.03 0.105 0.058 TR2v -0.17 1.03 0.111 0.064

pRV -0.12 0.98 0.092 0.050 R2v -0.17 1.03 0.111 0.064

pRvVZ2 -0.12 1.01 0.101 0.056 R3v -0.2 1.03 0.113 0.067

cRv -0.12 1.03 0.105 0.058 R4V -0.23 1.04 0.116 0.070

780 RV -0.09 1 0.102 0.050 TRV -0.09 1 0.101 0.050
Rv2 -0.09 1 0102 0.050 TR2V -0.12 1 0.098 0.051

pRV -0.09 0.98 0.091 0.044 R2v -0.12 1 0.098 0.051

pRVZ2 -0.09 0.99 0.099 0.048 R3v -0.14 1 0.102 0.055

cRv -0.09 1 0.102 0.050 R4V -0.16 1 0.104 0.056

4680 Rv -0.07 1.01 0.105 0.054 TRV -0.07 1.01 0.105 0.054
Rv2 -0.07 1.01 0.105 0.054 TR2vV -0.09 1.01 0.104 0.053

pRvV -0.07 0.99 0.101 0.054 R2v -0.09 1.01 0.104 0.053

pRvV2 -0.07 1 0.103 0.054 R3v -0.09 1.01 0.105 0.054

cRv -0.07 1.01 0.105 0.054 R4V -0.09 1.01 0.106 0.057

27



C TABLES FROM THE SIMULATION STUDY

Table 4: Model (JD) with one jump a day, where the percentdgleojump part of the quadratic
variation of the total quadratic variation is 15%.

M R.M. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050

78 RV -0.29 1.21 0.1492 0.0976 TRV 0.2 123 0.1752 0.1094
Rv2z -0.29 1.21 0.1502 0.0988 TR2v -0.17 1.12 0.1218 0.0726

pRV -0.25 1.1 0.1228 0.0762 R2v -0.03 1.14 0.126 0.0726

pRV2 -0.28 1.19 0.148 0.0948 R3v -0.19 1.11 0.1204 0.0738

cRvV -0.29 1.26 0.1686 0.1096 R4V -0.27 1.1 0.1244 0.078

390 Rv -0.11 1.02 0.1056 0.0532 TRV 0.05 1.02 0.1086 0.0578
Rv2z -0.11 1.02 0.1068 0.0544 TR2v -0.1 0.98 0.0978 0.053

pRV -0.11 1.03 0.109 0.0556 R2v 0.24 1.04 0.1226 0.0678

pRvV2 -0.11 1.06 0.1188 0.0596 R3V 0.04 0.99 0.0976 0.0496

cRv -0.11 1.13 0.1392 0.0788 R4V -0.03 0.98 0.0936 0.0494

780 RV -0.07 1 0.095 0.0466 TRV 0.01 0.98 0.0972 0.0504
Rv2 -0.07 1.01 0.096 0.0484 TR2V -0.07 0.97 0.088 0.0464

pRV -0.08 1.03 0.1046 0.0544 R2v  0.32 1.04 0.1338 0.0718

pRV2 -0.08 1.04 0.11 0.0576 R3V 0.1 0.97 0.0964 0.0492

cRv -0.08 1.12 0.1372 0.0772 R4V 0.03 0.97 0.0906 0.0478

4680 RV -0.04 0.98 0.0962 0.0492 TRV -0.04 0.98 0.0916 0.0526
Rv2 -0.04 0.98 0.0966 0.0498 TR2V -0.07 0.98 0.0922 0.047

pRV -0.04 1.01 0.1026 0.0544 R2v  0.38 1.08 0.1506 0.0896

pRV2 -0.04 1.01 0.1062 0.0558 R3v 0.11 1 0.1002 0.0494

cRvV -0.04 1.11 0.1334 0.0784 R4V 0.04 0.99 0.0988 0.0474
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Table 5: Model (JD) with five jumps a day, where the percentfgiae jump part of the quadratic
variation of the total quadratic variation is 15%.

