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Abstract

What drives volatility on financial markets? This paper takes a comprehensive look at

the predictability of financial market volatility by macroeconomic and financial vari-

ables. We go beyond forecasting stock market volatility (by large the focus in previous

studies) and additionally investigate the predictability of foreign exchange, bond, and

commodity volatility by means of a data-rich modeling methodology which is able to

handle a large number of potential predictor variables. We find that volatility in foreign

exchange, bond, and commodity markets is predictable by macro and financial predic-

tors both in-sample and out-of-sample. Stock market volatility is less predictable and

we only find some in-sample but no out-of-sample evidence of predictability. Interest-

ingly, the best volatility predictors tend to be those that are also useful for predicting

returns.

JEL-Classification: G12, G15, G17, C53

Keywords: Realized volatility; Forecasting; Data-rich modeling; Bayesian model averaging; Model

uncertainty

∗Christiansen and Schrimpf acknowledge financial support from CREATES funded by the Danish National
Research Foundation and from the Danish Council for Independent Research, Social Sciences. Schmeling
gratefully acknowledges financial support by the German Research Foundation (DFG).
‡CREATES, School of Economics and Management, Aarhus University, Bartholins Alle 10, DK-8000

Aarhus C, Denmark, e-mail: cchristiansen@creates.au.dk., phone: +45 8942 5477
§Department of Economics, Leibniz Universität Hannover, Königsworther Platz 1, D-30167 Hannover,

Germany, e-mail: schmeling@gif.uni-hannover.de, phone: +49 511 762-8213
∗∗CREATES, School of Economics and Management, Aarhus University, Bartholins Alle 10, DK-8000

Aarhus C, Denmark, e-mail: aschrimpf@creates.au.dk, phone: +45 8942 8103



I. Introduction

In this paper we investigate whether financial market volatility is predictable by the infor-

mation contained in macroeconomic and financial variables. We provide a comprehensive

analysis of volatility predictability in foreign exchange, bond, stock, and commodity markets

in a data-rich environment that allows for a large number of potential predictors well-known

from the return predictability literature (see e.g. Goyal and Welch, 2003, 2008, for a partial

overview). Since it is not clear to the economic agent ex ante which macro-finance variables

are best suited for volatility prediction, we consider an econometric framework which is ex-

plicitly suited for dealing with such model uncertainty.1 We find clear evidence of volatility

predictability by macroeconomic and financial variables for foreign exchange, bond, and com-

modity markets, both from an in-sample and out-of-sample perspective. Results for equities

are less pronounced and only indicate some success in in-sample settings but we find no

evidence of out-of-sample predictability. Importantly, all our results hold when controlling

for the standard autoregressive component of asset return volatility.

Using information in macroeconomic and financial variables to forecast volatility in

financial markets is not completely new to the literature but is far from having received

the same attention as return predictability (see e.g. Cochrane and Piazzesi, 2005; Ang and

Bekaert, 2007; Ludvigson and Ng, 2009; Lustig, Roussanov, and Verdelhan, 2010b, for recent

contributions to return predictability).2 One early prominent analysis in the literature on the

economic determinants of volatility is Schwert (1989) who examines stock market volatility

by macro variables and finds little support for volatility predictability. Paye (2010) is a

recent study on equity volatility with a similar conclusion. On a more positive note, Engle,

Ghysels, and Sohn (2008) analyze the effect of inflation and industrial production growth on

stock return volatility, considering each macroeconomic variable separately. They find that

macro fundamentals do indeed matter for stock return volatility.

All in all, there is no general conclusion on financial volatility predictability by macroe-

1See for instance Avramov (2002), Cremers (2002), or Wright (2008) for similar treatments of model
uncertainty in financial forecasting setups.

2By contrast, there is a large and growing literature on volatility prediction by pure time-series models
(either based upon GARCH models, cf. Engle (1982) and Bollerslev (1986) or based on realized volatility and
high-frequency modeling, cf. Andersen, Bollerslev, Diebold, and Labys (2003)) and an enormous literature
considering variants thereof. This literature is typically interested in high-frequency movements of volatility,
while this paper is mainly interested in low frequency variation.
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conomic and financial state variables since most authors employ different sample periods,

different forecasting models, different predictors, different evaluation criteria, and almost

exclusively focus on stock market volatility. Starting from this observation, we investigate

the predictability by macro fundamentals and financial variables of the volatility of four

major asset classes (foreign exchange, bonds, stocks, and commodities) in a common econo-

metric framework that allows a multitude of variables to potentially have predictive power.

Moreover, we provide a comprehensive analysis by considering a large number of potential

macroeconomic and financial explanatory variables instead of just a selected few variables.

Understanding volatility movements is important since it is a consequential input for in-

vestment and asset allocation decisions. Moreover, understanding the macroeconomic causes

of financial market volatility is interesting in itself since it helps to uncover linkages between

price movements in financial markets and underlying risk factors or business cycle state vari-

ables.3 Furthermore, recent evidence in Mele (2008) and Fornari and Mele (2010) shows

that stock market volatility is informative about future business cycle developments so that

a better understanding of the driving forces of financial volatility is important for policy

makers and monetary authorities.

We provide an additional and important contribution to the literature on financial

volatility, namely that we investigate the properties of out-of-sample predictability by macro-

finance variables. While out-of-sample experiments are nowadays fairly standard in the re-

turn predictability literature, there seems to be little evidence on this issue for volatility

predictability by economic variables.4 However, as Mele (2007) argues, countercyclical risk

premia in financial markets do not mechanically imply countercyclical return volatility so

that it seems worthwhile to investigate sources of volatility predictability separately from

return predictability.

In our empirical analysis, we investigate a total of 29 potential economic predictors for

future volatility movements in the four asset classes mentioned above. We do so by employ-

3This is even more important since there is a growing body of evidence that risks associated with volatility
are priced in stock, option, bond, and foreign exchange markets (e.g. Ang, Hodrick, Xing, and Zhang, 2006,
Da and Schaumburg, 2009, Menkhoff, Sarno, Schmeling, and Schrimpf, 2010, Christiansen, Ranaldo, and
Söderlind, 2010 among others). Volatility-based measures have also been shown to predict future stock
market returns (see e.g. Bollerslev, Tauchen, and Zhou, 2009).

4In independent work, the most recent version of Paye (2010) also contains an out-of-sample analysis of
stock market volatility predictability. Relative to Paye (2010), we also consider FX, bond, and commodity
market volatility and we explicitly take model uncertainty into account when dealing with a large number
of potential predictor variables.
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ing a Bayesian model averaging (BMA) approach and compare its forecasting power with an

autoregressive benchmark model. For robustness, we also apply a model selection approach

which selects the best predictors out of the total pool of variables based on an informa-

tion criterion (such as the Bayesian information criterion). Although financial volatility is

highly autocorrelated in all four asset classes, such that the autoregressive benchmark model

already provides a rather good fit, we still find that macroeconomic explanatory variables

add significant explanatory power in our forecasting exercises. This is especially true in our

out-of-sample tests. Our results are most supportive of volatility predictability in foreign

exchange, bond, and commodity markets. For stock market volatility, we also find signifi-

cant predictive ability in-sample but no economically significant out-of-sample predictability

over and above that of the autoregressive component of volatility. In terms of economic

effects, it is important to point out that our main forecasting approach shows the strongest

predictive ability for predictors that are well-known from the return predictability literature.

For example, we find that the term spread matters a lot for bond market volatility and that

the default spread and the book-to-market ratio matter most for stock markets. Hence, our

results suggest that there are economically meaningful relations between macroeconomic and

financial state variables and future volatility of different asset classes. This paper is, to the

best of our knowledge, the first to report predictive relations of this kind for a comprehensive

set of asset classes. Finally, our results are fairly robust to a number of additional checks

and methodological variations.

The remaining part of the paper is structured as follows. Section 2 contains a description

of the data. Section 3 describes the econometric framework. Section 4 discusses the empirical

results. Section 5 reports the results of several robustness tests. Section 6 concludes.

II. Data

We base our analysis on monthly observations of macroeconomic and financial variables and

realized volatilities. The sample covers the period from January 1983 to December 2008.

Thus, we have 311 monthly time series observations for each variable.
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A. Measuring Financial Volatility

The main variables of interest are the financial volatilities which constitute the left hand side

variables in our predictive regressions. We use daily returns to calculate monthly realized

volatilities. Realized volatility is introduced by Andersen, Bollerslev, Diebold, and Labys

(2003) as an accurate proxy for the true, but latent, integrated volatility and is used as ob-

servable dependent variable in Andersen, Bollerslev, Diebold, and Vega (2003). The realized

variance for asset type i in month t is given as the sum of squared intra-period returns:∑Mt

τ=1 r
2
i;t;τ where ri;t;τ is the τth daily continuously compounded return in month t for asset

i and Mt denotes the number of trading days during the month t. In our empirical analysis,

we define the realized volatility to be the log of the square root of the realized variance since

it is better behaved (i.e. closer to normality) than the raw series.

RVi;t = ln

√√√√ Mt∑
τ=1

r2
i;t;τ , t = 1, ..., T. (1)

We first outline the construction of our volatility measure for the aggregate FX market.

The foreign exchange rates are available from Thomson Financial Datastream. We calculate

daily log spot rate changes for the currencies of the following countries all quoted against

the USD: Australia, Austria, Belgium, Brazil, Bulgaria, Canada, Croatia, Cyprus, Czech

Republic, Denmark, Egypt, Euro area, Finland, France, Germany, Greece, Hong Kong,

Hungary, Iceland, India, Indonesia, Ireland, Israel, Italy, Japan, Kuwait, Malaysia, Mexico,

Netherlands, New Zealand, Norway, Philippines, Poland, Portugal, Russia, Saudi Arabia,

Singapore, Slovakia, Slovenia, South Africa, South Korea, Spain, Sweden, Switzerland, Tai-

wan, Thailand, Ukraine, and United Kingdom. Not all currencies are available during the

entire sample period, therefore they are included when available. We construct an equally

weighted portfolio consisting of all available currencies at a given point in time, denoted

the aggregate FX portfolio. For the aggregate FX portfolio we calculate the time series of

the daily spot rate changes and use it to construct realized foreign exchange volatility. We

denote the foreign exchange realized volatility at time t by RVFX,t and it can be understood

as a measure of global foreign exchange market volatility.5

5Our approach is similar to Lustig, Roussanov, and Verdelhan (2010a) in that we form an equally weighted
portfolio of a large number of currencies against the USD to obtain a “market portfolio” for the global foreign
exchange market.
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The stock market is represented by the S&P500 futures contract traded on the Chicago

Mercantile Exchange (CME). The bond market is represented by the 10-year Treasury note

futures contract traded on the Chicago Board of Trade (CBOT).6 An advantage of using

futures data is that these contracts are highly liquid and therefore transaction costs are of

no concern. Moreover, when using futures data we have bond returns straight away without

calculating artificial returns from the bond yields. We denote the bond and stock market

realized volatilities at time t by RVB,t and RVS,t, respectively.

