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1 Introduction

Tail events and non-normal distributions are ubiquitous in finance. The earliest comprehensive

empirical evidence for fat-tail marginal return distributions dates back more than half a century

to the influential work of Mandelbrot (1963) and Fama (1965). It is now well recognized

that the fat-tailed unconditional return distributions first documented in these, and numerous

subsequent, studies may result from time-varying volatility and/or jumps in the underlying

stochastic process governing the asset price dynamics. Intuitively, periods of high-volatility

can result in seemingly “extreme” price changes, even though the returns are drawn from a

normal distribution with light tails but one with an unusually large variance; see e.g., Bollerslev

(1987), Mikosch and Starica (2000), and the empirical analyzes in Kearns and Pagan (1997)

and Wagner and Marsh (2005) pertaining to the estimation of tail parameters in the presence of

GARCH effects. On the other hand, the aggregation of multiple jump events over a fixed time

interval will similarly result in fat-tailed asset return distributions, even for a pure Lévy-type

jump processes with no dynamic dependencies; see, e.g., Carr et al. (2002). As such, while

fundamentally different, these two separate mechanisms will both manifest themselves in the

form of apparent “tail” events and leptokurtic marginal return distributions.1

These same general issues carry over to a multivariate context and questions related to

“extreme” dependencies across assets. In particular, it is well documented that the correla-

tions between equity returns, both domestically and internationally, tend to be higher during

sharp market declines than during “normal” periods;2 see e.g., Longin and Solnik (2001) and

Ang and Chen (2002). Similarly, Starica (1999) documents much stronger dependencies for

large currency moves compared to “normal-sized” changes. In parallel to the marginal effects,

however, it is unclear whether these increased dependencies are coming from commonalities in

time-varying volatilities across assets and/or common jumps. Poon et al. (2004), for instance,

report that “devolatilizing” the daily returns for a set of international stock markets signifi-

cantly reduces the joint tail dependence, while Bae et al. (2003) find that time-varying volatility

and GARCH effects can not fully explain the counts of coincident “extreme” daily price moves

observed across international equity markets. More closely related to the present paper, recent

studies by Bollerslev et al. (2008), Jacod and Todorov (2009), and Gobbi and Mancini (2009),

based on high-frequency data and nonparametric methods, have all argued for the presence of

common jump arrivals across different assets, thus possibly inducing stronger dependencies in

the “extreme.”

1Importantly, these different mechanisms also have very different pricing implications and risk premia dy-
namics, as recently explored by Bollerslev and Todorov (2010b).

2The use of simple linear correlations as a measure of dependence for “extreme” observations has been called
into question by Embrechts et al. (2002), among others.
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In light of these observations, one of the goals of the present paper is to separate jumps

from volatility to more directly assess the “extreme” dependencies inherent in the jump tails.

Motivated by the basic idea from asset pricing finance that only non-diversifiable systematic

jump risks should be compensated, we further dissect the jumps into their systematic and

idiosyncratic components, as in Todorov and Bollerslev (2010). This decomposition in turn

allows us to compare and contrast the behavior of the two different jump tails and how they

impact the return distributions.3

Our estimation methodology is based on the idea that even though jumps and time-varying

volatility may have similar implications for the distribution of the returns over coarser sampling

frequencies, the two features manifest themselves very differently in high-frequency returns.

Intuitively, treating the volatility as locally constant over short time horizons, it is possible to

perfectly separate jumps from the price moves associated with the slower temporally varying

volatility through the use of increasingly finer sampled observations. Empirically, this allows us

to focus directly on the high-frequency “filtered” jumps. Relying on the insight from Bollerslev

and Todorov (2010a) that regardless of any temporal variation in the jump intensity, the jump

compensator for the “large” jumps behaves like a probability measure, we non-parametrically

estimate the decay parameters for the univariate jump tails using a variant of the Peaks-Over-

Threshold (POT) method.4

Going one step further, we characterize the extreme joint behavior of the “filtered” jump

tails through non-parametric estimates of Pickands (1981) dependence function. This particular

functional relationship provides a general framework for describing a bivariate extreme value

distribution from its marginals.5 Following the original suggestion by Sibuya (1960), and the

more recent discussion of extreme dependence measures in Coles et al. (1999), we further

assess the degree of asymptotic jump tail dependence through a plug-in estimate from Pickands

dependence function for the probability of observing an “extreme” jump tail event given that

the other jump tail is also “extreme.” Together with the estimated decay parameters for each

of the underlying univariate extreme distributions, this summary measure describes the key

features of the bivariate joint tail behavior.

Our actual empirical analysis is based on high-frequency observations for fifty large capi-

3In a related context, Barigozzi et al. (2010) have recently explored a factor structure for disentangling the
total realized variation for a large panel of stocks into a single systematic component and remaining idiosyncratic
components.

4The POT method for characterizing extremes dates back to Fisher and Tippett (1928). It has been formal-
ized more recently by Balkema and de Haan (1974) and Pickands (1975); for general textbook discussions see
also Embrechts et al. (2001) and Jondeau et al. (2007).

5For a general textbook discussion, see, e.g., Coles (2001) and Beirlant et al. (2004). Existing applications
of this idea have primarily been restricted to climatology and insurance. Steinkohl et al. (2010), for instance,
have recently employed this approach to characterize the asymptotic dependence for high-frequency wind speeds
across separate geographical locations.
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talization stocks and the S&P 500 aggregate market portfolio spanning the period from 1997

through 2008. We find that the number of “filtered” idiosyncratic jumps exceed the number

of systematic jumps for all of the stocks in the sample, and typically by quite a large margin.

Nonetheless, the hypothesis of fully diversifiable individual jump risk is clearly not supported

by the data, thus pointing to more complicated dependence structures in the tails than hitherto

entertained in most of the existing asset pricing literature.6 Even though the assumption of

“light” Gaussian jump tails can not necessarily be rejected based on many of the individual

estimates, the combined evidence for all of the stocks clearly support the hypothesis of heavy

jump tails. Our estimates for the individual jump tail decay parameters also suggest that the

tails associated with the systematic jumps are slightly thinner than those for the idiosyncratic

jumps, albeit not uniformly so. Somewhat surprisingly, we also find that the right tail decay

parameters for both types of jumps often exceed those for the left tail.

Our estimates of Pickands dependence function reveal a strong degree of asymptotic tail

dependence between the market-wide jumps and the systematic jumps in the individual stocks.

This therefore calls into question the assumption of normally distributed, and thereby asymp-

totic independent, jumps previously used in the literature.

Further, comparing our high-frequency based estimation results with those obtained from

daily returns, we find that the latter indicate much weaker asymptotic tail dependencies. Intu-

itively, while the estimates based on the daily returns represent the tail dependence attributable

to both systematic jumps and common volatility factors, both of which may naturally be ex-

pected to be associated with positive dependence, the idiosyncratic jumps when aggregated

over time will tend to weaken the dependence. In contrast, by focussing directly on the high-

frequency “filtered” systematic and idiosyncratic jumps, we are able to much more accurately

assess the true extreme jump tail dependencies, and assess how the different effects impart the

dependencies in the lower frequency daily returns.

The rest of the paper is organized as follows. Section 2 introduces the formal setup and

assumptions. Section 3 outlines the statistical methodology and econometric procedures, be-

ginning in Section 3.1 with the way in which we disentangle jumps from continuous prices

moves, followed by a discussion of our univariate tail estimation procedures in Section 3.2, and

the framework that we rely on for assessing the joint jump tail dependencies in Section 3.3.

Section 4 summarizes our main empirical results, starting in Section 4.1 with a brief description

of the data, followed by our findings pertaining to the individual jump tails in Section 4.2, and

the bivariate jump tail dependencies in Section 4.3. Section 5 concludes.

6The mere existence of market-wide jumps, of course, refutes the hypothesis of fully diversifiable jump risk
as in Merton (1976). The estimates reported in, e.g., Eraker et al. (2003), also suggest a large risk premium for
systematic jump risk.
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2 Formal Setup and Assumptions

We will work with a total of M +1 financial asset prices. The individual assets will be enumer-

ated 1, ...,M , while the aggregate market portfolio will be indexed by 0. The dynamics for the

log-price for the j’th asset is assumed to follow the generic semimartingale process,

dp
(j)
t = α

(j)
t dt+ σ

(j)
t dW

(j)
t +

∫

R

xµ(j)(dt, dx), j = 0, ...,M, (2.1)

where α
(j)
t and σ

(j)
t are locally bounded processes, W

(j)
t denote possibly correlated Brownian

motions, and µ(j)(ds, dx) are integer-valued random measures that capture the jumps in p
(j)
t

over time dt and size dx.7

Our main focus centers on the behavior of the jumps in the individual assets; i.e., the

µ(j)(ds, dx) measures for j = 1, ...,M . We will further categorize these jumps as being either

systematic or idiosyncratic depending upon their association with the market wide jumps, or

µ(0)(ds, dx). As we show below, as long as the systematic market factor is assumed to be directly

observable, such a decomposition can easily be formally justified and implemented empirically.8

To more rigorously set out our procedures, let

T
(j)

[0,T ] =
{
s ∈ [0, T ] : ∆p(j)

s 6= 0
}
, j = 0, ...,M,

where ∆p
(j)
s ≡ p

(j)
s −p

(j)
s−, denote the set of jump times for asset j. The T

(j)
[0,T ] sets may in theory

be infinite, but countable, as the jump processes may be infinitely active.9 Note also, that in a

standard one-factor market model T
(0)

[0,T ] ⊂ T
(j)

[0,T ], but in general this need not be the case.

