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related to the CEV and Barndor¤-Nielsen & Shephard (2001) models for local volatility. We

show that if measurement noise in the observable volatility proxies is not accounted for, then

the estimated autoregressive parameter in the latent process is downward biased. Implied
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1 Introduction

The measurement and modelling of volatility using high-frequency return data has attracted

great attention in the recent literature. In this realized volatility approach, the sum of squared

high-frequency returns over an interval consistently estimates the integrated true but unob-

served (latent) volatility process, see, e.g., Barndor¤-Nielsen & Shephard (2002b) and Ander-

sen, Bollerslev, Diebold & Labys (2001). In a related literature, implied volatility backed out

from observed option prices is considered as a forecast of subsequent realized volatility over

the life of the option, see, e.g., Christensen & Prabhala (1998) and Bollerslev & Zhou (2006).

Thus, realized volatility and implied volatility are both imperfect proxies of true underlying

integrated volatility. In this paper, we conduct a state space analysis that explicitly addresses

the resulting �ltering problem when using simultaneously both types of volatility proxies in

studying the stochastic process governing true underlying volatility.

We take integrated volatility as the unobserved state variable process and adopt a �rst order

Markov speci�cation for this.1 We then introduce data on the available realized and implied

volatility measures and extend the speci�cation to a state space model. The measurement

equation says that the observed realized and implied volatility measures are noisy proxies for

true integrated volatility. Thus, it takes the form 
RVt

IVt

!
� �+ �

Z t

t�1
�2sds+ error;

where RVt is a realized volatility measure calculated from high-frequency asset returns over

the interval from t� 1 to t, IVt is an option-implied volatility measure pertaining to the same
period, and �2s is the true but unobserved underlying volatility process. In our empirical im-

plementation, we estimate both the vector � collecting the biases of the available imperfect

volatility proxies, and the vector � of sensitivities of the proxies to true volatility. The state

equation is the transition equation for integrated volatility. The resulting state space model

is linear, so the Kalman �lter applies. The log likelihood function is constructed from the

prediction error decomposition based on the innovations from the �lter. This allows estimat-

ing the parameters of both the true underlying volatility process and the measurement error

mechanism. We �nd empirically that a simple speci�cation where latent integrated volatility

follows an AR(1) process, and hence measured volatility is AR(1) plus noise, describes the data

well. In particular, the additional parameters in higher order speci�cations for latent integrated

volatility turn out insigni�cant, once measurement error noise is allowed for.

We show how our approach allows the forecasting of future true but unobserved volatility,

conditionally on both realized and implied current observable proxies, whereas previous research

has focussed on the forecasting of future observable volatility proxies, such as realized volatility

1This accomodates general �nite order ARMA(p; q) speci�cations for integrated volatility in the state space
framework.
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or the standard error of observed returns. In an empirical application, we consider the stock

market (S&P 500), bond market (30-year U.S. T-Bond), and foreign exchange ($/£ ) market.

The results show that both realized and implied volatility measures contribute to the forecasting

of future true volatility, and that implied volatility in this context is a much more important

component of the optimal volatility forecast than realized volatility measures. This suggests

that option prices are more sensitive to, and hence more informative about future volatility

than observed returns, even when the latter are measured at high frequency. This makes sense

from a market e¢ ciency viewpoint, since option traders have access to the historical return

record.

This paper draws on several papers within the econometrics and �nancial econometrics lit-

erature. Based on Kalman �lter estimation techniques we investigate the relationship between

and forecasting ability of volatility measures such as realized volatility, bipower volatility and

implied volatility and as such our paper is related to Canina & Figlewski (1993) who �nd that

implied volatility (IV ) has no forecasting ability of future realized volatility. Christensen &

Prabhala (1998) shows that using non-overlapping observations at a lower frequency, IV is an

important predictor of future realized volatility. Bollerslev & Zhou (2006) is a recent contribu-

tion to this literature. Many models have been proposed for the modelling of local volatility,

such as the ARCH by Engle (1982), GARCH by Bollerslev (1986) and stochastic volatility

models. Our simple AR(1) plus noise speci�cation for realized volatility is closely related to

the CEV local volatility model, with the Heston (1993) square-root model and the Nelson

(1991) GARCH-di¤usion as special cases, and to the Lévy driven Ornstein-Uhlenbeck (OU)

model for local volatility proposed by Barndor¤-Nielsen & Shephard (2001, 2002a), henceforth

referred to as the BNS model. In particular, Granger & Morris (1976) show that an AR(1) plus

noise model can always be rewritten as an ARMA(1,1), which is the structure for integrated

volatility implied by the CEV and BNS models for local volatility.

Recently, Hansen & Lunde (2010) consider an instrumental variable approach to the mea-

surement error in realized volatility. Instrumental variables and the state space framework are

alternative approaches to the problem of measurement error in observable proxies, but nei-

ther has previously been applied to the full set of available proxies, including both realized

measures and individual option-implied volatility simultaneously, and across di¤erent markets.

Koopman, Jungbacker & Hol (2005) compare the forecasting power of realized volatility and

the model-free implied VIX volatility measure in a state space analysis and conclude that VIX

is more informative than realized volatility based on daily returns, but less informative than

realized volatility based on high-frequency returns. They do not compare with bipower varia-

tion or implied volatility backed out of traded options (VIX may be regarded as a smoothed

average of such), and they also do not combine forecasts based on di¤erent proxies or consider

other markets than the stock market. Since our results show that implied volatility based on

individual traded option prices is more informative than realized measures, the indication is
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that individual Black-Scholes style option-implied volatility forecasts better than model-free

VIX, and this is consistent with Andersen & Bondarenko (2007).

The paper is laid out as follows. Section 2 introduces the state space approach, how our

AR(1) plus noise model is related to the BNS model and general results for the relationship

between AR(1) plus noise models and ARMA(1,1) models. Section 3 discusses volatility mea-

surement and describes our data on the stock market (S&P 500), bond market (30-year U.S.

T-Bond), and foreign exchange ($/£ ) market. The empirical results are presented in Section

4, and Section 5 concludes.

2 The State Space Approach

Let St denote the asset price at time t and consider a general continuous time speci�cation of

the form

dSt = St(�tdt+ �tdW
s
t ); (1)

where �t is the instantaneous expected return, �t the local return volatility, and W
s
t a stan-

dard Wiener process driving asset returns. In much of �nance, the major interest is in the

speci�cation of the process for �t. In particular, derivative pricing is based on expected cash

�ow calculations using an equivalent martingale measure where �t is replaced by the riskless

rate of interest, whereas the volatility process is unaltered and retains critical importance for

pricing purposes. The Black & Scholes (1973) and Merton (1973) speci�cation yielding explicit

option price formulas is the special case of constant volatility, �t � �, but abounding empirical
evidence indicates the need for a speci�cation allowing for time-varying volatility, including

volatility clustering, i.e., positive serial dependence in volatility. Of course, volatility is not

directly observed, and even asset price observations are not available in continuous time, but

only as a discrete time record. Accordingly, empirical volatility models focus on a suitable

series of volatility measures covering consecutive discrete time intervals.

We specify a discrete time Markovian model for integrated volatility. In the sequel, both

high-frequency return data and observed option prices are used in the estimation of the model.

Integrated volatility from t� 1 to t, de�ned as

�2t =

Z t

t�1
�2sds; (2)

is of interest for several reasons. This is the relevant true volatility measure that we have a

chance of estimating with discrete time observed proxies. Furthermore, in option pricing this

is indeed the relevant volatility measure, see Hull & White (1987).

In our state space approach, we take the state variable to be the latent integrated volatility

process,

xt = �
2
t � E

�
�2t
�
: (3)

3



We adopt a �rst order Markov or autoregressive (AR(1)) speci�cation for the state variable

process,

xt+1 = 
xt + ut+1; (4)

and write �2u for the volatility-of-volatility parameter, the variance of the zero mean, serially

uncorrelated shocks ut+1 representing the innovations in integrated volatility.

Let yt be a k-vector of observed volatility proxies. This could contain realized volatility,

implied volatility, realized bipower variation, or other variables in the data set. The equation

linking volatility proxies and true but latent volatility is

yt = �+ �xt + "t; (5)

where � is a k-vector of sensitivities of the proxies to true volatility, � allows for biases in

the proxies, and "t is the k-vector (or a matrix) of measurement errors or noise terms in the

volatility proxies.

The model is in state space form. Thus, (4) is the state transition equation, and (5) is the

measurement equation. While true volatility is AR(1), the data-generating mechanism for yt
is an AR(1) plus noise model, or, in the case k > 1, a VAR(1) plus noise. These models are

similar to ARMA(1,1), respectively VARMA(1,1), but there are di¤erences. This may be seen,

e.g., from the spectral densities, and will become apparent later. For identi�cation purposes, we

normalize one of the coordinates of � to unity, thus equating the scales of latent volatility and

the associated observed proxy. The parameters to be estimated are the remaining sensitivities

in �; the biases �, the transition parameter 
, the volatility-of-volatility parameter �2u, and the

measurement error variances and covariances, say, �2i .and �i;j , where var("t) =
�
�i;j�i�j

	
i;j
.

As usual, the �rst order Markov speci�cation for the latent state variable is not restrictive,

since the state space form easily accommodates higher order speci�cations through expansion

of the state vector. We write Xt for the state vector in the general case, of dimension p. Thus,

Xt replaces xt in the measurement equation (5), and � is k�p, with one coordinate normalized
for identi�cation purposes, and zero columns for components of the state vector that do not

impact current volatility proxies.

It is useful to brie�y review the operation of the general state space approach in the simple

cases where integrated volatility xt; is either AR(2) or ARMA(1,1). The second order Markov

or AR(2) model for latent xt is

xt+1 = 
1xt + 
2xt�1 + ut+1: (6)

It is convenient to let Xt = (xt; xt�1)0 when latent integrated volatility is AR(2), as in (6).
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Thus, p = 2, and the transition equation is 
xt+1

xt

!
=

 

1 
2

1 0

! 
xt

xt�1

!
+

 
ut+1

0

!
: (7)

Writing Q in general for the variance-covariance matrix of the error term, say, vt+1, in the

state transition, we have in the AR(2) case vt = (ut; 0) and Q has �2u in the upper left corner

and is otherwise zero, i.e., there is only one parameter in Q. If the observed proxies yt; react to

true volatility only through its contemporaneous value xt, not the lagged xt�1; then the second

column of � is zero. As an example, with bivariate volatility proxy (k = p = 2), e.g., implied

and realized volatility, the measurement equation is 
y1t
y2t

!
=

 
�1

�2

!
+

 
�1 0

�2 0

! 
xt+1

xt

!
+

 
"1t
"2t

!
: (8)

Again, either �1 or �2 is normalized to unity. The parameters to be estimated are the other

component of �; the vectors � and 
, the volatility-of-volatility parameter �2u in Q, the variances

�21 and �
2
2 of the measurement errors "

1 and "2, and their correlation �1;2.

When latent integrated volatility xt is governed by an autoregressive-moving average or

ARMA(1,1) process instead of AR(1) or AR(2),

xt+1 = 
xt + �ut + ut+1; (9)

where � is the MA-parameter, the state vector may be taken to be Xt � (xt; ut)
0, so again

p = 2, and the transition equation is

Xt+1 �
 

 �

0 0

!
Xt + vt+1; (10)

where vt � (ut; ut)
0. The error vt in the state vector is still serially uncorrelated, since the

integrated volatility innovation ut; is, and in this case,

Q =

"
1 1

1 1

#
�2u; (11)

i.e., again there is only one parameter in Q. Like before, if the volatility proxies yt react to

current latent volatility xt, then the second column of � is zero in the measurement equation.