Finally, we employ Standard & Poor’s GSCI commodity index to construct our proxy

for commodity market volatility. These data are available from Datastream. In place of the

GSCI index, it may have been preferable to use data on the GSCI futures contract as this is

actively traded at the CME (see e.g. Fong and See, 2001). Yet, the GSCI futures only started

trading in 1992. Still, the correlation between the realized volatility for the GSCI index and

the GSCI futures amounts to 0.97 during the period 1992-2009, so we deem it reasonable to

use the GSCI index to obtain a longer time-series. The series of realized volatility at time t

in the commodity market is denoted RC,t.

[Insert Table 1 about here]

Table 1 shows summary statistics for the four realized volatility series. The average

volatilities for commodities and stocks are much larger than the average volatilities for foreign

exchange and bonds. The same holds for the standard deviations of the realized volatility

series. Normality cannot be rejected except for stock market volatility (based on the Jarque-

Bera test). As is well known, realized volatility is highly persistent and we naturally find this

behavior for all four asset markets under investigation as indicated by the autocorrelation

coefficients.

[Insert Figure 1 about here]

6Letting the stock and bond markets be represented by these specific contracts has been done by Fleming,
Kirby, and Ostdiek (1998) in a somewhat related setting where they consider volatility linkages between these
markets.
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Figure 1 shows the time series of the four volatility series. The time series are highly

variable and they do not appear to follow the same time series pattern. This is also reflected

in the pair-wise correlation coefficients that are reported in Panel B of Table 1 which are

generally not very high in absolute terms. More specifically, bond and stock volatility have

a modest correlation of about 37% and all other correlation coefficients are even smaller in

absolute magnitude Thus, we would suspect that the volatility of different asset classes is at

least partly driven by different economic variables.

B. Macroeconomic and Financial Predictors

We use a comprehensive set of 29 macroeconomic and financial predictive variables. Our

main set of predictors are the explanatory variables used by Goyal and Welch (2008) who

employ these variables as predictors of future stock market returns. We then extend the

list by further financial and macroeconomic variables which, by economic reasoning, qualify

as potential predictors of return volatility for our additional asset classes, namely foreign

exchange, bonds, and commodities. The predictive variables are listed below together with

their abbreviations in parentheses. An asterisk (*) indicates that the variable is taken from

the set of variables studied in Goyal and Welch (2008).

The explanatory variables are: Dividend price ratio* (DP), book to market ratio* (BM),

net equity expansion* (NTIS), cross-sectional premium* (CROPR) of Polk, Thompson, and

Vuolteenaho (2006), the Pastor and Stambaugh (2003) liquidity factor (LIQ), return on

the MSCI World index (MSCI), US market excess return (MKTRF), size factor (SMB),

value factor (HML), relative T-bill rate (RTB), relative bond rate (RBR), term spread*

(TS), TED spread (TED), long term bond return* (LTR), T-bill rate* (TB), the Cochrane

and Piazzesi (2005) bond factor (CP), default spread* (DEF), return on the CRB spot

index (CRB), return on dollar risk factor (DOL) from Lustig, Roussanov, and Verdelhan

(2010a), carry trade factor (CT), FX average bid-ask spread (BAS) as in Menkhoff, Sarno,

Schmeling, and Schrimpf (2010), inflation* (INF), industrial production growth (IPGR),

orders (ORD), average forward discount (AFD) as in Lustig, Roussanov, and Verdelhan

(2010b), M1 growth (M1), investor sentiment (SENT) as in Lemmon and Portniaguina

(2006), purchasing manager index (PMI), and housing starts (HS). Appendix A provides
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details on the data sources and the construction of the predictive variables.7

A few comments on the economic motivation for the different variables are warranted.

The list of explanatory variables includes well-known stock market variables such as the

dividend price ratio and the book to market ratio which have featured prominently in pre-

dictive regressions for stock returns. We also include bond market variables such as the

T-bill rate, the term spread and the bond return forecasting factor of Cochrane and Piazzesi

(2005). Furthermore, we include potentially relevant predictors from foreign exchange, e.g.

the average forward discount which is noteworthy in predictive regressions for future foreign

exchange returns as in Lustig, Roussanov, and Verdelhan (2010b) or the TED spread (differ-

ence between 3 month LIBOR rate and T-Bill rate) which measures tightening of liquidity in

interbank markets as in Brunnermeier, Nagel, and Pedersen (2009). Besides these financial

variables some general macroeconomic variables, such as inflation and industrial production

growth are included. The latter variable is central in the recent return predictability of

excess returns in bonds and foreign exchange (Ludvigson and Ng, 2009; Lustig, Roussanov,

and Verdelhan, 2010b).

[Insert Table 2 about here]

Table 2 shows the summary statistics for the set of explanatory variables. Most variables

deviate from the normal distribution in terms of skewness and kurtosis and are autocorre-

lated. Table 2 also shows the correlation between the explanatory variables and each of

the four realized volatilities. It is important to notice that it is not the same explanatory

variables that have high contemporaneous correlations (above |0.40|, say) with the different

realized volatilities. Foreign exchange realized volatility is highly correlated with the divi-

dend yield (DP) and the book to market ratio (BM). Bond volatility is strongly correlated

with nominal variables such as the term spread (TS), the Cochrane-Piazzesi bond risk pre-

mium factor (CP), and money growth (M1). The stock market realized volatility is strongly

correlated with the level of stock market returns (MSCI, MKTRF) and variables indicating

market illiquidity (LIQ and TED). The realized volatility of the commodity market, however,

is not strongly contemporaneously correlated with any of the explanatory variables.

7We are most grateful that updated data from Goyal and Welch (2008) are available at Amit Goyal’s
homepage.
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III. Econometric Framework

We now outline our econometric approach. We employ a framework that enables us to handle

a large number of macro-finance variables for forecasting future return volatility.8 Note that

we use a univariate framework throughout the paper which aims at predicting each of the

financial volatilities separately.

We study the predictability of financial volatility using standard predictive regressions

for the future realized volatility of asset i

RVi;t+1 = α + ρRVi;t + β′jzj;t + ut+1, (2)

where βj denotes the kj-dimensional vector of regression coefficients on the predictive vari-

ables and i indexes foreign exchange (FX), stock (S), bond (B), or commodity (C) return

volatility. The subscript j indicates that the composition of the vector of predictive variables

zj;t depends on the particular modelMj. As we have a large number of potentially relevant

predictor variables, we investigate j = 1, ..., 2κ models, where κ denotes the overall number

of predictive variables under consideration.

Since volatility is quite persistent, it is necessary to include an AR(1) term RVi,t in the

predictive regression.9 Thus, we investigate if there is predictive content of the macroeco-

nomic and financial variables beyond the information that is contained in the time-series

history of volatility. We therefore also report results from fitting an AR(1) model for the RV

series as the relevant benchmark case. Since the number of potential models is very large

(with 29 + 1 variables we have 230 = 1, 073, 741, 824 models), it is computationally infeasible

to evaluate all possible models analytically.

Given these considerations, we rely on two approaches in this paper. First, we make use

of a Bayesian model averaging approach with a stochastic model search algorithm (MC3).

Second, we employ a model selection approach based on different information criteria. We

8See e.g. Avramov (2002) and Ludvigson and Ng (2009) for related approaches in the literature on stock
return predictability and bond return predictability. Wright (2008) studies the predictability of exchange
rates in a data-rich forecasting environment.

9Paye (2010) shows that it is necessary to account for persistence for correct inference in predictive
regressions for future stock volatility.
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detail these two approaches next.

Bayesian Model Averaging and MC3. First, we use a Bayesian model averaging (BMA)

approach.10 A particularly attractive feature of the BMA approach is that model uncertainty

can be addressed in a coherent way.11 In our context, model uncertainty refers to the situation

that ex ante it is not clear to the economic agent what the important predictive variables

are or which combination of variables may be useful for prediction purposes. Unlike the

classical approach, Bayesian model averaging does not posit the existence of a true model

and is thus particularly suited to deal with a setup where model uncertainty plays a role.

Moreover, the BMA approach can be used to obtain optimal weights for forecast combination

for the purpose of out-of-sample forecasting. Given the many potential predictor variables,

an analytical evaluation of all possible model specifications is not feasible. Hence, we rely

on Markov Chain Monte Carlo Model Composition (MC3) which is a sampling approach

drawing from the model space and which is particularly suited for high-dimensional problems

such as the one encountered here (cf. Fernández, Ley, and Steel, 2001 or Koop, 2003).

In a Bayesian framework, one can derive posterior probabilities p(Mj|D) for each model

j = 1, . . . , 2κ. These posterior model probabilities, which reflect the usefulness of a particular

model after having seen the dataD, are used in the BMA framework as weights in a composite

model:

E[β|D] =
2κ∑
j=1

p(Mj|D)βj|D, (3)

where βj|D denotes the posterior mean of the predictive coefficients in the jth model. Like-

wise, combined forecasts of BMA can be obtained by weighting the forecasts of the individual

models by the posterior model probabilities. Thus, in line with the Bayesian tradition, the

data allow us to learn by updating our belief about the quality of a particular model. The

10We provide a very brief overview of BMA here. Some further technical details are discussed in Ap-
pendix B.

11Results in the stock return predictability literature suggest that model uncertainty can be substantial
when forecasting returns, see for instance Avramov (2002) or Schrimpf (2010).
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posterior model probability is given by

p(Mj|D) =
p(D|Mj)p(Mj)

Σ2κ
i=1p(D|Mi)(Mi)

, (4)

where p(D|Mj) is the marginal likelihood and p(Mj) denotes the prior probability of model

j. The expression for the marginal likelihood is obtained as

p(D|Mj) =

∫
p(D|Mj, βj)p(βj|Mj)dβj, (5)

where p(βj|Mj) is the prior on the parameters of model j and p(D|Mj, βj) is the likelihood

of the model.