M R.M. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050

78 Rv -0.3 1.19 0.1492 0.0958 TRV 0.68 1.18 0.2328 0.1436
Rv2 -0.29 1.19 0.1496 0.096 TR2V 0.2 1.06 0.1066 0.0498

pRV -0.26 1.05 0.111 0.0682 R2v 0.22 1.06 0.1092 0.0506

pRV2 -0.28 1.15 0.1388 0.0868 R3vV 0.05 1.05 0.0912 0.0488

cRv -0.29 1.2 0.1538 0.0988 R4V -0.03 1.04 0.0898 0.0522

390 Rv -0.11 1.04 0.112 0.0636 TRV 096 1.12 0.2852 0.1924
Rv2z -0.11 1.05 0.113 0.0648 TR2V 0.33 0.98 0.12 0.0592

pRV -0.1 1.02 0.1082 0.058 R2v  0.64 1 0.183 0.0968

pRV2 -0.11 1.06 0.1208 0.0664 R3vV 0.38 0.97 0.1146 0.0566

cRv -0.11 1.11 0.1344 0.0772 R4V 0.27 0.96 0.0982 0.0498

780 Rv -0.07 0.98 0.0906 0.0488 TRV 0.71 1.05 0.21 0.1266
Rv2 -0.07 0.99 0.0914 0.0492 TR2vV 0.21 0.94 0.09 0.043

pRV -0.06 1.01 0.1002 0.0534 R2v  0.75 0.99 0.203 0.1154

pRV2 -0.06 1.03 0.1064 0.0584 R3V 043 0.94 0.1174 0.0544

cRv -0.07 1.08 0.1226 0.0692 R4V 0.31 094 0.099 0.045

4680 RV -0.03 0.96 0.0898 0.0412 TRV 0.15 0.97 0.093 0.0458
Rv2 -0.03 0.96 0.0898 0.0412 TR2V -0.01 0.95 0.0854 0.0426

pRV -0.03 1.01 0.1068 0.055 R2v 092 1.05 0.2558 0.1648

pRV2 -0.03 1.01 0.1064 0.053 R3V 0.44 0.97 0.1198 0.0658

cRvV -0.03 1.09 0.133 0.0742 R4V 0.3 0.95 0.1008 0.0524
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Table 6: Model (JD) with ten jumps a day, where the percentdghe jump part of the quadratic
variation of the total quadratic variation is 15%.

M R.VM. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050

78 Rv -0.25 1.17 0.1426 0.0884 TRV 0.77 11 0.2272 0.1372
Rv2 -0.25 1.17 0.1432 0.0886 TR2V 0.34 1.02 0.1094 0.049

pRV -0.22 1.04 0.1048 0.0636 R2v 0.35 1.02 0.1108 0.05

pRV2 -0.24 1.13 0.1308 0.0808 R3v 0.18 1.01 0.09 0.0442

cRvV -0.24 1.17 0.1438 0.0892 R4V 0.09 1 0.087 0.0444

390 Rv -0.14 1.05 0.1192 0.0658 TRV 156 1.16 0.4688 0.3574
Rv2 -0.14 1.06 0.119 0.0664 TR2V 0.68 0.97 0.176 0.0892

pRV -0.13 0.99 0.101 0.0532 R2v 0.83 0.97 0.2244 0.1256

pRV2 -0.14 1.05 0.1206 0.0644 R3V 056 0.95 0.1456 0.071

cRvV -0.14 1.08 0.1308 0.0724 R4V 0.45 095 0.1212 0.0572

780 Rv -01 1.02 0.1088 0.061 TRV 1.5 1.16 0.455 0.3488
Rv2 -0.1 1.03 0.1108 0.0624 TR2V 0.58 0.96 0.152 0.0814

pRV -0.09 1.02 0.1066 0.0564 R2V 1 098 0.2788 0.167

pRV2 -0.09 1.05 0.1176 0.0654 R3vV 0.65 095 0.157 0.0834

cRv -0.1 1.09 0.1322 0.077 R4V 051 0.94 0.1226 0.066

4680 RV -0.02 1 0.1026 0.0464 TRV 054 1.03 0.1672 0.0984
Rv2 -0.02 1 0.1026 0.0456 TR2V 0.13 0.97 0.0952 0.0464

pRV -0.02 1.06 0.125 0.0634 R2v 13 1.04 0.382 0.2714

pRV2 -0.02 1.06 0.1232 0.0626 R3v 0.71 0.97 0.1784 0.1028

cRv -0.02 1.12 0.1434 0.0828 R4V 052 0.96 0.1342 0.0724
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Table 7: Model (IAP) withoe = 0.1, where the percentage of the jump part of the quadratic ti@mia
of the total quadratic variation is 15%.