The state space form is preserved, and the parameters to be estimated now include �. More

generally, the state space framework accomodates any �nite order ARMA(p; q) speci�cation for

latent integrated volatility.2

2Our empirical work shows that low order speci�cations su¢ ce, namely, the AR(1), AR(2), and ARMA(1,1)
models shown here.
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Due to the assumed linearity of the state space representation, the Kalman �lter is the

natural empirical approach (see Harvey (1991) and Durbin & Koopman (2001); the appendix

provides a brief summary of the Kalman �lter recursions). The �lter provides estimates of the

unobserved xt conditionally on data through the previous time period t�1, the �predicted�state,
Et�1[xt], and conditionally on the expanded information set including current (time t) data yt,

the ��ltered�state, Et[xt]. Assuming normal distributions for the measurement errors "t and

state shocks ut, these are conditional means, and in general they are minimum mean squared

error estimates. This allows calculating the innovations (prediction errors) in the data sequence

and the corresponding (prediction error decomposition of the) conditional likelihood function

given the initial observation y0. We maximize this likelihood to obtain our parameter estimates.

In addition, we use the �ltered states Et[xt] as estimates of true but unobserved underlying

integrated volatility xt, and the predicted states Et�1[xt] as optimal forecasts of future true

volatility. This is in contrast to previous literature that has focussed on the forecasting of

future observable volatility proxies, such as realized volatility or the standard error of observed

returns, and has not included individual option-implied volatility in the information set in the

state space representation.

2.1 Speci�c Local Volatility Models

The model considered so far is based on the assumption that latent integrated volatility follows

an AR(1), AR(2) or ARMA(1,1) process. This will likely only be true to a certain degree

of approximation in practice. If no speci�c model for latent local volatility is adopted, it

is generally hard to say more about the process for integrated volatility, and it becomes an

empirical question whether our speci�cation is useful. Before turning to the empirical analysis,

we here consider in addition how to accommodate speci�c models for latent local volatility

into the general framework. The speci�c models are those studied also by Barndor¤-Nielsen &

Shephard (2002a), namely, the constant elasticity of variance (CEV) process and the Ornstein-

Uhlenbeck (OU) or BNS speci�cation of Barndor¤-Nielsen & Shephard (2001). Similar steps

would be taken in case of alternative models.

The CEV local volatility speci�cation is

d�2t = �(� � �2t )dt+ ��
2�
t dWt; (12)

where Wt is a standard Wiener process. This is a mean-reverting speci�cation, with rate of

mean reversion �, and unconditional mean or target for mean reversion of the instantaneous

variance �2t given by �. The CEV parameter is � 2 [1=2; 1], with the special cases � = 1=2 and
1 corresponding to the Heston (1993) square-root model for volatility and the Nelson (1991)

GARCH-di¤usion, respectively. The BNS local volatility speci�cation is

d�2t = �(� � �2t )dt+ dZ�t; (13)
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and similarly to the CEV case, the increments dZ to the underlying driving process are mean

zero, stationary, and serially independent. The BNS speci�cation is a non-Gaussian OU-

process, i.e., Z is not a standard Wiener process. Instead, it is another time-homogeneous

Lévy process, i.e., a process with independent and stationary increments, and a special case

of a general subordinator, in the sense of Conley, Hansen, Luttmer & Scheinkman (1997).

A Wiener process for Z in (13) would imply negative variances �2t with positive probability.

The non-Gaussian speci�cation may have other advantages, such as heavy tails, depending

on the exact speci�cation. The subordinator speci�cation implies that Z has positive jumps,

and although the drift of �2t can be negative, it becomes positive when �
2
t gets su¢ ciently

small, in such a manner that volatility remains positive, as in the CEV model.3 By running

the subordinator according to time index �t instead of just t (e.g., large � means running the

process faster), the OU structure implies that the unconditional or invariant distribution of �2t
is independent of �, and only depends on the choice of subordinator process Z. This may be

chosen, e.g., such that �2t has an unconditional Gamma distribution, as in the CIR case, or

an inverse Gaussian distribution. In the BNS model without leverage, the inverse Gaussian

distribution for �2t implies a normal-inverse Gaussian (NIG) distribution for returns, which

has proved empirically relevant in some cases. For other subordinators, more general return

distributions are obtained, all consistent with volatility clustering and non-normal returns, and

leverage may be accommodated, too.

Barndor¤-Nielsen & Shephard (2002a) show that both in the CEV and BNS models, the

autocorrelation function for integrated volatility is

corr
�
�2t ; �

2
t+s

�
= d exp (�� (s� 1)) ; s > 0; (14)

where

d =
[1� exp f��g]2

2 [exp f��g � 1 + �] : (15)

This implies that integrated volatility follows a constrained ARMA(1,1) process (see Barndor¤-

Nielsen & Shephard (2002a) and Meddahi (2003)). Similarly, the squared returns have auto-

correlation function given by

corr
�
r2t ; r

2
t+s

�
= c exp (�� (s� 1)) ; s > 0;

where

c =
[1� exp f��g]2

6 [exp f��g � 1 + �] + 2�2 (�=!)2
: (16)

3We work with a zero mean process, i.e., Zt = eZt� �t, in terms of the standard subordinator (or background
driving Lévy process) eZt from BNS, with positive mean �t. The drift ��dt of Zt is o¤set by the �rst term in
the drift of �2t , and the second term in the latter, ���2tdt, becomes small with �2t . Note that the unconditional
means of eZt and �2t coincide, at �, in the BNS model.
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Thus, squared returns are also ARMA(1,1), but with c � d. That is, this speci�cation implies
that the latent process is more strongly serially dependent than the observed return based

proxy.

Our general state space approach accomodates ARMA(1,1) models for integrated volatility,

see (9)-(11). Thus, it applies in many relevant situations, including when latent local volatility

is driven by a CEV or BNS model. It also applies outside these cases, and our results suggest

that this is empirically relevant.

2.2 The Relation Between AR(1) Plus Noise and ARMA(1,1)

Here, we present the relevant conditions for when AR(1) plus noise and ARMA(1,1) models may

be recast in terms of each other, and we show the corresponding relations between parameters

of the two models.

Starting with an ARMA(1,1) model of the form

yt = 
yt�1 + �wt�1 + wt; (17)

Granger & Morris (1976) (GM) show that this may be recast as an AR(1) plus noise model of

the form (4)-(5) if and only if the realizability conditions given by

1

1 + 
2ARMA

> � ��
1 + �2

�

ARMA

� 0 (18)

are satis�ed. They also note that the parameters of the alternative representations satisfy the

relations


AR = 
ARMA; (19)

�2" = �
�


ARMA

�2w; (20)

where �2w = var(wt): This gives the �rst two of the three AR(1) plus noise parameters (
; �
2
e; �

2
u)

in terms of the three ARMA(1,1) parameters (
; �; �2w). The third and �nal AR(1) plus noise

parameter is �2u, but GM do not show how this is obtained from the ARMA(1,1) parameters.

We show in the appendix that in fact

�2u =
�
1 + �2

�
�2w +

�
1 + 
2ARMA

� �


ARMA

�2w; (21)

hence completing the reparametrization from ARMA(1,1) to AR(1) plus noise.

The ARMA(1,1) process for integrated volatility implied by the BNS model (see (14)) has

both 
ARMA and � positive (Meddahi (2003)), and so does not satisfy the GM conditions in

(18). This may be seen from either (18) or (20), since each requires that the autoregressive and

moving average parameters in the ARMA(1,1) representation be of opposite sign.
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An AR(1) plus noise model of the form (4)-(5) can always be rewritten as an ARMA(1,1)

model. This is stated without proof by GM. We provide a complete proof of this assertion

in the appendix. GM also do not show the resulting ARMA(1,1) parameters in terms of the

AR(1) parameters. We show in the appendix that they are given as


ARMA = 
AR; (22)

�2w = �

AR
�
�2"; (23)

� =
��2" � 
2AR�2" � �2u �

q
�4u + 2�

2
u�

2
"

2
AR + 2�

2
u�

2
" + �

4
"

4
AR � 2�4"
2AR + �4"

2
AR�
2
"

: (24)

We also show in the appendix that the natural realizability condition �2w > 0 always is satis�ed

by �2w from (23) when � is given by (24) and j
j � 1.
The constrained ARMA(1,1) models for integrated volatility implied by the CEV and BNS

models in the previous subsection have the AR and MA parameters both positive. Our results

point to an AR(1) plus noise model for the volatility proxies, and this may be recast as an

ARMA(1,1) model with AR and MA parameters of opposite sign. This does not necessarily

imply a rejection of the CEV and BNS local volatility models, since it is integrated volatility

measured without any noise that are governed by ARMA(1,1) processes with positive para-

meters in these models. The possibility of measurement noise would suggest an ARMA(1,1)

plus noise for the volatility proxies. Ideally, this might provide an encompassing framework

including both the CEV, BNS, and our Markovian plus noise speci�cations. For example,

signi�cance of the estimated measurement noise variance in an ARMA(1,1) plus noise would

imply rejection of our AR(1) plus noise, since this may be recast as ARMA(1,1) even without

noise. The CEV and BNS models would be rejected if the ARMA(1,1) parameters turned out

to be of opposite sign. However, when casting the ARMA(1,1) plus noise model in state space

form, the parameters are not all identi�ed without further restrictions. A su¢ cient restriction

for identi�cation is that there is no measurement noise, but the upshot is that we cannot use

the framework to distinguish between the models. Since our empirical results below show that

the AR(1) plus noise speci�cation �ts the data well, we interpret the estimates in these terms,

while brie�y remarking on their implications for the CEV and BNS models.

3 Volatility Measurement and Data

Assume thatM+1 evenly spaced intra-daily observations for day t are available on the log-price

logSt;j . We then denote the M intra-daily continuously compounded returns by

rt;j = logSt;j � logSt;j�1; j = 1; :::;M; t = 1; :::; T; (25)
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where T is the number of days in the sample. Realized volatility for day t is given by the sum

of squared intra-day returns,

RVt =

MX
j=1

r2t;j ; t = 1; :::; T: (26)

As shown by Barndor¤-Nielsen & Shephard (2002b) and Andersen et al. (2001), RVt converges

to quadratic variation, i.e., the integrated volatility plus the sum of squared price jumps during

day t. Thus, RVt is a consistent estimator of integrated volatility if there are no jumps. This

is so even in the presence of the leverage e¤ect, i.e., correlation between shocks to volatility

and returns, see Barndor¤-Nielsen, Hansen, Lunde & Shephard (2006) and Barndor¤-Nielsen,

Graversen, Jacod & Shephard (2006). An alternative estimator that retains consistency even in

the presence of jumps in prices is the staggered (skip-k, with k � 0) realized bipower variation,
de�ned as

SBVt = �
�2
1

M

M � (k + 1)

MX
j=k+2

jrt;j j jrt;j�k�1j ; t = 1; :::; T; (27)

where �1 =
p
2=�. Barndor¤-Nielsen & Shephard (2004) show that realized bipower variation,

i.e., the non-staggered (k = 0) version, BVt; converges to integrated volatility as observation

frequency is increased,

BVt !p

Z t

t�1
�2sds as M !1:

In theory, a higher value of M improves precision of the estimators, but in practice it also

makes them more susceptible to market microstructure e¤ects, such as bid-ask bounces, stale

prices, measurement errors, etc., introducing arti�cial (typically negative) serial correlation in

returns, see, e.g., Hansen & Lunde (2006) and Barndor¤-Nielsen & Shephard (2007). Huang &

Tauchen (2005) show that staggering (i.e., setting k � 1) mitigates the resulting bias in (27),
since it avoids the multiplication of the adjacent returns rt;j and rt;j�1 that by (25) share the

log-price pt;j�1 in the non-staggered (i.e. k = 0) version of (27). We follow Huang & Tauchen

(2005) and also use k = 1 in (27) in our empirical work. The choice of k has no impact on

asymptotic results, i.e., SBVt is consistent, too.