Model Selection Based on Information Criteria. Second, we use a classical model

selection approach based upon information criteria. Unlike the BMA approach, the classical

model selection approach neglects that there may be considerable model uncertainty and

postulates the existence of a true model. Given the large amount of predictors, we conduct

some pretesting before evaluating the models. We reduce the set of potential predictors by

only considering variables with a t-statistic greater than two in absolute value in a predictive

regression containing the respective macro variable and the lagged dependent variable. This

way, we end up with a set of predictor variables that is not greater than approx. 12 such

that an analytical evaluation of all models is computationally feasible.12 All models are

analyzed analytically and then sorted by the Schwarz information criterion (BIC). As is

well-known, the BIC favors models that provide a good fit while at the same time penalizing

highly parameterized models. Our reported tables include the best five model specifications

according to the BIC and we report coefficients, robust standard errors, bootstrap p-values,

and the adjusted R2.13

12This is a common approach and in the spirit of Occam’s razor, which is also used by e.g. Ludvigson and
Ng (2009) in the context of bond return predictability.

13The bootstrap p-values are computed using a parametric bootstrap along the lines of Kilian (1999)
assuming an autoregressive structure for the predictive variables (cf. Rapach and Wohar, 2006).
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Out-of-Sample Evaluation. We also evaluate our models in an out-of-sample context.

As a general rule, we always evaluate the out-of-sample performance of the forecast against

the benchmark forecast which is obtained from an AR(1) model. We basically employ the

same procedure as in our in-sample tests but we now estimate our models recursively using

an expanding window and evaluate the resulting out-of-sample forecasts. More specifically,

we start with a 10 year initialization period, estimate predictive regressions in the same

way as above to produce the first out-of-sample forecast. We then expand the estimation

window and repeat the above steps to obtain out-of-sample forecasts for the next period, and

continue this way. In the following, we denote the forecast of our macro-finance augmented

model by fMi,t+1 and the forecast of our benchmark model by fBi,t+1.

More specifically, we report Theil’s U (TU) which is the root mean square error (RMSE)

of our macro-augmented model relative to the RMSE of the benchmark model such that a

value smaller than one indicates that the model beats the benchmark in terms of forecast

accuracy. In addition, we report out-of-sample R2s as in Campbell and Thompson (2008).

The out-of-sample R2 is computed as

R2
OOS = 1−

∑T−1
t=R (RVi,t+1 − fMi,t+1)2∑T−1
t=R (RVi,t+1 − fBi,t+1)2

(6)

where T denotes the overall sample size, and R is the initialization period which is set to 10

years in our case.

Besides these purely descriptive forecast evaluation criteria, we provide bootstrap based

statistical inference in order to assess if models augmented by macro-finance predictors are

able to significantly outperform the benchmark forecast. An alternative to bootstrap in-

ference could be to rely on asymptotically valid tests in the spirit of the seminal tests by

Diebold and Mariano (1995). Since the benchmark model, i.e. the AR(1) is nested by the

model of interest, the asymptotic test put forth by Clark and West (2007) may be used.

However, the theoretical setup considered in Clark and West (2007) does not cover our case

where the forecasts are generated by forecast combination and where a model search over

a large amount of models is conducted. Hence, we prefer to rely on a bootstrap approach

instead of asymptotic tests.14 We provide a brief description of our bootstrap procedure in

14We are grateful to Todd E. Clark for this suggestion. In a similar vein, Wright (2008) relies on a bootstrap
to evaluate the out-of-sample superiority of BMA generated forecasts.
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Appendix B.3.

Finally, we report Mincer-Zarnowitz (MZ) tests of unbiased forecasts (by regressing

actual realized volatility on a constant and the fM volatility forecast) and report results for

a Wald test of a zero intercept and unit slope coefficient. Our results are based on the GLS

version of the Mincer-Zarnowitz test suggested by Patton and Sheppard (2009).

IV. Empirical Results

We now report empirical results on volatility predictability by macroeconomic and financial

state variables. We first document in-sample results before moving on to the out-of-sample

setting.

A. In-Sample Analysis

Bayesian Model Averaging. We first rely on the BMA approach to examine in-sample

volatility predictability. Because we have a total of 30 potential predictor variables at our

disposal (1, 073, 741, 824 models), it is computationally impossible to evaluate all of them

analytically. Hence, the results reported below are based on 5,000,000 draws and a burn-in

period of 500,000 draws. For further details on the sampling algorithm, we refer to the

Appendix.

The results for realized volatility in foreign exchange, bond, stock, and commodity mar-

kets are reported in Table 3 Panel A-D, respectively. The table presents the ten best predictor

variables in terms of posterior probability of inclusion (π|D). The posterior probability of

inclusion reflects the belief on how likely a variable is included in the model after having seen

the data. We start from a prior probability of inclusion π of 0.5, which implies that every

model is deemed equally likely a priori. Hence, if π|D exceeds 0.5, our belief of the usefulness

of a particular economic variable as a predictor of volatility has been revised upwards in the

light of the data evidence. In addition, we report posterior means and standard deviations

and Bayesian t-ratios. The latter t-ratios incorporate adjustments for model uncertainty and

are thus not comparable to classical t-statistics. We also indicate by 1, if a specific predictor

variable appears in the top 5 models according to the posterior model probability p(Mj|D).

12



[Insert Table 3 about here]

As a first observation, we find that many macro-finance variables are included in the

top five models and/or have a posterior probability exceeding 0.5 so that it is useful to add

this information when forecasting volatility. However, there are clearly only few economic

variables that can be considered as truly robust predictors after accounting for model un-

certainty which renders many economic and financial predictors insignificant (when judged

according to the Bayesian t-ratios). As expected, the autoregressive component is important

for all four volatilities and is always included in the list of best predictors.

It is striking that the top predictor variables, i.e. the variables with the highest posterior

probabilities of inclusion (above 0.50) and generally the highest Bayesian t-ratios, are usually

those that have a clear and economic link to the market under study. Thus, the important

explanatory variables for the volatility differ across asset class.

We find that the average forward discount (AFD) (and – to a lesser extent – the TED

spread) is quite important in the FX market which squares well with findings for FX return

predictability in Lustig, Roussanov, and Verdelhan (2010b). The most important bond

market volatility predictors is the term spread (TS) which is a well-known bond return

predictor (e.g. Campbell and Shiller, 1991). We find it interesting that the level of the term

spread also forecasts bond market volatility and that it does so significantly with a Bayesian

t-ratio of more than two which takes model uncertainty into account. Another bond related

variable, namely the default spread (DEF) also helps in predicting bond volatility. Next, we

find that the default spread (DEF) and book-to-market ratio (BM) are most important for

stock market volatility and also significant in terms of their Bayesian t-ratios. These two

variables are also known to be related to future stock returns so that it seems interesting

that they also matter most for stock return volatility. In addition, the T-bill rate (TB) and

the US market excess return (MKTRF) are important variable for predicting stock market

volatility. The most influential variables for future commodity volatility are the T-bill rate

(TB), the term spread (TS), and the default spread (DEF). Thus, the commodity volatility

is mainly influenced by bond market related variables.

In sum, the results suggest a close economic link between return and volatility pre-

dictability in these asset classes.
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Information Criteria. Table 4 shows the in-sample results based on information criteria.

The five top-performing models (i.e. the models with the lowest BIC among the investigated

set of models) as well as the AR(1) benchmark are tabulated.

[Insert Table 4 about here]

Overall, the macroeconomic variables add significant in-sample predictive ability for all

four asset classes. As shown by the table, the macroeconomic variables provide additional

explanatory power beyond the AR(1) benchmark model for the foreign exchange volatility.

The adjusted R2 of the AR(1) model is 0.356 whereas it is 0.412 for the top-performing

model based on macro-finance predictors. Likewise, in the case of bond market volatility the

AR(1) is also outperformed by the model based on macro-finance variables. Note that the

improvement from the macro-finance variables is not quite as strong when it comes to fore-

casting commodity market volatility. Furthermore, the improvements offered by including

the economic variables is even smaller when considering stock market volatility which is in

line with previous results by Paye (2010).

As expected, it is again clearly visible that the autoregressive component is important

for all four volatilities. The lagged realized volatility is included in all the top-performing

models. There is not much difference between the predictive power of the five top-performing

models when measured by their adjusted R2s, however. Thus, it appears that it is not overly

important which of the top models is actually applied for forecasting purposes. This also

means, that from a pure forecasting perspective, it may not so much be a question of which

macroeconomic variables are applied but whether macroeconomic variables are considered

at all.15

Interestingly, it is not the same macroeconomic variables that have predictive content

for all four asset classes. Rather, there are notable differences between the most important

predictors of FX, bond, stock, and commodity volatility, respectively. We often find classic

predictors of returns of one particular asset class to matter for volatility of another asset class:

For instance, the average forward discount (AFD) and the carry trade return (CT) show up

15There is a large literature on the optimal combination of forecasts and how to conduct forecasting with
many predictors, cf. Stock and Watson (2004) and Timmermann (2006) for surveys. In our out-of-sample
forecast analysis we investigate different types of combination approaches.
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as prominent predictors for stock market volatility. A stock return predictor, net equity

expansion (NTIS) matters for future bond volatility. The dividend price ratio (DP), and the

size factor (SMB) are important for commodity volatility. The Cochrane and Piazzesi (2005)

bond factor (CP) matters for foreign exchange return volatility. While these relations seem

hard to interpret directly in economic terms, they seem to corroborate our claim above that it

is not so much a question of which macro-finance variables to include for in-sample forecasting

with a classical approach but rather the question whether these variables are included at all

or not since the model selection algorithm just extracts the necessary forecasting information

from the set of correlated predictor variables.

By contrast, the BMA approach provides much more economically intuitive results. On

these grounds, we favor the BMA approach to relying on information criteria for in-sample

forecasting. Still, the results from the two approaches are not too different when it comes to

their raw forecasting performance: Both approaches have strong autoregressive components

and both approaches show that macroeconomic and financial variables improve the predictive

ability when forecasting volatility in financial markets when measured by the predictive R2.

B. Out-of-Sample Analysis

We proceed by investigating the out-of-sample predictive power of our macro-finance vari-

ables for future financial volatility. This exercise is especially important since it is interesting

to know whether market participants could usefully employ macro-finance information to

improve their volatility forecasts in a real-time setting. Furthermore, there is little earlier

evidence in the literature on this topic as discussed above.

Summary statistics for the evaluating out-of-sample forecasts are reported in Table 5.