M R.M. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050

78 Rv -0.3 1.19 0.1488 0.1004 TRV 041 122 0.198 0.1256
Rvz -0.3 1.19 0.1492 0.1012 TR2V 0.03 1.11 0.1182 0.0702

pRV -0.26 1.07 0.1172 0.0732 R2v 0.11 1.14 0.1326 0.0776

pRV2 -0.28 1.15 0.1436 0.0918 R3v -0.04 1.1 0.1158 0.07

cRv -0.29 1.22 0.1588 0.1068 R4V -0.13 1.09 0.119 0.0722

390 Rv -0.13 1.09 0.1094 0.0616 TRV 06 111 0.198 0.1178
Rv2z -0.13 1.1 0.111 0.0634 TR2V 0.18 1 0.1072 0.0536

pRV -0.12 1.08 0.1052 0.0636 R2v 0.47 1.07 0.1684 0.0954

pRV2 -0.13 1.12 0.1158 0.069 R3v  0.25 1 0.1134 0.0536

cRv -0.13 1.18 0.135 0.0848 R4V 0.15 0.99 0.102 0.046

780 Rv -0.1 1.12 0.1014 0.0518 TRV 056 1.07 0.1736 0.1026
Rv2 -0.1 1.12 0.1024 0.052 TR2V 0.18 0.97 0.1008 0.0486

pRV -0.1 1.13 0.1054 0.0568 R2v 059 1.08 0.189 0.1134

pRV2 -0.1 1.16 0.1146 0.0608 R3vV 032 0.99 0.118 0.0546

cRv -0.11 1.21 0.1318 0.0758 R4V 0.22 0.97 0.0982 0.0472

4680 Rv -0.06 1.08 0.09 0.044 TRV  0.38 1 0.127 0.0646
Rv2 -0.06 1.09 0.0898 0.044 TR2V 0.1 0.96 0.084 0.0432

pRV -0.06 1.15 0.101 0.051 R2v  0.79 1.12 0.2324 0.1522

pRV2 -0.06 1.15 0.101 0.0518 R3V 0.39 0.98 0.1256 0.0616

cRv -0.06 1.24 0.1302 0.073 R4V 0.28 0.97 0.1026 0.0474
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Table 8: Model (IAP) withoe = 0.5, where the percentage of the jump part of the quadratic ti@mia
of the total quadratic variation is 15%.

M R.VM. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050

78 Rv -0.27 1.17 0.1476 0.0916 TRV 0.64 1.14 0.2096 0.122
Rv2 -0.27 1.17 0.1476 0.092 TR2V 0.26 1.03 0.111 0.0518

pRV -0.25 1.04 0.1092 0.0644 R2v 0.27 1.04 0.1154 0.054

pRV2 -0.26 1.13 0.136 0.0818 R3vV 0.12 1.02 0.0996 0.0516

cRv -0.27 1.18 0.1492 0.093 R4V 0.03 1.01 0.0968 0.0522

390 Rv -0.13 1.06 0.1186 0.0658 TRV 1.35 1.13 0.4028 0.2964
Rv2 -0.13 1.06 0.1192 0.0666 TR2V 0.71 0.97 0.1862 0.0994

pRV -0.12 1.02 0.1062 0.0576 R2v 0.87 1 0.2338 0.141

pRV2 -0.13 1.06 0.1192 0.0664 R3V 0.63 0.97 0.1584 0.0802

cRv -0.13 1.1 0.1292 0.075 R4V 0.53 0.96 0.1346 0.0664

780 Rv -0.11 1.02 0.1064 0.0602 TRV 156 1.14 0.473 0.3588
Rv2 -0.11 1.03 0.1076 0.0612 TR2vV 0.8 0.97 0.2006 0.1134

pRV -0.1 1.01 0.1038 0.0564 R2v 1.09 1.02 0.3102 0.2046

pRV2 -0.11 1.04 0.1128 0.066 R3v 0.78 0.97 0.2052 0.1114

cRv -0.11 1.08 0.1218 0.0748 R4V 0.65 0.96 0.1612 0.0834

4680 RvV -0.03 0.98 0.1004 0.0474 TRV 179 1.11 0.5416 0.4264
Rv2 -0.03 0.98 0.101 0.0474 TR2V 0.86 0.95 0.2096 0.1276

pRvV -0.03 1.01 0.1134 0.0568 R2v 1.71 1.06 0.5258 0.407

pRV2 -0.03 1.02 0.117 0.0592 R3V 1.13 0.96 0.3064 0.2018

cRvV -0.03 1.08 0.1326 0.0734 R4V 0.93 0.94 0.2348 0.1396
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Table 9: Model (IAP) withoe = 0.9, where the percentage of the jump part of the quadratic ti@mia
of the total quadratic variation is 15%.