An alternative volatility proxy is implied volatility backed out from option prices. For the

construction of implied volatility, we let c denote the call option price, X the strike price, � the

time to expiration of the option, F the price of the underlying futures contract with delivery

date � periods after option expiration, and r the riskless interest rate. We use the futures

option pricing formula, see Bates (1996b) and Bates (1996a),

c(F;X; � ;�; r; �2) = e�r(�+�)[F�(d)�X�(d�
p
�2�)]; d =

ln(F=X) + 1
2�

2�p
�2�

; (28)
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where � (�) is the standard normal c.d.f. and � the futures return volatility. The case � = 0

(no delivery lag) corresponds to the well-known Black (1976) and Garman & Kohlhagen (1983)

futures option formula. For general � > 0, regarding the futures contract as an asset paying a

continuous dividend yield equal to the riskless rate r, the asset price in the standard Black &

Scholes (1973) and Merton (1973) formula is replaced by the discounted futures price e�r(�+�)F .

This European style formula is here applied to American style options since early exercise

premia are very small for short-term, at-the-money (ATM, X = F ) futures options, as noted

by Jorion (1995), who applied (28) with � = 0 to the currency option market, whereas Bates

(1996b) used delivery lags � speci�c to the Philadelphia Exchange (PHLX) and the Chicago

Mercantile Exchange (CME), respectively.

We consider serial $/£ and S&P 500 futures options with monthly expiration cycle traded

at the CME, and equivalent T-Bond futures options traded at the Chicago Board of Trade

(CBOT). The contract speci�cations do not uniquely identify the particular T-Bond serving

as underlying asset for the bond futures, requiring merely that it does not mature and is

not callable for at least 15 years from the �rst day of the delivery month of the underlying

futures. The delivery month of the underlying futures contracts follows a quarterly (March)

cycle, with delivery date on the third Wednesday of the month for currency and bond futures,

and the third Friday for stock index futures. The options expire two Fridays prior to the third

Wednesday of each month in the currency case, on the last Friday followed by at least two

business days in the month in the bond case, and on the third Friday in the stock case, except

every third month where it is shifted to the preceding Thursday to avoid �triple witching hour�

problems associated with simultaneous maturity of the futures, options, and index options.

Upon exercise, the holder of the option receives a position at the strike X in the futures, plus

the intrinsic value F �X in cash, on the following trading day, so the delivery lag is � = 3=365

(from Friday to Monday), except � = 1=365 (Thursday to Friday) every third month in the

stock case. Finally, following French (1984), � is measured in trading days when used with

volatilities (�2� in (28)) and in calender days when concerning interest rates (in r(� +�)).

Given observations on the option price c and the variables F; X; � ; �; and r, an implied

volatility (IV ) estimate can be backed out from (28) by numerical inversion of the nonlinear

equation c = c(F;X; � ;�; r; IV ) with respect to IV . Serial futures options with monthly

expiration cycle were introduced in January 1987 in the $/£ market, in October 1990 for T-

bonds and October 1987 for S&P 500. Our option price data cover the period from December

1987 through July 2006 for $/£ , from December 1992 trough November 2007 for bonds, and

from December 1987 through November 2007 for S&P 500 futures options. We start our series

later than the inception times for two reasons. First, from data it seems that trading was

relatively thin just after inception and second, initially new options on T-bonds futures where

only introduced after expiration of the previous contract and therefore contracts with more

than one month to expiration were never available. We use daily closing prices of ATM calls
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obtained from the Commodity Research Bureau. The US Eurodollar deposit one-month middle

rate from Datastream is used for the risk-free rate r. The �nal samples are time series of length

n of annualized IV measures from (28) with at least 6 calender days to expiration and thus,

covers overlapping periods ranging from 6 to 37 calendar days, with n = 4630 for the currency

market,4 n = 4996 for the stock market, and n = 3622 for the bond market.

For RV , BV , and SBV , we construct data similarly to Andersen T. G. & Meddahi (2005).

Speci�cally, we use �ve-minute observations from the CME �oor trading on the leading con-

tracts on $/£ futures exchange rates, S&P 500 futures prices, and T-Bond futures prices. There

is a total of 80 high-frequency returns per day (rt;j from (25)) for the currency and bond mar-

kets and 93 per day for the stock market. We use the nonparametric procedure from (26)

and (27) to construct daily realized volatility measures (in annualized terms). Hence, the RV;

BV and SBV measures do not cover the same period as the IV estimates. However, we are

forecasting one-day-ahead and since IV is an estimate of expected volatility over the next

month we expect it to carry information about the one-day-ahead volatility as well. Since the

overnight returns often become very dominating when calculating the volatility measures over

one day, we exclude these in the calculation of RV; BV and SBV .

If implied volatility were given by the conditional expectation of future realized volatility,

we would expect that RV and IV had equal unconditional means, and RV higher uncon-

ditional standard deviation in the time series than IV . Since we exclude overnight returns

in our observed non-parametric volatility measures such a comparison cannot be made. Fur-

thermore, in our data we multiply annualized implied volatility by 10 and rescale all three

realized volatility measures by a common factor such that the time series averages of implied

and realized volatility agree exactly. This facilitates interpretation, since the realized measures

leave out overnight and weekend returns that presumably are re�ected in implied volatility, to

the extent that this is set by traders as a forecast of total volatility through expiration of the

option.5 Of course, matching means in this manner has no impact on information content and

the important forecasting properties that we discuss below.

4Trading in $/DM options declined near the introduction of the Euro, and for January 1999 no one-month
currency option price is available, even though quarterly contract prices are. An IV estimate is constructed by
linear interpolation between IV for December 1998 and February 1999.

5One other reason for this rescaling is that the scale of the rescaled variables improves computational e¢ ciency
signi�cantly.
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Figure 1: Time series plots of monthly volatility measures

Figure (1) shows time series plots of the four daily volatility measures. For all three mar-

kets it is seen that RV exhibits strongest �uctuation, which is expected since this measure is

in�uenced by jumps. Since IV is a measure of expected average volatility over a longer period,

it should react less to current jumps. It is also seen from the �gure that S&P 500 futures have

the highest peak volatilities, and bond futures have the lowest. Further, volatility clustering

is clearly present in the data, although the high volatility periods are not identical across the

three markets.

Table 1 about here
Summary statistics are shown in Table 1. As noted, the means of RV and IV have been

equalized within each market, but BV and the staggered version have lower mean. RV does

have higher standard deviation in the time series than IV , and the bipower measures have

standard deviations between those of RV and IV . Skewness is positive and excess kurtosis

quite large, but both nearly disappear upon log transformation (lower panel of Table 1).

4 Empirical Results

We now apply the state space approach from section 2 to the volatility measures described

in section 3. For the simplest speci�cation results appear in Table 2. The �rst line of the

table shows results for a straight autoregression for realized volatility, i.e., RVt is regressed on

its own lagged value. From the table, the autoregressive coe¢ cient is estimated to :60. It is

signi�cantly positive, and signi�cantly less than unity. From this estimate, realized volatility is

mean-reverting, and not close to a unit root process. The measurement equation intercept, �,

is estimated to 1:68, to be compared to the sample average of realized volatility. This AR(1)
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model for realized volatility is equivalent to setting the variance of the measurement error equal

to zero. This way, the estimated AR(1) coe¢ cient may be identi�ed with 
 in the state space

model.

Table 2 about here
Results of relaxing the assumption of zero measurement error are reported in the second

line of Table 2. This is the AR(1) plus noise model. The change in parameter estimates is

quite dramatic. Thus, the autoregressive coe¢ cient 
 in the latent state variable process is now

estimated to :91, much higher than the estimate of :60 in basic regression of realized volatility

on its own lag. This di¤erence suggests that the restricted model is misspeci�ed, consistent

with the notion that integrated volatility is governed by a process of the assumed autoregressive

type, whereas the volatility proxy in the data (here, realized volatility) contains measurement

error. The variance of the measurement error is estimated to 2:32 and is signi�cant, reinforcing

that the model restricting this parameter to zero is misspeci�ed. Finally, the variance of the

noise in the latent state process drops from 4:06 to :71 when introducing measurement noise.

Indeed, total noise variance, the sum of measurement and state noise variances, is lower in the

unrestricted model than the state noise variance in the restricted model, thus supporting this

manner of splitting the noise necessary to explain the data in two.

The results are interesting from a number of perspectives. First, the indication is that

measurement noise is part of the process speci�cation for realized volatility. Second, when

allowing for this, measured persistence in volatility increases dramatically, by a factor of 1:5.

Thus, estimates of persistence based on autocorrelations in proxy series may be misleading,

and, indeed, understated. Our results indicate much stronger persistence in true volatility

than in measured volatility, and this should matter for the application of volatility models,

e.g., to pricing, hedging, forecasting, etc..

The third line of the table reports results where the volatility proxy used is instead implied

volatility backed out from option prices. Again, a basic regression of the proxy on its own lag

is considered �rst. In this case, the coe¢ cient estimate is high, at :94, already in the basic

regression, and the standard error is even smaller than in the previous models using realized

volatility. Together, the results suggest that implied volatility behaves in a manner closer to

true volatility than does realized volatility.

The fourth line reports results when using the implied volatility proxy from the third line

in the AR(1) plus noise model estimated using the Kalman �lter as in the second line. As

with realized volatility, the autoregressive coe¢ cient increases when allowing for measurement

error, now to :98. In the implied volatility case, both the standard error and the estimated

measurement error variance are very small. All noise variances are smaller in the implied

volatility case, and as in the realized volatility case, the sum of measurement and state noise

variances in the AR(1) plus noise model is less than the state noise in the pure autoregression

without measurement error.
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The results so far are consistent with the notions that the AR(1) plus noise model is

more correct than the pure autoregressive model for realized volatility, that the strength of

autocorrelation in true volatility is high, and that option prices carry useful information about

the process for volatility.

The next line is for the case k = 2, i.e., using both realized volatility and implied volatility

simultaneously as proxies in the analysis. As in the previous estimations, it is necessary for

identi�cation purposes to restrict one of the �-coe¢ cients from the measurement equation, so

as to set the scale of the latent process. We set the coe¢ cient on integrated volatility �2 = 1,

so that the scale of latent volatility is that of integrated volatility. Again, the autoregressive

coe¢ cient in the underlying state process is estimated to :98, as in the AR(1) plus noise model

for implied volatility. As expected, the measurement error variance in realized volatility is

slightly larger now, at 4:00, than the estimate of 2:32 obtained with realized volatility alone

determining the movements of the latent process. The two measurement errors are virtually

uncorrelated. The estimated intercepts capture the empirical means of the two data series.

The next three lines show the results when realized volatility is replaced by bipower varia-

tion. The previous results are largely con�rmed. Bipower variation is slightly more persistent

than realized volatility, and with lower state process noise and lower measurement error in the

AR(1) plus noise model. This suggests that bipower variation, by removing the jump compo-

nent of realized volatility, is closer to underlying continuous sample path volatility and that

our latent state variable captures the latter. The last three lines of the table shows that these

results are con�rmed when using staggered bipower variation for robustness against market

microstructure noise.

Table 3 about here
Table 3 shows the similar results using log-volatilities throughout. The previous results

are largely con�rmed. All 
1 estimates are higher after applying the log-transform to the

volatility series, but the estimates still increase sharply when introducing measurement error.