Table 5 shows the out-of-sample results based upon three variants of forecast combination

obtained from the MC3 sample algorithm: (i) forecasts based on the model which takes

the highest posterior model probability when the forecast is made, (ii) combining forecasts

according to Bayesian model averaging, and (iii) the equally weighted forecast of the 10 best

models (in terms of posterior model probability) at the time of the forecast.16

16The out-of-sample forecasts are based on a ten year initialization period and an expanding window.
For computational reasons, the number of Monte-Carlo draws for the MC3 algorithm in the out-of-sample
exercise is set to 1,000 as opposed to the in-sample results which are obtained with 5 million draws.
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First, in terms of methodology, we find that the out-of-sample results are fairly similar

across combination methods and are therefore robust to the exact way they are generated.

Next, in terms of forecasting performance, we find clear evidence of out-of-sample predictabil-

ity for foreign exchange, bond, and commodity volatility. For example, Theil’s U is uniformly

below one for all model selection and weighting schemes for all three asset classes and the

monthly out-of-sample R2s (see Campbell and Thompson, 2008) are always positive and

reach values of 8.3% for foreign exchange and 10.5% for commodity volatility.

[Insert Table 5 about here]

Table 5 also includes bootstrap p-values to test if the macro-finance augmented out-

of-sample forecasts outperform the benchmark in terms of mean square forecast errors. We

rely on a model-based wild bootstrap imposing the null of no predictability by macro-finance

variables as described in section 3 and Appendix B.3. These bootstrap p-values (#TUbs<TU)

are computed as the proportion of Theil’s U statistics in the artificial bootstrap samples that

are smaller than the sample Theil’s U. Thus, these p-values are one-sided and test the null

of equal predictive performance against the alternative of superior performance of the model

including macro-finance predictors against the benchmark. Our results show substantial

improvements by macro-finance augmented models relative to the benchmark for volatility

prediction in FX, bond and commodity markets in that root mean square prediction errors

are significantly smaller than those of the benchmark model. By contrast, the results for

stock market volatility indicate poor out-of-sample predictability when judged by Theil’s

U or R2
OOS, which is also corroborated by the bootstrap results. Thus, we find that stock

market volatility is not well predictable by economic variables in an out-of-sample setting in

line with recent findings in Paye (2010). Finally, the Mincer-Zarnowitz restrictions indicate

biased forecasts for foreign exchange and commodity volatility forecasts but not for bond

volatility forecasts.

Overall, we find the strongest evidence for out-of-sample volatility predictability for

commodity and foreign exchange markets. Bond market volatility still appears predictable

out-of-sample – but to a lesser degree – whereas stock market volatility appears to be un-

predictable by macro-finance predictors in this setting.
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Dynamic Out-of-Sample Performance. We investigate the dynamics of out-of-sample

predictability by means of Net-SSE plots for the BMA approach and plot results for all four

asset classes in Figure 2. The figure is based on Net-SSE plots as in Goyal and Welch (2003,

2008) and shows the cumulative sum of squared forecast errors of the benchmark model (the

AR(1)) minus the squared errors of a forecast model based on economic variables. Hence,

a positive slope indicates a superior performance of the macro-finance augmented model

relative to the benchmark at a particular point in time.

[Insert Figure 2 about here]

In line with our out-of-sample results, we find strong out-of-sample predictability for FX

and commodity markets, less predictability in an out-of-sample setting for the bond market

(although we still find a positive Net-SSE), and no out-of-sample predictability for stock

market volatility. More important, however, is the finding that there does not seem to be a

common trend in all four asset classes such that it may have become increasingly difficult or

less difficult to forecast volatility which would indicate a major shift in these four markets

in general. Thus, we document that the out-of-sample predictability of financial volatility is

time-varying which is in line with the results for return predictability in Goyal and Welch

(2008) and Timmermann (2008).

Summing up so far, we find that financial volatility in foreign exchange, bond, and

commodity markets is clearly predictable and that augmenting the classic AR(1) benchmark

for volatility prediction by macro-finance variables well known from the earlier literature adds

incremental value. Importantly, these results hold when considering in-sample forecasts and

they continue to hold in a realistic out-of-sample forecasting setting for all markets except

stock volatility. Moreover, the results are fairly stable across estimation methods.
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V. Robustness Analysis

A. Nonlinearities

As an additional analysis, we report results for an extended specification where we allow for

predictors in levels as well as in squared terms (we take squares of de-meaned time-series to

capture large deviations from their averages). We include these squared terms to account for

potential non-linearities in the predictive ability of macro variables, since what may matter

for future volatility could also be unusually large movements of our predictor variables and

not only the level of the predictor per se.17

[Insert Table 6 about here]

[Insert Table 7 about here]

Table 6 shows the in-sample results. Inspection of the table reveals that allowing for

squared terms in addition to predictors in levels hardly affects our conclusions of which

variables are important predictors for the four types of asset volatility. Table 7 (Panel A)

report the corresponding out-of-sample results based upon the MC3 algorithm. As shown by

the tables, out-of-sample predictability is actually worsened in several instances. So, there

is no evidence that including nonlinearities improves the out-of-sample predictability of the

macro-finance augmented model.

Overall, we find no evidence that (simple) nonlinearities in our macro-finance variables

are of any importance for predicting financial volatility, neither in-sample nor out-of-sample.

B. Absolute Values

As a further robustness check, we employ absolute values of our predictors since it may well

be that it is not the level of a predictor variable that forecasts volatility but rather the fact

17Also see Ludvigson and Ng (2009) who account for non-linearities by considering squared (and cubic)
terms.
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whether a predictor variable takes on an “extreme” value that matters for volatility. For

example, extremely low (high) values of the book to market ratio (BM) today, i.e. a high

market valuation relative to fundamentals, should signal relatively low (high) stock returns

in the future so that the effects on volatility may be ambiguous. To this end, we use absolute

values for de-meaned variables of our predictors to predict volatility in this robustness test.

[Insert Table 8 about here]

The in-sample results are shown in Table 8. As shown by the table, the empirical results

based on absolute values of the predictors are different from the results based upon the

level of the explanatory variables in that different explanatory variables have high posterior

probabilities. The top predictor variables change when using absolute values instead of the

variable itself. The return on dollar risk factor (DOL) now shows up as the only important

explanatory variable in the top FX models. The important macroeconomic variables also

change for the bond volatility, now it is relative bond rate (RBR), T-bill rate (TB), and carry

trade factor (CT). In the case of stock market volatility none of the macroeconomic variables

appears important as there are none with posterior probability of inclusion greater than 0.50.

For predicting commodity volatility only inflation (INF) in absolute terms is important.

Table 7 (Panel B) shows the out-of-sample results from using absolute values. Absolute

values of the predictor variables hardly have any out-of-sample predictive power. Thus, the

conclusion from this out-of-sample exercise is that neglecting the information in the sign of

the level of the explanatory variables and using only their absolute values clearly worsens

the out-of-sample predictability of financial volatility. Most Theil’s U measures and out-

of-sample R2s are negative and there is no evidence for volatility predictability by absolute

values based on our bootstrap p-values.

Overall, the results from these robustness analyses suggest that the level and the sign

of the macro-finance variables provides important information for future volatility. Ignoring

this information does not help from a forecasting perspective.

19



VI. Conclusion

In this paper we provide a comprehensive analysis of volatility predictability in financial

markets by macroeconomic and financial predictors. Compared to the previous literature,

we extend the analysis in three directions. First, not only do we consider predicting stock

market volatility but also the volatility of four main asset classes, namely foreign exchange,

bonds, stocks, and commodities. Second, we allow for a comprehensive set of predictive

variables which goes far beyond existing studies in the literature on volatility predictability

and use model selection and forecast combination procedures to assess whether volatility in

financial markets can be predicted by economic variables. Third, we investigate both in-

sample and out-of-sample predictability, the latter being new to this line of literature. We

use various empirical estimation strategies drawing on a methodology designed for data-rich

forecasting environments and show that the results are fairly consistent across these.

We find, not surprisingly, that financial volatility is highly autocorrelated, and therefore

lagged volatility is an important predictor variable. Nevertheless, we show in this paper that

economic variables provide additional information about future volatility for all four asset

classes in an in-sample setting. In line with the earlier literature (e.g. Schwert, 1989; Paye,

2010) we find little evidence of economically meaningful out-of-sample predictability of stock

market return volatility. By contrast, our results are supportive of volatility predictability by

macroeconomic and financial variables in foreign exchange, bond, and commodity markets

in a realistic out-of-sample setting.

Finally, our paper underscores that results for stock market results are quite different

from results for FX, bond, and commodity markets. Thus, empirical stylized facts for stock

market volatility predictability cannot easily be transferred to other financial instruments. It

would be interesting to learn more about why the results are so different across asset classes

in future research.
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Appendix

A. Data Sources and Description

[Insert Table A.1 about here]

B. Methodological Details

In this appendix, we provide some additional details on the Bayesian methods that are underlying
the results discussed in the main text. We first describe the elicitation of prior distributions in
the Bayesian Model Averaging (BMA) setup. We then provide some details on the Markov Chain
Monte Carlo Model Composition algorithm (MC3) which is used for sampling from the set of
models M1, ...,M2κ .

B.1 Prior Elicitation

For ease of exposition, we denote the dependent variable as Y , which is a T × 1 vector of realized
volatility as in Eq. (2). The predictive variables are collected in a matrix Zj which has dimension
T × kj depending on the particular model Mj . We are considering a linear regression model with
i.i.d. errors which are assumed to be normal with mean zero and variance σ2. It is common in the
BMA setup to work with the strict exogeneity assumption of the regressors such that a closed form
expression for the likelihood can be derived (cf. Wright, 2009).18

We follow most of the extant BMA literature and choose to work with a natural conjugate
prior distribution for the model parameters p(βj |Mj) and p(σ2). Thus, our prior on the predictive
coefficients βj conditional on σ2 is taken to be a normal distribution

βj |σ2 ∼ N (0, σ2φ(Z ′jZj)
−1), (A.1)

18Of course, in a time-series setup as the one considered here, strict exogeneity is typically violated.
Nevertheless, given that this violation is generally considered to be of minor relevance for the forecasting
problem, the literature Stock and Watson (2004) and Wright (2009) generally assumes strict exogeneity,
which provides an elegant theoretical framework for model averaging.
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which is centered around zero, i.e. it is expected a-priori that there is no predictive power by the
economic variables.19 The prior on the predictive coefficients is proper – an important feature to
obtain meaningful Bayes factors for model comparison – but it is relatively uninformative, where
the amount of informativeness is controlled by the φ hyperparameter. The prior on σ2 is a standard
improper prior, proportional to 1/σ2.