Further denote with µ(j,0)(ds, dx) the jump measure for asset j for the jumps that occur at

the same time as the market-wide jumps; i.e., at times restricted to the intersection of T
(j)

[0,T ]

and T
(0)

[0,T ]. Similarly, let µ(j,j)(ds, dx) denote the jump measure for the asset j jumps that occur

at times restricted to the set T
(j)

[0,T ] \
{
T

(0)
[0,T ] ∩ T

(j)
[0,T ]

}
. Then by definition

µ(j)(ds, dx) ≡ µ(j,0)(ds, dx) + µ(j,j)(ds, dx), j = 1, ...,M.

In parallel, denote with µ(0,j)(ds, dx) the jump measure for the aggregate market jumps that

arrive at the same time as the jumps in asset j; i.e., the counting measure for the systematic

jumps restricted to the subset T
(0)

[0,T ] ∩ T
(j)

[0,T ].

7Equation (2.1) implicitly assumes that the jumps are of finite variation. This assumption only restricts the
behavior of the very small jumps, and has no practical implications for our subsequent analysis of the jump

tails. We also implicitly assume that α
(j)
t and σ

(j)
t both satisfy sufficient integrability conditions.

8The current analysis could also quite easily be extended to situations with more than one observable
systematic risk factor, including e.g., the popular Fama-French portfolios.

9This has no practical implication for our statistical analysis, however, as we focus on the “large” jumps, of
which there are always a finite number in a finite sample.
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In addition, denote the compensators, or jump intensities, for µ(j,0)(ds, dx), µ(j,j)(ds, dx) and

µ(0,j)(ds, dx) by dt⊗ ν
(j,0)
t (dx), dt⊗ ν

(j,j)
t (dx) and dt⊗ ν

(0,j)
t (dx), respectively, where ν

(j,0)
t (dx),

ν
(j,j)
t (dx) and ν

(0,j)
t (dx) are some nonnegative measures satisfying the condition

∫

R

(x2 ∧ 1)ν
(j,0)
t (dx) +

∫

R

(x2 ∧ 1)ν
(j,j)
t (dx) +

∫

R

(x2 ∧ 1)ν
(0,j)
t (dx) <∞,

for any t > 0. The main goal of the paper then in essence amounts to estimating and succinctly

characterizing the tail properties of ν
(j,0)
t (x), ν

(j,j)
t (x) and ν

(0,j)
t (x).

Rather than doing so directly, for theoretical reasons explained in Bollerslev and Todorov

(2010a), we will do so for their images under the following mappings

ψ+(x) =

{
ex − 1, x ≥ 0
0, x < 0

ψ−(x) =

{
0, x ≥ 0
e−x − 1, x < 0

. (2.2)

This in effect transforms the logarithmic jumps ∆ps into Ps−Ps−

Ps−
, or functions thereof, akin to

switching from discrete-time logarithmic returns to arithmetic returns. In practice, of course,

for the actually observed jumps, the difference between ∆ps and Ps−Ps−

Ps−
is very small.

For the implementation of our estimation strategy, we will further assume that the jump

compensators ν
(j,0)
t (x) and ν

(j,j)
t (x) satisfy

νt(dx)
(j,d) = (ϕ

+(j,d)
t 1{x>0} + ϕ

−(j,d)
t 1{x<0})ν

(j,d)(dx), j = 1, ...,M, d = 0, j,

νt(dx)
(0,j) = (ϕ

+(j,0)
t 1{x>0} + ϕ

−(j,0)
t 1{x<0})ν

(0,j)(dx), j = 1, ...,M,
(2.3)

where ϕ
±(j,0)
t and ϕ

±(j,j)
t are nonnegative-valued stochastic processes with càdlàg paths.10 The

separability of the jump compensators into time and jump size in equation (2.3) is trivially

satisfied for almost all of the parametric jump models hitherto analyzed in the literature,

including the popular affine jump-diffusion class of models advocated by, e.g., Duffie et al.

(2000).

Next, denote the tail jump intensities by ν
±(j,d)
ψ (x) =

∫
ψ±(u)≥x

ν±(j,d)(du), for x ∈ R+. We

will then assume that for some (and hence any) x > 0 and u > 0, the ratio11

ν
±(j,d)
ψ (u+ x)

ν
±(j,d)
ψ (x)

, (2.4)

is in the domain of attraction of an extreme value distribution and satisfies a second-order

condition as in, e.g., Smith (1987). Recall, see, e.g., Theorem 1.2.5 of de Haan and Ferreira

10Note that equation (2.3) implicitly assumes that the temporal variation in the jump intensities for asset j

and the market portfolio constrained to the set T
(0)
[0,T ] ∩ T

(j)
[0,T ] are the same.

11Note that although the jump intensity ν
±(j,d)
ψ (x) is not a distribution function, the ratio is.
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(2006), that a distribution function F is defined to be in the domain of attraction of an extreme

value distribution if and only if for some positive valued function f ,

lim
u↑x∗

1 − F (u+ xf(u))

1 − F (u)
= (1 + ξx)−1/ξ, (2.5)

where 1+ ξx > 0, and x∗ denotes the endpoint of the distribution; i.e., x∗ = sup{x : F (x) < 1}.

The case ξ > 0 corresponds to heavy-tail distributions, while ξ = 0 defines light tails.12 In

the heavy-tail case, the extreme value approximation amounts to assuming that ν
±(j,d)
ψ (x) are

regularly varying at infinity functions; i.e., ν
±(j,d)
ψ (x) = x−β

±(j,d)
L±(j,d)(x), where β±(j,d) > 0

corresponds to ξ in (2.5), and L±(j,d)(x) are slowly varying at infinity functions.

To facilitate the discussion of our assumptions needed for the systematic jump tail depen-

dencies, we will let ν
(j)
syst(x) for x ∈ R

2 \ (0, 0) denote a measure with marginals ν
(j)
syst([x ×

(−∞,+∞)]) = ν(j,0)(x) and ν
(j)
syst([(−∞,+∞) × x]) = ν(0,j)(x) for x ∈ R, respectively. This

measure will control the time-invariant part of the jump compensator of the jumps in asset j

and the market constraint to the common set T
(0)

[0,T ] ∩ T
(j)

[0,T ]. Generalizing the univariate tail

measures to a vector [x1, x2] ∈ R
2
+ \ (0, 0), we denote the corresponding jump tail intensity by

ν
±(j)
syst,ψ([x1, x2]) =

∫
ψ±(u1)≥x1, ψ±(u2)≥x2

ν
±(j)
syst (d[u1, u2]).

13

We will then assume that for some (and hence any) x ∈ R
2 \ (0, 0) and u ∈ R

2
+, that the

ratio

ν
±(j)
syst,ψ(u + x)

ν
±(j)
syst,ψ(x)

, (2.6)

is in the domain of attraction of a mutlivariate extreme value distribution and satisfies certain

second order conditions as in, e.g., Einmahl et al. (1997). Recall, see, e.g., Theorem 6.2.1 of

de Haan and Ferreira (2006), that a bivariate distribution function F , with marginals Fi in

the domain of attraction of exp(−(1 + ξix)
−1/ξi) for i = 1, 2, is defined to be in the domain of

attraction of a multivariate extreme value distribution if and only if for every x, y > 0,

lim
u→∞

1 − F (U1(u · x), U2(u · y))

1 − F (U1(u), U2(u))
=

∫ π/2

0

(
1 ∧ tan(θ)

x
∨

1 ∧ cot(θ)

y

)
Φ(dθ), (2.7)

where Ui(·) for i = 1, 2 denote the inverse of the functions x → 1/(1−Fi(x)) that standardize the

marginals to belong to the domain of attraction of exp(−1/x), and the distribution function

Φ(·) is concentrated on [0, π/2] and satisfy the terminal condition
∫ π/2
0

(1 ∧ tan(θ))Φ(dθ) =∫ π/2
0

(1 ∧ cot(θ))Φ(dθ) = 1. Following Einmahl et al. (1997), Φ(·) is commonly referred to as

12The normal distribution, of course, implies ξ = 0.
13Formally, this definition only pertains to the quadrants of R

2 for which the sign of the jumps coincide. It
would be trivial, albeit notationally more cumbersome, to extended the analysis to jumps of opposite signs.
However, those cases are practically irrelevant.
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the spectral, or angular, measure of the extreme value distribution. It accounts for the tail

dependence between the two components and together with the extreme value distributions for

the marginals completely characterizes the bivariate extreme value distribution.

However, rather than directly estimating and interpreting the angular extreme value mea-

sure, empirically it is more convenient to characterize the tail dependencies through Pickands

(1981) dependence function. This function is formally defined from Φ(·) as

A(u) =

∫ π/2

0

((1 − u)(1 ∧ tan(θ)) ∨ u(1 ∧ cot(θ)))Φ(dθ), u ∈ [0, 1]. (2.8)

The function A(u) is convex and restricted to lie in the unit triangle; i.e., u∨(1−u) ≤ A(u) ≤ 1,

with endpoints A(0) = A(1) = 1. The lower bound of the triangle u ∨ (1 − u) corresponds to

perfect dependence, while the upper bound of unity obtains for asymptotically independent

variables; see, e.g., the discussion in Coles (2001) and Beirlant et al. (2004). In particular, as

first pointed out by Sibuya (1960), a bivariate normal distribution with correlation less than

unity has asymptotically independent tails and implies A(u) = 1 for all u ∈ [0, 1].