Again, state noise drops dramatically when allowing for measurement error, and by a larger

amount than the added measurement error noise. In the staggered case, measurement and state

noises are signi�cantly negatively correlated, although with a small coe¢ cient. Again, implied

volatility data produce a 
1 estimate in excess of :95, whereas the realized measures when used

individually give estimates below :80, and the joint models combining implied and realized

measures all yield estimates above :98. The results indicate that there is strong persistence in

true volatility, and that this is best re�ected in implied volatility data.

Table 4 about here
Table 4 shows results of regressing future volatilities or volatility forecasts on implied and

realized volatility measures in the current information set. The �rst set of regressions in Panel

A use future realized volatility measures as dependent variables in speci�cations of the type

RVt = a+ bRVt�1 + cIVt�1 + "t: (29)
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The following regressions replace RV by the other realized measures, BV and SBV . From

the results in the �rst line of the table, forecasting next day�s realized volatility, both current

realized volatility and implied volatility have signi�cant forecasting power. Both the coe¢ cient

estimate and the t-statistic are larger for implied than for realized volatility. Similar results are

found in the next lines, using log-volatilities, bipower variation instead of realized volatility,

and staggered bipower variation. The DW statistics show no indication that the regression is

misspeci�ed. The table also reports R2 statistics, showing that variables in the information set

explain a considerable portion of future realized volatility measures.

The future realized volatility measures are only proxies of true future volatility. Using our

approach, the future (next day) value of true but unobserved volatility is forecast optimally

using the prediction step of the Kalman �lter. The resulting forecasts are used as dependent

variables in Panel B of the table. The general format is

bxt+1 = a+ bRVt + cIVt + ut; (30)

where bxt+1 = Et[xt+1]. Again, later results in the table are for the case where RV is replaced

by the other realized measures, BV or SBV . Thus, the regression results show the role played

by current realized volatility measures and implied volatility in forming the forecast of future

volatility. Again, both realized volatility measures and implied volatility enter signi�cantly

into the forecast. The most striking feature of the results is that implied volatility is a much

more important forecasting variable relative to any of the realized volatility measures when

forecasting true volatility, compared to when forecasting the realized volatility proxies in the

�rst part of the table. This suggests that option prices re�ect information about true underlying

volatility, whereas realized measures in addition contain considerable noise.

Table 5 about here
Table 6 about here
Table 7 about here
Tables 5 to 7 show the similar results for bonds as those shown in Tables 2 to 4 for stocks.

The lower measurement error variance when using staggered instead of raw bipower variation

indicates that there is market microstructure noise in the bond market, and that staggering

helps alleviate this. From Tables 5 and 6 it is seen that the autoregressive parameter is

downward biased if measurement noise is not accounted for, and even more so compared to

the results for S&P 500. Comparing the results for measurement noise the results also indicate

that measurement noise is as signi�cant in the bond futures market as in the S&P 500 futures

market. When considering the results in Panel A of Table 7 for the standard forecasting setup

in (29) one might be let to the conclustion that in the bond market IV does not contain

incremental information over the realized meassures BV and SBV. On the other hand, the

results in Panel B of Table 7 of the forecasting equation (30) shows that IV is outperforming

all realized volatility proxies, when forecasting true underlying volatility.
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Table 8 about here
Table 9 about here
Table 10 about here
Tables 8 to 10 show the corresponding results for the foreign exchange market. The results

for this market are largely similar to those for the stock market in Tables 2 to 4, but there are a

few notable di¤erences. The results of Table 8 indicate that if measurement error is ignored in

the estimation using realized volatility measures then the autoregressive parameter is going to

be even more downward biased than was the case for the S&P 500 and bonds market. As in the

S&P 500 market, when forecasting one period ahead volatility in the foreign exchange market

it is seen from Table 10 that IV is performing better than all realized measures irrespectively

of the forecasting setup.

Table 11 shows results for the case where the AR(1) speci�cation for integrated latent

volatility is replaced by an AR(2). This is relevant since volatility is persistent, and misspeci-

�cation of the dynamic structure could bias the results. The results for all three markets show

that once measurement noise is allowed for, the AR(2) coe¢ cient 
2 becomes insigni�cant.

This indicates that our AR(1) plus noise speci�cation is adequate for these data. Indeed, as

noted in Section 2, AR(1) plus noise implies ARMA(1,1), and this �exible structure apparently

captures all the empirically relevant higher order features present in the volatility series.

Table 11 about here
We also consider the extended state space form with bivariate VAR(1) state process, thus

accommodating ARMA(1,1) integrated volatility, as would be implied by the CEV and BNS

models. Estimation results for S&P 500 appear in Table 2.6 The empirical results from the

VAR(1) speci�cation con�rm the theoretical results from Section 2, i.e., the ARMA(1,1) para-

meters are exactly those implied by the estimated AR(1) plus noise model from Table 2, and

the likelihood values are the same, too, as they should be. The fact that the AR(1) plus noise

estimation yields much higher coe¢ cient than a straight AR(1) matches the comparison c � d
from (16) and (15), i.e., the latent process is more strongly correlated than the observed proxies.

Evidently, measured volatility is not AR(1), but rather ARMA(1,1), or possibly ARMA(1,1)

plus noise. The ARMA(1,1) speci�cation is consistent with AR(1) integrated volatility and

measurement noise, and also with ARMA(1,1) integrated volatility and no measurement noise.

Since the AR and MA parameters are of opposite sign, the ARMA(1,1) for integrated volatility

cannot be motivated by the CEV or BNS spot volatility models in this case. These models

might be consistent with an ARMA(1,1) plus noise for measured volatility, but not all para-

meters are identi�ed in the state space representation of this.

6We only report results for S&P 500 since similar conclusions are drawn for bonds and foreign exchange.
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5 Conclusion

We have introduced implied volatility into the state space approach to the �ltering problem

that arises when measured volatility is an imperfect proxy of true underlying integrated volatil-

ity. Our treatment has relied on the Kalman �lter, which is optimal if the state space model

is exactly linear. With a more general underlying volatility process, a nonlinear �lter would

be optimal, but our approach using the Kalman �lter would still provide a useful benchmark

against which to assess the value-added of generalizations. We adopt a �rst order Markov spec-

i�cation for integrated volatility and show that the model is closely related to the ARMA(1,1)

speci�cation implied by the CEV and BNS models for local volatility. In deed if no measure-

ment error is assumed in the CEV or BNS speci�cation then the parameter estimates in the

resulting ARMA(1,1) seci�cation for integrated volatility can be obtained from the estimates

obtained in our �rst order Markov speci�cation.

Our empirical results show that the serial dependence in true integrated volatility is un-

derstated if the measurement error in imperfect proxies is ignored, and more so in the bond

and foreign exchange marget than the stock market. This result is in general most prominent

for RV compared to BV and SBV and always more prominent for the realised high frequency

return based measures compared to IV backed out of at the money options. Our results also

show that the implied volatility proxy backed out of observed at the money option prices carries

considerably more weight in the optimal �ltered prediction of true integrated volatility than

the various high-frequency return based volatility proxies. This conclusion applies to the stock,

bond, and foreign currency exchange markets, alike.
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Table 1: Summary statistics for daily data on RV, IV, BV, SBV for S&P 500, Bonds and FX. S&P 500 data covers
the period 1987.12.16-2007.11.8, bonds the period 1992.12.21-2007.11.19 and FX the period 1987.12.23-2006.7.25. IV has
been multiplied by 10 and all three realized volatility have been rescaled by a common factor such that the time series
averages of implied and realized volatility agree exactly. Descriptive statistics are reported for both level and logs.

SP 500 (level) Bonds (level) FX (level)
RV IV BV SBV RV IV BV SBV RV IV BV SBV

Mean 1:68 1:68 0:77 0:78 0:94 0:94 0:41 0:40 0:96 0:96 0:44 0:41
Std. dev 2:53 0:61 1:16 1:16 0:95 0:19 0:47 0:46 1:28 0:27 0:59 0:47
Ex. kurt. 73:18 1:38 73:37 58:33 36:97 1:85 113:70 131:87 95:50 3:51 133:63 67:01
Skew. 6:95 1:13 6:86 6:19 4:95 0:69 8:33 9:05 7:68 1:22 8:78 6:20
Min. 0:08 0:43 0:02 0:01 0:08 0:20 0:01 0:01 0:05 0:23 0:02 0:02
Max. 42:62 4:76 19:00 17:32 11:27 2:21 8:18 8:18 25:50 3:27 13:92 8:18
Obs. 4996 4996 4996 4996 3622 3622 3622 3622 4630 4630 4630 4630

SP 500 (ln) Bonds (ln) FX (ln)
RV IV BV SBV RV IV BV SBV RV IV BV SBV

Mean 0:05 0:46 �0:75 �0:73 �0:34 �0:08 �1:21 �1:23 �0:38 �0:08 �1:16 �1:19
Std. dev 0:89 0:34 0:91 0:92 0:71 0:20 0:77 0:75 0:75 0:27 0:75 0:73
Ex. kurt. 0:36 �0:46 0:36 0:33 0:55 2:38 1:26 0:91 1:14 0:43 1:06 0:79
Skew. 0:49 0:31 0:46 0:44 0:37 �0:34 �0:06 0:04 0:63 0:19 0:59 0:49
Min. �2:57 �0:85 �3:77 �4:46 �2:48 �1:61 �5:11 �4:50 �2:94 �1:48 �3:88 �3:80
Max. 3:75 1:56 2:94 2:85 2:42 0:79 2:10 2:10 3:24 1:19 2:63 2:10
Obs. 4996 4996 4996 4996 3622 3622 3622 3622 4630 4630 4630 4630

22



Table 2: Kalman-�lter estimation for RV, BV, SBV and/or IV as observable variables for S&P 500 using daily observations
for the period 1987.12.16-2007.11.8.
Model (S&P 500) �1 �2 �1 �2 
 � �21 �22 � u2 L (�)

AR; RV 1:6833
(0:0725)

� 1� � 0:6048
(0:0591)

� � � � 4:0633
(0:6078)

�10; 591

ARn; RV 1:6923
(0:1333)

� 1� � 0:9093
(0:0453)

� 2:3244
(0:5915)

� � 0:7088
(0:5214)

�10; 405

ARMA; RV 1:6936
(0:1336)

� 1� � 0:9092
(0:0454)

�0:5604
(0:1526)

� � � 3:7702
(0:6021)

�10; 405

AR; IV 1:6903
(0:0536)

� 1� � 0:9438
(0:0089)

� � � � 0:0411
(0:0032)

881

ARn; IV 1:7145
(0:1149)

� 1� � 0:9849
(0:0044)

� 0:0161
(0:0023)

� � 0:0113
(0:0020)

1; 210

ARMA; IV 1:7149
(0:1150)

� 1� � 0:9849
(0:0044)

�0:4400
(0:0494)

� � � 0:0361
(0:0025)

1; 210

ARn; (RV; IV ) 1:7611
(0:2812)

1:7116
(0:1074)

2:6026
(0:1127)

1� 0:9832
(0:0048)

� 3:9993
(0:6342)

0:0153
(0:0022)

�0:0133
(0:0222)

0:0125
(0:0022)

�4; 813

AR; BV 0:7680
(0:0356)

� 1� � 0:6428
(0:0546)

� � � � 0:7951
(0:1234)

�6; 517

ARn; BV 0:7728
(0:0640)

� 1� � 0:9097
(0:0389)

� 0:4320
(0:1075)

� � 0:1595
(0:0931)