M R.VM. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050

78 Rv -0.29 1.15 0.1384 0.09 TRV 0.68 1.01 0.1822 0.1006
Rv2 -0.29 1.15 0.1384 0.09 TR2V 042 0.99 0.1214 0.052

pRV -0.27 1.04 0.11 0.0652 R2vV 0.42 0.99 0.1216 0.0522

pRV2 -0.28 1.11 0.129 0.0814 R3v 0.29 0.99 0.1012 0.047

cRv -0.29 1.15 0.1386 0.09 R4V 0.21 0.99 0.097 0.0482

390 Rv -0.14 104 0.117 0.061 TRV 1.86 1.01 0.5914 0.4686
Rv2 -0.14 1.04 0.1172 0.061 TR2V 137 0.92 0.408 0.2762

pRV -0.13 0.99 0.099 0.05 R2v 1.38 092 0.413 0.2792

pRvV2 -0.13 1.02 0.1108 0.057 R3vV 118 0.92 0.3302 0.206

cRvV -0.14 1.04 0.1184 0.0616 R4V 1.07 0.93 0.2874 0.1704

780 Rv -0.09 1.02 0.1072 0.0562 TRV 2.66 11 0.8218 0.7366
Rv2 -0.09 1.02 0.1076 0.0562 TR2V 1.89 0.96 0.6158 0.4866

pRV -0.09 0.98 0.0928 0.0476 R2v 192 0.96 0.6308 0.5006

pRV2 -0.09 1.01 0.1024 0.0542 R3vV 1.65 0.94 0.5164 0.3788

cRv -0.09 1.03 0.109 0.0568 R4v 15 093 0.454 0.3178

4680 Rv -0.03 1.01 0.104 0.0522 TRV 541 152 0.994 0.9902
Rv2 -0.03 1.01 0.1042 0.053 TR2V 3.33 1.07 0.9354 0.8956

pRV -0.03 1 0.0994 0.05 R2v 3.73 1.1 0.9638 0.9418

pRV2 -0.03 1.03 0.1082 0.054 R3v 3.02 1.02 0.9088 0.85

cRvV -0.03 1.05 0.1148 0.0596 R4v 2.71 1 0.8556 0.7806
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Table 10: Model (IFAJ) with five jumps a day.

M R.VM. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050
78 Rv -0.3 1.17 0.1442 0.0956 TRV 046 1.15 0.1798 0.1078
Rv2z -0.3 1.17 0.145 0.096 TR2V 0.06 1.06 0.098 0.058

pRV -0.26 1.06 0.1126 0.0712 R2v 0.16 1.08 0.1088 0.0616

pRV2 -0.29 1.14 0.1362 0.0898 R3V 0 1.05 0.0994 0.055

cRv -0.29 1.21 0.1534 0.103 R4V -0.08 1.04 0.1048 0.057

390 RV -0.12 1.03 0.1166 0.0572 TRV 049 1.04 0.1608 0.0908
Rv2 -0.12 1.03 0.1178 0.0596 TR2v 0.11 0.98 0.0966 0.0522

pRV -0.11 1.03 0.1178 0.0602 R2vV 053 1.04 0.1634 0.0944

pRV2 -0.12 1.06 0.1264 0.0682 R3vV 0.27 0.99 0.1126 0.053

cRv -0.12 1.12 0.1438 0.0818 R4V 0.17 0.98 0.1002 0.0472

780 RvV -0.08 1.02 0.1024 0.0506 TRV 0.36 1.01 0.1264 0.068
Rv2 -0.08 1.02 0.1038 0.0506 TR2Vv 0.09 0.97 0.0912 0.0446

pRV -0.08 1.06 0.1166 0.0596 R2v 0.67 1.05 0.201 0.1144

pRvV2 -0.09 1.07 0.1196 0.0628 R3vV 0.37 0.99 0.1208 0.0608

cRv -0.09 1.13 0.138 0.0794 R4V 0.27 0.99 0.1084 0.0502

4680 RV -0.03 1.12 0.0996 0.047 TRV 0.11 0.99 0.1 0.05
Rv2 -0.03 1.12 0.1002 0.0468 TR2VvV -0.01 0.97 0.0924 0.0468

pRV -0.03 1.19 0.1178 0.0592 R2v 0.83 1.09 0.2438 0.159

pRvV2 -0.03 1.19 0.1178 0.059 R3VvV  0.39 1 0.124 0.0692

cRvV -0.03 1.28 0.1442 0.0822 R4V 0.27 0.98 0.1102 0.0536
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Table 11: Model (IFAJ) with ten jumps a day.

M R.VM. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050
78 RV -0.31 1.16 0.1444 0.0972 TRV 0.26 1.12 0.144 0.0838
Rv2 -0.31 1.16 0.1446 0.0974 TR2V 0 1.09 0.1126 0.0636