The overall degree of asymptotic dependence may also be conveniently summarized in terms

of the single tail-dependence parameter,

χ = lim
u→1−

P (F1(x) > u|F2(y) > u) . (2.9)

originally proposed by Sibuya (1960); see also the more recent discussion in Coles et al. (1999).

Intuitively, this measure gives the probability of observing an “extreme” observation in one of

the series given that the other series is also “extreme.” For two asymptotically independent

series with A(u) ≡ 1 it follows that χ = 0. More generally, it is possible to show that χ =

2
(
1 −A(1

2
)
)
, so that the tail-dependence parameter is directly related to the value of Pickands

dependence function at one-half.

Before we discuss the actual inference procedures that we rely in quantifying the different

theoretical measures outline above, it is important to stress that all of these pertain to “large”

jumps and corresponding “extreme” dependencies. We have essentially nothing to say about

the dependencies inherent in the “smaller” jumps related to the pathwise properties of the

process and the degree of jump activity. An empirical study of these features would require the

use of entirely different statistical techniques from the ones that we discuss next.

3 Jump Tail Estimation from High-Frequency Data

We will assume the availability of equidistant price observations for each of the M+1 assets

over the discrete time grid 0, 1
n
, 2
n
, ..., T , where n ∈ N and T ∈ N. We will denote the log-

price increments over the corresponding discrete time-intervals [ i−1
n
, i
n
] by ∆n

i p
(j) = p

(j)
i
n

− p
(j)
i−1
n

.
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Our estimation procedures will rely on both increasing sampling frequency and time span;

i.e., n → ∞ and T → ∞. Intuitively, we will use in-fill asymptotics, or n → ∞, to non-

parametrically separate jumps from continuous price moves, and more conventional long-span

asymptotics, or T → ∞, and Extreme Value Theory (EVT) for our inference about the jump

tails. We begin with a discussion of the former.

3.1 Separating Jumps from Volatility

In our separation of the price increments into jumps and continuous price moves we take into

account both the strongly persistent day-to-day variation and the intraday diurnal patterns

in the volatility; see, e.g, Andersen and Bollerslev (1997). In order to do so, for each day,

t = 1, ..., T , and each asset, j = 0, 1, ...,M , in the sample, we first compute the Realized

Variation (RV) and Bipower Variation (BV), defined by

RV
(j)
t =

tn+n∑

i=tn+1

|∆n
i p

(j)|2, BV
(j)
t =

π

2

tn+n∑

i=tn+2

|∆n
i p

(j)||∆n
i−1p

(j)|, (3.1)

respectively. Under weak regularity conditions and n→ ∞, see e.g., Andersen et al. (2003) and

Barndorff-Nielsen and Shephard (2004, 2006),

RV
(j)
t

P
−→

∫ t+1

t

(σ(j)
s )2ds+

∫ t+1

t

∫

R

x2µ(j)(ds, dx), BV
(j)
t

P
−→

∫ t+1

t

(σ(j)
s )2ds. (3.2)

Note that the Bipower Variation consistently estimates only the part of the total variation due

to continuous prices moves, or the so-called daily integrated variance.

Based on these daily realized variation measures, we subsequently estimate the Time-of-Day

(TOD) volatility pattern for each of the stocks and the aggregate market by,14

TOD
(j)
i =

n
∑T

t=1 |∆
n
itp|

21

(
|∆n

itp
(j)| ≤ τ

√
BV

(j)
t ∧ RV

(j)
t n−̟

)

∑nT
s=1 |∆

n
sp|

21

(
|∆n

sp
(j)| ≤ τ

√
BV

(j)
[s/n] ∧ RV

(j)
[s/n]n

−̟

) , it = (t− 1)n+ i, (3.3)

where i = 1, ..., n, and τ > 0 and ̟ ∈ (0, 0.5) are both constants. The truncation of the price

increments implied by τ and ̟ in the definition of TOD
(j)
i effectively remove the jumps. Hence

TOD
(j)
i measures the ratio of the diffusive variation over different parts of the day relative to

its average value for the day. In the empirical analysis reported on below we set τ = 3 and

̟ = 0.49. Intuitively, this means that we classify as jumps all of the high-frequency price

increments that are beyond three standard deviations of a local estimator of the corresponding

14Note, the asymptotic limit of BV
(j)
t is always below that of RV

(j)
t . The trimming BV

(j)
[i/n]∧RV

(j)
[i/n] is merely

a finite-sample adjustment.
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stochastic volatility. We not report these estimates below, the resulting TOD
(j)
i ’s generally

exhibit the well-known U-shaped pattern as a function of i over the trading day; this same

approach has also recently been used by Bollerslev and Todorov (2010b), who do provide a plot

of the estimated TOD
(0)
i for the aggregate market.

Relying on a similar approach, we estimate the Continuous Variation over the whole day

using a modification of the truncated variation measure originally proposed by Mancini (2009),

CV
(j)
t =

tn+n∑

i=tn+1

|∆n
i p

(j)|21
(
|∆n

i p
(j)| ≤ α

(j)
i n−̟

)
. (3.4)

Consistency and asymptotic normality of this estimator for n → ∞ and appropriate choice of

truncation level follows from Mancini (2009) and Jacod (2008). The truncation level α
(j)
i that

we actually use in separating the “realized” jumps from from the continuous price moves is

chosen adaptively based on our preliminary estimates of the stochastic volatility over the day

together with the within-day volatility pattern. Specifically,

α
(j)
i = τ

√
(BV

(j)
[i/n] ∧ RV

(j)
[i/n]) ∗ TOD

(j)
i−[i/n]n, i = 1, ..., nT, (3.5)

with τ and ̟ set to same values as discussed above. We rely on the difference between the

continuous and previously defined realized variation measures,

JV
(j)
t = RV

(j)
t − CV

(j)
t

P
−→

∫ t+1

t

∫

R

x2µ(j)(ds, dx), (3.6)

for consistently estimating the total variation attributable to jumps.

We also use the identical truncation approach to directly identify the sets of high-frequency

jump increments for each of the assets,

T̂
(j)

[0,T ] =
{
i ∈ [0, nT ] : |∆n

i p
(j)| ≥ α

(j)
i n−̟

}
, j = 0, 1, ...,M. (3.7)

Similarly, we define the sets of systematic and idiosyncratic jump times by,

T̂
(j,0)

[0,T ] = T̂
(j)

[0,T ] ∩ T̂
(0)

[0,T ], T̂
(j,j)

[0,T ] = T̂
(j)

[0,T ] \
{
T̂

(j)
[0,T ] ∩ T̂

(0)
[0,T ]

}
, j = 1, ...,M. (3.8)

Armed with these high-frequency based estimates for the times and actual “realized” jumps,

we next show how to use these in our estimation of the jump tail characteristics. We begin

with the univariate jump tails.

3.2 Univariate Jump Tails

To keep the notation simple, we will focus on the right tail and the systematic jumps. Our

estimation of the parameters for the negative and/or idiosyncratic jumps proceed analogous.
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The general assumptions about the jump tails set out in Section 2 imply that

1 −
ν

+(j,0)
ψ (u+ x)

ν
+(j,0)
ψ (x)

appr
∼

{
1 −

(
1 + ξ+(j,0)u/η+(j,0)

)−1/ξ+(j,0)

, ξ+(j,0) 6= 0,

e−u/η
+(j,0)

, ξ+(j,0) = 0,
(3.9)

where u > 0, x > 0 is some “large” value, and η+(j,0) > 0;15 for additional discussion of the

approximating Generalized Pareto distribution, see, e.g., Embrechts et al. (2001). Now, denote

the (re-scaled) scores associated with the log-likelihood function of the Generalized Pareto

distribution by,

φ+
1 (u, ξ+(j,0), η+(j,0)) =

1

η+(j,0)

(
1 −

(
1 + ξ+(j,0)

)(
1 +

ξ+(j,0)u

η+(j,0)

)−1
)
,

φ+
2 (u, ξ+(j,0), η+(j,0)) = log

(
1 +

ξ+(j,0)u

η+(j,0)

)
−
(
1 + ξ+(j,0)

)
{

1 −

(
1 +

ξ+(j,0)u

η+(j,0)

)−1
}
,

(3.10)

where i = 1, 2 refer to the derivatives with respect to η+(j,0) and ξ+(j,0), respectively. Then, for

truncation level tr
(j,0)
T increasing to infinity with T → ∞,

∫ t

0

∫

R

φ+
i (ψ+(x) − tr

(j,0)
T , ξ+(j,0), η+(j,0))1

(
ψ+(x) ≥ tr

(j,0)
T

)
µ(j,0)(ds, dx) i = 1, 2,

behave approximately as martingales. Combined with our previously discussed procedures for

directly “filtering” the “large” jumps from the high-frequency data, this in turn allows for the

construction of consistent and asymptotically normal method-of-moments type estimators for

the jump tail parameters.