Given these assumptions, the expression for the marginal likelihood takes the following form

p(D|Mj) ∝ (1 + φ)−kj/2S−Tj , (A.2)

where S2
j = Y ′Y − Y ′Zj(Z ′jZj)−1Z ′j

φ
1+φ . The expression in (A.2) is important since it enters Eq.

(4) and thus plays an essential role for the computation of posterior model probabilities p(Mj |D).
Given the likelihood and the prior, the posterior mean of the predictive coefficients takes the form

βj |D =
φ

1 + φ
(Z ′jZj)

−1Z ′jY. (A.3)

In this BMA setup there are two modeling choices which require input by the researcher. First,
the hyperparameter φ must be selected, which controls the degree of informativeness of the prior on
the predictive coefficients. A higher φ means a less informative prior (i.e. a higher prior variance),
whereas a lower φ (approaching zero) induces more shrinkage towards the no-forecastability case.
We select the φ hyperparameter according to the simulation-based recommendations in Fernández,
Ley, and Steel (2001). The second choice is that we assign equal prior probability on the models,
i.e. we take 1/2κ as the prior model probability p(Mj). This implies a prior probability of inclusion
for each predictive variable of π = 1/2.

B.2 MC3 Algorithm

The MC3 algorithm is a Markov Chain Monte Carlo method of sampling from the distribution of
models and has similarities with a Metropolis-Hastings algorithm. For each run r of the algorithm,
a candidate model M∗ is drawn from the model space M1, ...,M2κ which can either be accepted
– if it improves on the model drawn in the previous draw M (r−1) – otherwise it is rejected. If the
drawn model is rejected then the chain remains at the previous model M (r−1). The acceptance

19This prior specification is also known as a so-called g-prior framework and is originally due to Zellner
(1986).
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probability Ξ(M (r−1),M∗) is expressed as

Ξ(M (r−1),M∗) = min
{

p(D|M∗)p(M∗)
p(D|M (r−1))p(M (r−1))

; 1
}
, (A.4)

and depends on a comparison of the marginal likelihoods of the drawn model vis-a-vis the previous
model of the chain as well as a comparison of the model priors (which are equal in our case). If the
number of Monte Carlo draws is large (in our case 5 million) the fraction of draws for the different
models converges to the posterior model probability. In order to ensure that the starting value of
the chain does not affect the results a burn-in period of 500,000 draws is used.

B.3 Bootstrap Procedure for OOS Evaluation

The bootstrap procedure is a model-based wild bootstrap (imposing the null of no predictability by
macro-finance variables) and is a variant of the approach considered in Clark and West (2006).20

In each bootstrap iteration the following steps are performed: (i) A series of i.i.d. standard normal
innovations ηt is drawn. (ii) AR(1) models are fitted for both the dependent variables RVi;t as well
as each of the κ macro-finance variables in zt and the residuals (ε̂t, ν̂t) are saved. (iii) Artificial
bootstrap series RV bs

i;t and zbst are constructed based on the estimated AR(1) parameters and the
innovations ε̂tηt, ν̂tηt. The starting observations of the bootstrap series RV bs

i;0 and zbs0 are drawn
randomly from the actual series. (iv) The artificial bootstrap data are used to generate recursive
forecasts based on models relying on the bootstrapped explanatory macro-finance variables as
well as the benchmark AR(1). The corresponding Theil’s U statistics TUbs are computed. (v) We
compute bootstrap p-values as the fraction of times that Theil’s U in the bootstrap samples is below
the one observed in-sample. Hence, these p-values are one-sided and test the null of equal predictive
performance against the alternative of superior performance of the model including macro-finance
predictors vis-a-vis the benchmark. The number of bootstrap iterations is set to 500.

20The wild bootstrap ensures accurate inference in the presence of conditional heteroskedasticity.
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Figure 1. Realized Volatility of Four Asset Classes

(a) FX (b) Bonds

(c) Stocks (d) Commodities

Notes: The figures show the time series of the log realized volatilities for FX, bond, equity, and commodity markets.
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Figure 2. Time-Variation of Out-of-Sample Performance (MC3-BMA)

(a) FX (b) Bonds

(c) Stocks (d) Commodities

Notes: The figure shows the time-variation of the out-of-sample performance based on the MC3-BMA approach including
predictor variables in levels. Net-SSE is the cumulated difference of squared forecast errors of the benchmark model (AR(1)
model) and the model of interest (BMA): Net-SSE(τ) =

∑τ
t=1(e2uc,t − e2c,t), where euc,t is the forecast error of the benchmark,

and ec,t is the error of the model of interest. An increase of the slope represents a better forecast performance of the forecast
model at the particular point in time.
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Table 1. Summary Statistics: Realized Volatility

Panel A.
Mean Std. Skew. Kurt. JB p-val. AC(1) AC(2) AC(3)

FX -4.076 0.361 0.209 3.000 0.297 0.615 0.499 0.398
Bonds -4.037 0.357 0.036 3.142 0.500 0.578 0.487 0.477
Stocks -3.193 0.451 0.845 5.505 0.001 0.650 0.576 0.523
Commod. -3.105 0.443 0.297 3.132 0.081 0.747 0.706 0.643

Panel B.
Correlations p-values

FX Bonds Stocks Commod. FX Bonds Stocks Commod.

FX 1 –
Bonds 0.283 1 0.000 –
Stocks 0.056 0.373 1 0.338 0.000 –
Commod. -0.151 0.010 0.196 1 0.010 0.881 0.010 –

Notes: The table shows the summary statistics of the realized volatility for foreign exchange (FX), bond, equity, and commodity
markets. The realized volatility is the log of the square root of the realized variance. The reported statistics in Panel A include
the mean, standard deviation (Std.), Skewness (Skew.), Kurtosis (Kurt.), the p-value from the Jarque-Bera test for normality
(JB p-val.) as well as first (AC(1)), second (AC(2)), and third order (AC(3)) autocorrelation coefficients. Panel B reports the
correlations between the four volatility series and the associated p-values.
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Table 3. Predictive Regressions for Financial Volatility, Bayesian
Model Averaging

Panel A: FX Composite Model Top 5 Models
No. Variable π|y Post. Mean Post. STD t-ratio (i) (ii) (iii) (iv) (v)

1 RV(t-1) 1.000 0.443 0.065 6.814 1 1 1 1 1
2 BM 0.705 0.056 0.044 1.289 1 1 1 1 1
3 AFD 0.551 0.030 0.032 0.939 0 1 0 1 1
4 TED 0.434 0.025 0.033 0.756 0 0 0 0 1
5 CP 0.335 0.015 0.025 0.610 0 0 0 0 0
6 INF 0.302 -0.011 0.020 -0.566 0 0 1 1 0
7 RBR 0.264 -0.012 0.023 -0.510 0 0 0 0 0
8 M1 0.161 0.008 0.021 0.363 0 0 0 0 0
9 DP 0.122 0.004 0.023 0.173 0 0 0 0 0
10 BAS 0.118 0.003 0.012 0.295 0 0 0 0 0

Panel B: Bonds Composite Model Top 5 Models
No. Variable π|y Post. Mean Post. STD t-ratio (i) (ii) (iii) (iv) (v)

1 RV(t-1) 1.000 0.363 0.070 5.191 1 1 1 1 1
2 TS 0.925 0.086 0.041 2.073 1 1 1 1 1
3 DEF 0.646 0.046 0.040 1.158 1 1 0 0 1
4 NTIS 0.412 -0.027 0.037 -0.732 0 0 1 1 1
5 TED 0.362 0.019 0.029 0.646 0 1 1 0 0
6 M1 0.117 0.005 0.016 0.295 0 0 0 0 0
7 CT 0.117 0.003 0.012 0.296 0 0 0 0 0
8 INF 0.102 -0.003 0.010 -0.269 0 0 0 0 0
9 TB 0.095 0.003 0.013 0.240 0 0 0 0 0
10 BAS 0.076 0.002 0.008 0.215 0 0 0 0 0

Panel C: Stocks Composite Model Top 5 Models
No. Variable π|y Post. Mean Post. STD t-ratio (i) (ii) (iii) (iv) (v)

1 RV(t-1) 1.000 0.434 0.068 6.386 1 1 1 1 1
2 DEF 0.997 0.162 0.041 3.960 1 1 1 1 1
3 BM 0.940 -0.183 0.067 -2.737 1 1 1 1 1
4 TB 0.774 0.073 0.049 1.483 1 1 1 1 0
5 MKTRF 0.555 -0.033 0.035 -0.958 1 0 0 1 0
6 TED 0.241 0.016 0.032 0.492 0 0 0 0 1
7 IPGR 0.172 0.008 0.022 0.381 0 0 0 1 0
8 MSCI 0.132 -0.005 0.018 -0.250 0 0 1 0 0
9 CT 0.107 0.004 0.013 0.283 0 0 0 0 0
10 DP 0.098 -0.008 0.032 -0.264 0 0 0 0 0
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Table 3. Continued.