pRV -0.28 1.04 0.115 0.074 R2v 0.01 1.1 0.1136 0.0642

pRvV2 -0.3 1.12 0.1358 0.09 R3V -0.09 1.09 0.1084 0.0648

cRv -0.31 1.17 0.1458 0.098 R4V -0.16 1.08 0.1146 0.0684

390 RV -0.16 1.04 0.1144 0.0586 TRV 0.66 1.05 0.2 0.1152
Rv2 -0.16 1.04 0.1152 0.0592 TR2v 0.27 0.98 0.1092 0.0522

pRV -0.15 1 0.1026 0.0534 R2v  0.41 1 0.1332 0.0666

pRV2 -0.16 1.04 0.1146 0.0598 R3V 0.25 0.98 0.1038 0.0472

cRvV -0.16 1.06 0.1238 0.0654 R4V 0.17 0.98 0.095 0.0446

780 RvV -0.11 1 0.1044 0.0574 TRV 0.69 1.02 0.1918 0.1106
Rv2 -0.11 1.01 0.1052 0.0582 TR2V 0.26 0.96 0.099 0.0472

pRV -0.11 1 0.1042 0.0532 R2v  0.53 0.98 0.1442 0.0732

pRV2 -0.11 1.02 0.1112 0.0604 R3v 0.33 0.97 0.105 0.0522

cRv -0.11 1.05 0.1178 0.0676 R4V 0.24 0.97 0.1012 0.0478

4680 RV -0.04 1 0.0984 0.0514 TRV  0.39 1 0.1296 0.0756
Rv2 -0.04 1 0.0986 0.0512 TR2V 0.1 0.97 0.0918 0.0464

pRV -0.04 1.03 0.1108 0.0582 R2v 0.78 1.01 0.214 0.1316

pRvV2 -0.04 1.04 0.1118 0.06 R3V 044 0.96 0.1242 0.0622

cRv -0.05 1.07 0.122 0.0684 R4V 0.32 0.96 0.1026 0.0566
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Table 12: Model (CFAJ) with five jumps a day.

M R.VM. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050
78 Rv -0.31 1.2 0.1468 0.098 TRV 0.38 1.11 0.1578 0.0866
Rv2z -0.31 1.21 0.1474 0.098 TR2V 0.06 1.06 0.0954 0.0524

pRV -0.26 1.08 0.1172 0.0746 R2v 0.17 1.08 0.1072 0.0546

pRV2 -0.29 1.17 0.1412 0.0908 R3v 0.01 106 0.092 0.055

cRv -03 124 0.159 0.1058 R4V -0.07 1.05 0.0938 0.0576

390 Rv -0.14 1.03 0.1082 0.058 TRV 045 1.02 0.1446 0.084
Rv2 -0.14 1.04 0.11 0.0604 TR2V 0.12 0.97 0.0924 0.0482

pRV -0.13 1.05 0.1164 0.0606 R2v 057 1.03 0.1642 0.093

pRvV2 -0.13 1.07 0.126 0.066 R3vV 0.32 0.98 0.1126 0.0532

cRv -0.13 1.13 0.141 0.081 R4V 0.22 0.97 0.0984 0.0498

780 Rv -0.09 099 0.096 0.052 TRV 0.36 0.99 0.1186 0.0646
Rv2z -0.09 0.99 0.0962 0.0522 TR2V 0.08 0.95 0.086 0.0416

pRV -0.09 1.03 0.1096 0.063 R2v 0.68 1.01 0.191 0.1056

pRVZ2 -0.1 1.04 0.1138 0.0654 R3V 0.39 0.95 0.1118 0.0478

cRv -0.1 1.11 0.1344 0.0816 R4V 0.28 0.94 0.0976 0.0422

4680 RV -0.05 0.96 0.0846 0.0418 TRV 0.09 096 0.088 0.0428
Rv2 -0.05 0.96 0.0852 0.0418 TR2VvV -0.03 0.95 0.0866 0.0428

pRV -0.05 1.02 0.1062 0.0546 R2v 0.85 1.05 0.2396 0.1516

pRV2 -0.05 1.02 0.1048 0.0536 R3vV 041 0.97 0.1198 0.0578

cRv -0.05 1.11 0.1344 0.074 R4V 0.28 0.96 0.0972 0.0504
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Table 13: Model (CFAJ) with ten jumps a day.

M R.VM. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050
78 Rv -0.27 1.15 0.1428 0.088 TRV 0.26 1.08 0.1298 0.0692
Rv2z -0.27 116 0.143 0.0882 TR2V 0.02 1.06 0.1014 0.0558

pRV -0.24 1.04 0.1114 0.0694 R2v 0.04 1.06 0.1016 0.055

pRV2 -0.26 1.12 0.1328 0.0814 R3vV -0.06 1.05 0.1028 0.0578

cRvV -0.26 1.16 0.1454 0.0916 R4V -0.13 1.05 0.1062 0.063

390 Rv -0.14 1.03 0.112 0.061 TRV 0.64 1.02 0.1788 0.0998
Rv2 -0.14 1.03 0.1118 0.0612 TR2V 0.28 0.97 0.1046 0.0492

pRV -0.13 1 0.1012 0.0522 R2vV 0.43 0.99 0.1324 0.0644

pRV2 -0.13 1.04 0.1134 0.0606 R3vV 0.28 0.98 0.1036 0.0514

cRv -0.14 1.06 0.1216 0.0672 R4V 0.21 0.97 0.0964 0.0488

780 Rv -0.09 101 0.103 0.056 TRV 0.67 1.02 0.1886 0.1098
Rv2z -0.09 1.01 0.1038 0.0562 TR2v 0.28 0.96 0.1032 0.0458

pRV -0.09 1.01 0.1 0.053 R2v  0.57 0.98 0.1536 0.0782

pRV2 -0.09 1.03 0.1094 0.0582 R3V 0.37 0.96 0.1118 0.0542

cRvV -0.09 1.06 0.1182 0.0646 R4V 0.29 0.96 0.104 0.0496

4680 RV -0.02 1 0.101 0.0512 TRV 04 101 0.138 0.0738
Rv2 -0.02 1 0.1014 0.0514 TR2V 0.12 0.98 0.1004 0.0492

pRV -0.02 1.04 0.1108 0.0586 R2v 0.84 1.02 0.228 0.1464

pRvV2 -0.02 1.04 0.1128 0.0608 R3vV 049 098 0.1366 0.075

cRv -0.02 1.08 0.124 0.0676 R4V 0.36 0.97 0.1158 0.0616
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Table 14: Model (BNSIJ) without jumps in the price.