In particular, following Bollerslev and Todorov (2010a) the simple-to-implement moment

conditions defined from the two martingales above and the jump sets defined in equation (3.8),

∑

i∈T̂
(j,0)
[0,T ]


 φ+

1 (ψ+(∆n
i p

(j)) − tr
(j,0)
T , ξ+, η+)1

(
ψ+(∆n

i p
(j)) ≥ tr

(j,0)
T ∨ ψ+(α

(j)
i n−̟)

)

φ+
2 (ψ+(∆n

i p
(j)) − tr

(j,0)
T , ξ+, η+)1

(
ψ+(∆n

i p
(j)) ≥ tr

(j,0)
T ∨ ψ+(α

(j)
i n−̟)

)

 , (3.11)

should both be arbitrarily close to zero asymptotically under the joint fill-in and long-span

asympotics. The precision of the resulting estimator for ξ+(j,0), determined by the asymptotic

limiting variance of the moment conditions, may be conveniently expressed as,

V̂ar
(
ξ̂+(j,0)

)
=

1

M
+(j,0)
T

(
1 + ξ̂+(j,0)

)2

, (3.12)

where

M
+(j,0)
T =

∑

i∈T̂
(j,0)
[0,T ]

1
(
ψ+(∆n

i p
(j)) ≥ tr

(j,0)
T ∨ ψ+(α

(j)
i n−̟)

)
, (3.13)

15Note with fat tails and β+(j,0) > 0, as discussed in Section 2, η+(j,0) ≡ x
β+(j,0) and ξ+(j,0) ≡ 1

β+(j,0) .
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denotes the actual number of jumps used in the estimation.

In order to actually implement these estimating equations, we obviously need to specify

the truncation level tr
(j,0)
T for each of the assets, j = 0, 1, ...,M . This choice must balance

the two opposing effects associated with the use of more jumps in the estimation generally

resulting in smaller sampling error, versus the use of more, and hence smaller, jumps resulting

in poorer approximation by the EVT distribution in equation (3.9)). In the main empirical

result reported on below, we set tr
+(j,0)
T such that M

+(j,0)
T /T = 0.02, corresponding to jumps of

that size or larger occurring 7 − 8 times per year.16

We next turn to a discussion of our multivariate estimation procedures and the strategy

that we use for assessing the “extreme” jump tail dependencies.

3.3 Jump Tail Dependencies

We will focus our discussion on the estimation of the tail dependencies between the jumps in

the aggregate market and the systematic jumps in the individual stocks. However, the same

basic estimation techniques may be applied to other bivariate series, and we do so for other

pairs of returns and jump tails in the empirical section.

For now, consider the dependence between the jumps in p(0) and p(j) that arrive at the

same time; i.e., the jumps that occur in the set T
(0)

[0,T ] ∩ T
(j)

[0,T ]. As discussed in Section 2, the

tail dependence between these is conveniently captured by Pickands dependence function, A(·).

We follow the approach of Einmahl et al. (1997) by essentially first estimating the underlying

spectral measure; see also Steinkohl et al. (2010). Specifically, for i ∈ T̂
(j,0)

[0,T ] , denote

X̂i,1 =





∣∣∣T̂ (j,0)
[0,T ]

∣∣∣
M

+(j,0)
T

[
1 +

ξ̂+(j,0)

η̂+(j,0)
(ψ+(∆n

i p
(j)) − tr

(j,0)
T )

]1/ξ̂+(j,0)

− 1





× 1
(
ψ+(∆n

i p
(j)) ≥ tr

(j,0)
T ∨ ψ+(α

(j)
i )
)

+ 1,

X̂i,2 =





∣∣∣T̂ (j,0)
[0,T ]

∣∣∣
M

+(0,j)
T

[
1 +

ξ̂+(0,j)

η̂+(0,j)
(ψ+(∆n

i p
(0)) − tr

(0,j)
T )

]1/ξ̂+(0,j)

− 1





× 1
(
ψ+(∆n

i p
(0)) ≥ tr

(0,j)
T ∨ ψ+(α

(0)
i )
)

+ 1,

(3.14)

where
∣∣∣T̂ (j,0)

[0,T ]

∣∣∣ refers to the number of elements in the set T̂
(j,0)

[0,T ] , and we have suppressed the

dependence on the index j for notational convenience. Also, let

R̂i = X̂i,1 + X̂i,2, (3.15)

16This choice, of course, directly dictates the accuracy of the estimator for ξ+(j,0) according to the expression
in equation (3.12). As noted below, however, we also experimented with the use of other truncation levels,
resulting in qualitatively very similar point estimates.
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denote the sum of the two marginals. An initial estimator for Pickand’s dependence function

is then naturally obtained by,

Âj,0(u) =
2

M
+(j,0)
T

∑

i∈T̂
(j,0)
[0,T ]

1

(
R̂i > R̂∣∣∣T̂ (j,0)

[0,T ]

∣∣∣−M+(j,0)
T

,
∣∣∣T̂ (j,0)

[0,T ]

∣∣∣

) max
{

(1 − u)X̂i,1, uX̂i,2

}

R̂i

, u ∈ [0, 1].

where R̂
i,
∣∣∣T̂ (j,0)

[0,T ]

∣∣∣ denotes the i-th order statistics.

Following Beirlant et al. (2004), Section 9.4.1, we further modify this initial estimator,

Ãj,0(u) = max
{
u, 1 − u, Âj,0(u) + 1 − (1 − u)Âj,0(0) − uÂj,0(1)

}
, u ∈ [0, 1]. (3.16)

so that it always stays within its lower asymptotic bound of max(1−u, u) and the upper bound

of unity. Using the relationship discussed in Section 2, our final non-parametric estimate for

the degree of asymptotic tail dependence is simply obtained by evaluating this function at

one-half,17

χ̂j,0 = 2(1 − Ãj,0(1/2)). (3.17)

This completes our discussion of the different estimation procedures. We next summarize our

empirical findings based on high-frequency intraday data for a large cross-section of individual

stocks.

4 Empirical Results

4.1 Data

Our high-frequency data for the individual stocks was obtained from price-data.com. It consist

of 5-minute transaction prices for the fifty largest capitalization stocks included in the S&P

100 index with continuous price records from mid 1997 until the end of 2008.18 The price

records cover the trading hours from 9:35 EST to 16:00 EST, for a total of 76 intraday return

observations per day. Our proxy for the aggregate market portfolio is based on comparable

5-minute data for the S&P 500 futures index obtained from Tick Data Inc.

17χ may alternatively be estimated based on explicitly parameterized bivariate distributions, or copulas. In
particular, χ = limu→1− C(u, u), for the copula C(·, ·) that links the two marginals; Smith et al. (2011), e.g.,
estimate the upper tail dependence in “spikes” in electricity prices for different geographical regions based on
asymmetric skew t copulas. The estimation of the underlying copula, however, is generally based on all of the
data and not just the “tail” observations, and as pointed out by Frahm et al. (2005), a misspecified copula that
might fit well in the center of the distribution can give rise to very misleading estimates for the tail dependencies.

18The actual start date and number of complete trading days available for each of the stocks in the sample
differ slightly, ranging from a low of 2,832 to a high of 2,922, with a medium of 2,918 days.
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Table 1 provides key summary statistics for each of the stocks included in the sample as

well as the S&P 500 futures index (SPFU). Not surprisingly, the average continuous variation

(CV) for all of the individual stocks far exceed that of the market. Similarly, the variation

attributable to jumps (JV) is also numerically much larger for each of the individual stocks

than it is for the market. In terms of the total variation, the share due to jumps range from

a low of 6.5% to a high of 19.0%, with a median value across all fifty stocks of 13.0%. In

contrast, the corresponding number for the aggregate market index equals 9.4%, so that jump

risk appears to be relatively more important at the individual stock level.

Table 1 about here

The last two columns in the table, which report the total number of systematic and idiosyn-

cratic jumps detected for each of the stocks, further corroborates this idea. For almost all of

the stocks the total number of jumps exceed the number of market-wide jumps for the S&P

500. These numbers also suggest very high overall jump intensities ranging from slightly more

than one jump per day to about one jump every other day.19 The finding that the individual

stocks contain more jumps than the market is consistent with the hypothesis of diversifiable

individual jump risk originally put forth by Merton (1976). Of course, the mere existence of

jumps at the market level refutes the conjecture that jump risk is entirely firm specific.

Further to this effect, the number of so-called systematic jumps, or jumps in the individual

stocks that occur at the same time as the market jumps, are clearly non-trivial. Still, it

is obviously not the case that when a “large” market jump occurs, it automatically triggers

“large” jumps in all of the individual stocks. As such, a simple linear one factor market model

appears too simplistic to describe the relation between the individual and market-wide jumps,

and in turn the joint dependencies in the jump tails.