Panel D: Commod. Composite Model Top 5 Models
No. Variable π|y Post. Mean Post. STD t-ratio (i) (ii) (iii) (iv) (v)

1 RV(t-1) 1.000 0.544 0.059 9.181 1 1 1 1 1
2 TB 0.863 -0.118 0.059 -2.007 1 1 1 1 1
3 TS 0.810 -0.095 0.056 -1.712 1 1 1 1 1
4 DEF 0.726 0.051 0.038 1.359 1 1 1 0 1
5 DP 0.238 -0.019 0.040 -0.491 0 0 0 0 0
6 NTIS 0.213 -0.011 0.025 -0.451 0 0 0 1 0
7 ORD 0.133 -0.005 0.015 -0.326 0 0 0 0 1
8 SMB 0.116 0.003 0.011 0.298 0 0 1 0 0
9 M1 0.107 -0.004 0.015 -0.279 0 1 0 0 0
10 RBR 0.082 0.002 0.009 0.226 0 0 0 0 0

Notes: This table reports in-sample results from a Bayesian Model Averaging approach based on an MC3

algorithm. The lagged dependent variable RV(t-1) is controlled for.The results display the results for the
best 10 predictors, as sorted according to the posterior probability of inclusion π|D (sorted in descending
order). Moreover the table reports the posterior means, standard deviation and t-ratios of the best predictors
(reflecting model uncertainty). Inclusion of the specific variable in the Top 5 models (according to the
posterior model probability) is indicated by 1.
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Table 5. Out-of-Sample Forecast Evaluation

Panel A: FX Panel B: Bonds

Top BMA MC3 EW Top10 Top BMA MC3 EW Top10

TU 0.980 0.971 0.969 TU 0.991 0.987 0.990

#TUbs<TU 0.002 0.000 0.000 #TUbs<TU 0.006 0.004 0.008

R2
OOS 0.039 0.058 0.061 R2

OOS 0.018 0.026 0.020

MZ GLS 7.974 5.944 5.050 MZ GLS 0.040 0.253 0.221

p-val. 0.019 0.051 0.080 p-val. 0.981 0.881 0.895

Panel C: Stocks Panel D: Commodities

Top BMA MC3 EW Top10 Top BMA MC3 EW Top10

TU 1.028 1.020 1.015 TU 0.961 0.949 0.949

#TUbs<TU 0.873 0.870 0.808 #TUbs<TU 0.000 0.000 0.000

R2
OOS -0.057 -0.040 -0.030 R2

OOS 0.077 0.100 0.100

MZ GLS 8.167 7.710 7.904 MZ GLS 22.786 21.384 20.138

p-val. 0.017 0.021 0.019 p-val. 0.000 0.000 0.000
Notes: The table shows the results from the evaluation of out-of-sample forecasts based on the MC3 sampling algorithm. TOP
denotes the forecast based on the model, which takes the highest posterior model probability when the forecast is made. BMA
is the forecast obtained by combining forecasts according to Bayesian Model Averaging, whereas EW Top10 is the equally
weighted forecast of the 10 best models (in terms od posterior model probability) at the time of the forecast. The reported
statistics include Theil’s U which is the ratio of the RMSE of the model of interest and the RMSE of the benchmark model
(TU), the out-of-sample R2 of Campbell and Thompson (2008). #TUbs<TU denotes the bootstrap p-value for testing equal
predictive performance of the macro-finance augmented model and the AR(1) benchmark against the alternative of superior
performance of the model including macro-finance predictors. The bootstrap procedure follows a model-based wild bootstrap
methodology as described in section3. MZ GLS denotes the GLS version of the Mincer-Zarnowitz statistic.

35



Table 6. Predictive Regressions for Financial Volatility: BMA, Incl.
Squared Terms of Predictive Variables

Panel A: FX Composite Model Top 5 Models
No. Variable π|y Post. Mean Post. STD t-ratio (i) (ii) (iii) (iv) (v)

1 RV(t-1) 1.000 0.449 0.061 7.416 1 1 1 1 1
2 BM Lv 0.673 0.056 0.044 1.268 1 1 1 1 1
3 AFD Lv 0.528 0.032 0.035 0.919 0 1 1 0 0
4 TED Lv 0.289 0.017 0.029 0.574 0 0 0 0 0
5 BAS Sq 0.282 0.004 0.007 0.561 0 0 1 0 1
6 INF Lv 0.195 -0.007 0.017 -0.439 0 0 0 1 0
7 CP Lv 0.171 0.007 0.019 0.398 0 0 0 0 0
8 RBR Lv 0.144 -0.006 0.018 -0.353 0 0 0 0 0
9 DP Lv 0.115 0.006 0.023 0.272 0 0 0 0 0
10 DEF Sq 0.095 0.003 0.011 0.279 0 0 0 0 0

Panel B: Bonds Composite Model Top 5 Models
No. Variable π|y Post. Mean Post. STD t-ratio (i) (ii) (iii) (iv) (v)

1 RBR Sq 1.000 0.043 0.009 4.818 1 1 1 1 1
2 RV(t-1) 0.997 0.282 0.067 4.238 1 1 1 1 1
3 TS Lv 0.993 0.119 0.029 4.091 1 1 1 1 1
4 NTIS Lv 0.743 -0.055 0.037 -1.466 1 1 1 0 0
5 CT Sq 0.693 -0.018 0.014 -1.287 1 0 1 1 1
6 TED Lv 0.353 0.021 0.032 0.656 0 0 1 1 1
7 SENT Sq 0.118 -0.002 0.008 -0.320 0 0 0 0 0
8 TB Sq 0.111 0.003 0.010 0.305 0 0 0 0 0
9 HML Sq 0.108 0.002 0.005 0.303 0 0 0 0 0
10 DEF Lv 0.102 0.005 0.017 0.293 0 0 0 0 0

Panel C: Stocks Composite Model Top 5 Models
No. Variable π|y Post. Mean Post. STD t-ratio (i) (ii) (iii) (iv) (v)

1 RV(t-1) 1.000 0.416 0.074 5.638 1 1 1 1 1
2 DEF Lv 0.991 0.150 0.040 3.729 1 1 1 1 1
3 BM Lv 0.896 -0.161 0.068 -2.359 1 1 1 1 1
4 TED Lv 0.637 0.072 0.063 1.144 1 1 0 0 0
5 RTB Sq 0.602 -0.028 0.026 -1.079 1 1 0 0 1
6 MKTRF Lv 0.588 -0.040 0.038 -1.054 1 1 0 1 1
7 TED Sq 0.403 -0.016 0.021 -0.745 1 1 0 0 0
8 TB Lv 0.314 0.027 0.044 0.612 0 0 1 1 1
9 SMB Sq 0.176 0.002 0.006 0.413 0 1 0 0 0
10 HML Sq 0.174 0.004 0.009 0.409 0 0 0 0 0
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Table 6. Continued.

Panel D: Commod. Composite Model Top 5 Models
No. Variable π|y Post. Mean Post. STD t-ratio (i) (ii) (iii) (iv) (v)

1 RV(t-1) 1.000 0.538 0.061 8.831 1 1 1 1 1
2 TB Lv 0.672 -0.093 0.072 -1.285 1 1 1 0 0
3 TS Lv 0.638 -0.075 0.063 -1.194 1 1 1 0 0
4 DEF Lv 0.565 0.039 0.039 1.009 1 1 1 0 0
5 DP Lv 0.358 -0.034 0.049 -0.685 0 0 0 1 1
6 AFD Sq 0.286 -0.011 0.020 -0.569 0 0 1 1 0
7 INF Sq 0.204 0.005 0.011 0.453 0 0 0 1 0
8 NTIS Lv 0.173 -0.009 0.022 -0.408 0 0 0 0 1
9 M1 Sq 0.114 -0.003 0.011 -0.314 0 1 0 0 0
10 TB Sq 0.111 0.003 0.011 0.307 0 0 0 0 0

Notes: This table reports in-sample results from a Bayesian Model Averaging approach based on an
MC3 algorithm. Predictive variables are included in levels (Lv) and squared terms (Sq). The lagged
dependent variable RV(t-1) is controlled for. The results display the results for the best 10 predictors,
as sorted according to the posterior probability of inclusion π|D (sorted in descending order). Moreover
the table reports the posterior means, standard deviation and t-ratios of the best predictors (reflecting
model uncertainty). Inclusion of the specific variable in the Top 5 models (according to the posterior model
probability) is indicated by 1.
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Table 7. Out-of-Sample Forecast Evaluation: Non-Linearities and Predictors in Absolute
Values

Panel A: Levels and Squared Terms of Predictors

A.1.: FX Top BMA MC3 EW Top10 A.2.: Bonds Top BMA MC3 EW Top10

TU 0.988 0.973 0.974 TU 1.008 0.981 0.978

#TUbs<TU 0.010 0.000 0.000 #TUbs<TU 0.378 0.002 0.000

R2
OOS 0.024 0.053 0.051 R2

OOS -0.016 0.038 0.044

MZ GLS 14.878 10.432 9.772 MZ GLS 0.806 0.052 0.240

p-val. 0.001 0.005 0.008 p-val. 0.668 0.975 0.887

A.3.: Stocks Top BMA MC3 EW Top10 A.4.: Commod. Top BMA MC3 EW Top10

TU 1.088 1.058 1.049 TU 0.970 0.964 0.960

#TUbs<TU 0.892 0.878 0.844 #TUbs<TU 0.000 0.000 0.000

R2
OOS -0.184 -0.119 -0.100 R2

OOS 0.059 0.072 0.079

MZ GLS 13.556 8.937 7.803 MZ GLS 24.412 24.250 23.230

p-val. 0.001 0.012 0.020 p-val. 0.000 0.000 0.000

Panel B: Absolute Values of Predictors

B.1.: FX Top BMA MC3 EW Top10 B.2.: Bonds Top BMA MC3 EW Top10

TU 1.002 1.001 1.001 TU 1.015 1.012 1.011

#TUbs<TU 0.358 0.188 0.176 #TUbs<TU 0.720 0.712 0.698

R2
OOS -0.003 -0.003 -0.002 R2

OOS -0.029 -0.025 -0.022

MZ GLS 28.971 27.492 27.186 MZ GLS 3.322 2.872 2.741

p-val. 0.000 0.000 0.000 p-val. 0.190 0.238 0.254

B.3.: Stocks Top BMA MC3 EW Top10 B.4.: Commod. Top BMA MC3 EW Top10

TU 1.080 1.075 1.071 TU 1.012 1.009 1.006

#TUbs<TU 0.976 0.980 0.980 #TUbs<TU 0.700 0.650 0.506

R2
OOS -0.167 -0.155 -0.148 R2

OOS -0.024 -0.019 -0.013

MZ GLS 5.678 9.959 10.164 MZ GLS 16.733 18.874 18.852

p-val. 0.059 0.007 0.006 p-val. 0.000 0.000 0.000

Notes: The table shows the results from the evaluation of out-of-sample forecasts based on the MC3 approach when using
levels and squared terms of predictors (Panel A) or using levels and absolute values of the predictors (Panel B). TOP denotes
the forecast based on the model, which takes the highest posterior model probability when the forecast is made. BMA is the
forecast obtained by combining forecasts according to Bayesian Model Averaging, whereas EW Top10 is the equally weighted
average of the forecasts of the 10 best models (in terms od posterior model probability) at the time of the forecast. The reported
statistics include the ratio of the RMSE of the model of interest and the RMSE of the benchmark model (Theil’s U, denoted
TU), the OOS R2 of Campbell and Thompson (2008). #TUbs<TU denotes the bootstrap p-value of a test for equal predictive
performance of the macro-finance augmented model and the AR(1) benchmark against the alternative of superior performance
of the model including macro-finance predictors. MZ GLS denotes the GLS version of the Mincer-Zarnowitz statistic.
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Table 8. Predictive Regressions for Financial Volatility: BMA,
Absolute Values of Predictors