M R.VM. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050
78 RV -0.25 1.18 0.1424 0.0926 TRV -0.3 1.21 0.1508 0.1
Rv2 -0.26 1.18 0.1426 0.0926 TR2v -04 121 0.1514 0.102

pRV -0.23 1.08 0.1178 0.0696 R2v -0.36 1.19 0.1444 0.0948

pRV2 -0.25 1.15 0.1368 0.0852 R3V -0.43 1.17 0.1488 0.0968

cRvV -0.25 1.19 0.1446 0.0936 R4V -0.47 1.16 0.153 0.0962

390 Rv -0.11 1.03 0.11 0.0622 TRV -0.19 1.15 0.1256 0.0774
Rv2 -0.11 1.03 0.1098 0.0622 TR2VvV -0.21 1.12 0.1264 0.0746

pRV -0.1 0.99 0.0998 0.0542 R2v -0.14 1.03 0.1132 0.0622

pRvV2 -0.11 1.02 0.1068 0.0606 R3v -0.17 1.03 0.114 0.062

cRv -0.11 1.04 0.1108 0.0632 R4V -0.19 1.03 0.1118 0.0632

780 RV -0.08 1.01 0.1046 0.054 TRV -0.19 1.24 0.1252 0.0736
Rv2 -0.08 1 0.1046 0.0534 TR2V -0.2 1.19 0.123 0.0678

pRV -0.08 0.98 0.095 0.0476 R2v -0.11 1.01 0.1048 0.0506

pRvV2 -0.08 1 0.1018 0.052 R3V -0.13 1.01 0.1048 0.0556

cRv -0.08 1.01 0.1062 0.0552 R4V -0.15 1 0.1038 0.0534

4680 RV -0.04 1 0.0996 0.051 TRV -0.26 1.8 0.1262 0.0768
Rv2 -0.04 1 0.0992 0.0508 TR2V -0.24 1.65 0.1222 0.0774

pRV -0.04 0.99 0.0982 0.049 R2v -0.05 0.99 0.0982 0.0526

pRV2 -0.04 1 0.1004 0.051 R3vV -0.05 0.99 0.1008 0.055

cRvV -0.04 1 0.1012 0.0516 R4V -0.05 0.99 0.1018 0.053
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Table 15: Model (BNSIJ) with one jump in the price, where tleecgentage of the jump part of the
QVis 15%.

M R.VM. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050

78 Rv -026 12 0.144 0.094 TRV 0.3 1.32 0.2078 0.1382
Rv2 -0.26 1.21 0.1452 0.0956 TR2V -0.14 1.12 0.1164 0.0674

pRV -0.23 1.1 0.1132 0.0688 R2v 0.03 1.12 0.1178 0.0624

pRvV2 -0.25 1.18 0.14 0.0892 R3V -0.14 1.08 0.1046 0.0606

cRV -0.26 1.26 0.1636 0.1094 R4V -0.23 1.07 0.111 0.0658

390 Rv -0.14 1.12 0.1048 0.058 TRV 0.01 1.17 0.1376 0.0826
Rv2 -0.14 1.13 0.1074 0.059 TR2V -0.15 1.09 0.1142 0.063

pRV -0.13 1.13 0.1094 0.0576 R2v  0.27 1.06 0.1356 0.0716

pRV2 -0.14 1.16 0.1174 0.0654 R3v 0.05 1.01 0.098 0.0494

cRvV -0.14 1.25 0.1472 0.0898 R4V -0.02 1 0.0988 0.0492

780 Rv -0.09 1.05 0.1068 0.0588 TRV -0.06 1.23 0.1318 0.0744
Rv2 -0.09 1.06 0.1072 0.0602 TR2V -0.16 1.14 0.1104 0.0646

pRV -0.09 1.09 0.1186 0.0656 R2v 035 1.06 0.1412 0.0816

pRV2 -0.09 1.1 0.1234 0.0714 R3V 0.12 0.99 0.102 0.0474

cRv -0.1 1.2 0.151 0.0946 R4V 0.04 0.98 0.0932 0.0452

4680 Rv -0.04 1.01 0.0982 0.0502 TRV -0.24 175 0.122 0.073
Rv2 -0.04 1.01 0.0992 0.0506 TR2VvV -0.25 1.61 0.118 0.0718

pRV -0.04 1.04 0.1114 0.058 R2v  0.42 1.09 0.1588 0.0948

pRvV2 -0.04 105 0.112 0.058 R3v 0.12 1 0.1008 0.0504

cRv -0.04 1.17 0.1534 0.0888 R4V 0.04 0.99 0.0968 0.0464
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Table 16: Model (BNSIJ) with five jumps in the price, where gegcentage of the jump part of the
QVis 15%.