Figure 1 about here

In order to more clearly visualize the different types of jump sets, we plot in Figure 1 the

5-minute logarithmic prices for three separate days for IBM, as a representative stock, and the

S&P 500 market portfolio. For ease of comparison, we normalize the logarithmic price at the

beginning of the day to zero across all of the panels. The top panel shows the intraday prices

on October 29, 2002, a day where the aggregate market jumped but IBM did not. The jump

19With infinitely activity jumps, the total number of “significant” jumps will naturally be expected to increase
to infinity for ever increasing sampling frequency, and these numbers need to be interpreted accordingly.
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in the market obviously occurred at 10:00EST, and is readily associated with a disappointing

reading of the Consumer Confidence Index released at that exact time.20 The middle panel

shows the prices on January 3, 2001, a day with a systematic jump in IBM. The timing of the

systematic jumps is again readily associated with the surprise cut in the Federal Funds Rate

announced at 13:10EST on that day. The final third panel shows February 26, 2008, when

the board of directors for IBM announced at 11:00EST that they had authorized $15 billion

in additional funds for stock repurchases, resulting in an idiosyncratic jump in IBM, but no

discernable dis-continuities in the within day prices for the aggregate market.

We continue next with a discussion of our estimation results pertaining to these different

idiosyncratic and systematic jump tail distributions.

4.2 Marginal Jump Tails

Our estimation results for the scalar tail decay parameter ξ for each of the marginal jump tail

distributions are reported in Table 2. The relevant truncation levels for the different tails are

determined by the equivalent of 0.02 times the daily sample sizes. Corresponding asymptotic

standard errors for each of the individual estimates are immediately available from the formula

in equation (3.12).

Looking first at the results for the S&P 500 market portfolio, both of the jump tails are

heavy with the right tail decaying at a slower rate than the left, or ξ̂+(0,0) > ξ̂−(0,0) > 0. This is

consistent with the empirical evidence reported in Bollerslev and Todorov (2010a), and directly

refutes the popular compound Poisson jump model with normally distributed jump sizes that

have been used extensively in the existing literature.

Turning to the results for the systematic jumps in the individual stocks, all of the point

estimates for ξ are positive, again indicating heavy-tailed jump distributions. In parallel to the

results for the market, for many of the stocks the estimate for the right tail appears larger than

the left.21 Of course, given the relatively low number of observations invariably available for

the estimation of the jump tails, many of the estimates are not significantly different from zero

when judged by their individual standard errors of approximately M−1/2 ≈ 0.131 under the

null hypothesis of light tails. Taken as a whole, however, the cross-sectional evidence clearly

suggests that the systematic jumps are heavy-tailed.22 At the same time, the dispersion in the

20Andersen et al. (2003) and Andersen et al. (2007), among many others, have previously studied the relation-
ship between regularly scheduled macroeconomic news announcements and jumps and/or large price movements
in asset prices.

21Related empirical evidence for overall larger right tails in half-hourly raw returns for various sector indexes
has recently been reported by Straetmans et al. (2008).

22Related to this, Kelly (2010) has recently explored ways in which to increase the efficiency of tail index
estimation by pooling across different stocks. His estimates, however, are based on coarser daily frequency
returns and not the jump tails per se, and do not explicitly differentiate between the systematic and idiosyncratic
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estimates again suggests that the relationship between the individual and market-wide jumps is

not well described by a simple one factor market model, which would imply identical systematic

jump tail decay parameters across all of the stocks.

Table 2 about here

The estimates for the idiosyncratic jump tails are reported in the last two columns of the

table. Almost all of the point estimates are again positive, and for many of the stocks exceed

those for the systematic jump tails. Also, in parallel to the systematic jump tails, the tail

decay parameters for the right tails often dominate those for the left, indicative of greater

upside potential than downside firm specific risks.

Meanwhile, as previously noted, given the relatively short time span and limited number

of “tail” observations underlying the estimation, all of the point estimates are admittedly

somewhat imprecise. To check the robustness of the results, we therefore redid the estimation

for the idiosyncratic jump tails based on a truncation level equivalent to a total of 200 jump

tail observations, implying a smaller asymptotic standard error under the null of ξ = 0 of

approximately M−1/2 ≈ 0.071. The resulting estimates are generally fairly close to the ones

based on the larger truncation level, with medium estimates of 0.187 and 0.193 for the left and

right tail decay parameters, respectively, compared to the values 0.185 and 0.155 reported in

the table.23

Figure 2 about here

To more directly illustrate the estimation results, we plot in Figure 2 the relevant jump tail

estimation for IBM together with the actually observed “moderate” to “large” sized jumps. To

facilitate the visual comparisons, the tails are plotted on a double logarithmic scale.24 As is

evident from the figure, the overall magnitude of the idiosyncratic jump tails in the bottom

two panels dominate the systematic ones depicted in the top two panels. At the same time,

parts of the tails.
23Further details concerning these robustness checks are available upon request. We also experimented with

the use of lower truncation levels for the estimation of the systematic jump tails. However, the total number of
systematic jumps for each of the stocks defined by the set in (3.8) and the relatively high threshold level in (3.5)
naturally limits the total number of systematic jumps, as reported in Table 1. As such, the jumps identified
as systematic are truly the “large” ones in a joint sense, and the ones actually used in the estimation much
“deeper” in the tails than a naive comparison of their number relative to the total number of systematic jumps
would suggest.

24The flat lines for the actually observed jumps at −7.98 ≈ log(1/2, 922) correspond to the occurrence of one
jump of that particular size in the sample. Similarly, for the other apparent lines at log(j/2, 922) for integer j.
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the corresponding estimates for ξ are all quite similar, except for the right systematic jump

tail shown in the top right panel, which decays at a somewhat slower rate. The generally

excellent fits afforded by the estimated solid lines for the actually observed jump tails, also

directly underscore the accuracy of the marginal EVT approximation underlying our estimation

procedures.25

4.3 Systematic Jump Tail Dependencies

4.3.1 High-Frequency Dependencies

Before we discuss the general set of estimation results pertaining to all of the fifty stocks, it is

instructive to again consider the jump tail dependencies that we are after by looking at IBM

as a representative stock. To this end, we plot in Figure 3 the pairs of realized positive and

negative systematic jumps for IBM and the S&P 500 market portfolio. The figure clearly reveals

a strong positive association between the systematic jumps in the stock and the jumps in the

market index. Visual inspection also suggests that for IBM this association might be slightly

stronger for the negative than the positive jumps, although not overwhelmingly so.26

Figure 3 about here

Of course, we are primarily interested in the “extreme” tail dependencies, and the prob-

ability/intensity of observing a “large” jump in one of the individual stocks given that the

market jumped by a “large” amount. As discussed above, this probability follows directly from

Pickands dependence function. Our estimates of that function for the negative (solid line) and

positive (dashed line) systematic IBM and market wide jumps are plotted in Figure 4. Both

of the estimated curves are far below unity, as would be implied by independent tails, and

much closer to the lower bound of perfect dependence as indicated by the triangle. Moreover,

while simple visual inspection of the aforementioned scatter plot in Figure 3 seemingly point to

somewhat stronger dependencies for the negative jump tails, the non-parametrically estimated

“extreme” dependence functions are fairly close throughout most of the support. The corre-

sponding estimates for the tail-dependence coefficients obtained by evaluating the functions

at one-half together with the formula for χ in equation (3.17) equal 0.749 and 0.706 for the

right and left tails, respectively. Hence, counter to the naive impression from Figure 3 and

25Importantly, the new procedures would also allow us to meaningfully extrapolate the behavior of the jump
tails and corresponding “extreme” jump quantiles to levels which would be impossible to accurately estimate
with standard parametric approaches and lower frequency, say daily, data; for further discussion along these
lines see Bollerslev and Todorov (2010a).

26The simple linear correlations for the jump pairs depicted in two panels equal 0.902 and 0.752 for the
negative and positive jumps, respectively.
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many stories in the popular financial press about various “doomsday scenarios,” our formal

high-frequency based estimates actually suggest slightly stronger asymptotic tail dependencies

during sharp market rallies, or positive jumps, than during steep market declines, or negative

jumps.

Figure 4 about here

To further help gauge the magnitude of the estimated dependencies, we also include in

Figure 4 estimates of Pickands dependence function based on the raw high-frequency 5-minute

returns. These functions are systematically higher, and the resulting tail dependencies lower,

than the ones based on the systematic jump tails. Intuitively, the dependence in the raw

returns manifest several features in the underlying latent bivariate semimartingale process that

describes the joint dynamics of the two price series. On the one hand, the presence of common,

or systematic, jumps tends to produce strong tail dependencies, as directly evidenced by the

previously discussed estimates. On the other hand, the presence of idiosyncratic jumps tends to

weaken the tail dependencies. Similarly, pure diffusive price moves formally imply asymptotic

independence. At the same time, however, the presence of time-varying stochastic volatility will

tend to generate tail dependence through periods of high volatility. As further discussed below,

the combination of all of these separate effects in turn accounts for the weaker tail dependencies

observed with the raw high-frequency returns.