Panel A: FX Composite Model Top 5 Models
No. Variable π|y Post. Mean Post. STD t-ratio (i) (ii) (iii) (iv) (v)

1 RV(t-1) 1.000 0.488 0.063 7.766 1 1 1 1 1
2 DOL 0.973 0.103 0.035 2.916 1 1 1 1 1
3 CP 0.301 0.020 0.035 0.566 0 1 0 0 0
4 TB 0.190 0.011 0.026 0.410 0 0 1 0 0
5 AFD 0.157 0.009 0.026 0.360 0 0 0 0 0
6 RTB 0.144 0.007 0.021 0.340 0 0 0 0 1
7 SMB 0.139 -0.006 0.017 -0.332 0 0 0 0 0
8 DEF 0.127 0.007 0.021 0.312 0 0 0 1 0
9 RBR 0.106 0.004 0.015 0.275 0 0 0 0 0
10 BAS 0.101 0.004 0.014 0.266 0 0 0 0 0

Panel B: Bonds Composite Model Top 5 Models
No. Variable π|y Post. Mean Post. STD t-ratio (i) (ii) (iii) (iv) (v)

1 RV(t-1) 1.000 0.408 0.062 6.533 1 1 1 1 1
2 RBR 0.999 0.130 0.030 4.319 1 1 1 1 1
3 TB 0.939 0.097 0.040 2.442 1 1 1 1 1
4 CT 0.799 -0.061 0.039 -1.558 1 1 1 0 0
5 ORD 0.294 0.017 0.030 0.556 0 1 0 0 1
6 NTIS 0.274 0.017 0.032 0.528 0 0 1 0 0
7 TS 0.139 -0.008 0.025 -0.332 0 0 0 0 0
8 SENT 0.135 -0.006 0.019 -0.326 0 0 0 0 0
9 TED 0.115 0.006 0.020 0.291 0 0 0 0 0
10 DOL 0.090 0.003 0.014 0.245 0 0 0 0 0

Panel C: Stocks Composite Model Top 5 Models
No. Variable π|y Post. Mean Post. STD t-ratio (i) (ii) (iii) (iv) (v)

1 RV(t-1) 1.000 0.599 0.058 10.401 1 1 1 1 1
2 IPGR 0.313 0.025 0.043 0.591 0 1 0 1 0
3 DEF 0.214 0.017 0.037 0.452 0 0 1 0 0
4 RTB 0.200 -0.014 0.032 -0.430 0 0 0 1 0
5 MKTRF 0.104 0.006 0.022 0.277 0 0 0 0 0
6 ORD 0.092 0.005 0.018 0.252 0 0 0 0 0
7 MSCI 0.092 0.005 0.019 0.253 0 0 0 0 0
8 HML 0.086 0.004 0.015 0.243 0 0 0 0 0
9 DP 0.083 0.006 0.024 0.233 0 0 0 0 0
10 LIQ 0.083 -0.004 0.015 -0.236 0 0 0 0 0
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Table 8. Continued.

Panel D: Commod. Composite Model Top 5 Models
No. Variable π|y Post. Mean Post. STD t-ratio (i) (ii) (iii) (iv) (v)

1 RV(t-1) 1.000 0.638 0.057 11.239 1 1 1 1 1
2 INF 0.919 0.090 0.039 2.286 1 1 1 1 1
3 AFD 0.499 -0.044 0.051 -0.866 1 0 0 1 0
4 CP 0.381 -0.028 0.041 -0.685 0 1 0 1 0
5 M1 0.143 -0.009 0.025 -0.342 0 0 0 0 1
6 SMB 0.126 0.005 0.016 0.316 0 0 0 0 0
7 IPGR 0.114 -0.005 0.017 -0.296 0 0 0 0 0
8 HS 0.073 -0.003 0.012 -0.214 0 0 0 0 0
9 RBR 0.068 -0.002 0.011 -0.203 0 0 0 0 0
10 RTB 0.064 -0.002 0.012 -0.190 0 0 0 0 0

Notes: This table reports in-sample results from a Bayesian Model Averaging approach based on an MC3

algorithm. Predictive variables are included in absolute values. The lagged dependent variable RV(t-1) is
controlled for. The results display the results for the best 10 predictors, as sorted according to the posterior
probability of inclusion π|D (sorted in descending order). Moreover the table reports the posterior means,
standard deviation and t-ratios of the best predictors (reflecting model uncertainty). Inclusion of the specific
variable in the Top 5 models (according to the posterior model probability) is indicated by 1.

40



T
a
b
le

A
.1

.
P

re
d
ic

ti
ve

V
ar

ia
b
le

s:
D

at
a

S
ou

rc
es

an
d

C
on

st
ru

ct
io

n

N
o
.

V
a
r
ia

b
le

A
b
b
r
e
v
.

D
a
ta

S
o
u
r
c
e

D
e
sc

r
ip

ti
o
n

1
D

iv
id

en
d

P
ri

ce
R

a
ti

o
(L

o
g
)

(*
)

D
P

G
o
y
a
l-

W
el

ch
D

a
ta

D
iv

id
en

d
s

o
v
er

th
e

p
a
st

y
ea

r
(1

2
-m

o
n
th

m
o
v
in

g
su

m
)

re
la

ti
v
e

to
cu

rr
en

t
m

a
rk

et
p

ri
ce

s
(i

n

lo
g
s)

;
S

&
P

5
0
0

in
d

ex
.

2
B

o
o
k
-t

o
-M

a
rk

et
R

a
ti

o
(*

)
B

M
G

o
y
a
l-

W
el

ch
D

a
ta

R
a
ti

o
o
f

b
o
o
k

v
a
lu

e
to

m
a
rk

et
v
a
lu

e
fo

r
th

e
D

o
w

J
o
n

es
In

d
u

st
ri

a
l

A
v
er

a
g
e.

3
N

et
E

q
u

it
y

E
x
p
a
n

si
o
n

(*
)

N
T

IS
G

o
y
a
l-

W
el

ch
D

a
ta

R
a
ti

o
o
f

1
2
-m

o
n
th

m
o
v
in

g
su

m
s

o
f

n
et

is
su

es
b
y

N
Y

S
E

li
st

ed
st

o
ck

s
d
iv

id
ed

b
y

to
ta

l
N

Y
S

E

m
a
rk

et
ca

p
it

a
li
za

ti
o
n

(e
n

d
-o

f-
y
ea

r)
.

4
C

ro
ss

-S
ec

ti
o
n

a
l

P
re

m
iu

m
(*

)
C

R
O

P
R

G
o
y
a
l-

W
el

ch
D

a
ta

M
ea

su
re

o
f

th
e

re
la

ti
v
e

v
a
lu

a
ti

o
n

s
o
f

h
ig

h
-

a
n

d
lo

w
-b

et
a

st
o
ck

s
b
y

P
o
lk

,
T

h
o
m

p
so

n
,

a
n

d

V
u

o
lt

ee
n

a
h

o
(2

0
0
6
).

5
P

a
st

o
r-

S
ta

m
b

a
u

g
h

L
iq

u
id

it
y

F
a
c-

to
r

(†
)

L
IQ

C
R

S
P

M
ea

su
re

o
f

st
o
ck

m
a
rk

et
li
q
u

id
it

y
b

a
se

d
o
n

p
ri

ce
re

v
er

sa
ls

.

6
R

et
u

rn
M

S
C

I
W

o
rl

d
M

S
C

I
D

a
ta

st
re

a
m

R
et

u
rn

o
n

th
e

M
S

C
I

w
o
rl

d
st

o
ck

m
a
rk

et
in

d
ex

.

7
U

S
M

a
rk

et
E

x
ce

ss
R

et
u

rn
M

K
T

R
F

K
.

F
re

n
ch

F
a
m

a
-F

re
n

ch
’s

m
a
rk

et
fa

ct
o
r:

U
.S

.
st

o
ck

m
a
rk

et
re

tu
rn

m
in

u
s

o
n

e-
m

o
n
th

T
-B

il
l

ra
te

.

8
S

iz
e

fa
ct

o
r

S
M

B
K

.
F

re
n

ch
F

a
m

a
-F

re
n

ch
’s

S
M

B
fa

ct
o
r:

R
et

u
rn

o
n

sm
a
ll

st
o
ck

s
m

in
u

s
re

tu
rn

o
n

b
ig

st
o
ck

s.

9
V

a
lu

e
fa

ct
o
r

H
M

L
K

.
F

re
n

ch
F

a
m

a
-F

re
n

ch
’s

H
M

L
fa

ct
o
r:

R
et

u
rn

o
n

v
a
lu

e
st

o
ck

s
m

in
u

s
re

tu
rn

o
n

g
ro

w
th

st
o
ck

s.

1
0

R
el

.
T

-B
il
l

ra
te

R
T

B
G

o
y
a
l-

W
el

ch
D

a
ta

T
-B

il
l

ra
te

m
in

u
s

it
s

1
2

m
o
n
th

m
o
v
in

g
a
v
er

a
g
e.

1
1

R
el

.
B

o
n
d

ra
te

R
B

R
G

o
y
a
l-

W
el

ch
D

a
ta

L
o
n

g
-t

er
m

b
o
n
d

y
ie

ld
m

in
u
s

it
s

1
2

m
o
n
th

m
o
v
in

g
a
v
er

a
g
e.

1
2

T
er

m
sp

re
a
d

(*
)

T
S

G
o
y
a
l-

W
el

ch
D

a
ta

D
iff

er
en

ce
o
f

lo
n

g
-t

er
m

b
o
n

d
y
ie

ld
a
n

d
th

re
e-

m
o
n
th

T
-B

il
l

ra
te

.

1
3

T
E

D
S

p
re

a
d

T
E

D
D

a
ta

st
re

a
m

M
ea

su
re

o
f

Il
li
q
u

id
it

y,
d

iff
er

en
ce

o
f

E
u

ro
d

o
ll
a
r

ra
te

a
n
d

T
-B

il
l

ra
te

.

1
4

L
o
n

g
T

er
m

B
o
n

d
R

et
u

rn
(*

)
L
T

R
G

o
y
a
l-

W
el

ch
D

a
ta

R
a
te

o
f

re
tu

rn
o
n

lo
n

g
te

rm
g
o
v
er

n
m

en
t

b
o
n

d
s.