�6; 339

ARMA; BV 0:7727
(0:0640)

� 1� � 0:9097
(0:0389)

�0:5307
(0:1275)

� � � 0:7405
(0:1217)

�6; 339

ARn; (BV; IV ) 0:8034
(0:1306)

1:7110
(0:1060)

1:2256
(0:0574)

1� 0:9828
(0:0045)

� 0:8208
(0:1293)

0:0152
(0:0022)

�0:0098
(0:0118)

0:0128
(0:0022)

�877

AR; SBV 0:7821
(0:0383)

� 1� � 0:6888
(0:0453)

� � � � 0:7017
(0:0897)

�6; 205

ARn; SBV 0:7859
(0:0611)

� 1� � 0:8930
(0:0426)

� 0:3268
(0:0903)

� � 0:2047
(0:1032)

�6; 066

ARMA; SBV 0:7859
(0:0611)

� 1� � 0:8930
(0:0426)

�0:4397
(0:1311)

� � � 0:6638
(0:0890)

�6; 066

ARn; (SBV; IV ) 0:8183
(0:1339)

1:7111
(0:1063)

1:2528
(0:0572)

1� 0:9829
(0:0049)

� 0:7771
(0:1089)

0:0153
(0:0022)

�0:0068
(0:0109)

0:0127
(0:0023)

�741

Note: The model estimated is either AR(1) (AR) using equations (4) and (5) with "t = 0,
AR(1) plus noise (ARn) using equations (4) and (5) with "t 6= 0 or ARMA(1,1) (ARMA)
using equations (9) and (5) with "t = 0. ML estimates are reported with robust (sandwich-
formula) standard errors in parenthesis. Also reported are lnL(�), the value of the maximized
log-likelihood function. � indicates that the parameter has been �xed to the reported value.
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Table 3: Kalman-�lter estimation for ln(RV), ln(BV), ln(SBV) and/or ln(IV) as observable variables for S&P 500 using
daily observations for the period 1987.12.16-2007.11.8.
Model (S&P 500) �1 �2 �1 �2 
 � �21 �22 � u2 L (�)

AR; RV 0:0568
(0:0360)

� 1� � 0:7803
(0:0102)

� � � � 0:3122
(0:0083)

�4; 181

ARn; RV 0:0731
(0:0955)

� 1� � 0:9722
(0:0048)

� 0:1698
(0:0076)

� � 0:0349
(0:0053)

�3; 730

ARMA; RV 0:0731
(0:0955)

� 1� � 0:9722
(0:0048)

�0:6333
(0:0264)

� � � 0:2606
(0:0080)

�3; 730

AR; IV 0:4651
(0:0323)

� 1� � 0:9541
(0:0060)

� � � � 0:0105
(0:0008)

4; 292

ARn; IV 0:4782
(0:0645)

� 1� � 0:9871
(0:0029)

� 0:0040
(0:0005)

� � 0:0030
(0:0004)

4; 619

ARMA; IV 0:4782
(0:0645)

� 1� � 0:9871
(0:0029)

�0:4315
(0:0443)

� � � 0:0092
(0:0006)

4; 619

ARn; (RV; IV ) 0:0916
(0:1327)

0:4768
(0:0605)

2:1895
(0:0259)

1� 0:9856
(0:0031)

� 0:2613
(0:0086)

0:0039
(0:0005)

�0:0025
(0:0015)

0:0033
(0:0005)

5; 313

AR; BV �0:7454
(0:0368)

� 1� � 0:7804
(0:0099)

� � � � 0:3256
(0:0085)

�4; 287

ARn; BV �0:7288
(0:0962)

� 1� � 0:9715
(0:0048)

� 0:1774
(0:0079)

� � 0:0373
(0:0054)

�3; 852

ARMA; BV �0:7288
(0:0962)

� 1� � 0:9715
(0:0048)

�0:6300
(0:0253)

� � � 0:2736
(0:0082)

�3; 852

ARn; (BV; IV ) �0:7100
(0:1344)

0:4767
(0:0605)

2:2181
(0:0273)

1� 0:9856
(0:0031)

� 0:2820
(0:0090)

0:0039
(0:0005)

�0:0028
(0:0017)

0:0033
(0:0005)

5; 121

AR; SBV �0:7275
(0:0379)

� 1� � 0:7905
(0:0097)

� � � � 0:3154
(0:0083)

�4; 207

ARn; SBV �0:7119
(0:0959)

� 1� � 0:9707
(0:0050)

� 0:1701
(0:0079)

� � 0:0391
(0:0057)

�3; 797

ARMA; SBV �0:7120
(0:0959)

� 1� � 0:9707
(0:0050)

�0:6170
(0:0267)

� � � 0:2676
(0:0080)

�3; 797

ARn; (SBV; IV ) �0:6918
(0:1361)

0:4768
(0:0604)

2:2450
(0:0031)

1� 0:9855
(0:0031)

� 0:2764
(0:0090)

0:0039
(0:0005)

�0:0032
(0:0016)

0:0033
(0:0024)

5; 156

Note: The model estimated is either AR(1) (AR) using equations (4) and (5) with "t = 0,
AR(1) plus noise (ARn) using equations (4) and (5) with "t 6= 0 or ARMA(1,1) (ARMA)
using equations (9) and (5) with "t = 0. ML estimates are reported with robust (sandwich-
formula) standard errors in parenthesis. Also reported are lnL(�), the value of the maximized
log-likelihood function. � indicates that the parameter has been �xed to the reported value.
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Table 4: Reported results are for S&P 500 using daily observations for the period 1987.12.16-2007.11.8 Panel A: OLS
estimations. Panel B: OLS estimates where the left hand side is the one step ahead forecasted true, but latent, volatility
from the indicated AR(1) plus noise model estimated in the previous tables.

Model (S&P500) Panel A
a b c L (�) DW R2

RV ,IV �1:5225
(0:0633)

0:3890
(0:1945)

1:5169
(0:1634)

�10; 22 2:05 0:45

ln(RV; IV ) �0:5215
(0:0215)

0:4143
(0:0185)

1:2034
(0:0452)

�3; 64 2:12 0:68

BV ,IV �0:6649
(0:0880)

0:4380
(0:0652)

0:6519
(0:0741)

�6; 18 2:06 0:49

ln(BV ,IV ) �0:9614
(0:0503)

0:4349
(0:0131)

1:1720
(0:0350)

�3; 78 2:12 0:68

SBV ,IV �0:6065
(0:0762)

0:4930
(0:0614)

0:5962
(0:0656)

�5; 90 2:06 0:53

ln(SBV; IV ) �0:9317
(0:0338)

0:4501
(0:0181)

1:1532
(0:0454)

�3; 71 2:12 0:69

Panel B
a b c L (�) DW R2

ARn; RV �0:9711
(0:0410)

0:5782
(0:0238)

� �5; 03 1:25 0:81

ARn; IV �1:6182
(0:0063)

� 0:9434
(0:0039)

5; 56 1:84 0:98

ARn; (RV; IV ) �1:5864
(0:0080)

0:0121
(0:0017)

0:9141
(0:0062)

6; 01 1:85 0:98

ARn; BV �0:4802
(0:0167)

0:6196
(0:0225)

� �1; 20 1:32 0:85

ARn; (BV; IV ) �1:5790
(0:0079)

0:0311
(0:0038)

0:9079
(0:0062)

6; 11 1:82 0:98

ARn; SBV �0:5307
(0:0116)

0:6743
(0:0156)

� �242 1:47 0:90

ARn; (SBV; IV ) �1:5797
(0:0082)

0:0294
(0:0038)

0:9087
(0:0064)

6; 07 1:85 0:98

ARn; ln(RV ) �0:0589
(0:0059)

0:7656
(0:0085)

- �463 1:47 0:87

ARn; ln(IV ) �0:4563
(0:0013)

- 0:9535
(0:0028)

9; 02 1:86 0:99

ARn; ln(RV; IV ) �0:4227
(0:0027)

0:0353
(0:0021)

0:8792
(0:0059)

9; 66 1:87 0:99

ARn; ln(BV ) 0:5542
(0:0103)

0:7647
(0:0085)

� �550 1:47 0:87

ARn; ln(BV; IV ) �0:3964
(0:0041)

0:0339
(0:0020)

0:8813
(0:0057)

9; 66 1:87 0:99

ARn; ln(SBV ) 0:5486
(0:0097)

0:7744
(0:0080)

� �428 1:48 0:88

ARn; ln(SBV; IV ) �0:3932
(0:0041)

0:0359
(0:0019)

0:8762
(0:0057)

9; 70 1:87 0:99

Note: OLS estimates are reported with standard t-test standard errors. Also reported are
lnL(�), the value of the maximized log-likelihood function.
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Table 5: Kalman-�lter estimation for RV, BV, SBV and/or IV as observable variables for bonds using daily observations
for the period 1992.12.21-2007.11.19.

Model (Bonds) �1 �2 �1 �2 
1 �21 �22 � u2 L (�)
AR; RV 0:9387

(0:0229)
� 1� � 0:3523

(0:0516)
� � � 0:7963

(0:0783)
�4; 727

ARn; RV 0:9373
(0:0423)

� 1� � 0:8895
(0:0358)

0:5575
(0:0653)

� � 0:0734
(0:0325)

�4; 593

AR; IV 0:9372
(0:0127)

� 1� � 0:8849
(0:0220)

� � � 0:0079
(0:0011)

3; 634

ARn; IV 0:9320
(0:0277)

� 1� � 0:9757
(0:0099)

0:0038
(0:0011)

� � 0:0016
(0:0008)

3; 844

ARn; (RV; IV ) 0:9254
(0:0583)

0:9326
(0:0263)

2:1706
(0:1060)

1� 0:9732
(0:0104)

0:7568
(0:0868)

0:0037
(0:0011)

�0:0102
(0:0029)

0:0017
(0:0008)

2; 509

AR; BV 0:4085
(0:0153)

� 1� � 0:5892
(0:0775)

� � � 0:1438
(0:0188)

�1; 627

ARn; BV 0:4082
(0:0223)

� 1� � 0:8389
(0:0740)

0:0652
(0:0136)

� � 0:0459
(0:0180)

�1; 510

ARn; (BV; IV ) 0:4024
(0:0284)

0:9330
(0:0254)

1:0960
(0:0893)

1� 0:9714
(0:0107)

0:1816
(0:0358)

0:0038
(0:0011)

�0:0077
(0:0031)

0:0019
(0:0009)

5; 056

AR; SBV 0:3950
(0:0162)

� 1� � 0:6417
(0:0767)

� � � 0:1224
(0:0186)

�1; 335

ARn; SBV 0:3946
(0:0227)

� 1� � 0:8409
(0:0762)

0:0490
(0:0124)

� � 0:0465
(0:0178)

�1; 231

ARn; (SBV; IV ) 0:3889
(0:0282)

0:9330
(0:0253)

1:0923
(0:1016)

1� 0:9713
(0:0107)

0:1697
(0:0363)

0:0039
(0:0011)

�0:0077
(0:0034)

0:0019
(0:0009)

5; 161

Note: The model estimated is either AR(1) (AR) using equations (4) and (5) with "t = 0 and
AR(1) plus noise (ARn) using equations (4) and (5) with "t 6= 0. ML estimates are reported
with robust (sandwich-formula) standard errors in parenthesis. Also reported are lnL(�), the
value of the maximized log-likelihood function. � indicates that the parameter has been �xed
to the reported value.

Table 6: Kalman-�lter estimation for ln(RV), ln(BV), ln(SBV) and/or ln(IV) as observable variables for Bonds using
daily observations for the period 1992.12.21-2007.11.19.