Table 3 about here

These specific results for IBM carry over to the rest of the stocks in the sample. In particular,

turning to Table 3, the first two columns in the table show the estimated asymptotic tail

dependencies for the raw 5-minute returns for each of the fifty stocks. These estimates are

generally fairly low. The results also closely mirror those obtained by restricting the sample

to only those 5-minute returns that are classified as jumps, or the set T̂
(j)

[0,T ]. In contrast,

the estimated dependence coefficients for the systematic jump tails, or the returns in the set

T̂
(j,0)

[0,T ] = T̂
(j)

[0,T ] ∩ T̂
(0)

[0,T ], are all very high ranging from 0.604 to 0.794. The estimates are also

surprisingly close to symmetric for most of the stocks, and if anything slightly large for the right

tails. As such, the results in the table clearly support the notion that most of the “extreme”

dependencies reside in the systematic jumps tails. Building on this idea, we next show how to

identify and isolate the effect of time-varying stochastic volatility as another separate source of

tail dependence in lower frequency daily returns.
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4.3.2 Daily Dependencies

We continue to rely on the high-frequency data for explicitly “filtering” out the jumps in the

daily returns and variation measures. In particular, for each asset, j = 0, 1, ...,M , and day,

t = 1, ..., T , in the sample, the part of the daily returns associated with continuous price moves

are naturally estimated by the sum of the intraday high-frequency returns that are not classified

as jumps,

z
(j)
t =

tn∑

i=(t−1)n+1

[(
∆n
i p

(j)

∆n
i p

(0)

)
1

(
|∆n

i p
(j)| ≤ α

(j)
i n−̟

|∆n
i p

(0)| ≤ α
(0)
i n−̟

)]
. (4.1)

Under the assumption of finite variation jumps and weak additional regularity conditions, it

follows readily from the expression for the general semimartingale process in equation (2.1) that

for n→ ∞,

z
(j)
t

P

−→

( ∫ t
t−1

α
(j)
s ds+

∫ t
t−1

σ
(j)
s dW

(j)
s ds∫ t

t−1
α

(0)
s ds+

∫ t
t−1

σ
(0)
s dW

(0)
s ds

)
. (4.2)

The first integrals on the right-hand-side associated with the drifts in the individual stock

and aggregate market prices are both negligible, and will not affect the estimated daily tail

dependencies. Further, assuming the diffusive volatilities to be constant and the Brownian

motions not perfectly correlated, the terms associated with the second integrals would be jointly

normally distributed and hence result in asymptotically independent tails. Consequently, any

tail dependence between the two components in z
(j)
t is therefore directly attributable to time-

varying stochastic volatility.

Going one step further, it is possible to non-parametrically “remove” the effect of the

stochastic volatility by standardizing z
(j)
t with an estimator of its quadratic variation. Specifi-

cally,

z̃
(j)
t =





tn∑

i=(t−1)n+1

[(
(∆n

i p
(j))2 ∆n

i p
(j)∆n

i p
(0)

∆n
i p

(j)∆n
i p

(0) (∆n
i p

(0))2

)
1

(
|∆n

i p
(j)| ≤ α

(j)
i n−̟

|∆n
i p

(0)| ≤ α
(0)
i n−̟

)]


−1/2

z
(j)
t ,

(4.3)

where the estimator for the daily quadratic variation is based on a multivariate version of the

truncated Continuous Variation measure defined in equation (3.4).27 Then, in analogy to the

results discussed above, it follows that for n→ ∞,

z̃
(j)
t

P
−→

(
〈p

(j)
s , p

(j)
s 〉(t−1,t] 〈p

(j)
s , p

(0)
s 〉(t−1,t]

〈p
(j)
s , p

(0)
s 〉(t−1,t] 〈p

(0)
s , p

(0)
s 〉(t−1,t]

)−1( ∫ t
t−1

α
(j)
s ds+

∫ t
t−1

σ
(j)
s dW

(j)
s ds∫ t

t−1
α

(0)
s ds+

∫ t
t−1

σ
(0)
s dW

(0)
s ds

)
, (4.4)

27Note, this estimator is guaranteed to be positive semi-definite by construction.
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where 〈p
(j)
s , p

(0)
s 〉(t−1,t] refers to the continuous part of the quadratic covariation between p(j) and

p(0) over the (t−1, t] daily time interval. As before, the impact of the drift terms may be ignored,

so that the non-parametrically “devolatilized” pairs of returns z̃
(j)
t should be approximately

bivariate standard normally distributed.28

Figure 5 about here

Motivated by these ideas, Figure 5 plots Pickands dependence functions for each of the

bivariate IBM series z
(IBM)
t and z̃

(IBM)
t . Our estimates are based on exactly the same estimation

procedures and truncation levels as the ones described for the jump tails in Sections 3.2 and 3.3.

In light of the above discussion, we would expect the left and right tail functions corresponding

to z̃
(IBM)
t to be close to unity. The two curves in the figure confirm this, thus indirectly

underscoring the accuracy of our empirical approximations, and the minimal influence imparted

by the finite-sample measurement errors and “leverage effect.”

Further elaborating on the results, the wedge between the estimated dependence functions

for z
(IBM)
t and z̃

(IBM)
t directly reveals the effect of the diffusive stochastic volatility on the

overall tail dependence. As seen from the figure, this wedge is obviously non-trivial, and shows

that time-varying volatility is indeed responsible for some of the asymptotic tail dependence

between the daily individual stock returns and the return on the aggregate market portfolio.

Interestingly, the figure also points to slightly weaker dependencies in the right (dashed line)

than the left (solid line) jump-adjusted return tails. This slight difference and reversal vis-a-

vis the earlier results for the high-frequency returns may in part be attributed to the within

day “leverage effect.” Meanwhile, comparing Figures 4 and 5 and the magnitudes therein, the

systematic jump tails are clearly associated with much stronger “extreme” dependencies than

the ones induced by the more slowly moving daily diffusive volatility.

Table 4 about here

To further corroborate these specific results for IBM, we report in Table 4 the estimated

tail dependence coefficients χ for the raw daily returns, the jump-adjusted returns z
(j)
t , and

28The approximation comes from the need to estimate the quadratic variation and a possible “leverage effect,”
or negative correlation between the within day stochastic volatility and price innovations. The latter should have
only minimal effect, and if anything, result in slightly stronger negative tail dependencies. A related univariate
standardization approach has been proposed by Andersen et al. (2007), and further explored empirically by
Andersen et al. (2010), who confirm that the jump-adjusted “devolatilized” returns for a sample of individual
stocks are approximately univariate standard normally distributed.
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the jump-adjusted “devolatilized” returns z̃
(j)
t , for each of the fifty stocks in the sample. For

comparison purposes, we also include the results where we ignore the temporal variation in

the continuous covariation and only standardize the jump-adjusted returns by their respective

univariate continuous variation measures; i.e., the series obtained by restricting the off-diagonal

elements in the matrix in equation (4.3) to be zero.29

Looking first at the results for the raw daily returns, the estimated tail-dependence coeffi-

cients are generally quite close across all of the fifty stocks, with median values of 0.247 and

0.229 for the positive and negative tails, respectively. These numbers are, of course, somewhat

larger than the median dependencies estimated with the raw 5-minute returns, but they are

dwarfed by the estimates for the systematic jump tails. Removing all of the “large” jumps

from the daily returns barely changes the average dependence-coefficient estimates. This is

consistent with the aforemention results for the high-frequency “filtered” jumps reported in

Table 3, which are similarly close to the results for the raw 5-minute returns. The results for

the univariate “devolatilized” returns reported in the next pair of columns, confirm that some

of the tail dependence may indeed be ascribed to time-varying volatility. For most of the stocks,

the univariate standardization reduces χ̂+ and χ̂+ by a factor of roughly two relative to the

estimates for the jump-adjusted returns z
(j)
t .30 Meanwhile, standardizing the jump-adjusted

returns by the full realized continuous covariation matrix to explicitly account for the temporal

variation in the diffusive covariance risk as well, effectively eliminates all of the remaining de-

pendencies, and results in i.i.d. bivariate normal distributions and asymptotically independent

tails.

All-in-all, the empirical results reported in the tables clearly show how the new high-

frequency based procedures developed here allow us to “dissect” the generic semimartingale

representation in equation (2.1), and assess the role of the different terms in generating asymp-

totic tail dependencies.

5 Conclusion

We propose a new set of statistical procedures for dissecting and estimating the distributional

features of individual asset return jump tails. Our estimation techniques are based on in-fill

and long-span asymptotics, together with extreme value type approximations. On applying the

new estimation methods with a large panel of high-frequency data for fifty individual stocks and

29As previously noted, Andersen et al. (2010) have recently shown that a closely related univariate standard-
ization scheme results in approximate univariate standard normal distributions empirically.

30This is also consistent with the earlier empirical evidence in Poon et al. (2004), who report that standardizing
daily international equity index returns by simple univariate parametric GARCH models tend to reduce the
estimated tail dependencies.

20



the S&P 500 market portfolio, we find that the idiosyncratic and systematic jumps are both

generally heavy tailed, albeit typically less so than the tails for the market-wide jumps. We

also find strong evidence for asymptotic tail dependence between the individual stocks and the

market index, with most of it directly attributable to the systematic jump tails. Thus, there is

not only commonality across jump arrivals in stocks, but also strong dependence between their

sizes. Further building on the same techniques, we also document non-trivial tail dependencies

in longer horizon daily returns, and show how some of that dependence may be directly ascribed

to the effect of interdaily temporally varying stochastic volatility.

As such, our empirical findings directly highlight the importance of the new estimation

framework for better understanding and more accurately modeling tail and systemic risk events,

like the ones experienced during the recent financial crises. The estimation techniques develop

here could also be usefully applied with high-frequency data from different countries in the

study of “extreme” international market linkages and contagion type effects.31 We leave further

empirical investigations along these lines for future work.