M R.VM. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050

78 Rv -0.28 1.21 0.1616 0.1062 TRV 0.87 1.34 0.3092 0.2188
Rv2 -0.28 1.21 0.1612 0.1066 TR2v 0.27 1.12 0.1352 0.0708

pRV -0.24 1.05 0.1162 0.0674 R2v 0.32 1.08 0.1304 0.065

pRV2 -0.26 1.16 0.1468 0.0944 R3v 0.13 1.05 0.102 0.05

cRvV -0.28 1.23 0.1658 0.1096 R4V 0.03 1.04 0.101 0.0512

390 Rv -0.13 1.05 0.1168 0.0648 TRV 1.14 141 0.3838 0.2908
Rv2 -0.13 1.06 0.1186 0.0664 TR2V 0.32 1.11 0.1358 0.0754

pRV -0.11 1.02 0.1066 0.0578 R2v  0.72 1.02 0.2058 0.1162

pRvV2 -0.12 1.07 0.125 0.068 R3v 043 097 0.121 0.053

cRvV -0.13 1.13 0.1466 0.0876 R4V 0.31 0.96 0.0958 0.0468

780 RV -0.09 1 0.0986 0.0488 TRV 0.8 1.4 0.2886 0.1984
Rv2 -0.09 1.01 0.0998 0.0496 TR2v 0.17 1.18 0.126 0.0678

pRvV -0.08 1.03 0.104 0.053 R2v  0.85 1.04 0.243 0.1446

pRV2 -0.09 1.05 0.1142 0.0586 R3v 048 098 0.137 0.0674

cRv -0.09 1.13 0.139 0.078 R4V 0.35 0.97 0.1086 0.0544

4680 RvV -0.03 0.98 0.0902 0.0436 TRV 0.01 1.84 0.1316 0.0786
Rv2 -0.03 0.98 0.09 0.0432 TR2V -0.17 1.65 0.1086 0.0672

pRV -0.03 1.04 0.1146 0.0578 R2v  1.05 1.07 0.2974 0.2

pRV2 -0.03 1.04 0.1106 0.0556 R3V 0.5 0.97 0.1352 0.0724

cRv -0.03 1.16 0.1512 0.0848 R4V 0.34 0.95 0.1072 0.0546
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Table 17: Model (BNSIJ) with ten jumps in the price, where fleecentage of the jump part of the
QVis 15%.

M R.VM. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050

78 Rv -0.28 1.19 0.1532 0.099 TRV 0.88 1.23 0.2958 0.1914
Rv2 -0.28 1.2 0.1532 0.0988 TR2V 0.39 1.1 0.1456 0.0698

pRV -0.25 1.06 0.1088 0.0684 R2v 043 1.06 0.1386 0.0652

pRV2 -0.27 1.16 0.1428 0.088 R3v 025 1.05 0.107 0.0518

cRv -0.28 1.2 0.1562 0.1004 R4V 0.15 1.05 0.1004 0.0512

390 Rv -0.11 1.05 0.1166 0.065 TRV 187 1.5 0.5992 0.5086
Rv2 -0.11 1.06 0.1178 0.0658 TR2v 0.74 1.11 0.219 0.1302

pRV -0.1 0.98 0.095 0.0464 R2v  0.97 1 0.2656 0.1678

pRvV2 -0.11 1.05 0.1174 0.0618 R3vV 0.66 0.95 0.1604 0.0814

cRv -0.11 11 0.133 0.0764 R4V 052 093 0.126 0.0618

780 Rv -0.08 1.02 0.104 0.0526 TRV 177 154 0.588 0.4902
Rv2 -0.08 1.02 0.1038 0.0522 TR2V 06 115 0.186 0.1104

pRV -0.07 1.01 0.1024 0.0492 R2v  1.14 1 0.3338 0.2198

pRV2 -0.08 1.05 0.1164 0.0574 R3vV 0.74 0.94 0.1784 0.0968

cRv -0.08 11 0.135 0.0728 R4v 058 0.93 0.137 0.0672

4680 RV -0.03 0.98 0.0922 0.0482 TRV 046 1.79 0.2178 0.1462
Rv2 -0.03 098 0.091 0.0476 TR2V -0.02 155 0.1146 0.0656

pRV -0.03 1.05 0.1152 0.0622 R2v 141 1.09 0.4264 0.3112

pRV2 -0.03 1.05 0.1146 0.06 R3v 0.75 0.99 0.1982 0.1152

cRvV -0.03 1.14 0.1478 0.0822 R4V 054 0.97 0.1472 0.0772
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Table 18: Model (BNSCJ) withh = —0.2 corresponding to the jump part of the QV being 4.7%.