Model (Bonds) �1 �2 �1 �2 
1 �21 �22 � u2 L (�)
AR; RV �0:3405

(0:0180)
� 1� � 0:4066

(0:0179)
� � � 0:4156

(0:0119)
�3; 549

ARn; RV �0:3505
(0:0744)

� 1� � 0:9812
(0:0057)

0:3065
(0:0115)

� � 0:0071
(0:0023)

�3; 245

AR; IV �0:0854
(0:0130)

� 1� � 0:8708
(0:0251)

� � � 0:0101
(0:0017)

3; 184

ARn; IV �0:0932
(0:0319)

� 1� � 0:9785
(0:0092)

0:0052
(0:0016)

� � 0:0016
(0:0008)

3; 427

ARn; (RV; IV ) �0:3587
(0:0634)

�0:0922
(0:0301)

2:0997
(0:0625)

1� 0:9764
(0:0093)

0:3389
(0:0107)

0:0051
(0:0016)

�0:0090
(0:0019)

0:0018
(0:0008)

3; 517

AR; BV �1:2054
(0:0213)

� 1� � 0:4713
(0:0179)

� � � 0:4617
(0:0136)

�3; 740

ARn; BV �1:2126
(0:0751)

� 1� � 0:9744
(0:0071)

0:3280
(0:0126)

� � 0:0134
(0:0041)

�3; 447

ARn; (BV; IV ) �1:2254
(0:0710)

�0:0920
(0:0298)

2:3693
(0:0735)

1� 0:9760
(0:0093)

0:3916
(0:0132)

0:0052
(0:0016)

�0:0109
(0:0022)

0:0018
(0:0008)

3; 235

AR; SBV �1:2289
(0:0218)

� 1� � 0:5070
(0:0167)

� � � 0:4201
(0:0118)

�3; 569

ARn; SBV �1:2361
(0:0723)

� 1� � 0:9712
(0:0072)

0:2893
(0:0110)

� � 0:0157
(0:0041)

�3; 271

ARn; (SBV; IV ) �1:2488
(0:0667)

�0:0919
(0:0279)

2:3837
(0:0076)

1� 0:9759
(0:0077)

0:3611
(0:0123)

0:0052
(0:0012)

�0:0106
(0:0020)

0:0018
(0:0040)

3; 363

Note: The model estimated is either AR(1) (AR) using equations (4) and (5) with "t = 0 or
AR(1) plus noise (ARn) using equations (4) and (5) with "t 6= 0. ML estimates are reported
with robust (sandwich-formula) standard errors in parenthesis. Also reported are lnL(�), the
value of the maximized log-likelihood function. � indicates that the parameter has been �xed
to the reported value.
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Table 7: Reported results are for Bonds using daily observations for the period 1992.12.21-2007.11.19 Panel A: OLS
estimations. Panel B: OLS estimates where the left hand side is the one step ahead forecasted true, but latent, volatility
from the indicated AR(1) plus noise model estimated in the previous tables.

Model (Bonds) Panel A
a b c L (�) DW R2

RV ,IV �0:6966
(0:1350)

0:2543
(0:1182)

1:4877
(0:2398)

�456 2:06 0:20

ln(RV; IV ) �0:1447
(0:0150)

0:2039
(0:0310)

1:5151
(0:0954)

�319 2:05 0:31

BV ,IV �0:2171
(0:0695)

0:5351
(0:1591)

0:4336
(0:1354)

�1548 2:20 0:38

ln(BV; IV ) �0:7390
(0:0400)

0:2827
(0:0337)

1:5069
(0:1030)

�3432 2:09 0:34

SBV ,IV �0:1762
(0:0629)

0:5946
(0:1440)

0:3583
(0:1206)

�1272 2:23 0:43

ln(SBV ,IV ) �0:7186
(0:0410)

0:3192
(0:0335)

1:4147
(0:1004)

�3278 2:10 0:37

Panel B
a b c L (�) DW R2

ARn; RV �0:3218
(0:0227)

0:3440
(0:0271)

� �105 0:90 0:63

ARn; IV �0:8140
(0:0125)

� 0:8740
(0:0134)

6584 1:61 0:95

ARn; (RV; IV ) �0:8010
(0:0114)

0:0207
(0:0011)

0:8388
(0:0130)

6956 1:64 0:96

ARn; BV �0:2410
(0:0119)

0:5905
(0:0330)

� 3472 1:51 0:90

ARn; (BV; IV ) �0:7935
(0:0108)

0:0527
(0:0027)

0:8282
(0:0122)

7121 1:66 0:96

ARn; SBV �0:2536
(0:0099)

0:6427
(0:0283)

� 3970 1:61 0:93

ARn; (SBV; IV ) �0:7908
(0:0108)

0:0553
(0:0027)

0:8250
(0:0123)

7115 1:66 0:96

ARn; ln(RV ) 0:1371
(0:0126)

0:3775
(0:0140)

� �472 0:76 0:48

ARn; ln(IV ) 0:0808
(0:0019)

� 0:8563
(0:0178)

5890 1:56 0:93

ARn; ln(RV; IV ) 0:0891
(0:0013)

0:0460
(0:0024)

0:7795
(0:0181)

6408 1:61 0:95

ARn; ln(BV ) 0:5318
(0:0201)

0:4362
(0:0134)

� �738 0:87 0:56

ARn; ln(BV; IV ) 0:1265
(0:0017)

0:0447
(0:0023)

0:7716
(0:0182)

6460 1:61 0:95

ARn; ln(SBV ) 0:5892
(0:0203)

0:4744
(0:0134)

� �611 0:94 0:61

ARn; ln(BV; IV ) 0:1299
(0:0019)

0:0471
(0:0025)

0:7657
(0:0184)

6480 1:61 0:95

Note: OLS estimates are reported with standard t-test standard errors. Also reported are
lnL(�), the value of the maximized log-likelihood function.
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Table 8: Kalman-�lter estimation for RV, BV, SBV and/or IV as observable variables for FX using daily observations
for the period 1987.12.23-2006.7.25.

Model (FX) �1 �2 �1 �2 
1 �21 �22 � u2 L (�)
AR; RV 0:9593

(0:0232)
� 1� � 0:2110

(0:0379)
� � � 1:5553

(0:2331)
�7; 59

ARn; RV 0:9630
(0:0765)

� 1� � 0:9765
(0:0063)

1:3299
(0:2135)

� � 0:0138
(0:0052)

�7; 42

AR; IV 0:9593
(0:0223)

� 1� � 0:9392
(0:0206)

� � � 0:0086
(0:0018)

4; 44

ARn; IV 0:9596
(0:0354)

: � 1� � 0:9770
(0:0088)

0:0030
(0:0018)

� � 0:0032
(0:0019)

4; 63

ARn; (RV; IV ) 0:9600
(0:0684)

0:9597
(0:0354)

1:8473
(0:0883)

1� 0:9769
(0:0087)

1:3893
(0:2281)

0:0030
(0:0018)

0:0007
(0:0032)

0:0032
(0:0019)

1; 55

AR; BV 0:4406
(0:0108)

� 1� � 0:2182
(0:0394)

� � � 0:3308
(0:0590)

�4; 01

ARn; BV 0:4416
(0:0340)

� 1� � 0:9750
(0:0061)

0:2818
(0:0541)

� � 0:0032
(0:0012)

�3; 84

ARn; (BV; IV ) 0:4408
(0:0315)

0:9596
(0:0354)

0:8506
(0:0384)

1� 0:9769
(0:0087)

0:2967
(0:0584)

0:0030
(0:0018)

0:0004
(0:0014)

0:0032
(0:0019)

5; 12

AR; SBV 0:4126
(0:0094)

� 1� � 0:2998
(0:0346)

� � � 0:1990
(0:0262)

�2; 83

ARn; SBV 0:4131
(0:0335)

� 1� � 0:9764
(0:0062)

0:1576
(0:0231)

� � 0:0028
(0:0008)

�2; 56

ARn; (SBV; IV ) 0:4129
(0:0301)

0:9596
(0:0353)

0:8278
(0:0343)

1� 0:9768
(0:0087)

0:1707
(0:0253)

0:0030
(0:0018)

0:0001
(0:0014)

0:0032
(0:0019)

6; 39

Note: The model estimated is either AR(1) (AR) using equations (4) and (5) with "t = 0 or
AR(1) plus noise (ARn) using equations (4) and (5) with "t 6= 0. ML estimates are reported
with robust (sandwich-formula) standard errors in parenthesis. Also reported are lnL(�), the
value of the maximized log-likelihood function. � indicates that the parameter has been �xed
to the reported value.

Table 9: Kalman-�lter estimation for ln(RV), ln(BV), ln(SBV) and/or ln(IV) as observable variables for FX using daily
observations for the period 1987.12.23-2006.7.25.

Model (FX) �1 �2 �1 �2 
1 �21 �22 � u2 L (�)
AR; RV �0:3823

(0:0177)
� 1� � 0:4429

(0:0155)
� � � 0:4498

(0:0131)
�4; 72

ARn; RV �0:3833
(0:0637)

� 1� � 0:9755
(0:0048)

0:3241
(0:0115)

� � 0:0114
(0:0019)

�4; 35

AR; IV �0:0780
(0:0246)

� 1� � 0:9506
(0:0096)

� � � 0:0069
(0:0008)

4; 95

ARn; IV �0:0775
(0:0390)

� 1� � 0:9810
(0:0045)

0:0023
(0:0007)

� � 0:0026
(0:0008)

5; 15

ARn; (RV; IV ) �0:3818
(0:0661)

�0:0776
(0:0387)

1:6772
(0:0375)

1� 0:9807
(0:0044)

0:3646
(0:0121)

0:0023
(0:0007)

�0:0008
(0:0013)

0:0026
(0:0008)

5; 14

AR; BV �1:1589
(0:0181)

� 1� � 0:4588
(0:0152)

� � � 0:4444
(0:0129)

�4; 69

ARn; BV �1:1594
(0:0622)

� 1� � 0:9734
(0:0050)

0:3191
(0:0113)

� � 0:0128
(0:0022)

�4; 34

ARn; (BV; IV ) �1:1583
(0:0668)

�0:0776
(0:0387)

1:6942
(0:0373)

1� 0:9807
(0:0044)

0:3639
(0:0121)

0:0023
(0:0007)

�0:0009
(0:0013)

0:0026
(0:0008)

5; 14

AR; SBV �1:1905
(0:0182)

� 1� � 0:4883
(0:0144)

� � � 0:4025
(0:0110)

�4; 46

ARn; SBV �1:1926
(0:0612)

� 1� � 0:9721
(0:0052)

0:2818
(0:0097)

� � 0:0135
(0:0022)

�4; 09

ARn; (SBV; IV ) �1:1900
(0:0666)

�0:0777
(0:0386)

1:6946
(0:0363)

1� 0:9807
(0:0044)

0:3295
(0:0101)

0:0023
(0:0007)

�0:0013
(0:0013)

0:0027
(0:0007)

5; 36

Note: The model estimated is either AR(1) (AR) using equations (4) and (5) with "t = 0 or
AR(1) plus noise (ARn) using equations (4) and (5) with "t 6= 0. ML estimates are reported
with robust (sandwich-formula) standard errors in parenthesis. Also reported are lnL(�), the
value of the maximized log-likelihood function. � indicates that the parameter has been �xed
to the reported value.
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Table 10: Reported results are for FX using daily observations for the period 1987.12.23-2006.7.25 Panel A: OLS
estimations. Panel B: OLS estimates where the left hand side is the one step ahead forecasted true, but latent, volatility
from the indicated AR(1) plus noise model estimated in the previous tables.