31Related to this, Aı̈t-Sahalia et al. (2010) have recently explored the use of mutually exciting jump processes
for describing the propagation of stock market shocks, or jumps, around the world.
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Figure 1: IBM and Market-Wide Jumps
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Note: The figure shows the 5-minute logarithmic prices for IBM and the S&P 500 futures index for October 29, 2002 (top panel),

January 3, 2001 (middle panel), and February 26, 2008 (bottom panel). The logarithmic prices are normalized to zero at the

beginning of each day.
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Figure 2: IBM Jump Tails
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Note: The figure shows the estimated (solid line) and actually observed (stars) systematic (top two panels) and idiosyncratic

(bottom two panels) negative (left two panels) and positive (right two panels) jump tails for IBM. The tails are plotted on a double

logarithmic scale. All of the jumps are extracted from 5-minute returns spanning 1997 through 2008.
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Figure 3: IBM Systematic Jumps
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Note: The figure shows the scatter of systematic negative (top panel) and positive (bottom panel) jumps in IBM and the S&P 500

market portfolio. The jumps are extracted from 5-minute returns spanning 1997 through 2008.
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Figure 4: Pickands Dependence Functions for High-Frequency IBM Returns
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Note: The figure shows estimates of Pickands dependence function for IBM and the S&P 500 market portfolio based on 5-minute

returns (top two curves) and the systematic jump tails (bottom two curves). The dashed (solid) lines correspond to the positive

(negative) tails. The jumps are extracted from 5-minute returns spanning 1997 through 2008.
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Figure 5: Pickands Dependence Functions for Daily IBM Returns
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Note: The figure shows estimates of Pickands dependence function for IBM and the S&P 500 market portfolio based on daily

returns (bottom two curves) and the jump-adjusted “devolatilized” daily returns (top two curves) denoted by z̃
(j)
t in the main text.

The dashed (solid) lines correspond to the positive (negative) tails. The sample spans the period from 1997 through 2008.
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Table 1: Summary Statistics

CV JV Jump Counts
Ticker Mean st.dev. Mean st.dev. Systematic Idiosyncratic

PG 1.934 2.665 0.294 1.703 197 1572
GE 2.789 4.961 0.333 1.862 314 1320

T 3.371 4.481 0.469 1.520 163 1765
JNJ 1.643 2.417 0.226 0.679 191 1915

MSFT 3.060 3.916 0.292 0.949 191 1292
WMT 2.840 3.617 0.407 1.797 236 1508
PFE 2.543 3.036 0.373 1.076 182 1543
JPM 4.292 9.896 0.555 2.432 258 1529
IBM 2.461 3.303 0.311 1.488 222 1375

WFC 3.220 7.381 0.478 2.429 257 1726
CSCO 5.436 7.190 0.453 1.456 155 1276

KO 1.970 2.522 0.242 0.647 216 1635
HPQ 4.339 5.271 0.728 2.443 188 1826
PEP 2.300 2.837 0.330 1.398 166 1738
ABT 2.514 2.879 0.373 0.969 201 1796

INTC 4.877 5.960 0.340 0.966 168 1126
AAPL 7.539 7.882 1.069 2.636 146 1872
BAC 3.647 8.483 0.504 2.588 254 1488

ORCL 6.817 8.517 0.745 1.761 159 1669
MCD 2.615 3.346 0.378 0.958 174 1867
MRK 2.326 3.239 0.416 2.143 186 1704

AMGN 4.035 5.040 0.546 1.351 145 1846
QCOM 8.348 11.942 0.969 2.463 161 1616

UTX 2.601 3.768 0.408 1.255 187 1984
BMY 2.793 3.620 0.538 2.264 197 2087
USB 3.810 6.673 0.696 1.763 230 2187
DIS 3.313 4.273 0.494 1.792 175 1825

MMM 2.070 2.954 0.305 0.726 194 1865
C 5.029 19.785 0.566 2.613 240 1329

MDT 2.443 3.377 0.558 2.052 172 2292
CL 2.202 2.787 0.379 1.023 183 2065

BAX 2.198 3.451 0.480 1.881 139 2451
BK 4.544 13.167 0.821 4.984 275 1975

UNH 3.084 4.832 0.638 1.754 125 2414
LOW 3.929 5.042 0.650 1.693 169 1977

BA 3.046 3.937 0.423 1.032 152 1775
MO 2.517 2.995 0.564 2.827 158 1833
SO 2.400 2.795 0.304 1.083 151 1841

LMT 2.899 3.687 0.544 1.400 134 2162
SGP 3.786 4.767 0.724 3.456 145 1903
CAT 3.286 4.931 0.441 0.961 187 1800
WAG 3.071 3.700 0.524 1.380 170 2021

DD 2.996 4.105 0.352 0.794 192 1610
GD 2.221 2.949 0.531 1.186 183 3104

AXP 3.841 7.596 0.595 2.786 233 1767
TXN 6.442 7.136 0.751 2.269 155 1464
FDX 2.695 3.410 0.488 1.004 171 2350
ETR 2.291 3.805 0.469 1.066 153 2932

DOW 2.871 3.878 0.520 1.462 190 2110
AEP 2.443 6.549 0.397 1.532 167 2513

min 1.643 2.417 0.226 0.647 125 1126
max 8.348 19.785 1.069 4.984 314 3104
25th 2.448 3.314 0.374 1.069 160 1612
50th 2.947 3.927 0.479 1.526 183 1826
75th 3.833 6.402 0.562 2.234 197 2012

SPFU 1.122 2.19 0.116 0.723 1621

Note: The sample period for the fifty stocks range from mid 1997 through December
2008, for a minimum of 2,832 to a maximum of 2,922 daily observations.
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Table 2: Jump Tail Decay Parameters

Systematic Idiosyncratic

Ticker ξ̂− ξ̂+ ξ̂− ξ̂+

PG 0.240 0.138 0.307 0.322
GE 0.014 0.340 0.221 0.365

T 0.022 0.214 0.231 0.102
JNJ 0.017 0.012 0.316 0.003

MSFT 0.028 0.216 0.144 0.161
WMT 0.041 0.008 0.234 0.308
PFE 0.045 0.143 0.207 0.149
JPM 0.379 0.310 0.398 0.304
IBM 0.186 0.546 0.202 0.208

WFC 0.334 0.332 0.007 0.481
CSCO 0.061 0.236 0.314 0.236

KO 0.133 0.140 -0.004 0.160
HPQ 0.343 0.307 0.048 0.041
PEP 0.050 0.283 0.001 0.192
ABT 0.007 0.149 0.240 0.197

INTC 0.028 0.022 0.026 0.090
AAPL 0.123 0.009 0.061 0.402
BAC 0.304 0.171 0.228 0.369

ORCL 0.208 0.047 0.005 0.017
MCD 0.063 0.116 0.193 0.039
MRK 0.091 0.265 0.006 0.263

AMGN 0.009 0.082 0.066 0.035
QCOM 0.219 0.258 0.013 0.142

UTX 0.131 0.067 0.239 0.005
BMY 0.016 0.015 0.003 0.009
USB 0.163 0.011 0.010 0.101
DIS 0.348 0.203 0.378 0.316

MMM 0.225 0.176 0.023 0.339
C 0.332 0.379 0.186 0.136

MDT 0.008 0.102 0.004 0.130
CL 0.164 0.029 -0.006 0.312

BAX 0.013 0.006 0.445 0.002
BK 0.022 0.286 0.472 0.390

UNH 0.159 0.240 0.123 0.279
LOW 0.234 0.308 0.050 0.035

BA 0.284 0.011 0.343 0.103
MO 0.176 0.266 0.134 0.274
SO 0.022 0.015 0.387 0.362

LMT 0.367 0.066 0.217 0.332
SGP 0.015 0.008 0.320 0.006
CAT 0.076 0.197 0.277 0.062
WAG 0.249 0.295 0.260 -0.004

DD 0.047 0.011 0.132 0.136
GD 0.132 0.058 0.183 0.014

AXP 0.205 0.206 0.313 0.150
TXN 0.019 0.250 0.043 0.272
FDX 0.290 0.130 0.028 0.066
ETR 0.300 0.215 0.020 0.116

DOW 0.140 0.227 0.172 0.303
AEP 0.131 0.022 0.572 0.450

min 0.007 0.006 -0.006 -0.004
max 0.379 0.546 0.572 0.481
25th 0.028 0.033 0.027 0.063
50th 0.132 0.160 0.185 0.155
75th 0.232 0.256 0.273 0.307

SPFU 0.232 0.465

Note: The estimated jump tail decay parame-
ters are based on M = 0.02*T jump observations
extracted from 5-minute returns spanning 1997
through 2008.
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Table 3: High-Frequency Tail-Dependence Coefficients

5-min Returns All Jumps Systematic Jumps
Ticker χ̂+ χ̂− χ̂+ χ̂− χ̂+ χ̂−

PG 0.138 0.064 0.065 0.079 0.689 0.691
GE 0.188 0.106 0.149 0.174 0.676 0.691

T 0.132 0.042 0.071 0.118 0.754 0.688
JNJ 0.122 0.071 0.073 0.061 0.680 0.697

MSFT 0.076 0.103 0.103 0.111 0.773 0.732
WMT 0.114 0.055 0.069 0.088 0.690 0.631
PFE 0.134 0.079 0.090 0.054 0.723 0.678
JPM 0.113 0.056 0.106 0.144 0.704 0.679
IBM 0.083 0.133 0.104 0.143 0.749 0.706