1
5

T
-B

il
l

R
a
te

(L
ev

el
)

(*
)

T
B

G
o
y
a
l-

W
el

ch
D

a
ta

T
h
re

e-
m

o
n
th

T
-B

il
l

ra
te

.

1
6

C
o
ch

ra
n

e
P

ia
zz

es
i

F
a
ct

o
r

(‡
)

C
P

C
R

S
P

M
ea

su
re

o
f

b
o
n

d
ri

sk
p

re
m

ia
;

re
cu

rs
iv

el
y

es
ti

m
a
te

d
b
a
se

d
o
n

F
a
m

a
-B

li
ss

fi
le

in
C

R
S

P
.

1
7

D
ef

a
u
lt

S
p
re

a
d

(*
)

D
E

F
G

o
y
a
l-

W
el

ch
D

a
ta

M
ea

su
re

o
f

d
ef

a
u

lt
ri

sk
o
f

co
rp

o
ra

te
b

o
n

d
s;

d
iff

er
en

ce
o
f

B
A

A
b

o
n
d

y
ie

ld
s

a
n

d
A

A
A

b
o
n
d

y
ie

ld
s.

1
8

R
et

u
rn

C
R

B
S

p
o
t

C
R

B
D

a
ta

st
re

a
m

M
ea

su
re

o
f

g
ro

w
th

in
co

m
m

o
d

it
y

p
ri

ce
s;

a
n

n
u
a
l

lo
g

d
iff

er
en

ce
o
f

C
R

B
sp

o
t

in
d

ex
.

1
9

R
et

u
rn

o
n

D
o
ll
a
r

R
is

k
F

a
ct

o
r

(¶
)

D
O

L
B

B
I/

R
eu

te
rs

(D
a
ta

s-

tr
ea

m
)

F
X

ri
sk

p
re

m
iu

m
m

ea
su

re
;

A
v
er

a
g
e

p
re

m
iu

m
fo

r
b

ea
ri

n
g

F
X

ri
sk

.

2
0

C
a
rr

y
T

ra
d

e
F

a
ct

o
r

(¶
)

C
T

B
B

I/
R

eu
te

rs
(D

a
ta

s-

tr
ea

m
)

R
et

u
rn

o
n

h
ig

h
in

te
re

st
ra

te
cu

rr
en

ci
es

m
in

u
s

re
tu

rn
o
n

lo
w

in
te

re
st

ra
te

cu
rr

en
ci

es
.

2
1

F
X

A
v
er

a
g
e

B
id

-a
sk

sp
re

a
d

(†
†)

B
A

S
B

B
I/

R
eu

te
rs

(D
a
ta

s-

tr
ea

m
)

M
ea

su
re

o
f

il
li
q
u
id

it
y

in
th

e
fo

re
ig

n
ex

ch
a
n
g
e

m
a
rk

et
ca

lc
u

la
te

d
fr

o
m

b
id

-a
sk

sp
re

a
d
s.

2
2

In
fl

a
ti

o
n

R
a
te

(*
)

IN
F

D
a
ta

st
re

a
m

Y
ea

r-
o
v
er

y
ea

r
(l

o
g
)

g
ro

w
th

ra
te

o
f

th
e

U
.S

.
co

n
su

m
er

p
ri

ce
in

d
ex

.

2
3

In
d

u
st

ri
a
l

P
ro

d
u

ct
io

n
G

ro
w

th
IP

G
R

D
a
ta

st
re

a
m

Y
ea

r-
o
v
er

y
ea

r
(l

o
g
)

g
ro

w
th

ra
te

o
f

U
.S

.
in

d
u
st

ri
a
l

p
ro

d
u

ct
io

n
.

41



T
a
b
le

A
.1

.
C

on
ti

n
u
ed

.

N
o
.

V
a
r
ia

b
le

A
b
b
r
e
v
.

D
a
ta

S
o
u
r
c
e

D
e
sc

r
ip

ti
o
n

2
4

O
rd

er
s

O
R

D
D

a
ta

st
re

a
m

N
ew

o
rd

er
s

o
f

co
n

su
m

er
g
o
o
d

s
a
n
d

m
a
te

ri
a
ls

;
y
ea

r-
o
v
er

y
ea

r
(l

o
g
)

g
ro

w
th

ra
te

.

2
5

A
v
er

a
g
e

F
o
rw

a
rd

D
is

co
u
n
t

(‡
‡)

A
F

D
B

B
I/

R
eu

te
rs

(D
a
ta

s-

tr
ea

m
)

A
g
g
re

g
a
te

p
re

d
ic

to
r

o
f

F
X

re
tu

rn
s

ca
lc

u
la

te
d

fr
o
m

fo
rw

a
rd

ra
te

s
a
n
d

sp
o
t

ra
te

s.

2
6

M
1

G
ro

w
th

M
1

D
a
ta

st
re

a
m

Y
ea

r-
o
v
er

-y
ea

r
(l

o
g
)

g
ro

w
th

ra
te

o
f

U
.S

.
M

1
.

2
7

C
o
n

su
m

er
S

en
ti

m
en

t
S

E
N

T
D

a
ta

st
re

a
m

M
o
n
th

ly
ch

a
n

g
e

in
co

n
su

m
er

se
n
ti

m
en

t.

2
8

P
u

rc
h
a
si

n
g

M
a
n

a
g
er

In
d

ex
P

M
I

D
a
ta

st
re

a
m

M
o
n
th

ly
ch

a
n

g
e

in
p

u
rc

h
a
si

n
g

m
a
n

a
g
er

in
d

ex
.

2
9

H
o
u

si
n

g
S
ta

rt
s

H
S

D
a
ta

st
re

a
m

M
o
n
th

ly
ch

a
n

g
e

in
h

o
u

si
n

g
st

a
rt

ed
.

N
o
te

s:

(*
)

V
a
ri

a
b

le
is

a
m

o
n

g
th

e
p

re
d
ic

to
rs

co
n

si
d
er

ed
in

G
o
y
a
l

a
n
d

W
el

ch
(2

0
0
8
).

S
ee

G
o
y
a
l

a
n

d
W

el
ch

(2
0
0
8
)

fo
r

fu
rt

h
er

d
et

a
il
s

o
n

d
a
ta

co
n

st
ru

ct
io

n
.

(†
)

S
ee

P
a
st

o
r

a
n

d
S

ta
m

b
a
u
g
h

(2
0
0
3
)

fo
r

fu
rt

h
er

d
et

a
il
s

o
n

d
a
ta

co
n

st
ru

ct
io

n
.

(‡
)

S
ee

C
o
ch

ra
n

e
a
n
d

P
ia

zz
es

i
(2

0
0
5
)

fo
r

fu
rt

h
er

d
et

a
il
s

o
n

d
a
ta

co
n
st

ru
ct

io
n
.

(¶
)

S
ee

L
u

st
ig

,
R

o
u

ss
a
n

o
v
,

a
n
d

V
er

d
el

h
a
n

(2
0
1
0
a
)

fo
r

fu
rt

h
er

d
et

a
il
s

o
n

d
a
ta

co
n
st

ru
ct

io
n
.

(†
†)

S
ee

M
en

k
h

o
ff

,
S

a
rn

o
,

S
ch

m
el

in
g
,

a
n

d
S
ch

ri
m

p
f

(2
0
1
0
)

fo
r

fu
rt

h
er

d
et

a
il
s

o
n

d
a
ta

co
n
st

ru
ct

io
n
.

(‡
‡)

S
ee

L
u

st
ig

,
R

o
u

ss
a
n
o
v
,

a
n
d

V
er

d
el

h
a
n

(2
0
1
0
b

)
fo

r
fu

rt
h

er
d

et
a
il
s

o
n

d
a
ta

co
n
st

ru
ct

io
n
.

42



Research Papers 
2010 

 
 

 
2010-44: Jeroen V.K. Rombouts and Lars Stentoft: Option Pricing with 

Asymmetric Heteroskedastic Normal Mixture Models 
 

2010-45: Rasmus Tangsgaard Varneskov and Valeri Voev: The Role of Realized 
Ex-post Covariance Measures and Dynamic Model Choice on the 
Quality of Covariance Forecasts 

 

2010-46: Christian Bach and Stig Vinther Møller: Habit-based Asset Pricing with 
Limited Participation Consumption 

 

2010-47: Christian M. Dahl, Hans Christian Kongsted  and Anders Sørensen: ICT 
and Productivity Growth in the 1990’s: Panel Data Evidence on 
Europe 

 

2010-48: Christian M. Dahl and Emma M. Iglesias: Asymptotic normality of the 
QMLE in the level-effect ARCH model 

 

2010-49: Christian D. Dick, Maik Schmeling and Andreas Schrimpf: Macro 
Expectations, Aggregate Uncertainty, and Expected Term Premia 

 

2010-50: Bent Jesper Christensen and Petra Posedel: The Risk-Return Tradeoff 
and Leverage Effect in a Stochastic Volatility-in-Mean Model 

 

2010-51: Christos Ntantamis: A Duration Hidden Markov Model for the 
Identification of Regimes in Stock Market Returns 

 

2010-52: Christos Ntantamis: Detecting Structural Breaks using Hidden Markov 
Models 

 

2010-53: Christos Ntantamis: Detecting Housing Submarkets using 
Unsupervised Learning of Finite Mixture Models 

 

2010-54: Stefan Holst Bache: Minimax Regression Quantiles  

2010-55: Nektarios Aslanidis and Charlotte Christiansen: Sign and Quantiles of 
the Realized Stock-Bond Correlation 

 

2010-56: Anders Bredahl Kock: Oracle Efficient Variable Selection in Random 
and Fixed Effects Panel Data Models 

 

2010-57: Charlotte Christiansen, Juanna Schröter Joensen and Jesper Rangvid: 
The Effects of Marriage and Divorce on Financial Investments: 
Learning to Love or Hate Risk? 

 

2010-58: Charlotte Christiansen, Maik Schmeling and Andreas Schrimpf: A 
Comprehensive Look at Financial Volatility Prediction by Economic 
Variables 

 

 


	Introduction
	Data
	Measuring Financial Volatility
	Macroeconomic and Financial Predictors
	Econometric Framework
	Empirical Results
	In-Sample Analysis
	Out-of-Sample Analysis

	Robustness Analysis
	Nonlinearities
	Absolute Values


	Conclusion
	Data Sources and Description
	Methodological Details
	Prior Elicitation
	MC3 Algorithm
	Bootstrap Procedure for OOS Evaluation