Model (FX) Panel A
a b c L (�) DW R2

RV ,IV �0:5692
(0:0901)

0:0913
(0:0315)

1:5020
(0:1059)

�7; 37 2:01 0:13

ln(RV; IV ) �0:2141
(0:0126)

0:1881
(0:0180)

1:2361
(0:0530)

�4; 31 2:04 0:33

BV ,IV �0:2573
(0:0407)

0:1009
(0:0295)

0:6811
(0:0460)

�3; 80 2:01 0:13

ln(BV; IV ): �0:8241
(0:0213)

0:2071
(0:0177)

1:2166
(0:0538)

�4; 29 2:04 0:34

SBV ,IV �0:2587
(0:0381)

0:1291
(0:0248)

0:6443
(0:0449)

�2; 54 2:02 0:20

ln(SBV; IV ) �0:8270
(0:0222)

0:2276
(0:0181)

1:1868
(0:0530)

�4; 06 2:05 0:36

Panel B
a b c L (�) DW R2

ARn; RV �0:1742
(0:0192)

0:1788
(0:0172)

� �1; 89 0:39 0:28

ARn; IV �0:8992
(0:0073)

� 0:9371
(0:0076)

9; 55 1:82 0:99

ARn; (RV; IV ) �0:8980
(0:0076)

0:0019
(0:0006)

0:9338
(0:0084)

9; 58 1:83 0:99

ARn; BV �0:0819
(0:0098)

0:1839
(0:0202)

� 1; 67 0:40 0:29

ARn; (BV; IV ) �0:8980
(0:0076)

0:0038
(0:0013)

0:9341
(0:0084)

9; 58 1:83 0:99

ARn; SBV �0:1126
(0:0096)

0:2723
(0:0233)

� 1; 91 0:57 0:39

ARn; (SBV; IV ) �0:8964
(0:0078)

0:0084
(0:0022)

0:9306
(0:0090)

9; 62 1:83 0:98

ARn; ln(RV ) 0:1581
(0:0130)

0:4103
(0:0142)

� �792 0:82 0:53

ARn; ln(IV ) 0:0736
(0:0005)

� 0:9494
(0:0039)

10; 13 1:87 0:99

ARn; ln(RV ,IV ) 0:0760
(0:0005)

0:0086
(0:0011)

0:9358
(0:0052)

10; 27 1:89 0:99

ARn; ln(BV ) 0:4891
(0:0222)

0:4214
(0:0142)

� �771 0:84 0:55

ARn; ln(BV ,IV ): 0:0830
(0:0011)

0:0089
(0:0011)

0:9351
(0:0052)

10; 28 1:89 0:99

ARn; ln(SBV ) 0:5423
(0:0224)

0:4537
(0:0144)

� �633 0:90 0:59

ARn; ln(SBV ,IV ) 0:0856
(0:0013)

0:0111
(0:0013)

0:9316
(0:0053)

10; 31 1:89 0:99

Note: OLS estimates are reported with standard t-test standard errors. Also reported are
lnL(�), the value of the maximized log-likelihood function.
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Table 11: Kalman-�lter estimation for AR(2) speci�cations.
Model �1 �2 �1 
1 
2 �21 �22 � u2 L (�)

AR(2)n; RV; IV , SP 1:7611
(0:2812)

1:7116
(0:1074)

2:6026
(0:1127)

0:9832
(0:0047)

3 � 10�7
(0:0001)

3:9993
(0:6342)

0:0153
(0:0022)

�0:0133
(0:0222)

0:0125
(0:0022)

�4; 813

AR(2)n; BV; IV , SP 0:8035
(0:1307)

1:7110
(0:1060)

1:2256
(0:0574)

0:9828
(0:0048)

1 � 10�7
(0:0001)

0:8208
(0:1293)

0:0152
(0:0022)

�0:0098
(0:0118)

0:0128
(0:0022)

�877

AR(2)n; SBV; IV , SP 0:8183
(0:1339)

1:7111
(0:1062)

1:2528
(0:0572)

0:9829
(0:0048)

1:3 � 10�5
(0:0001)

0:7771
(0:1089)

0:0153
(0:0022)

�0:0068
(0:0109)

0:0127
(0:0023)

�741

AR(2)n; ln(RV; IV ), SP 0:0916
(0:1327)

0:4768
(0:0605)

2:1895
(0:0259)

0:9856
(0:0028)

2 � 10�6
(0:0011)

0:2613
(0:0086)

0:0039
(0:0053)

�0:0025
(0:0015)

0:0033
(0:0004)

5; 313

AR(2)n; ln(BV; IV ), SP �0:7100
(0:1344)

0:4768
(0:0605)

2:2181
(0:0273)

0:9856
(0:0028)

1 � 10�5
(0:0011)

0:2820
(0:0090)

0:0039
(0:0005)

�0:0028
(0:0017)

0:0033
(0:0004)

5; 121

AR(2)n; ln(SBV; IV ), SP �0:6922
(0:1355)

0:4766
(0:0602)

2:2449
(0:0271)

0:9855
(0:0028)

2:8 � 10�6
(0:0010)

0:2764
(0:0090)

0:0039
(0:0005)

�0:0032
(0:0016)

0:0033
(0:0005)

5; 156

AR(2); ln(RV ); SP 0:0598
(0:0504)

� 1� 0:5302
(0:0169)

0:3209
(0:0164)

� � � 0:2801
(0:0079)

�3; 910

AR(2)n; ln(RV ); SP 0:0731
(0:0955)

� 1� 0:9722
(0:0048)

7:0 � 10�7
(1:0�10�6)

0:1698
(0:0076)

� � 0:0349
(0:0053)

�3; 730

AR(2); ln(IV ); SP 0:4702
(0:0457)

� 1� 0:6622
(0:0451)

0:3063
(0:0444)

� � � 0:0095
(0:0006)

4; 538

AR(2)n; ln(IV ); SP 0:4782
(0:0645)

� 1� 0:9871
(0:0026)

6:3 � 10�6
(0:0016)

0:0040
(0:0005)

� � 0:0030
(0:0004)

4; 619

AR(2); ln(BV ); SP �0:7425
(0:0508)

� 1� 0:5396
(0:0161)

0:3091
(0:0160)

� � � 0:2946
(0:0082)

�4; 037

AR(2)n; ln(BV ); SP �0:7288
(0:0962)

� 1� 0:9715
(0:0048)

1:4 � 10�5
(1:0�10�5)

0:1774
(0:0079)

� � 0:0373
(0:0054)

�3; 852

AR(2); ln(SBV ); SP �0:7247
(0:0518)

� 1� 0:5546
(0:0161)

0:2988
(0:0157)

� � � 0:2873
(0:0080)

�3; 974

AR(2)n; ln(SBV ); SP �0:7119
(0:0959)

� 1� 0:9707
(0:0050)

1:0 � 10�8
(6:3�10�6)

0:1701
(0:0078)

� � 0:0391
(0:0057)

�3; 797

AR(2)n; RV; IV , Bonds 0:9258
(0:0583)

0:9328
(0:0263)

2:1700
(0:1060)

0:9735
(0:0059)

�0:0002
(0:0054)

0:7569
(0:0868)

0:0037
(0:0011)

�0:0102
(0:0029)

0:0017
(0:0008)

2; 509

AR(2)n; BV; IV , Bonds 0:4024
(0:0284)

0:9330
(0:0254)

1:0958
(0:0893)

0:9714
(0:0066)

4:5 � 10�5
(0:0049)

0:1816
(0:0358)

0:0038
(0:0011)

�0:0077
(0:0030)

0:0019
(0:0009)

5; 056

AR(2)n; SBV; IV , Bonds 0:3889
(0:0282)

0:9330
(0:0253)

1:0923
(0:1016)

0:9713
(0:0066)

7:3 � 10�6
(0:0049)

0:1697
(0:0363)

0:0039
(0:0011)

�0:0077
(0:0034)

0:0019
(0:0008)

5; 161

AR(2)n; ln(RV; IV ), Bonds �0:3587
(0:0634)

�0:0922
(0:0301)

2:0997
(0:0625)

0:9763
(0:0053)

4:9 � 10�6
(0:0052)

0:3389
(0:0107)

0:0051
(0:0015)

�0:0090
(0:0019)

0:0018
(0:0008)

3; 517

AR(2)n; ln(BV; IV ), Bonds �1:2254
(0:0710)

�0:0920
(0:0298)

2:3693
(0:0735)

0:9760
(0:0054)

2:3 � 10�6
(0:0050)

0:3916
(0:0131)

0:0052
(0:0015)

�0:0109
(0:0022)

0:0018
(0:0008)

3; 235

AR(2)n; ln(SBV; IV ),Bonds �1:2488
(0:0710)

�0:0919
(0:0297)

2:3837
(0:0705)

0:9759
(0:0055)

6:1 � 10�6
(0:0049)

0:3611
(0:0120)

0:0052
(0:0016)

�0:0106
(0:0022)

0:0018
(0:0008)

3; 363

AR(2); ln(RV ); Bonds �0:3407
(0:0234)

� 1� 0:3037
(0:0185)

0:2531
(0:0165)

� � � 0:3889
(0:0113)

�3; 429

AR(2)n; ln(RV ); Bonds �0:3505
(0:0744)

� 1� 0:9812
(0:0041)

2:5 � 10�6
(0:0023)

0:3065
(0:0115)

� � 0:0071
(0:0023)

�3; 245

AR(2); ln(IV ); Bonds �0:0867
(0:0166)

� 1� 0:6686
(0:0730)

0:2330
(0:0672)

� � � 0:0095
(0:0016)

3; 285

AR(2)n; ln(IV ); Bonds �0:0932
(0:0319)

� 1� 0:9784
(0:0045)

2:2 � 10�5
(0:0072)

0:0052
(0:0016)

� � 0:0016
(0:0008)

3; 427

AR(2); ln(BV ); Bonds �1:2057
(0:0280)

� 1� 0:3458
(0:0191)

0:2663
(0:0171)

� � � 0:4290
(0:0124)

�3; 607

AR(2)n; ln(BV ); Bonds �1:2125
(0:0751)

� 1� 0:9744
(0:0068)

�1:4 � 10�6
(0:0003)

0:3280
(0:0126)

� � 0:0134
(0:0041)

�3; 447

AR(2); ln(SBV ); Bonds �1:2292
(0:0289)

� 1� 0:3686
(0:0184)

0:2729
(0:0168)

� � � 0:3888
(0:0108)

�3; 429

AR(2)n; ln(SBV ); Bond �1:2361
(0:0723)

� 1� 0:9712
(0:0070)

�7:0 � 10�7
(0:0002)

0:2893
(0:0110)

� � 0:0157
(0:0041)

�3; 271

AR(2)n; RV; IV , DP 0:9598
(0:0683)

0:9596
(0:0354)

1:8472
(0:0883)

0:9769
(0:0063)

�2:1 � 10�5
(0:0033)

1:3893
(0:2281)

0:0030
(0:0018)

0:0007
(0:0032)

0:0032
(0:0019)

1; 546

AR(2)n; BV; IV , DP 0:4408
(0:0315)

0:9596
(0:0354)

0:8506
(0:0384)

0:9769
(0:0063)

�8 � 10�7
(0:0033)

0:2967
(0:0584)

0:0030
(0:0018)

0:0004
(0:0014)

0:0032
(0:0019)

5; 120

AR(2)n; SBV; IV , DP 0:4129
(0:0301)

0:9596
(0:0353)

0:8278
(0:0343)

0:9768
(0:0063)

2:9 � 10�6
(0:0033)

0:1707
(0:0253)

0:0030
(0:0018)

0:0001
(0:0014)