M R.VM. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050
78 RV -0.25 1.18 0.144 0.0944 TRV -0.27 1.19 0.1494 0.0986
Rv2 -0.25 1.18 0.1444 0.0946 TR2Vv -0.38 1.19 0.1466 0.0976

pRV -0.23 1.08 0.1184 0.073 R2v -0.33 1.17 0.138 0.0908

pRV2 -0.25 1.15 0.1392 0.088 R3V -04 1.16 0.1442 0.0962

cRvV -0.25 1.19 0.1474 0.0968 R4V -0.44 1.14 0.147 0.0938

390 Rv -01 1.03 0.111 0.063 TRV -0.16 1.13 0.124 0.0758
Rv2z -0.1 1.03 0.1104 0.0628 TR2V -0.19 1.11 0.1218 0.071

pRV -0.1 1 0.101 0.0554 R2v  -0.1 1.03 0.1096 0.0588

pRvV2 -01 1.02 0.109 0.0616 R3v -0.14 1.03 0.113 0.0604

cRv -0.1 1.04 0.1132 0.0654 R4V -0.17 1.03 0.1092 0.0614

780 Rv -0.07 1.01 0.107 0.055 TRV -0.15 1.21 0.1248 0.0712
Rv2 -0.07 1.01 0.1066 0.0546 TR2Vv -0.18 1.17 0.1214 0.0666

pRV -0.07 0.99 0.0974 0.0494 R2v -0.06 1.01 0.1032 0.0498

pRvV2 -0.07 1 0.1036 0.054 R3v  -0.1 1 0.1014 0.0526

cRv -0.07 1.02 0.1084 0.0566 R4V -0.12 1 0.1002 0.0512

4680 RV -0.04 1 0.0976 0.0502 TRV -0.23 1.76 0.1262 0.0762
Rv2z -0.04 099 0.097 0.0502 TR2V -0.21 1.62 0.1218 0.0778

pRV -0.04 0.99 0.0974 0.0496 R2V 0 099 0.099 0.0536

pRV2 -0.04 1 0.098 0.0506 R3V -0.01 0.99 0.0982 0.0546

cRv -0.04 1.01 0.1002 0.0522 R4V -0.02 0.99 0.0984 0.0516
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Table 19: Model (BNSCJ) withh = —0.4 corresponding to the jump part of the QV being 16.7%.

M R.VM. Bias Std. 0.100 0.050 R.V.M. Bias Std. 0.100 0.050

78 RV -0.25 1.2 0.1452 0.0958 TRV -0.23 1.18 0.1446 0.0954
Rv2z -0.25 1.2 0.1444 0.0954 TR2V -0.35 1.17 0.1384 0.0962

pRV -0.23 1.11 0.12 0.0742 R2v -0.28 1.17 0.1324 0.0882

pRV2 -0.25 1.18 0.1386 0.0884 R3vV -0.36 1.15 0.1376 0.0908

cRV -0.25 1.23 0.1494 0.0996 R4V -0.41 1.13 0.1428 0.0914

390 Rv -01 1.03 0.1126 0.063 TRV -0.12 1.12 0.123 0.0726
Rv2z -0.1 1.03 0.1118 0.0626 TR2V -0.17 1.1 0.1194 0.0692

pRV -0.09 1.01 0.1052 0.0572 R2v -0.05 1.04 0.1102 0.0588

pRV2 -0.1 1.03 0.1114 0.0616 R3vV -0.11 1.03 0.1098 0.0576

cRv -0.1 1.06 0.1192 0.0688 R4V -0.14 1.02 0.1094 0.059

780 Rv -0.07 1.01 0.1082 0.055 TRV -0.12 1.19 0.1258 0.0718
Rv2z -0.07 1.01 0.1076 0.0536 TR2Vv -0.16 1.15 0.1176 0.066

pRV -0.07 1 0.1014 0.0514 R2v -0.01 1.01 0.1044 0.0508

pRV2 -0.07 1.01 0.1068 0.054 R3Vv -0.06 1 0.1004 0.0508

cRv -0.07 1.04 0.115 0.0602 R4V -0.09 0.99 0.0998 0.0496

4680 RV -0.04 1 0.0968 0.0498 TRV -0.2 1.72 0.1248 0.076
Rv2 -0.04 0.99 0.0962 0.0496 TR2vV -0.2 158 0.1206 0.0766

pRV -0.04 1 0.0998 0.0514 R2v  0.07 1.01 0.1064 0.0584

pRV2 -0.04 1 0.0984 0.0512 R3vV 0.01 0.99 0.0982 0.0526

cRv -0.04 1.02 0.1058 0.0562 R4V 0 0.98 0.0982 0.0508
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Figure 5: Empirical density of the logarithmic transform agntered and scaled realised variance
(denoted by RV in the tables) for the model BNSCJ witk —0.4.
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