WFC 0.192 0.100 0.122 0.065 0.664 0.634
CSCO 0.115 0.039 0.090 0.139 0.770 0.650

KO 0.121 0.092 0.112 0.092 0.733 0.671
HPQ 0.057 0.032 0.087 0.054 0.754 0.670
PEP 0.139 0.080 0.090 0.086 0.748 0.733
ABT 0.111 0.033 0.072 0.056 0.709 0.633

INTC 0.125 0.058 0.103 0.091 0.687 0.689
AAPL 0.065 0.074 0.038 0.064 0.738 0.657
BAC 0.150 0.079 0.086 0.105 0.656 0.653

ORCL 0.065 0.016 0.031 0.033 0.743 0.656
MCD 0.116 0.032 0.064 0.028 0.710 0.621
MRK 0.116 0.044 0.070 0.046 0.733 0.653

AMGN 0.103 0.009 0.067 0.032 0.777 0.610
QCOM 0.030 0.023 0.038 0.048 0.699 0.641

UTX 0.161 0.033 0.056 0.046 0.683 0.691
BMY 0.080 0.053 0.080 0.047 0.619 0.738
USB 0.160 0.075 0.098 0.064 0.713 0.698
DIS 0.154 0.084 0.090 0.087 0.780 0.695

MMM 0.137 0.057 0.076 0.055 0.634 0.621
C 0.073 0.087 0.106 0.118 0.742 0.625

MDT 0.030 0.001 0.029 0.017 0.661 0.670
CL 0.087 0.021 0.081 0.038 0.638 0.656

BAX 0.070 0.029 0.017 0.026 0.678 0.704
BK 0.227 0.038 0.143 0.125 0.683 0.656

UNH 0.179 0.069 0.073 0.023 0.736 0.701
LOW 0.132 0.075 0.062 0.080 0.708 0.741

BA 0.160 0.064 0.059 0.074 0.708 0.776
MO 0.066 0.050 0.052 0.022 0.722 0.655
SO 0.114 0.063 0.073 0.050 0.732 0.726

LMT 0.066 0.047 0.034 0.049 0.794 0.726
SGP 0.082 0.066 0.049 0.065 0.762 0.667
CAT 0.147 0.087 0.036 0.153 0.674 0.701
WAG 0.123 0.071 0.037 0.031 0.745 0.604

DD 0.140 0.085 0.097 0.056 0.731 0.651
GD 0.136 0.028 0.037 0.019 0.644 0.696

AXP 0.184 0.079 0.139 0.090 0.757 0.696
TXN 0.047 0.013 0.115 0.057 0.792 0.650
FDX 0.144 0.058 0.023 0.042 0.708 0.714
ETR 0.142 0.058 0.055 0.017 0.729 0.722

DOW 0.064 0.013 0.033 0.049 0.741 0.712
AEP 0.069 0.042 0.036 0.090 0.725 0.715

min 0.030 0.001 0.017 0.017 0.619 0.604
max 0.227 0.133 0.149 0.174 0.794 0.776
25th 0.077 0.035 0.050 0.046 0.684 0.653
50th 0.118 0.058 0.072 0.059 0.722 0.683
75th 0.142 0.078 0.095 0.090 0.745 0.703

Note: The estimated tail-dependence coefficients for each of the stocks
with the S&P 500 market portfolio reported in the three pairs of columns
are based on: all of the 5-minute returns; all of the jumps; and the sys-
tematic jumps only. The jumps are extracted from the 5-minute returns
spanning 1997 through 2008.
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Table 4: Daily Tail-Dependence Coefficients

Daily Returns Jump Adj. Returns Univariate De-vol. Multivariate De-vol.
Ticker χ̂+ χ̂− χ̂+ χ̂− χ̂+ χ̂− χ̂+ χ̂−

PG 0.248 0.214 0.202 0.188 0.083 0.095 0.036 0.061
GE 0.406 0.438 0.258 0.409 0.126 0.152 0.032 0.084

T 0.247 0.218 0.185 0.241 0.052 0.094 0.027 0.036
JNJ 0.198 0.255 0.176 0.256 0.056 0.098 0.072 0.024

MSFT 0.278 0.266 0.232 0.223 0.054 0.114 0.029 0.103
WMT 0.256 0.098 0.190 0.160 0.104 0.194 0.069 0.038
PFE 0.148 0.275 0.169 0.290 0.075 0.140 0.044 0.033
JPM 0.300 0.292 0.284 0.209 0.101 0.109 0.044 0.051
IBM 0.252 0.342 0.164 0.283 0.100 0.118 0.049 0.071

WFC 0.273 0.298 0.260 0.305 0.045 0.145 0.032 0.067
CSCO 0.203 0.189 0.254 0.169 0.142 0.105 0.067 0.045

KO 0.240 0.229 0.267 0.236 0.133 0.122 0.047 0.043
HPQ 0.255 0.217 0.201 0.174 0.057 0.096 0.031 0.051
PEP 0.259 0.186 0.236 0.206 0.110 0.137 0.055 0.053
ABT 0.195 0.229 0.240 0.250 0.126 0.203 0.073 0.071

INTC 0.273 0.217 0.260 0.172 0.084 0.124 0.154 0.054
AAPL 0.136 0.144 0.112 0.135 0.025 0.137 0.013 0.027
BAC 0.283 0.359 0.162 0.280 0.084 0.159 0.034 0.086

ORCL 0.169 0.185 0.145 0.139 0.050 0.101 0.039 0.037
MCD 0.214 0.227 0.223 0.221 0.085 0.137 0.071 0.050
MRK 0.242 0.332 0.229 0.325 0.085 0.069 0.053 0.032

AMGN 0.275 0.206 0.185 0.217 0.037 0.087 0.016 0.044
QCOM 0.141 0.136 0.147 0.131 0.067 0.112 0.049 0.044

UTX 0.342 0.256 0.315 0.203 0.125 0.107 0.050 0.080
BMY 0.197 0.232 0.187 0.260 0.085 0.131 0.064 0.025
USB 0.247 0.272 0.243 0.270 0.115 0.120 0.040 0.048
DIS 0.245 0.274 0.187 0.311 0.055 0.111 0.032 0.049

MMM 0.294 0.269 0.236 0.275 0.153 0.108 0.058 0.051
C 0.328 0.283 0.312 0.261 0.117 0.167 0.080 0.058

MDT 0.144 0.196 0.164 0.188 0.055 0.106 0.037 0.079
CL 0.212 0.202 0.235 0.164 0.085 0.078 0.098 0.047

BAX 0.202 0.220 0.184 0.202 0.099 0.066 0.073 0.046
BK 0.309 0.329 0.304 0.347 0.088 0.145 0.064 0.068

UNH 0.205 0.219 0.207 0.225 0.109 0.046 0.046 0.049
LOW 0.275 0.258 0.284 0.269 0.104 0.058 0.073 0.025

BA 0.268 0.243 0.278 0.250 0.091 0.099 0.049 0.066
MO 0.200 0.152 0.194 0.175 0.036 0.131 0.040 0.088
SO 0.207 0.174 0.190 0.124 0.082 0.088 0.038 0.063

LMT 0.191 0.199 0.188 0.188 0.060 0.182 0.030 0.073
SGP 0.256 0.302 0.218 0.228 0.083 0.115 0.052 0.060
CAT 0.271 0.290 0.217 0.286 0.071 0.073 0.017 0.027
WAG 0.277 0.190 0.200 0.171 0.050 0.159 0.029 0.067

DD 0.302 0.266 0.292 0.312 0.096 0.068 0.052 0.066
GD 0.219 0.214 0.202 0.194 0.057 0.130 0.028 0.092

AXP 0.337 0.396 0.344 0.388 0.065 0.121 0.023 0.078
TXN 0.194 0.172 0.204 0.204 0.083 0.100 0.057 0.036
FDX 0.227 0.196 0.207 0.194 0.126 0.115 0.064 0.067
ETR 0.235 0.229 0.211 0.222 0.075 0.110 0.043 0.043

DOW 0.258 0.277 0.237 0.278 0.134 0.143 0.064 0.054
AEP 0.205 0.261 0.207 0.259 0.084 0.157 0.039 0.107

min 0.136 0.098 0.112 0.124 0.025 0.046 0.013 0.024
max 0.406 0.438 0.344 0.409 0.153 0.203 0.154 0.107
25th 0.204 0.200 0.187 0.188 0.058 0.098 0.033 0.044
50th 0.247 0.229 0.209 0.224 0.084 0.115 0.047 0.052
75th 0.274 0.274 0.251 0.274 0.104 0.137 0.064 0.068

Note: The estimated tail-dependence coefficients for each of the stocks with the S&P 500 market port-
folio reported in the four pairs of columns are based on: the raw daily returns; the daily returns with

the jumps removed denoted by z
(j)
t in the main text; the jump-adjusted z

(j)
t “devolatilized” by the

scalar continuous variation measures; and z
(j)
t “devolatilized” by the multivariate continuous covaria-

tion measure denoted by z̃
(j)
t in the main text. The sample spans the period from 1997 through 2008.
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