0:0032
(0:0019)

6; 392

AR(2)n; ln(RV; IV ), DP �0:3818
(0:0661)

�0:0776
(0:0387)

1:6772
(0:0375)

0:9807
(0:0036)

2 � 10�7
(0:0034)

0:3646
(0:0121)

0:0023
(0:0007)

�0:0008
(0:0013)

0:0026
(0:00074)

5; 139

AR(2)n; ln(BV; IV ), DP �1:1583
(0:0668)

�0:0776
(0:0387)

1:6942
(0:0373)

0:9807
(0:0036)

8 � 10�7
(0:0034)

0:3639
(0:0121)

0:0023
(0:0007)

�0:0009
(0:0013)

0:0026
(0:0007)

5; 141

AR(2)n; ln(SBV; IV ), DP �1:1900
(0:0666)

�0:0777
(0:0386)

1:6946
(0:0363)

0:9807
(0:0036)

7 � 10�7
(0:0033)

0:3295
(0:0101)

0:0023
(0:0007)

�0:0013
(0:0013)

0:0027
(0:0007)

5; 364

AR(2); ln(RV ); DP �0:3826
(0:0226)

� 1� 0:3359
(0:0161)

0:2418
(0:0148)

� � � 0:4235
(0:0127)

�4; 581

AR(2)n; ln(RV ); DP �0:3833
(0:0637)

� 1� 0:9755
(0:0045)

3:4 � 10�6
(0:0004)

0:3241
(0:0115)

� � 0:0114
(0:0019)

�4; 347

AR(2); ln(IV ); DP �0:0780
(0:0318)

� 1� 0:7076
(0:0587)

0:2556
(0:0563)

� � � 0:0065
(0:0007)

�4; 561

AR(2)n; ln(IV ); DP �0:0775
(0:0390)

� 1� 0:9810
(0:0036)

7:0 � 10�7
(0:0036)

0:0023
(0:0007)

� � 0:0026
(0:0007)

5; 149

AR(2); ln(BV ); DP �1:1590
(0:0230)

� 1� 0:3511
(0:0160)

0:2346
(0:0147)

� � � 0:4199
(0:0125)

�4; 561

AR(2)n; ln(BV ); DP �1:1594
(0:0622)

� 1� 0:9734
(0:0049)

2:4 � 10�6
(0:0002)

0:3191
(0:0113)

� � 0:0128
(0:0022)

�4; 336

AR(2); ln(SBV ); DP �1:1908
(0:0236)

� 1� 0:3641
(0:0153)

0:2544
(0:0145)

� � � 0:3764
(0:0106)

�4; 308

AR(2)n; ln(SBV ); DP �1:1926
(0:0612)

� 1� 0:9721
(0:0050)

5:2 � 10�6
(0:0002)

0:2818
(0:0097)

� � 0:0135
(0:0022)

�4; 090

Note: The model estimated is either AR(2) (AR) using equations (7) and (5) with "t = 0 or AR(2)
plus noise (AR(2)n) using equations (7) and (5) with "t 6= 0. ML estimates are reported with robust
(sandwich-formula) standard errors in parenthesis. Also reported are lnL (�), the value of the maximized
log-likelihood function. � indicates that the parameter has been �xed to the reported value.
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6 Appendix

Speci�cation of AR(1) plus noise and ARMA(1,1)
To derive closed form solutions for parameters when going to and from ARMA(1,1) and

AR(1) plus noise models we �rst consider the individual models. From the measurement

equation (5) and the state equation (10), the univariate ARMA(1,1) without measurement

noise is formulated in the state space as"
xt+1

wt+1

#
=

"

ARMA �

0 0

#"
xt

wt

#
+

"
wt+1

wt+1

#
;

yt =
h
1 0

i " xt
wt

#
:

This can also be written as

(1� 
ARMAL) yt = (1 + �L)wt: (31)

We denote the j0th covariance as �j and the j
0th correlation as �j . The above model implies

the correlation function

�j =

8><>:
1; j = 0
�2
+�
2+�+

�2+2
�+1

; j = 1


j�1�1; j � 2
: (32)

The variance of the right hand side MA(1) process is

�0 = E [(wt + �wt�1) (wt + �wt�1)]

=
�
1 + �2

�
�2w: (33)

The �rst auto-covariance of the right hand side MA(1) process is

�1 = E [(wt + �wt�1) (wt�1 + �wt�2)]

= ��2w: (34)

We do not have to calculate higher order auto-covariances since these can be stated in terms

of the �rst order auto-covariance and 
ARMA.

Using the notation in (4) and (5), and thus not quite similar notation as Granger & Morris

(1976), the univariate AR(1) plus noise system in state space form is given by

xt+1 = 
ARxt + ut+1;

yt = xt + "t:
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Thus we can also write it as

(1� 
ARL) yt = (1� 
ARL) "t + ut: (35)

The variance of the MA(1) process on the right hand side is

�0 = E [("t � 
AR"t�1 + ut) ("t � 
AR"t�1 + ut)]
=

�
1 + 
2AR

�
�2" + �

2
u: (36)

The �rst auto-covariance of the right hand side MA(1) process is

�1 = E [("t � 
AR"t�1 + ut) ("t�1 � 
AR"t�2 + ut�1)]
= �
AR�2": (37)

We do not have to calculate higher order auto-covariances since these can be stated in terms

of the �rst order auto-covariance and 
AR.

ARMA(1,1) to AR(1) plus noise:
Knowing �; �w and 
ARMA in the ARMA(1,1) representation we can �nd expressions for

�"; �u and 
AR in the corresponding AR(1) plus noise representation. Comparing (35) to (31)

it is seen that for the two models to be identical we require


AR = 
ARMA: (38)

Furthermore the MA(1) term on the right hand side of (35) must match the MA(1) term

on the right hand side of (31). This is the case if their auto-covariance functions are identical.

Higher order (two and up) auto-covariances are identical if 
AR = 
ARMA and if the �rst order

auto-covariances are identical. Thus, we require (equating 37 and 34)

�1 = �
AR�2" = ��2w: (39)

Furthermore, for variances to be equal (equating 36 and 33)

�0 =
�
1 + 
2AR

�
�2" + �

2
u =

�
1 + �2

�
�2w: (40)

Parameter solutions:

We already solved for 
AR in terms of 
ARMA in (38). Left is to �nd solutions for �" and

�u in terms of � and �w. From (39) and (38)

�2" = �
�


ARMA

�2w: (41)
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Substituting this into (40) yields

�
�
1 + 
2ARMA

� �


ARMA

�2w + �
2
u =

�
1 + �2

�
�2w ,

�2u =
�
1 + �2

�
�2w +

�
1 + 
2ARMA

� �


ARMA

�2w:

Realizability conditions:

From (41) and �2" > 0

�2" = �
�


ARMA

�2w > 0:

Since �2w > 0 we require sign (�) 6= sign (
ARMA).

From (40), (38) and the requirement of �2u > 0

�2u =
�
1 + �2

�
�2w �

�
1 + 
2AR

�
�2" > 0,�

1 + �2
�
�2w >

�
1 + 
2ARMA

�
�2":

Dividing on both sides using (41) and (38) yields�
1 + �2

�
�2w

� �

ARMA

�2w
>

�
1 + 
2ARMA

�
�2"

�2"
,

1

1 + 
2ARMA

> � ��
1 + �2

�

ARMA

: (42)

Since 1 + �2 > 0 and sign (�) 6= sign (
ARMA) it follows that

� ��
1 + �2

�

ARMA

� 0; (43)

and hence from (42) and (43) the realizability condition becomes

1

1 + 
2ARMA

> � ��
1 + �2

�

ARMA

� 0: (44)

This result was also shown in less detail and with slightly di¤erent model set up in Granger

& Morris (1976).

AR(1) plus noise to ARMA(1,1)
In this case we know �"; �u and 
AR from the AR(1) plus noise representation and we can

�nd expressions for �; �w and 
ARMA in the corresponding ARMA(1,1) representation. Again,

to match the left hand side of (35) to the left hand side of (31) we must have


ARMA = 
AR:

33



To match the MA(1) term on the right hand side of (35) to the right hand side of (31) we

again require the relations in (40) and (39) to be satis�ed. From (39) we have

�2w = �

AR
�
�2": (45)

Substituting into (40) yields

�
1 + 
2AR

�
�2" + �

2
u = �

�
1 + �2

� 
AR
�
�2" ,

�2
AR�
2
" + �

�
�2" + 


2
AR�

2
" + �

2
u

�
+ 
AR�

2
" = 0:

For �2"
AR 6= 0, this implies

� =
��2" � 
2AR�2" � �2u �

q
�4u + 2�

2
u�

2
"

2
AR + 2�

2
u�

2
" + �

4
"

4
AR � 2�4"
2AR + �4"

2
AR�
2
"

: (46)

We have to show that the term inside the square root is non-negative, hence

�4u + 2�
2
u�

2
"

2
AR + 2�

2
u�

2
" + �

4
"

4
AR � 2�4"
2AR + �4" � 0,

�4u + 2�
2
u�

2
"

2
AR + 2�

2
u�

2
" + �

4
"

4
AR + �

4
" � 2�4"


2
AR:

All terms on the left hand side are positive and it is thus su¢ cient to show that

�4"
�

4AR + 1

�
� 2�4"


2
AR ,


4AR + 1 � 2
2AR:

For a stationary AR parameter, i.e. j
ARj < 1 this holds with strict inequality and for a

unit root process it holds with equality.

Realizability conditions:

We have now found the equations for the parameters of such a model respeci�cation, but

we still need to �gure out if there are any realizability conditions. We require �2w > 0 and then

from (45) we must have

sign (�) 6= sign (
AR) :

From (46) we see that the denominator is of the same sign as 
AR. Thus if 
AR > 0 then

we require the numerator to be positive and vice versa if 
AR < 0. We now check that this is

satis�ed.

Case 1: 
AR > 0
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We require

��2" � 
2AR�2" � �2u �
q
�4u + 2�

2
u�

2
"

2
AR + 2�

2
u�

2
" + �

4
"

4
AR � 2�4"
2AR + �4" < 0:

It is su¢ cient to check that

��2" � 
2AR�2" � �2u +
q
�4u + 2�

2
u�

2
"

2
AR + 2�

2
u�

2
" + �

4
"

4
AR � 2�4"
2AR + �4" < 0,

�4u + 2�
2
u�

2
"

2
AR + 2�

2
u�

2
" + �

4
"

4
AR � 2�4"
2AR + �4" <

�
�2" + 


2
AR�

2
" + �

2
u

�2 ,
�2�4"
2AR < 2�4"


2
AR:

Thus, the realizability condition is always satis�ed.

Case 2: 
AR < 0
We require

��2" � 
2AR�2" � �2u �
q
�4u + 2�

2
u�

2
"

2
AR + 2�

2
u�

2
" + �

4
"

4
AR � 2�4"
2AR + �4" > 0:

It is su¢ cient to check that

��2" � 
2AR�2" � �2u �
q
�4u + 2�

2
u�

2
"

2
AR + 2�

2
u�

2
" + �

4
"

4
AR � 2�4"
2AR + �4" > 0:

Following similar calculations as above shows that this is always satis�ed. Hence, we can

always go from AR(1) plus noise model to an ARMA(1,1) model. This result was postulated

in (Granger & Morris (1976)).

We can thus conclude that we can always go from an AR(1) plus noise model to an

ARMA(1,1) model, but certain realizability conditions must be satis�ed for us to go from

an ARMA(1,1) model to an AR(1) plus noise model. Closed form expressions exist for all

parameters in terms of the parameters of the alternative model in both cases.
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